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r-Realcompact spaces

D. Bhattacharya, Lipika Dey

Abstract. A new generalization of realcompactness based on ultrafilters of regular
Fσ-subsets is introduced. Its relationship with realcompactness, almost realcom-
pactness, almost* realcompactness, c-realcompactness is examined. Some of the
properties of the newly introduced space is studied as well.

Keywords: regular Fσ-subsets, almost realcompactness, almost* realcompact-
ness, r-weak cb, regular Oz, regular countably paracompact
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Introduction

Throughout this paper all the spaces are assumed to be Tychonoff (completely
regular and Hausdorff). For basic definitions of zero-sets, cozero-sets, filter, ul-
trafilter, prime filter etc. we refer to [7]. An ultrafilter F is fixed iff

⋂ F̄ 6= ∅.
A non-empty family F of sets is said to have countable (resp. closed countable)
intersection property provided that the intersection of any countable number of
members (resp. of the closures of countable number of members) of F is non-
empty. Likewise, finite intersection property (fip) may be defined.

We know that a space X is realcompact [9] if every ultrafilter of zero-sets with
countable intersection property (cip) is fixed. A space X is said to be almost [5]
(resp. almost* [15]) realcompact if every ultrafilter of open sets (resp. cozero-sets)
with closed countable intersection property (ccip) is fixed.

The concept of regular Gδ-subsets was introduced by J. Mack [11]. A subset
H of a topological space X is called a regular Gδ-subset if H is an intersection
of a sequence of closed sets whose interiors contain H (or, equivalently, if H =⋂∞

n=1 Gn =
⋂∞

n=1 ClX Gn, where each Gn is open in X). The complement of a
regular Gδ-subset is called a regular Fσ-subset, i.e., a subset V of a spaceX is said
to be a regular Fσ if V =

⋃∞
n=1 Fn =

⋃∞
n=1 IntX Fn, where each Fn is closed in X .

Properties of regular Gδ and regular Fσ-subsets have been studied in [1]. Every
zero-set is a regular Gδ and every cozero-set is a regular Fσ. The intersection
of two regular Fσ-subsets is regular Fσ and the countable union of regular Fσ-
subsets is also regular Fσ. The sets of all zero-sets and regular Fσ-subsets of X
are respectively denoted by Z(X) and Rf (X).

Froĺık [5] and Schommer-Swardson [15] introduced and studied almost real-
compactness and almost* realcompactness using the ultrafilter of open sets and
cozero-sets, respectively. It would be interesting to study the structure defined in
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a similar fashion with the help of regular Fσ-subsets, when it is well known that
every cozero-set is regular Fσ and every regular Fσ is open. The motivation of
the present paper is to investigate whether strengthening (resp. weakening) the
original definition of almost (resp. almost*) realcompactness with the introduc-
tion of regular Fσ-subsets produce a stronger (resp. weaker) result than that of
almost (resp. almost*) realcompactness. However, we shall see that almost real-
compactness, almost* realcompactness and r-realcompactness are all independent
in Tychonoff spaces. Some of the properties of r-realcompact spaces have also been
studied.

Definition 1. A space X is said to be r-realcompact , if whenever F is an ultra-
filter of regular Fσ-subsets of X such that F̄ has the cip, then

⋂ F̄ 6= ∅.
We first see that r-realcompactness is indeed a weak realcompactness condition.

For this we need the following lemma.

Lemma 2. Let F be an ultrafilter of regular Fσ-subsets of X and Z = {Z : Z is
a zero-set of X and Z ⊇ F where F ∈ F}. Then Z is a prime z-filter.

Proof: Clearly Z is a z-filter. To prove that Z is prime, let us define Z̃ =
{X−Z : Z ∈ Z(X)−Z}. If we can show that Z̃ is a filter, then by Proposition 1(b)

of [6], both Z and Z̃ will be prime filters. For this we check the following:

(i) Clearly ∅ /∈ Z̃.

(ii) Let X − Z1, X − Z2 ∈ Z̃, then Z1 and Z2 do not contain any F , F ∈
F . Under this condition, using the primeness of F it can be easily seen that
Z1 ∪ Z2 does not contain any F ∈ F and hence does not belong to Z. Therefore
(X − Z1) ∩ (X − Z2) ∈ Z̃.

(iii) Let X − Z ∈ Z̃, then Z does not contain any F , for F ∈ F and also let

X −Z
′
contains X −Z. Then Z

′ ⊆ Z and hence neither Z
′
contains any F ∈ F .

Therefore X − Z
′ ∈ Z̃. �

Theorem 3. Every realcompact space is r-realcompact.

Proof: Let F be an ultrafilter of regular Fσ-subsets of X with
⋂ F̄ = ∅. Let

Z = {Z : Z is a zeroset of X and F ⊆ Z, where F ∈ F}. By Lemma 2, Z is a
prime z-filter.

Since in a completely regular space the zero-sets form a base for the closed
sets, we have

⋂Z =
⋂{ClX F : F ∈ F} =

⋂ F̄ = ∅. Therefore there exists a
countable collection {Zn : n ∈ N} ⊆ Z such that

⋂
n∈N Zn = ∅. By construction,

for each Zn ∈ Z, there exists Fn ∈ F such that Fn ⊆ Zn, i.e., ClX Fn ⊆ Zn. Thus⋂
n∈N ClX Fn ⊆ ⋂

n∈N Zn = ∅, i.e., ⋂n∈N ClX Fn = ∅. Hence X is r-realcompact.
�

To show that the converse of Theorem 3 is not always true, the following lemma
will assist us in providing a counterexample.

Lemma 4. Let F be an ultrafilter of regular Fσ-subsets of X with ccip and let
U ∈ F . If ClX U is r-realcompact, then

⋂ F̄ 6= ∅.
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Proof: Let F be an ultrafilter of regular Fσ-subsets of X with ccip and let
U ∈ F . Further assume that ClX U is r-realcompact. We first show that if
H ∈ F|ClX U , then H ∩ U ∈ F . Let H ∈ F|ClX U , then H = V ∩ ClX U ,
for V ∈ F . So H ∩ U = V ∩ ClX U ∩ U = V ∩ U , which further shows that
H ∩ U = V ∩ U ∈ F .

We next show that F|ClX U is a base for an ultrafilter of regular Fσ-subsets
on ClX U . It is straightforward to check that F|ClX U has fip and is also closed
under fip. Let W be a regular Fσ-subset of ClX U and assume that W ∩G 6= ∅,
for all G ∈ F|ClX U . In particular, W ∩ U 6= ∅. Now since W is regular Fσ

in ClX U , by Theorem 28, W ∩ U is regular Fσ in U . Again U is regular Fσ in
X and hence by Corollary 32, W ∩ U is a regular Fσ in X . Let G

′ ∈ F . Then
G

′ ∩ U ∈ F and so G
′ ∩ U = (G

′ ∩ U) ∩ ClX U ∈ F|ClX U , which implies that

W ∩ U ∩ G
′ 6= ∅. We conclude that W ∩ U ∈ F and W ∩ U ∈ F|ClX U . Since

W ∩ U ⊆ W , our claim is proved.
Let G be an ultrafilter of regular Fσ-subsets on ClX U with F|ClX U ⊆ G.

We show that G has ccip. Let {Vn : n ∈ N} ⊆ G. Each Vn ⊇ Gn, where
Gn ∈ F|ClX U . Now {Gn ∩ U : n ∈ N} ⊆ F . Thus there is a point p ∈⋂

n∈N ClX(Gn ∩ U). Clearly p ∈ ⋂
n∈NClClX U Vn. Since ClX U is r-realcompact,

there is p ∈ ⋂ Ḡ. We claim that p ∈ ⋂ F̄ . Let P ∈ F . Then P ∩ U ∈ F and so
P ∩ U ∈ F|ClX U ⊆ G and hence p ∈ ClX(P ∩ U) ⊆ ClX P . This completes the
proof. �
Example 5. The Mysior plane is not realcompact, but is r-realcompact.

In [13], Mysior provides an example of an almost realcompact space that is
not realcompact. He defines a topology on R2 by first isolating the points not
on the x-axis. For every point (x, 0) on the x-axis, a base of neighborhoods is
defined to be the family {Un(x, 0) : n ∈ N}, where each Un(x, 0) is the union
of three segments: {(x, y) : − 1

n < y < 1
n}, {(x + 1 + y, y) : 0 < y < 1

n} and

{(x +
√
2 + y,−y) : 0 < y < 1

n}. Mysior demonstrates that the half-planes
X+ = {(x, y) : y ≥ 0} and X− = {(x, y) : y ≤ 0} are both closed in X and
realcompact, but their union X = X+ ∪X− is not realcompact.

To show that X is r-realcompact, let F be an ultrafilter of regular Fσ-subsets
of X with ccip. We see that the open half planes U = {(x, y) : y > 0} and
L = {(x, y) : y < 0} are both cozero-sets and hence regular Fσ-subsets in X .
Clearly f : X → R defined by f(x, y) = y, if (x, y) ∈ U and f(x, y) = 0,
elsewhere, is continuous on X and also cozero f = U . Further U ∪ L is dense
in X . Therefore, either U or L must belong to F . Without loss of generality,
assume U ∈ F . But X+ = ClX U is realcompact and hence r-realcompact and so
F must be fixed by using the Lemma 4. Consequently X is r-realcompact.

However, we show that r-realcompactness with some additional condition im-
plies realcompactness. For this we first define the following:

Definition 6. A space X is r-weak cb if for every decreasing sequence {Pn : n ∈
N} of regular Fσ-subsets with

⋂
n∈N ClX Pn = ∅, there exists a decreasing sequence

{Zn : n ∈ N} of zero-sets such that Pn ⊆ Zn for every n, and
⋂

n∈N Zn = ∅.
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Remark 7. We recall here that a space X is a cb space [10] if for every decreasing
sequence {Fn : n ∈ N} of closed sets with

⋂
n∈N Fn = ∅, there exists a decreasing

sequence {Zn : n ∈ N} of zero-sets such that Fn ⊆ Zn for every n, and
⋂

n∈N Zn =
∅. The concepts of weak cb and almost weak cb were introduced by Mack-Johnson
[12] and Schommer-Swardson [15] respectively, as generalizations of cb spaces.
A space X is weak cb space if for a given decreasing sequence {Fn : n ∈ N}
of regular closed subsets of X with empty intersection, there exists a decreasing
sequence {Zn : n ∈ N} of zero-sets with empty intersection such that Zn ⊇ Fn for
each n ∈ N. Similarly a space X is almost weak cb space if for a given decreasing
sequence {Pn : n ∈ N} of cozero-sets of X with

⋂
n∈NClX Pn = ∅, there exists a

decreasing sequence {Zn : n ∈ N} of zero-sets with empty intersection such that
Zn ⊇ ClX Pn for each n ∈ N. It is straightforward to show that every weak cb
space is r-weak cb and every r-weak cb space is almost weak cb.

Note 8. The hierarchy of the different spaces mentioned is as follows:

cb space ⇒ weak cb ⇒ r-weak cb ⇒ almost weak cb.

The authors intend to study the properties of r-weak cb spaces elsewhere.

Theorem 9. If X is r-realcompact and r-weak cb, then X is realcompact.

Proof: Let F be a free z-ultrafilter on X . Let B = {P : P is regular Fσ-subset
and there exists Z ∈ F with Z ⊆ P}. Clearly B is a filter of regular Fσ-subsets
of X . Let G be an ultrafilter of regular Fσ-subsets of X containing B. We show
that

⋂ Ḡ = ∅. Let p ∈ X . Since F is free, p ∈ X − Z for some Z ∈ F . Again X
is completely regular, so there exists a cozero-set Q and a zero-set Z ′ such that
p ∈ Q ⊆ Z ′ ⊆ X−Z [7]. Thus Z ⊆ X−Z ′ and soX−Z ′ ∈ G asX−Z ′ is a regular
Fσ (being a cozero-set). But p /∈ ClX(X − Z ′), as p ∈ Q and Q ∩ (X − Z ′) = ∅.
Therefore p /∈ ⋂ Ḡ. Since p is arbitrary,

⋂ Ḡ = ∅.
Again X is r-realcompact and

⋂ Ḡ = ∅, thus there must exist a collection
{Pn : n ∈ N} ⊆ G with

⋂
n∈N ClX Pn = ∅. Let Vn =

⋂{Pi : i ≤ n}. Then
{Vn : n ∈ N} ⊆ G is a decreasing sequence of regular Fσ-subsets of X with⋂

n∈N ClX Vn ⊆ ⋂
n∈N ClX Pn = ∅, and hence

⋂
n∈N ClX Vn = ∅. Since X is r-

weak cb, there exists a collection {Zn : n ∈ N} of zero-sets with ClX Vn ⊆ Zn for
each n, and

⋂
n∈N Zn = ∅. Now we show that each Zn meets every member of F .

If not, there exists a set Z ∈ F with Z ∩ Zn = ∅ for some n. Then Z ⊆ X − Zn,
and so X − Zn ∈ B ⊆ G. Again ClX Vn ⊆ Zn and so ClX Vn ∩ (X − Zn) = ∅ and
therefore Vn ∩ (X − Zn) = ∅. But it contradicts the fact that G is a filter. Thus
Zn ∈ F for each n, and

⋂
n∈N Zn = ∅. This shows that X is realcompact. �

Next we show that the notions of almost realcompactness and r-realcompact-
ness are independent, neither of them implies the other. However, with some
additional condition one could be obtained from the other.

Example 10. The Dieudonné plank D is almost realcompact, but not r-real-
compact.
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The Dieudonné plank D [14] is defined by [0, ω1]× [0, ω]−{(ω1, ω)}, the points
of the Tychonoff plank with the topology τ generated by declaring open each
point of [0, ω1)× [0, ω), together with the sets Uα(β) = {(β, γ) : α < γ ≤ ω} and
Vα(β) = {(γ, β) : α < γ ≤ ω1}, where ω1 (resp. ω) is the first uncountable (resp.
infinite) ordinal. Thus points on the right edge have neighborhoods containing
tails. The points on the top edge also have basic neighborhoods that contain tails
(not “rectangles”). The Dieudonné topology τ on D is finer than the Tychonoff
topology on T = D. Now in T , every closed Gδ-set is a zero-set [7]. Hence
in T , every regular Fσ (open Fσ) is a cozero-set. Thus in Dieudonné plank D,
every regular Fσ is a cozero-set and hence every ultrafilter of regular Fσ-subsets
is an ultrafilter of cozero-sets and conversely. But Schommer [15] proved that in
D, there exists an ultrafilter of cozero-sets with ccip having empty intersection.
Hence there exists an ultrafilter of regular Fσ-subsets in D with ccip and empty
intersection. Therefore D is not r-realcompact.

We now wish to search for the condition under which an almost realcompact
space becomes r-realcompact.

Definition 11. X is said to be regular countably paracompact if for every de-
creasing sequence {Fn : n ∈ N} of closed sets with

⋂
n∈N Fn = ∅, there exists a

decreasing sequence {Hn : n ∈ N} of regular Fσ-subsets with Fn ⊆ Hn for each n,
and

⋂
n∈N ClX Hn = ∅.

Note 12. If X is regular countably paracompact, then X is countably paracom-
pact. If X is normal and countably paracompact, then X is regular countably
paracompact. Further if X is r-weak cb and regular countably paracompact, then
X is a cb space.

Theorem 13. If X is almost realcompact and regular countably paracompact,
then X is r-realcompact.

Proof: Following the usual technique letH be an ultrafilter of regular Fσ-subsets
with

⋂ H̄ = ∅. Let R = {U : U is open and there exists H ∈ H with H ⊆ U}.
Clearly H is a subfamily of R and

⋂ R̄ ⊆ ⋂ H̄ = ∅, i.e., ⋂ R̄ = ∅. Also R is
a filter of open sets. Let G be an open ultrafilter containing R. Next we show
that

⋂ Ḡ = ∅ indeed. Let p ∈ X . Then p /∈ ClX H , i.e., p ∈ X − ClX H for
some H ∈ H. Since X is Tychonoff and hence regular, there exists an open set
V such that p ∈ V ⊆ ClX V ⊆ X − ClX H . Thus ClX H ⊆ X − ClX V , i.e.,
H ⊆ X −ClX V and so X −ClX V ∈ R ⊆ G. Also p /∈ X −ClX V , as p ∈ ClX V .
Further p ∈ V has empty intersection with X−ClX V , hence p /∈ ClX(X−ClX V ).
So p /∈ ⋂ Ḡ. Since p ∈ X is arbitrary, we conclude that

⋂ Ḡ = ∅.
Since X is almost realcompact and

⋂ Ḡ = ∅, Ḡ does not have cip. So there
exists a collection {Vn : n ∈ N} ⊆ G with

⋂
n∈N ClX Vn = ∅. Let Gn =

⋂{Vi :
i ≤ n}. Then {Gn : n ∈ N} ⊆ G is a decreasing sequence of open sets with⋂

n∈N ClX Gn = ∅. Since X is regular countably paracompact, there exists a
decreasing sequence {Fn : n ∈ N} of regular Fσ-subsets with ClX Gn ⊆ Fn for
each n, and

⋂
n∈NClX Fn = ∅. We now show that each Fn meets every member



258 D. Bhattacharya, L. Dey

of H. If not, there exists a set H ∈ H for which H ∩ Fn = ∅ for some n. Then
H ⊆ X − ClX Fn and so X − ClX Fn ∈ R ⊆ G. Now Gn ∩ (X − ClX Fn) = ∅,
contradicting the fact that G is a filter. Therefore Fn ∈ H for each n, and hence
H̄ does not have cip. Hence X is r-realcompact. �

Here is an example to show that an r-realcompact space need not be almost
realcompact.

Example 14. The Fringed plank is r-realcompact, but not almost realcompact.

For this we consider the Fringed plank [15]. The Fringed plank X is defined by
X = T ∪ {xj,n : j, n ∈ N}, where T = [0, ω1]× [0, ω]− {(ω1, ω)} is the Tychonoff
plank. Here we added a convergent sequence {xj,n : n ∈ N} to each point (ω1, j)
on the right edge of T . In the topology of X all the adjoined points are isolated
and the points (ω1, j), j ∈ N on the right edge, have their usual neighborhoods
plus enough tails of these sequences, i.e., V ∪ {xj,n : n > m,n ∈ N}, for each
m ∈ N, is a neighborhood of (ω1, j) in X , where V is the usual neighborhood of
(ω1, j) in T .

Schommer [15] proved that X is almost* realcompact, but not almost realcom-
pact. Now in T , every regular Fσ (open Fσ) is a cozero-set [7]. Also the set of the
added points P , say, is regular Fσ-subsets and also cozero in X , since countable
union of regular Fσ-subsets (resp. cozero-sets) is regular Fσ (resp. cozero). Now
let H be a regular Fσ-subset of X , then H ∩ T and H ∩P are regular Fσ-subsets
of T and P respectively (Theorem 28), and hence cozero-sets of T and P respec-
tively. It can be easily seen that H ∩ T and H ∩ P are also cozero-sets of X .
Hence H = (H ∩T )∪ (H ∩P ) is a cozero-set of X . Thus every regular Fσ-subset
of X is a cozero-set. So in X , almost* realcompactness and r-realcompactness are
identical. Therefore X is r-realcompact.

Is there any property that can be added to r-realcompact space to convert it
into almost realcompact space? Yes, regular Oz is one such property and it is
defined as follows:

Definition 15. X is said to be regular Oz if whenever A is an ultrafilter of open
sets of X , then F = {F : F is regular Fσ and F ∈ A} is an ultrafilter of regular
Fσ-subsets of X .

Theorem 16. If X is r-realcompact and regular Oz, then X is almost realcom-
pact.

Proof: Let A is an ultrafilter of open sets of X with
⋂ Ā = ∅. Now since X is

regular Oz, the family F = {F : F is regular Fσ and F ∈ A} is an ultrafilter of
regular Fσ-subsets of X and F ⊆ A. As in Theorem 9, we can show that

⋂ F̄ = ∅.
Again since X is r-realcompact and

⋂ F̄ = ∅, there is a collection {Fn : n ∈
N} ⊆ F such that

⋂
n∈NClX Fn = ∅. But each Fn ∈ A, so Ā does not have the

cip. Thus X is almost realcompact. �
Next we show that a weaker form of Oz space [3] possesses the regular Oz

property.
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Definition 17. A space X is almost Oz if the closure of every regular Fσ-subset
is a zero-set.

Remark 18. Clearly every Oz space is almost Oz and every almost Oz space is
weak Oz. (Recall that a space is Oz [3] if every regular closed set is a zero-set
and the space is weak Oz [12] if the closure of every cozero-set is a zero-set.)

Theorem 19. Every almost Oz space is regular Oz.

Proof: Let X be an almost Oz space. To prove the theorem let us suppose the
contrary. Then there is an ultrafilter A of open sets of X such that F = {P : P is
regular Fσ and P ∈ A} is not an ultrafilter of regular Fσ-subsets of X . Clearly F
is a filter of regular Fσ-subsets of X . Let B be an ultrafilter of regular Fσ-subsets
of X containing F . Thus there exists a regular Fσ-subset U ∈ B with P ∩ U 6= ∅
for every P ∈ F , but U /∈ F . Now U ∩ F = ∅, for some F ∈ A and hence
ClX U ∩ F = ∅. Thus F ⊆ X − ClX U . Since X is almost Oz, so ClX U is a
zero-set. Then V = X−ClX U is a cozero-set, i.e., a regular Fσ-subset containing
F . This implies that V ∈ A and since V is a regular Fσ-subset, V ∈ F and
hence V ∈ B. But it contradicts the fact that U and V are two members of the
ultrafilter B such that U ∩ V = ∅. This shows that X is regular Oz. �

To study the relationship between almost* realcompactness and r-realcompact-
ness we define the following:

Definition 20. A space X is said to have the property RC if whenever F is an
ultrafilter of regular Fσ-subsets of X , then G = {P : P is cozero and P ∈ F} is
an ultrafilter of cozero-sets.

Theorem 21. If X is almost* realcompact space with the property RC, then X
is r-realcompact.

Proof: Let F be an ultrafilter of regular Fσ-subsets of X with ccip, i.e., F̄ has
cip. Now by the property RC of X , G = {P : P is cozero and P ∈ F} is an
ultrafilter of cozero-sets and G ⊆ F . Since X is almost* realcompact and Ḡ has
the cip, we must have

⋂ Ḡ 6= ∅.
Now we shall show that

⋂ F̄ 6= ∅. Let us assume the contrary, i.e.,
⋂ F̄ = ∅. As

in Theorem 9, we can easily show that
⋂ Ḡ = ∅, and we arrive at a contradiction.

Hence
⋂ F̄ 6= ∅ and X is r-realcompact. �

One will be naturally interested to inquire the conditions under which r-
realcompactness implies almost* realcompactness. In this direction we have a
theorem (Theorem 23). Before this we recall the following definition.

Definition 22. X is said to be super countably paracompact [15] if for every
decreasing sequence {Fn : n ∈ N} of closed sets with

⋂
n∈N Fn = ∅, there exists

a decreasing sequence {Pn : n ∈ N} of cozero-sets with Fn ⊆ Pn for each n, and⋂
n∈N ClX Pn = ∅.

Theorem 23. If X is r-realcompact, super countably paracompact and weak
Oz, then X is almost* realcompact.
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Proof: Let F be an ultrafilter of cozero-sets with
⋂ F̄ = ∅. Let A = {U : U

is regular Fσ-subset and there exists F ∈ F with F ⊆ U}. Clearly A is a filter
of regular Fσ-subsets of X . Let G be an ultrafilter of regular Fσ-subsets of X
containing A. As before (Theorem 9) we can verify that

⋂ Ḡ = ∅.
Again X is r-realcompact and

⋂ Ḡ = ∅, so there must exist a collection
{Gn : n ∈ N} ⊆ G with

⋂
n∈N ClX Gn = ∅. Now let Vn =

⋂{Gi : i ≤ n}.
Then {Vn : n ∈ N} ⊆ G is a decreasing sequence of regular Fσ-subsets of X
with

⋂
n∈N ClX Vn ⊆ ⋂

n∈N ClX Gn = ∅ and hence
⋂

n∈N ClX Vn = ∅. By super
countable paracompactness of the space X , there exists a collection {Pn : n ∈ N}
of cozero-sets with ClX Vn ⊆ Pn for each n, and

⋂
n∈NClX Pn = ∅.

Next our aim is to show that Pn ∈ F for each n ∈ N. To show this we need to
prove that Pn ∩ F 6= ∅ for each F ∈ F . Let us suppose the contrary, i.e., there
exists a set F ∈ F with Pn ∩F = ∅ for some n. Then F ⊆ X −ClX Pn. By weak
Oz property of X , ClX Pn is a zero-set. Hence X − ClX Pn is a cozero-set and
so a regular Fσ-subset of X which contains F ∈ F . Thus X − ClX Pn ∈ A ⊆ G.
Again ClX Vn ⊆ Pn ⊆ ClX Pn and so ClX Vn ∩ (X − ClX Pn) = ∅. Therefore
Vn ∩ (X − ClX Pn) = ∅. But it contradicts the fact that Vn and X − ClX Pn are
two members of G. Therefore Pn ∈ F for each n ∈ N, and

⋂
n∈NClX Pn = ∅.

This shows that X is almost* realcompact. �
From Theorem 21 and Theorem 23, it appears that the two concepts of almost*

realcompactness and r-realcompactness are independent. However, for confirma-
tion we are in search for an example. So far in examples considered every regular
Fσ is a cozero. Our aim is to find a space (of course completely regular) wherein
not all regular Fσ are cozero-sets.

Next we study some properties of r-realcompact spaces.

That r-realcompactness is not closed hereditary is shown in the following ex-
ample.

Example 24. We consider the Fringed plank X which is r-realcompact (Ex-
ample 14). But Tychonoff plank T is a closed subspace of X which is not r-
realcompact (Example 38).

However, the closure of regular Fσ-subset in an r-realcompact space is r-
realcompact. For this we require a few results that we prove first.

Lemma 25. If Y ⊆ X and F is closed in X , then IntX F ∩ Y ⊆ IntY (F ∩ Y ).

Proof: The proof is straightforward. �
For the reverse inclusion we have the following theorem:

Theorem 26. If F is closed inX and Y is dense inX , then IntY (F∩Y ) ⊆ IntX F .

Proof: Let p ∈ IntY (F ∩ Y ), then there exists an open set Up in Y such that
p ∈ Up ⊆ F ∩ Y . Let U ′

P be open in X such that U ′
P ∩ Y = UP . Therefore

p ∈ U ′
P ∩Y ⊆ F ∩ Y . We now show that U ′

P ⊆ F . If not, then U ′
P −F is an open

set of X lying in Y −X , which contradicts the fact that Y is dense in X . Hence
U ′
P ⊆ F , i.e., U ′

P ⊆ IntX F . Thus p ∈ U ′
P ⊆ IntX F . Hence the result follows. �
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The above result may not hold if Y is not dense in X .

Example 27. Let X = [0, 1] and Y = (0, 1) − { 1
2}. X and Y have their usual

topologies and refined so that { 1
2} is an isolated point in X . Now F = [0, 12 ]

is closed in X . Then F ∩ Y = (0, 1
2 ) and so IntY (F ∩ Y ) = (0, 1

2 ). Again

IntX F = (0, 1
2 ]. Thus IntY (F ∩ Y ) 6= IntX F .

Theorem 28. If G is a regular Fσ-subset of a space X and Y ⊆ X , then G ∩ Y
is a regular Fσ-subset of Y .

Proof: Let G =
⋃

n Fn =
⋃

n IntX Fn, where each Fn is closed in X . Let
Fn ∩ Y = Kn; then each Kn is closed in Y . Now we define V =

⋃
n Kn. Next

we show that V is indeed a regular Fσ-subset, i.e., we prove that V =
⋃

n Kn =⋃
n IntY Kn. Since IntY Kn ⊆ Kn, we always have

⋃
n IntY Kn ⊆ ⋃

n Kn.
To prove the reverse inclusion, let p ∈ ⋃

n Kn. Then p ∈ Kn for some n, and
hence p ∈ Fn for some n. This implies that p ∈ ⋃

n Fn =
⋃

n IntX Fn and hence
p ∈ IntX Fn for some n. Thus p ∈ IntX Fn ∩ Y ⊆ IntY (Fn ∩ Y ) = IntY Kn

(Lemma 25), i.e., p ∈ IntY Kn and hence p ∈ ⋃
n IntY Kn. Thus

⋃
n Kn ⊆⋃

n IntY Kn. Therefore V =
⋃

n Kn =
⋃

n IntY Kn and it is a regular Fσ-subset
of Y such that V = G ∩ Y . Hence, the theorem follows. �

The converse of the above theorem is not always true as we have the following
example:

Example 29. LetX = {a, b, c, d, e} and τ = {X, ∅, {a}, {a, b}, {a, c, e}, {a, b, c, e}}.
Then τ -closed sets of X are {c, d, e}, {b, c, d, e}, {d} and {b, d}. Now we consider
a subspace Y = {b, c, e} of X . Then open sets of Y are ∅, Y , {b}, {c, e}, {b, c, e}
and so closed sets of Y are ∅, Y , {c, e} and {b}. Clearly B = {c, e} is an open, as
well as, closed subset of Y and hence a regular Fσ-subset of Y . The subsets of X
that have B as the intersection with Y , are given by {a, c, e}, {c, e}, {c, d, e} and
{a, c, d, e}. But none of these is a regular Fσ-subset of X .

Thus we have seen that if G is a regular Fσ-subset of a space X and Y ⊆ X ,
then G∩Y is a regular Fσ-subset of Y . But the converse of this result is not true.
This prompts us to define the following:

Definition 30. A subspace X of a space T is said to be regular Fσ-embedded
in T if for each regular Fσ-subset B of X there exists a regular Fσ-subset A of T
such that B = A ∩X .

The regular Fσ-embedded property of a subspace will be studied elsewhere.

Theorem 31. Every regular Fσ-subset of a topological space is regular Fσ-
embedded.

Proof: Let Y be a regular Fσ-subspace of X and H be a regular Fσ-subset of Y .
Then Y −H is a regular Gδ-subset of Y . Thus there exists a regular Gδ-subset A
ofX such that Y −H = A∩Y , [2]. Hence H = Y −(A∩Y ) = (X−A)∩Y = B∩Y ,
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where B = X − A is a regular Fσ-subset of X . Therefore for each regular Fσ-
subset H of Y , there exists a regular Fσ-subset B in X such that H = B ∩ Y .
Thus Y is regular Fσ-embedded in X . �
Corollary 32. If Y is a regular Fσ-subset of a space X , then every regular
Fσ-subset of Y is also a regular Fσ-subset of X .

Proof: Let H be a regular Fσ-subset of Y . Then by Theorem 28, there exists a
regular Fσ-subset B of X such that H = B ∩ Y . Y being regular Fσ in X , B ∩ Y
is also a regular Fσ-subset of X and hence H is also a regular Fσ-subset of X . �
Corollary 33. If Y is a regular Fσ-subset of a space X , then for each ultrafilter
F of regular Fσ-subsets of P = ClX Y , F|Y is a filter of regular Fσ-subsets of Y .

Proof: To prove that F|Y = {F ∩ Y : F ∈ F} is a filter of regular Fσ-subsets
of Y , we observe the following:

(i) Each member F ∈ F being open in P = ClX Y ⊆ X , there exists an
open subset G of X such that G ∩ P = F . Now G ∩ Y ⊆ G ∩ P = F and hence
G∩Y ⊆ F ∩Y . Now G∩Y 6= ∅, since G is open in X and G∩P = G∩ClX Y = F .
So F ∩ Y 6= ∅ and ∅ /∈ F|Y .

(ii) Let A1, A2 ∈ F|Y . Then A1 = F1 ∩Y and A2 = F2 ∩Y , where F1, F2 ∈ F .
Now A1 ∩A2 = (F1 ∩ Y ) ∩ (F2 ∩ Y ) = (F1 ∩ F2) ∩ Y ∈ F|Y .

(iii) Let A ∈ F|Y and A1 be a regular Fσ-subset in Y such that A ⊆ A1. Since
Y is regular Fσ in X , by Corollary 32, A and A1 are regular Fσ-subsets of X
and hence of P , as Y ⊆ P ⊆ X . Since A ∈ F|Y , there exists B ∈ F such that
A = B ∩ Y . Lastly, Y is a regular Fσ-subset of P and we claim that Y ∈ F (an
ultrafilter). Otherwise, there will be some C ∈ F such that C ∩ Y = ∅, which
is impossible. Hence A = B ∩ Y ∈ F , which in turn implies that A1(⊇ A) must
belong to F and hence A1 ∈ F|Y . �
Theorem 34. Let X be r-realcompact and Y be a regular Fσ-subspace of X .
Then ClX Y is r-realcompact.

Proof: Let F = ClX Y , where Y is a regular Fσ-subspace in X , and let F be
an ultrafilter of all regular Fσ-subsets of F with ccip. By Corollary 33, F|Y is
a filter of regular Fσ-subsets of Y . Since every regular Fσ-subset of Y is also a
regular Fσ-subset of X , let us consider an ultrafilter G of regular Fσ-subsets of
X such that F|Y ⊆ G. Then G has ccip. To prove this, let us consider a regular
Fσ-subset P ∈ G. Now since H ∩Y is a member of F|Y for every H ∈ F , we have
P∩H∩Y 6= ∅. Thus P∩H∩Y ∈ F|Y and since P∩H∩Y ⊆ P , F|Y must be a base
for G. Now let {Vn : n ∈ N} be a collection of regular Fσ-subsets of G. Since F|Y
is a base, there exists Un ⊆ Vn, for each n ∈ N with Un ∈ F|Y . For each n ∈ N,
there exists a Hn ∈ F such that Hn ∩ Y = Un. Since F has ccip, there exists a
p ∈ ⋂

n∈NClF (Hn ∩ Y ) =
⋂

n∈N ClF Un ⊆ ⋂
n∈N ClF (Vn ∩ Y ) ⊆ ⋂

n∈N ClX Vn and

so G has ccip as well. Since X is r-realcompact and G has ccip,
⋂ Ḡ 6= ∅. Now⋂

P∈G ClX P ⊆ ⋂
H∈F ClX(H ∩ Y ) ⊆ ⋂

H∈F ClX H and it follows that
⋂ F̄ 6= ∅.

Hence F = ClX Y must be r-realcompact. �
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Theorem 35. If Y is regular Fσ-embedded in X , then for each ultrafilter F of
regular Fσ-subsets of X which meets Y , F|Y is an ultrafilter on Y .

Proof: Let F be an ultrafilter of regular Fσ-subsets of X , which meets Y ⊆ X .
We show that F|Y = {F ∩Y : F ∈ F} is an ultrafilter of regular Fσ-subsets of Y .
We know that if F is a regular Fσ-subset of X and Y ⊆ X , then F ∩Y is a regular
Fσ-subset of Y . Thus F|Y = {F ∩ Y : F ∈ F} is a family of regular Fσ-subsets
of Y . Clearly F|Y is a filter. Because ∅ /∈ F|Y , since every regular Fσ-subset
of X which belongs to F meets Y . Again let (F1 ∩ Y ) and (F2 ∩ Y ) ∈ F|Y for
F1, F2 ∈ F . Then (F1 ∩ Y )∩ (F2 ∩ Y ) = (F1 ∩F2)∩ Y ∈ F|Y , since F1 ∩F2 ∈ F .
Lastly, let F ∩ Y ∈ F|Y and V be a regular Fσ-subset of Y containing F ∩ Y .
Let G be a regular Fσ-subset of X such that G ∩ Y = V , since Y is regular Fσ-
embedded in X . Now F ∪G is a regular Fσ-subset of X and hence (F ∪G) ∈ F ,
as F ∈ F . Also (F ∪ G) ∩ Y = (F ∩ Y ) ∪ (G ∩ Y ) = (F ∩ Y ) ∪ V = V ∈ F|Y .
Hence F|Y is a filter. Now we will show that F|Y is indeed an ultrafilter. Let K
be a regular Fσ-subset of Y that meets each member of the filter F|Y . We want
to show that K ∈ F|Y . By our assumption, there exists a regular Fσ-subset K

′

of X such that K ′ ∩ Y = K. As K meets each member of F|Y and K ′ contains
K, K ′ meets each member of F|Y and hence each member of F . Since F is an
ultrafilter it follows that K ′ ∈ F . Hence K = K ′ ∩ Y ∈ F|Y . Thus F|Y is an
ultrafilter. �

In the following, the relationship between r-realcompactness and c-realcom-
pactness will be studied.

Definition 36. A space X is c-realcompact [4] iff for every p ∈ βX −X there
exists a normal lower semi continuous (nlsc) function f on βX such that f(p) = 0
and f is positive on X . Equivalently, a space X is c-realcompact [8] iff for every
point p ∈ βX − X , there exists a decreasing sequence {An} of regular closed
subsets of βX with p ∈ ⋂

n∈N An while
⋂

n∈N(An ∩X) = ∅.
Theorem 37. Every r-realcompact space is c-realcompact.

Proof: Let us consider a point p ∈ βX − X . Let F be an ultrafilter of all
regular Fσ-subsets of βX containing p. Now we claim that

⋂ F̄ = {p}. If possible
let q ∈ ⋂ F̄ , q 6= p. Now since βX is Hausdorff, there exists disjoint open sets
Up and Uq containing p and q respectively. Again in a completely regular space
every neighborhood of a point contains a zero-set neighborhood of the point, so
we can find two zero-sets Z1 and Z2 such that p ∈ X − Z1 ⊆ Z2 ⊆ Up. Then
X − Z1 is a cozero-set and hence regular Fσ-subset containing p and is disjoint
from Uq. Thus X − Z1 ∈ F . Hence q /∈ ⋂ F̄ , a contradiction. Then G = F|X is
an ultrafilter of regular Fσ-subsets of X with

⋂
ClX G = ∅. By hypothesis, there

exists a sequence (which may be supposed to be decreasing) {Fi : i ∈ N} ⊆ F
such that

⋂
i∈N ClX(Fi ∩ X) = ∅. Now we define fi(x) = 0 if x ∈ ClX Fi and

fi(x) = 1 otherwise, with 0 ≤ fi ≤ 1 for all i ∈ N. Now let f =
∑

i∈N
fi
2i . Then

f is nlsc function [4], such that f(p) = 0 and f is positive on X . Hence X is
c-realcompact. �
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In the following, the preservation of r-realcompact under mappings will be
studied. First we show that r-realcompactness is not preserved under perfect
map (continuous, closed and compact).

Example 38. We recall that the ’Fringed plank’ X is r-realcompact. Let f :
X → T (Tychonoff plank) be the identity mapping on T ⊂ X , while all the
added points in each sequence go to the point to which the sequence converges.
Schommer [15] observed that this map is perfect, X is almost* realcompact while
T is not. Now in X , as well as in T , every regular Fσ is a cozero-set. Hence, the
two concepts of r-realcompactness and almost* realcompactness are identical in
these spaces. Thus under the above perfect mapping f , r-realcompactness is not
preserved. It may be mentioned here that the set P of all added points in X is a
regular Fσ-subset of X . But under f , P is mapped to the right edge of T , which
is not a regular Fσ-subset of T . This example also shows that under a perfect
map, the image of a regular Fσ-subset may not be regular Fσ.

Definition 39. A mapping from a space X to a space Y is said to be regular
Fσ-preserving if the image of every regular Fσ-subset of X is regular Fσ in Y .

Theorem 40. The image of an r-realcompact space under a countably compact,
continuous, onto and regular Fσ-preserving mapping is r-realcompact.

Proof: Let X be a r-realcompact space and f : X → Y be a countably compact,
continuous, onto and regular Fσ-preserving mapping. Let F be an ultrafilter of
regular Fσ-subsets of Y with

⋂ F̄ = ∅. Since inverse image of a regular Fσ-subset
under a continuous mapping is regular Fσ [11], f−1(F) = {f−1(F ) : F ∈ F} is
a family of regular Fσ-subsets of X closed under finite intersection and does not
contain ∅. Thus f−1(F) is a filter base. Now there exists an ultrafilterA of regular
Fσ-subsets of X containing f−1(F). It can be seen that

⋂ Ā ⊆ ⋂
ClX(f−1(F)) =

∅. Now let V ∈ A. Since f is regular Fσ-preserving, f(V ) is regular Fσ in Y . If
f(V ) /∈ F , there exists a regular Fσ-subset F

′ of Y such that F ′ ⊆ Y − f(V ) and
F ′ ∈ F . It follows that f−1(F ′) ⊆ f−1(Y −f(V )) = X−V , i.e., the two members
f−1(F ′) and V ofA are disjoint, which is impossible. Hence for V ∈ A, f(V ) ∈ F .
Since X is r-realcompact, there exists a countable sequence {Vi} of A such that⋂

i ClX Vi = ∅. The sequence {Vi} can be supposed to be decreasing. Again f
being countably compact, for each y ∈ Y , the family {f−1(y) ∩ ClX Vi}, i ∈ N,
does not have the fip. So there exists a k ∈ N such that f−1(y) ∩ ClX Vk = ∅,
which implies that y /∈ f(Vk) ∈ F . Thus {f(Vi)} is a countable subfamily of F
such that

⋂
iClY f(Vi) = ∅. Hence Y is r-realcompact. �

Remark 41. Next we see that r-realcompactness is neither inversely preserved
by perfect maps f : X → Y . For this, as in [15], we construct the range space Y
to be the Fringed plank while the domain X consists of the disjoint union of the
Tychonoff plank together with ω many copies of the convergent sequence. Let
us consider the mapping f : X → Y which is the identity map for the points
on Tychonoff plank while under f each point of the first copy of the convergent
sequence is mapped to the corresponding point of the sequence {xj,0 : j ∈ N}
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of Y , points of the second copy are mapped to the corresponding points of the
sequence {xj,1 : j ∈ N} of Y and so on. This map between X and Y is perfect
[15]. But the Tychonoff plank T is the closure of a cozero-set, say P of X , i.e.,
T = ClX P (recall that every cozero-set is regular Fσ). By Theorem 34, X is not
r-realcompact, since T is not r-realcompact.

Before we conclude, let us study the productivity of r-realcompactness. It is
not known whether r-realcompact is productive or not. However, under certain
condition on the factor spaces, an arbitrary product becomes r-realcompact. The
property called RFP is such a condition defined as follows:

Definition 42. A topological space X is said to satisfy the property RFP if,
whenever an ultrafilter F of regular Fσ-subsets of X contains a prime filter of
regular Fσ-subsets of X with ccip, then F has ccip.

Before proceeding to the main theorem we first prove the following lemmas.

Lemma 43. If f : X → Y is continuous and F ⊆ Rf (X) is a prime filter, then
the family A = {A ∈ Rf (Y ) : f−1(A) ∈ F} is also a prime filter.

Proof: Since the inverse image of a regular Fσ-subset under a continuous map is
regular Fσ , A is a family of regular Fσ-subsets of Y closed under finite intersection
and does not contain ∅. Thus A is a filter base. Let A ∈ A and B ∈ Rf (Y ) such
that A ⊆ B. Then f−1(A) ⊆ f−1(B), f−1(A) ∈ F and hence f−1(B) ∈ F , which
in turn implies that B ∈ A. Thus A is a filter. To prove that the filter A is indeed
prime, let A1 ∪A2 ∈ A and A1 /∈ A. Since A1 ∪A2 ∈ A, f−1(A1 ∪A2) ∈ F , i.e.,
f−1(A1) ∪ f−1(A2) ∈ F . Also f−1(A1) /∈ F , so f−1(A2) ∈ F and hence A2 ∈ A.
Therefore A is prime. �
Lemma 44. Let F be a prime filter of regular Fσ-subsets of the product space
X =

∏
α Xα. Then the family π♯

αF = {Fα ∈ Rf (Xα) : π
−1
α (Fα) ∈ F} is a prime

filter of regular Fσ-subsets of Xα, where πα is the α-th projection map from the
product space X to Xα.

Proof: The proof follows from Lemma 43, since the projection mappings are
continuous. �
Lemma 45. Let F be an ultrafilter of regular Fσ-subsets on X =

∏
α Xα. If

every prime filter π♯
αF is fixed, then F is also fixed.

Proof: For each α, we choose xα ∈ ⋂
π♯
αF and let x = {xα}, then x ∈ X .

To prove the assertion it suffices to show that x ∈ ⋂F . From the construction
of x, x belongs to every member of F of the form π−1

α (Fα), where Fα ∈ π♯
αF ,

since π−1
α (xα) = {t ∈ X : πα(t) = xα} ⊆ π−1

α (Fα). Again every cozero-set being
regular Fσ, x belongs to every member of F having the form π−1

αk
(Xαk

− Zk),
where Zk is a zero-set in Xαk

. Further it is known that the collection of all finite
intersections like

⋂n
k=1 π

−1
αk

(Xαk
−Zk) of cozero-sets is a base for the open sets in

X [7] and contains x. Now an arbitrary member F of F is a union of members
of this base and hence it also contains x. Since F is arbitrary, x ∈ ⋂F . �
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Theorem 46. An arbitrary product of r-realcompact spaces, where each factor
space has RFP, is r-realcompact.

Proof: Let X =
∏

α Xα, where each Xα is r-realcompact. Now X is com-
pletely regular. Let F be an ultrafilter of regular Fσ-subsets of X with ccip. By
Lemma 44, the family π♯

αF = {Gα ∈ Rf (Xα) : π−1
α (Gα) ∈ F} is a prime filter

of regular Fσ-subsets of Xα, for each α. Since F has ccip, so has π♯
αF . Now by

the RFP property of Xα, the ultrafilter containing the prime filter π♯
αF also has

ccip. Now Xα being r-realcompact,
⋂
π♯
αF is fixed. Hence by Lemma 45, F is

fixed and the theorem follows. �
To conclude, the authors would like to examine the relationship of r-realcompact

spaces with another class of generalized realcompact spaces, namely, ℵ1-ultracom-
pact spaces introduced by J. van der Slot [16]. We recall that a space X is said to
be m-ultracompact for an infinite cardinal m and relative to a closed subbase C of
X , iff each ultrafilter F in X , for which F∩C satisfies them-intersection property,
is convergent. In particular, for m = ℵ1 we have ℵ1-ultracompact spaces. Now
in [6], Froĺık has shown that for regular spaces ℵ1-ultracompactness is equivalent
to almost realcompactness. But the r-realcompactness and almost realcompact-
ness are independent in Tychonoff spaces (Examples 10 and 14). From these
it follows immediately that ℵ1-ultracompactness is a property independent of r-
realcompactness in Tychonoff spaces.

Acknowledgment. We are grateful to the referee for informing us about the
works of van der Slot and also for the valuable suggestions towards enrichment of
the paper.
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