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Distinct equilateral triangle dissections of convex regions

Diane M. Donovan, James G. Lefevre,
Thomas A. McCourt, Nicholas J. Cavenagh

Abstract. We define a proper triangulation to be a dissection of an integer sided
equilateral triangle into smaller, integer sided equilateral triangles such that no
point is the vertex of more than three of the smaller triangles. In this paper

we establish necessary and sufficient conditions for a proper triangulation of a
convex region to exist. Moreover we establish precisely when at least two such
equilateral triangle dissections exist.

We also provide necessary and sufficient conditions for some convex regions
with up to four sides to have either one, or at least two, proper triangulations
when an internal triangle is specified.

Keywords: equilateral triangle dissection, latin trade

Classification: 05B45

1. Introduction

The dissection of an integer sided equilateral triangle into smaller, integer sided
equilateral triangles is a classic problem considered by Tutte [12]. He showed
various properties of such a dissection, including the fact that some of the smaller
triangles must have equal sides.

If we apply an extra restriction to such a dissection, namely that no point is
the vertex of more than three of the smaller triangles, then the dissection gives
rise to a latin trade within the addition table for the integers modulo n ([3]). We
call such a dissection a proper triangulation. (It was Drápal, in [3], who first
observed the connection between latin trades and proper triangulations, and as
a consequence of this in some papers (see [2] and [11]) proper triangulations are
also known as Drápal Triangulations.) More details about this connection and
latin trades may be found in [1], [3], [4], [6] and [7].

This application of triangle dissections to latin trades is our key motivation. In
particular, the results in this paper are applied to classify flaws in cryptographic
applications of latin squares [2]. However, the results have some geometric interest
in their own right.

It is conjectured that there exists a constant c such that for each integer n, there
exists a non-trivial proper triangulation of an integer sided equilateral triangle
containing at most c log p triangles, where p is the least prime that divides n
([3]). The results in this paper may provide insights into this question. A further
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possible application is the enumeration of proper triangulations (see [5]). Other,
laterally related result on triangulations include [8], [9] and [10].

In Section 2 we introduce necessary terminology. In Section 3 we establish
precisely when a convex regions has at least one or at least two proper triangula-
tions (Theorem 3.6). In Section 4 we consider the same question when an internal
triangle is specified; our results are restricted to convex region with at most four
sides which are not rectangles.

2. Proper triangulations

For ease of notation we consider the equivalent problem of dissections of right-
angled isosceles triangles into smaller such objects, where each triangle has hy-
potenuse of gradient −1. To see this equivalence, consider such a dissection with
the large triangle lying in the first quadrant with its right angle at the origin.
Then the linear transformation T (x) = xA given by

A =

[
1 0

0.5
√
3/2

]

shows the equivalence to an equilateral triangle dissection.
Let k, i, xi, yi ∈ Z and 0 ≤ i ≤ k− 1. Let R = (x0, y0), (x1, y1), . . . , (xi, yi), . . . ,

(xk−1, yk−1) be a sequence of points which satisfies the following condition: for
all 0 ≤ i ≤ k − 1,

xi = xi+1 (mod k) or yi = yi+1 (mod k) or xi + yi = xi+1 (mod k) + yi+1 (mod k).

Then we say that R is a region in the plane R2. The reduced form R′ of R is
formed by successively deleting any points (xi, yi) from R whenever (xi−1, yi−1),
(xi, yi) and (xi+1, yi+1) are collinear.

If the straight line segments between (ui, vi) ∈ R′ and (ui+1 (mod l), vi+1 (mod l))
∈ R′, 0 ≤ i ≤ l−1 = |R′|−1, form the boundary of a convex polygon (where R′ is
the reduced form of R), then R is called a convex region. Furthermore, the region
R is denoted by R = (x0, y0) → (x1, y1) → . . . → (xi, yi) → . . . → (xk−1, yk−1),
and if 1 < |R|, we refer to the elements of the reduced form of R as the corners
of R.

If the reduced form of R has precisely three corners, then R is said to be a
triangle. Let 0 ≤ x, denote the region

FT (z1,z2)
x = (z1, z2) → (z1 + x, z2) → (z1, z2 + x) as a forward triangle and

BT (z1,z2)
x = (z1, z2) → (z1 − x, z2) → (z1, z2 − x) as a backward triangle.

Let R be the union of regions R1, R2, . . . , Rt; that is, R =
⋃

1≤i≤t Ri. If for
each 1 ≤ i < j ≤ t, the regions Ri and Rj intersect in at most their respective
boundaries, then {Ri | 1 ≤ i ≤ t} is called a tessellation of R and each Ri is a
subregion of R.
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If each of the subregions Ri is a triangle, R is said to have a triangulation,
namely {Ri | 1 ≤ i ≤ t}, furthermore each subregion, Ri, is referred to as a
subtriangle of R. If, in addition, each element (a, b) ∈ R is the corner of at
most three distinct subtriangles, {Ri | 1 ≤ i ≤ t} is called a proper triangulation
of the region R. It is this property which makes the problem of finding proper
triangulations of a specified region non-trivial.

Example 2.1. In Figure 1 we provide an example of a region, R, that has a
triangulation but no possible proper triangulation and a region S that has a
proper triangulation.

Figure 1. A triangulation and a proper triangulation

R S

Consider the following group of matrices, isomorphic to the Dihedral groupD6:

G =
〈 [

0 1
1 0

]
,

[
0 1

−1 1

] 〉
.

Let λ ∈ G, (p, q) ∈ R2 and S ⊂ R2. In this paper the set {(m,n)λ + (p, q) |
(m,n) ∈ S} is denoted by Sλ+ (p, q).

If there exists some (i, j) ∈ Z2 and some λ ∈ G such that R2 = R1λ+(i, j), then
R1 and R2 are said to be equivalent . Observe that the property of possessing a
proper triangulation is invariant under this equivalence, even though the gradients
of lines may change. We frequently make use of this observation.

Recall that, for a proper triangulation, the condition that each vertex of a
triangle is the vertex of at most three triangles must be satisfied. Suppose that
{Ri | 1 ≤ i ≤ p} is a tessellation of a region R and that each subregion Ri has a
proper triangulation Qi, where 1 ≤ i ≤ p. Then the set of triangles

⋃

1≤i≤p

Qi

does not necessarily form a proper triangulation of R.

Example 2.2. In Figure 2 we provide an example of a tessellation of a region R
for which each region has a proper triangulation and the union of the subtriangles
does not yield a proper triangulation of the region R.

To avoid this problem, whenever two distinct regions Ri and Rj in the tessel-
lation of R both have a triangulation containing more than one triangle, then we
ensure that their boundaries do not share a line segment of non zero length.
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Figure 2. Failing to construct a proper triangulation

R1

Drápal Triangulations of each subregion

Triangulation of R

R2

R2R1

Original tessellation of R

Example 2.3. In Figure 3 we provide an example of a tessellation of a region R
for which each region has a proper triangulation and the union of the subtriangles
yields a proper triangulation of the region R.

3. Proper triangulations of convex regions

For α, β ∈ Z, let:
Z0 = (0, 0),
Z1 = (0, 0) → (1, 0) → (1, α) → (0, α) where 0 < α,
Z2 = (1, 0) → (α, 0) → (α, 1) → (0, 1) where 0 < α,
Z3 = (α, 0) → (α, β) → (0, β) → (0, β − 1) → (α− 1, β − 1) → (α− 1, 0)
where 1 < α, β,
Z4 = (2, 0) → (2, 2) → (0, 2) → (0, 1) → (1, 0),
Z5 = (3, 0) → (3, 1) → (1, 3) → (0, 3) → (0, 1) → (1, 0) and
Z6 = (2, 0) → (2, 1) → (1, 2) → (0, 2) → (0, 1) → (1, 0).

Let Z be the set of all regions equivalent to any Zi, where 0 ≤ i ≤ 6 (see the
Appendix for an illustration of these regions).

By inspection, the regions equivalent to Zi where 0 ≤ i ≤ 5 have a unique
proper triangulation, while Z6 has no proper triangulation. The aim of this
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Figure 3. Constructing a proper triangulation

Original tessellation of R

Drápal Triangulation of R

R2

R3
R1

R4

R1 R2 R3

Drápal Triangulations of each subregion

R4

section is to show that any convex region not belonging to Z has at least two
proper triangulations (Theorem 3.6).

We begin by investigating when it is possible for a region with three or four
sides to have at least two distinct proper triangulations.

Lemma 3.1. Let R be a region with three or four corners (sides). Thus R is
equivalent to

R1 = (δ, 0) → (0, δ) → (0, 0), or

R2 = (β, 0) → (β, α) → (0, α) → (γ, 0),

where 0 < δ, and either γ = 0 and 0 < α ≤ β, or γ = α and 0 < α < β. Then
R has a proper triangulation. Further, if 1 < δ, there exists a second distinct
proper triangulation of R1 and, unless R2 is equivalent to Z1 or Z2, there exists
a second distinct proper triangulation of R2.

Proof: Since R1 is a triangle, a proper triangulation trivially exists. If δ = 1,

then, by inspection, R1 = FT
(0,0)
1 has precisely one proper triangulation. However
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if 1 < δ, then

{FT
(1,0)
δ−1 } ∪ {FT

(0,0)
1 } ∪

⋃

1≤i≤δ−1

{FT
(0,i)
1 , BT

(1,i)
1 }

is a second distinct proper triangulation of R1.
There are two cases to consider for R2: Case A, γ = 0 and Case B, γ = α.

Case A: γ = 0.

Consider the tessellation {FT
(0,0)
α , BT

(α,α)
α R3 = (β, 0) → (β, α) → (α, α) →

(α, 0)} of R2. If α = β, then R3 is empty and we are done. Otherwise, R3 is a
rectangular region with area strictly less than αβ. Thus, by recursion, R1 has a
proper triangulation.

If α = 1, then R is equivalent to Z1 and by inspection it has precisely one
proper triangulation. When 1 < α, the second distinct proper triangulation is

obtained by applying the argument given for R1 to the triangle FT
(0,0)
α .

Case B: γ = α.

Let 1 < α. Consider the tessellation {BT
(α,α)
α , S = (β, 0) → (β, α) →

(α, α) → (α, 0)} of R2. If 1 < β − α, the argument presented in Case A im-
plies S has two distinct proper triangulations. If β − α = 1, then the above

gives one proper triangulation. Consider the proper triangulation {BT
(β,α)
α } ∪⋃

1≤i≤α{FT
(i,α−i)
1 , BT

(i,α−i+1)
1 } of R2. This yields a second distinct proper tri-

angulation of R2.
If α = 1, then R2 is equivalent to Z2 and by inspection it has precisely one

proper triangulation. �
An L-region will be defined to be a region equivalent to

(δ, 0) → (δ, β) → (0, β) → (0, α) → (γ, α) → (γ, 0),

where 0 < α < β and 0 < γ < δ.
In order to obtain a similar result to Lemma 3.1 for convex regions with five

sides we first prove the following result detailing when an L-region has at least
two distinct proper triangulations.

Lemma 3.2. Let 0 < α < β and 0 < γ < δ. The L-region L1 = (δ, 0) → (δ, β) →
(0, β) → (0, α) → (γ, α) → (γ, 0) has a proper triangulation, and a second distinct
proper triangulation when L1 is not equivalent to Z3.

Proof: Several cases are considered which, together with the associated condi-
tions, are summarized in the following table.

Case A Case B Case C Case D
α+ γ ≥ δ, β δ ≤ α+ γ < β β ≤ α+ γ < δ α+ γ < β, δ

Case A: α+ γ ≥ δ, β.
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Consider the tessellation R = {BT
(δ,β)
β+δ−α−γ, R1 = (δ, 0) → (δ, α + γ − δ) →

(γ, α) → (γ, 0), R2 = (γ, α) → (α + γ − β, β) → (0, β) → (0, α)} of L1. By
Lemma 3.1, L1 has a proper triangulation.

Provided R1 or R2 are not both equivalent to Z2 then Lemma 3.1 implies there
exists a second distinct proper triangulation of L1. When both R1 and R2 are
equivalent to Z2, then β−α = δ−γ = 1, L1 is equivalent to Z3 and by inspection
it has precisely one proper triangulation.

Case B: δ ≤ α+ γ < β.

Consider the tessellation {BT
(δ,α+γ)
δ , FT

(0,α)
γ , R1 = (δ, 0) → (δ, α + γ − δ) →

(γ, α) → (γ, 0), R2 = (δ, α+γ) → (δ, β) → (0, β) → (0, α+γ)} of L1. As α+γ < β,
R2 is not equivalent to Z0. By Lemma 3.1, L1 has a proper triangulation. If at
least one of R1 and R2 is equivalent to neither Z1 nor Z2, then L1 has a second
distinct proper triangulation.

If 1 < γ, then, by Lemma 3.1, FT
(0,α)
γ (and hence L1) has a second distinct

proper triangulation.
If R1 and R2 are each equivalent to either Z1 or Z2 and γ = 1, then δ−γ = γ =

β − α− γ = 1, hence, δ = 2. Consider the tessellation {BT
(2,α+2)
2 , FT

(0,α)
2 , R1 =

(2, 0) → (2, α) → (1, α) → (1, 0)} of L1. By Lemma 3.1 there exists a second
distinct proper triangulation of L1.

Case C: β ≤ α+ γ < δ.
Via the transformation L1 [ 0 1

1 0 ] this region is equivalent to the region in Case B.

Case D: α+ γ < β, δ.

Consider the tessellation {BT
(α+γ,α+γ)
α+γ , FT

(0,α)
γ , FT

(γ,0)
α , R1 = (δ, 0) → (δ, β)

→ (0, β) → (0, α + γ) → (α + γ, α + γ) → (α + γ, 0)} of L1. Observe that R1

is an L-region, so is equivalent to one of the regions given in Case A, B, C or
(recursively) D. For Cases B and C, there exists at least two distinct proper
triangulations so we are done. Otherwise we have the following subcases:

Subcase D.1: Suppose that R1 is equivalent to a region given in Case A. If
either α 6= 1, γ 6= 1, β − α − γ 6= 1 or δ − α − γ 6= 1, then, by Lemma 3.1, there
exist two distinct proper triangulations of L1.

Otherwise, α = γ = β − α− γ = δ − α− γ = 1. Then α = γ = 1 and β = δ =

3. Consider the triangulation {BT
(3,3)
3 , BT

(2,1)
1 , FT

(0,1)
2 , FT

(1,0)
1 , FT

(2,0)
1 } of L1.

This is a second distinct (to the above) proper triangulation of L1.

Subcase D.2:
Otherwise R1 is equivalent to a region given in Case D. Note that R1 has area

strictly less than L1, so by recursion there exists a proper triangulation of R1.

Moreover, the tessellation of R2 contains the triangle FT
(0,α+γ)
α+γ . But α+ γ ≥ 2,

so by Lemma 3.1 there exists a second distinct proper triangulation. �
We will now make use of Lemmas 3.1 and 3.2 to determine when there exists

precisely one and when there exists at least two distinct proper triangulations of
convex regions with five sides.
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Lemma 3.3. Let R be a convex region with five corners (sides). Then R has a
proper triangulation. Moreover, whenever R is not equivalent to Z4 then R has
a second distinct proper triangulation.

Proof: Under the appropriate transformation, we may assume without loss of
generality that R = (β, 0) → (β, γ) → (0, γ) → (0, α) → (α, 0), where 0 < α <
β ≤ γ.

Consider the tessellation {BT
(α,α)
α , R1 = (β, 0) → (β, γ) → (0, γ) → (0, α) →

(α, α) → (α, 0)} of R. By Lemma 3.2 the region R has a proper triangulation.
Provided R1 is not equivalent to Z3 (γ − α 6= 1 or β − α 6= 1), Lemma 3.1

and 3.2 imply a second triangulation of R1, and so R has a second distinct proper
triangulation.

Suppose that R1 is equivalent to Z3. Then γ − α = 1 and γ = β. If in
addition α = 1, then β = γ = 2, and hence R = Z4; otherwise 2 < β = γ

and {BT
(β,γ)
γ }⋃1≤i≤β−1{FT

(i−1,γ−i)
1 , BT

(i,γ−i)
1 }⋃FT

(β−1,0)
1 is a second distinct

proper triangulation of R. �
We will now prove another technical lemma which we will use to establish when

a convex region with six sides has a proper triangulation and when it has at least
two distinct proper triangulations.

Let R be a region equivalent to

(β, 0) → (β, δ + γ − β) → (γ, δ) → (γ, δ − γ) → (0, δ) → (0, α) → (α, 0)

with 0 ≤ α < β, δ; 0 < γ < β, δ + 1; and 0 ≤ δ + γ − β (this region is illustrated
in Figure 4).

Figure 4. Illustration of the region R.

(γ, δ)

(β, δ + γ − β)

(0, δ)

(0, α)

(β, 0)(α, 0)

(γ, δ − γ)

It will be shown that R possesses at least two distinct proper triangulations,
except when R is equivalent to any of the following (see the Appendix for illus-
trations):
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X1 = (β, 0) → (β, β−1) → (β−1, β) → (β−1, 1) → (0, β) → (0, β−1) →
(β − 1, 0);
X2 = (3, 0) → (1, 2) → (1, 1) → (0, 2) → (0, 1) → (1, 0);
X3 = (3, 0) → (3, 1) → (1, 3) → (1, 2) → (0, 3) → (0, 1) → (1, 0);
X4 = (3, 0) → (3, 2) → (2, 3) → (2, 1) → (0, 3) → (0, 1) → (1, 0);
X5 = (β, 0) → (β, β − 2) → (β − 1, β − 1) → (β − 1, 0) → (0, β − 1) →
(0, β − 2) → (β − 2, 0).

Let X be the set of all regions equivalent to any Xi, where 1 ≤ i ≤ 5.
By inspection the regions equivalent to Xi, where 2 ≤ i ≤ 5, have a unique

proper triangulation. Furthermore, by inspection, the region X1 has no proper
triangulation.

Lemma 3.4. Let 0 ≤ α < β, δ; 0 < γ < β, δ + 1; and 0 ≤ δ + γ − β. The region
R = (β, 0) → (β, γ + δ − β) → (γ, δ) → (γ, δ − γ) → (0, δ) → (0, α) → (α, 0)
has a proper triangulation if and only if R 6= X1 and a second distinct proper
triangulation if and only if R is not equivalent to any Xi, where 1 ≤ i ≤ 5.

Proof: Consider the transformation Rλ+(δ+γ, 0), where λ =
[−1 0
−1 1

]
∈ G. This

transformation replaces β with δ + γ − α and α with δ + γ − β. Hence, without
loss of generality, we may assume that δ + γ − β ≤ α.

Several cases are considered which, together with the associated conditions,
are summarized in the following table.

Case A Case B Case C Case D
γ < δ; γ + 2 ≤ β; γ < δ; γ + 2 ≤ β; γ < δ; β = γ + 1 δ = γ
α < γ α ≥ γ

For Case B several additional subcases are considered which are summarized
in the following table.

B1 α− γ ≥ γ + δ − β
B2 α− γ < γ + δ − β B2.1 β − γ > δ − α

B2.2 β − γ = δ − α B2.2.1 α ≥ 2
B2.2.2 α ≤ 1

Case A: γ < δ, γ + 2 ≤ β and α < γ.
The conditions for this case together with the assumption δ+ γ−β ≤ α imply

δ < β.

Consider the tessellation {FT
(α,0)
δ−α , R1 = (β, 0) → (β, γ + δ − β) → (γ, δ) →

(γ, δ − γ) → (δ, 0), R2 = (α, 0) → (α, δ − α) → (0, δ) → (0, α)} of R. By
Lemmas 3.1 and 3.3, there exists a proper triangulation of R.

Unless either R1 is equivalent to one of Z2 or Z4 or R2 is equivalent to one of Z0

or Z1, Lemmas 3.1 and 3.3 imply the existence of a second proper triangulation
of R.

Suppose that R1 is equivalent to Z2.
Then β − δ = 1 and δ + γ − β = 0, so γ = 1.
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Thus α = 0 and R2 is equivalent to Z0. In this case Lemma 3.1 applied to R3

in the tessellation {FT
(1,0)
δ , R3 = (1, 0) → (1, δ− 1) → (0, δ) → (0, 0)} verifies the

existence of a second proper triangulation of R.
Otherwise suppose R1 is equivalent to Z4. Then γ = 2, β−γ = 2, β−δ = 1 and

δ + γ − β = 1. Hence β = 4, δ = 3 and since δ + γ − β ≤ α and α < γ it follows

that α = 1. In which case {FT
(0,1)
2 , FT

(2,0)
2 , FT

(1,0)
1 , FT

(2,2)
1 , FT

(3,1)
1 , BT

(1,1)
1 ,

BT
(2,1)
1 , BT

(3,2)
1 , BT

(4,1)
1 } is a second distinct proper triangulation of R.

Subcase B1: γ < δ, γ + 2 ≤ β, γ ≤ α and α− γ ≥ γ + δ − β.
From the conditions for this subcase and the assumption that 0 < γ it follows

that γ + δ − β < α or equivalently γ + δ − α < β.

Consider the tessellation {FT
(γ,α−γ)
δ+γ−α , R1 = (β, 0) → (β, γ+ δ−β) → (2γ+ δ−

α, α − γ) → (γ, α − γ) → (α, 0), R2 = (γ, α − γ) → (γ, δ − γ) → (0, δ) → (0, α)}
of R. By Lemmas 3.1 and 3.3, there exists a proper triangulation of R.

By Lemmas 3.1 and 3.3 either there exists a second proper triangulation of R
or R1 is equivalent to an element of {Z0, Z1, Z2, Z4} and R2 is equivalent to Z1.
Henceforth, assume the latter.

Suppose that δ = 2. Then γ = α = 1 and so R is equivalent to X2 and by
inspection there does not exist a second distinct proper triangulation of R. Thus,
δ > 2.

Since R2 is equivalent to Z1, either γ = 1 or δ − α = 1.
First suppose γ = 1 and δ − α = 1. The fact that δ > 2 implies α > 1. In

this case consider the tessellation {FT
(0,δ−1)
1 , FT

(1,δ−1)
1 , BT

(2,δ−1)
2 , R3 = (β, 0) →

(β, δ + γ − β) → (2, δ − 1) → (2, α− 2) → (α, 0)}.
Secondly, suppose γ = 1 and δ−α > 1 and so δ ≥ α+2. Furthermore δ−α > 1

implies that γ + δ − α > 2, so R1 is not equivalent to Z4; thus α ≤ 2. If α = 1,
then R1 is equivalent to Z0, and the conditions 0 ≤ δ + γ − β ≤ α − γ imply

δ + γ − β = 0. Here we take the tessellation {FT
(0,1)
δ−1 , FT

(1,δ−1)
1 , R4 = (β, 0) →

(2, δ−1) → (1, δ−1) → (δ−1, 1) → (0, 1) → (1, 0)} of R. Note R4 is equivalent to
Z3 and hence there exists a proper triangulation of R4. Otherwise α = 2 and we

take the tessellation {FT
(1,2)
δ−2 , BT

(2,2)
2 , R5 = (β, 0) → (β, γ+δ−β) → (δ−1, 2)→

(2, 2) → (2, 0), R6 = (1, 2) → (1, δ − 1) → (0, δ) → (0, 2)}.
Thirdly, suppose γ > 1 and δ−α = 1. Thus γ+δ−α > 2, so R2 is not equivalent

to Z4. If α 6= γ, R1 is not equivalent to Z0, thus δ−γ = (δ−α)+(α−γ) = 2; take

the tessellation {FT
(γ,2)
γ , BT

(γ+1,2)
2 , R7 = (β, 0) → (β, γ+δ−β) → (δ+γ−2, 2)→

(γ +1, 2) → (α, 0), R8 = (γ, δ− γ) → (0, δ) → (0, α) → (γ − 1, δ− γ)}. Otherwise
α = γ. When β = γ+2, from the conditions for this subcase γ+δ−β ≤ α−γ = 0,
so, δ ≤ 2, hence, as γ < δ for this case, γ ≤ 1, a contradiction. Thus β ≥ γ + 3;

take the tessellation {FT
(α,0)
2 , R2, R9 = (β, 0) → (γ, δ) → (γ, 2) → (γ + 2, 0)}.

In each of the above cases the given tessellation, together with Lemmas 3.1,
3.2 and 3.3, verify the existence of a second distinct proper triangulation of R.

Subcase B2.1: γ < δ, γ + 2 ≤ β, γ ≤ α, α− γ < γ + δ − β and β − γ > δ − α.
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Note that γ > 0 and α ≥ γ imply α > 0. Also since α − γ < γ + δ − β, then
γ + δ − β ≥ 1.

Consider the tessellation {FT
(γ,α−γ)
β−γ , R1 = (β, α − γ) → (β, γ + δ − β) →

(γ, δ) → (γ, α + β − 2γ), R2 = (γ, α − γ) → (γ, δ − γ) → (0, δ) → (0, α), R3 =
(β, 0) → (β, α − γ) → (γ, α − γ) → (α, 0)} of R. By Lemma 3.1, there exists a
proper triangulation of R.

Lemma 3.1 verifies the existence of a second proper triangulation of R unless
R1 is equivalent to Z1, R2 is equivalent to Z1 and R3 is equivalent to one of Z0

or Z2.
Suppose that R1 is equivalent to Z1. This supposition together with the con-

dition γ + 2 ≤ β imply that α− γ + 1 = γ + δ − β.

If α > γ, then take the tessellation {FT
(γ,α−γ+1)
β−γ , BT

(γ+1,α−γ+1)
2 R4 = (γ, α−

γ + 1) → (γ, δ − γ) → (0, δ) → (0, α) → (γ − 1, α − γ + 1), R5 = (β, 0) →
(β, α − γ + 1) → (γ + 1, α− γ + 1) → (γ + 1, α− γ − 1) → (α, 0)}.

If α = γ, then R3 = Z0 and δ + γ − β = 1. In this case further suppose that
R2 is equivalent to Z1. Under this supposition either γ = 1 or δ − α = 1. When
γ = 1, α = 1 and so the condition δ + γ − β = 1 implies β = δ, or equivalently
β − γ = β − 1 = δ − 1 = δ − α, contradicting the condition that β − γ > δ − α.
Hence γ > 1. If δ − α = 1 and γ + 2 = β, the condition δ + γ − β = 1 implies
δ = 3 and α = 2, which in turn implies γ = 2; in this case R is equivalent to X4

and there exists only one proper triangulation of R. So it is left to check the case
where α = γ, δ−α = 1 and γ+2 < β. Under these conditions take the tessellation

{FT
(γ,0)
β−γ−1, R2, R6 = (β, 0) → (β, 1) → (γ, δ) → (γ, β − γ − 1) → (β − 1, 0)}.

In each of the above cases the given tessellation together with Lemmas 3.1
and 3.3, verify the existence of a second distinct proper triangulation of R.

Subcase B2.2.1: γ < δ, γ + 2 ≤ β, γ ≤ α, β − γ = δ − α and α ≥ 2.
Note that δ + γ − β = α.
If 2 ≤ γ, then, as γ = α+β−δ, 2 ≤ (γ+δ−β)−(α−γ), so, α−γ+2 ≤ γ+δ−β.

So, consider the tessellation {FT
(γ−1,α−γ+1)
β−γ , BT

(β,α−γ+2)
2 , R1 = (β, α−γ+2) →

(β, δ+γ−β) → (γ, δ) → (γ, δ−γ) → (β−2, α−γ+2), R2 = (β, 0) → (β, α−γ) →
(β − 1, α − γ + 1) → (γ − 1, α − γ + 1) → (α, 0), R3 = (γ − 1, α − γ + 1) →
(γ − 1, δ − γ + 1) → (0, δ) → (0, α)} of R. By Lemmas 3.1 and 3.3, there
exists a proper triangulation of R. As 2 ≤ γ and γ + 2 ≤ β, there exists a second
distinct proper triangulation of R1 and hence there exists a second distinct proper
triangulation of R.

If γ = 1, then the subcase condition α = γ+δ−β implies α−γ+1 = γ+δ−β.

Consider the tessellation {FT
(0,α)
β−γ , BT

(β,α)
2 , R4 = (β, α) → (1, δ) → (1, δ − 1) →

(β − 1, α), R5 = (β, 0) → (β, α − 2) → (β − 2, α) → (0, α) → (α, 0)} of R. By
Lemmas 3.1 and 3.3, there exists a proper triangulation of R.

Note that R4 is equivalent to Z2, so unless R5 is equivalent to Z1, Lemmas 3.1
and 3.3 verify the existence of a second distinct proper triangulation of R.
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Suppose R5 is equivalent to Z1; then α = 2 and β = 3. Since δ+γ−β = α, δ =
4. In this case R = (3, 0) → (3, 2) → (1, 4) → (1, 3) → (0, 4) → (0, 2) → (2, 0) and

a second distinct proper triangulation of R is {FT
(1,2)
2 , FT

(0,3)
1 , FT

(0,2)
1 , FT

(2,0)
1 ,

FT
(2,1)
1 , BT

(2,2)
2 , BT

(1,3)
1 , BT

(3,2)
1 , BT

(3,1)
1 }.

Subcase B2.2.2: γ < δ, γ + 2 ≤ β, γ ≤ α, β − γ = δ − α and α ≤ 1.
From the conditions for this subcase, 0 < γ ≤ α; it follows that α = γ = 1. In

addition, γ + 2 ≤ β, so 3 ≤ β = δ. Consider the tessellation {FT
(0,2)
δ−2 , BT

(β−1,2)
2 ,

R1 = (β − 1, 2) → (1, δ) → (1, δ − 1) → (β − 2, 2), R2 = (β, 0) → (β, 1) →
(β − 1, 2) → (β − 1, 0), R3 = (β − 1, 0) → (β − 3, 2) → (0, 2) → (0, 1) → (1, 0)}
of R. By Lemmas 3.1 and 3.3, there exists a proper triangulation of R.

Note that both R1 and R2 are equivalent to Z2. So unless R3 is equivalent to
Z2 or Z4, by Lemmas 3.1 and 3.3, there exists a second proper triangulation of R.

Suppose R3 is equivalent to Z2; then β = 3 and so R is equivalent to X3. In
this case by inspection there does not exist a second distinct proper triangulation
of R.

Suppose R3 is equivalent to Z4; then β = 4. Then R = (4, 0) → (4, 1) →
(1, 4) → (1, 3) → (0, 4) → (0, 1) → (1, 0) and {FT

(2,0)
2 , FT

(1,2)
2 , FT

(0,1)
1 , FT

(0,2)
1 ,

FT
(0,3)
1 , FT

(1,0)
1 , FT

(3,1)
1 , BT

(2,2)
2 , BT

(1,1)
1 , BT

(1,3)
1 , BT

(3,2)
1 , BT

(4,1)
1 } is a second

distinct proper triangulation of R.

Subcase C: γ < δ and β = γ + 1.
Since δ + γ − β ≤ α, it follows, from the conditions for this subcase, that

δ − α ≤ 1. However, from the conditions for this lemma, α < δ, so δ = α+ 1.
Now, from the conditions for this subcase, 0 < δ − γ and β − 1 = γ, so

0 < (α+1)− (β−1); thus β−2 < α. From the conditions for this lemma, α < β,
so it follows that α = β − 1.

Thus, R = X1 and by inspection there does not exist a proper triangulation
of R.

Subcase D: δ = γ.
In this case the region R is the union of the region R1 = (γ, 0) → (0, γ) →

(0, α) → (α, 0) and the region R2 = (β, 0) → (β, 2γ − β) → (γ, γ) → (γ, 0).
Furthermore, R1 ∩ R2 = {(0, γ)}. By Lemma 3.1, there exists a proper t rian-
gulation of R and if either one of R1 or R2 is not equivalent to Z2, then there
exists a second distinct proper triangulation. If R1 and R2 are both equivalent
to Z2, then R is equivalent to X5 and by inspection has only one possible proper
triangulation. �

Now that we have established Lemma 3.4 we can use it in conjunction with
Lemmas 3.1 and 3.2 to establish when a convex region with six sides has a proper
triangulation and when it has at least two distinct proper triangulations.

Lemma 3.5. Let R be a convex region with six corners (sides). Whenever R is
not equivalent to Z6 then R has a proper triangulation; moreover, whenever R is
not equivalent to Z5 or Z6 then R has a second distinct proper triangulation.
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Proof: Recall that if a proper triangulation for some region, R, exists, then a
proper triangulation exists for all regions equivalent to R.

The region R is equivalent to (β, 0) → (β, γ − δ) → (β − δ, γ) → (0, γ) →
(0, α) → (α, 0), where 0 < α, δ < β, γ.

Two cases are considered; Case A where γ − δ ≤ α+ δ − β and Case B where
γ − δ > α+ δ − β.

Case B has several additional subcases which are summarized in the following
table.

B1 The condition α = β − δ = γ − δ = 1 does not hold
B2 α = β − δ = γ − δ = 1 B2.1 The condition δ = β − α = γ − α = 1

does not hold
B2.2 δ = β − α = γ − α = 1

Subcase A: γ − δ ≤ α+ δ − β.

Consider the tessellation {FT
(β−δ,α+δ−β)
β+γ−α−δ , R1 = (α, 0) → (β, 0) → (β, γ− δ) →

(2β + γ − α − 2δ, α + δ − β) → (β − δ, α + δ − β), R2 = (β − δ, α + δ − β) →
(β − δ, γ) → (0, γ) → (0, α)} of R. By Lemmas 3.1 and 3.3 there exists a proper
triangulation of R. Moreover if neither R1 nor R2 is equivalent to an element of
{Z0, Z2, Z4}, then there exists a second distinct proper triangulation of R.

As α, δ < β, γ, both R1 and R2 are not equivalent to Z0. Let R1 and R2 both
be equivalent to Z2. Then 1 = β − δ = γ − δ = α + δ − β, thus, β = γ = δ + 1
and α = 2.

From the condition for this case γ + β − α ≤ 2δ. Recall that 0 < α < β, γ,
so 1 ≤ β − α and 2 ≤ γ. Hence, 3 ≤ 2δ, thus, 2 ≤ δ. Consider the tessellation

{FT
(2,1)
β−2 , BT

(2,2)
2 , R3 = (2, 0) → (β, 0) → (β, 1) → (2, 1), R4 = (0, 2) → (2, 2) →

(2, γ − 1) → (1, γ) → (0, γ)} of R. By Lemmas 3.1 and 3.3 there exists a second
distinct proper triangulation of R.

As R2 has four corners it is not equivalent to Z4. Let R1 be equivalent to Z2

and R2 be equivalent to Z4 then (α, β, γ, δ) = (3, 4, 4, 3) and, {FT
(2,1)
2 , FT

(3,0)
1 ,

FT
(0,3)
1 , FT

(1,3)
1 , BT

(2,3)
2 , BT

(3,1)
1 , BT

(4,1)
1 , BT

(1,4)
1 } is a second distinct proper tri-

angulation of R.

Subcase B1: γ− δ > α+ δ−β and the condition α = β− δ = γ− δ = 1 does
not hold.

Consider the tessellation {FT
(β−δ,γ−δ)
δ , R1 = (α, 0) → (β, 0) → (β, γ − δ) →

(β − δ, γ − δ) → (β − δ, γ) → (0, γ) → (0, α)} of R. As the condition α = β − δ =
γ − δ = 1 does not hold, R1 is not equivalent to X1. By Lemma 3.4, there exists
a proper triangulation of R and if R1 /∈ X , there exists a second distinct proper
triangulation of R.

Let R1 ∈ X . As γ − δ > α + δ − β, R1 is not equivalent to X5. Recall that
α < γ, β, so, R1 is not equivalent to X2. Thus, R1 is equivalent to either X3 or
X4. If R1 is equivalent to X4, then, by inspection, there exists a second distinct
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proper triangulation of R. If R1 is equivalent to X3, then R is equivalent to Z5

and by inspection there exists precisely one proper triangulation of R.

Subcase B2.1: γ − δ > α + δ − β, α = β − δ = γ − δ = 1 and the condition
δ = β − α = γ − α = 1 does not hold.

Consider the linear transformation Rλ+ (γ, β) where λ =
[

0 −1
−1 0

]
∈ G. This

transformation interchanges β with γ and α with δ. Thus, in this subcase the
region R is equivalent to a region in Subcase B1.

Subcase B2.2: γ − δ > α+ δ − β, α = β − δ = γ − δ = δ = β − α = γ − α = 1.
In this subcase (α, β, γ, δ) = (1, 2, 2, 1), hence, R is equivalent to Z6 and, by

inspection, R has no possible proper triangulation. �
We can now state the first major result of this paper.

Theorem 3.6. Let R be any convex region. Then if R is not equivalent to Z6,
it has a proper triangulation. Moreover, whenever R /∈ Z then R has a second
distinct proper triangulation.

Proof: This follows immediately from Lemmas 3.1, 3.3 and 3.5. �

4. Distinct proper triangulations containing a fixed triangle

We now move on to the question of establishing when it is possible to find two
distinct proper triangulations of a region when some triangle is forced to occur in
both proper triangulations. We answer this question completely for three-sided
regions, and also for non-rectangular four-sided regions. We deal with the four-
sided regions first; the two choices for the direction of the internal triangle yield
two theorems.

Theorem 4.1. Let 1 ≤ α ≤ β, 0 < χ ≤ α, 0 < γ ≤ β−χ, 0 ≤ δ ≤ α−χ and α ≤
γ+δ; then there exists a proper triangulation of the region R = (β, 0) → (β, α) →
(0, α) → (α, 0) which contains FT

(γ,δ)
χ if and only if (α, β, γ, δ, χ) 6= (2, 3, 1, 1, 1).

If α = 1 or (α, β) = (2, 2) or (α, β, γδ, χ) ∈ {(2, 3, 2, 1, 1), (2, 3, 2, 0, 1),
(2, 4, 2, 1, 1)}, then there exists precisely one proper triangulations of R containing

FT
(γ,δ)
χ .
Otherwise there exists a second distinct proper triangulations of R containing

FT
(γ,δ)
χ .

Proof: If (α, β, γ, δ, χ) = (2, 3, 1, 1, 1), then, by inspection, there does not exist

a proper triangulation of R containing FT
(γ,δ)
χ .

If α = 1 or (α, β) = (2, 2) or (α, β, γδ, χ) ∈ {(2, 3, 2, 1, 1), (2, 3, 2, 0, 1),
(2, 4, 2, 1, 1)}, then, by inspection, there exists precisely one proper triangulation

of R containing FT
(γ,δ)
χ .

By inspection, the other cases where α + β ≤ 6 have two distinct proper

triangulations of R containing FT
(γ,δ)
χ .
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Henceforth, assume that 1 < α and 6 < α + β. Two subcases are considered:
Case A where α ≤ γ and Case B where α > γ (see Figure 5 for illustrations of
these cases and their subcases).

Figure 5. Tessellations for cases of Lemma 4.1.

Case B,
m1 = β, m2 = α

R2

R2

m1 = γ + δ + χ, m2 = γ + χ
Case B, Case B,

m1 = β, m2 = γ + χ

R2

Case B,
m1 = γ + δ + χ, m2 = α

R2

m1 = β
Case A,

R1

R3

R2

Case A,
m1 = γ + δ + χ

R1

R2

R3

R8

R9

R8

R9

R8

R9

R8

R9

Let m1 = min{γ + δ + χ, β} and m2 = min{γ + χ, α}.
Case A: α ≤ γ.

Note that for this case m2 = α.

Consider the tessellation {BT
(γ,α)
α , BT

(m1,δ+χ)
m1−γ , FT

(γ,δ)
χ , R1 = (β, 0) → (m1, γ

+ δ + χ −m1) → (γ + χ, δ) → (γ, δ) → (γ, 0), R2 = (β, 0) → (β, α) → (γ, α) →
(γ, δ + χ) → (m1, δ + χ) → (m1, 0), R3 = (γ, 0) → (γ − α, α) → (0, α) → (α, 0)}
of R. By Lemmas 3.1, 3.2 and 3.3, there exists a proper triangulation of R

containing FT
(γ,δ)
χ , and if {R1, R2, R3} 6⊂ Z, then there exists a second distinct

proper triangulation of R containing FT
(γ,δ)
χ . So, assume that {R1, R2, R3} ⊂ Z.

Consider the tessellation {BT
(γ,δ+χ)
δ+χ , BT

(m1,α)
α+m1−γ−δ−χ, FT

(γ,δ)
χ , R1, R4 = (β, 0)

→ (β, α) → (m1, α) → (m1, 0), R5 = (γ, δ + χ) → (γ + δ + χ− α, α) → (0, α) →
(α, 0) → (γ, 0) → (γ − δ − χ, δ + χ)} of R. By Lemmas 3.1, 3.2 and 3.3, unless
δ + χ = α, there exists a second distinct proper triangulation of R containing

FT
(γ,δ)
χ .

If δ + χ = α and χ 6= 1, consider the tessellation {BT
(γ,α−1)
α−1 , BT

(m1,α)
m1−γ ,

BT
(γ,α)
1 , FT

(γ,δ)
χ , R1, R4, R6 = (γ, α − 1) → (γ − 1, α) → (0, α) → (α, 0) →

(γ, 0) → (γ − α + 1, α − 1)} of R. By Lemmas 3.1, 3.2 and 3.3, there exists a

second distinct proper triangulation of R containing FT
(γ,δ)
χ .

If δ+ χ = α, χ = 1 and γ + χ < β, recall that {R1, R2, R3} ⊂ Z, hence, α ≤ 3
and β ≤ 6. For 6 < α+β ≤ 9 a pair of proper triangulations of R both containing

FT
(γ,δ)
χ = FT

(γ,δ)
1 is shown in Figure 6.
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Figure 6. Proper triangulations for Subcase A of Lemma 4.1.

If δ+χ = α, χ = 1 and γ+χ = β, consider the tessellation {BT
(β,δ)
α−1 , BT

(γ,α)
1 ,

BT
(β,α)
1 , FT

(γ,δ)
χ , R7 = (β, 0) → (β − α + 1, δ) → (γ, δ) → (γ − 1, α) → (0, α) →

(α, 0)} of R. By Lemma 3.2, there exists a second distinct proper triangulation
of R.

Case B: α > γ.

Consider the tessellation {BT
(m2,δ)
m2+δ−α, BT

(γ,α)
α−δ , BT

(m1,δ+χ)
m1−γ , FT

(γ,δ)
χ , R2, R8 =

(β, 0) → (m1, γ + δ + χ − m1) → (γ + χ, δ) → (m2, δ) → (m2, α − m2) →
(α, 0), R9 = (γ, δ) → (γ + δ − α, α) → (0, α) → (α− δ, δ)} of R. By Lemmas 3.1,

3.2 and 3.3, there exists a proper triangulation of R containing FT
(γ,δ)
χ , and if

{R2, R8, R9} 6⊂ Z, then there exists a second distinct proper triangulation of R

containing FT
(γ,δ)
χ .

So, assume that {R2, R8, R9} ⊂ Z.
Recall the above assumption that 6 < α + β. Consider the tessellation

{BT
(m2,δ)
m2+δ−α, BT

(γ,δ+χ)
χ , BT

(m1,α)
α+m1−γ−δ−χ, FT

(γ,δ)
χ , R4, R8, R10 = (γ, δ+χ) → (γ+

δ+χ−α, α) → (0, α) → (α−δ, δ) → (γ, δ) → (γ−χ, δ+χ)} of R. By Lemmas 3.1,
3.2 and 3.3, unless δ + χ = α, there exists a second distinct proper triangulation

of R containing FT
(γ,δ)
χ .

If δ + χ = α and χ 6= 1, consider the tessellation {BT
(m2,δ)
m2+δ−α, BT

(γ,α−1)
χ−1 ,

BT
(m1,α)
m1−γ , BT

(γ,α)
1 , FT

(γ,δ)
χ , R4, R8, R11 = (γ, α − 1) → (γ − 1, α) → (0, α) →

(α− δ, δ) → (γ, δ) → (γ −χ+1, α− 1)} of R. By Lemmas 3.1, 3.2 and 3.3, there

exists a second distinct proper triangulation of R containing FT
(γ,δ)
χ .

Otherwise δ + χ = α and χ = 1. Since α > γ for this subcase, m2 = γ + 1.
Observe that R8 is equivalent to one of Z0, Z1, Z2 or Z4.
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If R8 is equivalent to Z4, then α = β−1 = 4 and a pair of proper triangulations

of R both containing FT
(γ,δ)
χ = FT

(γ,δ)
1 is shown in Figure 7.

Figure 7. Proper triangulations for Subcase B of Lemma 4.1.

Otherwise R8 is equivalent to Z0, Z1 or Z2. Thus either γ = 1 or β − γ ≤ 2.
When R8 is equivalent to Z0 and γ = 1 then β ≤ 2. But from the conditions

of this lemma, α ≤ β and from above 6 < α+ β, creating a contradiction.

When R8 is equivalent to Z1 or Z2 and γ = 1 consider the tessellation {BT
(α,δ)
δ ,

BT
(1,α)
1 , BT

(2,α)
1 , FT

(γ,δ)
χ = FT

(1,α−1)
1 , R11 = (β, 0) → (β, α) → (2, α) →

(2, α− 1) → (α, δ) → (α, 0)} of R. As R8 is equivalent to Z1 or Z2 and R2 ∈ Z,
β ≤ α + 2. So, if α ≤ 2, then α + β ≤ 6 contradicting our assumption that
6 < α + β. Thus, by Lemmas 3.1 and 3.2, we have a proper triangulation of R

containing FT
(γ,δ)
χ which is distinct to the one above.

Otherwise 1 < γ and β − γ ≤ 2. Note that α = δ + χ < δ + γ. Suppose that
γ − 1 ≥ β − γ. (Equivalently, as χ = 1, γ + δ − β ≥ α − γ.) Then consider the

tessellation {BT
(γ,α)
γ , BT

(β,α)
β−γ , FT

(γ,γ+δ−β)
β−γ , FT

(γ,δ)
χ = FT

(γ,α−1)
1 , R13 = (β, 0) →

(β, γ + δ − β) → (γ, γ + δ − β) → (γ, α − γ) → (α, 0), R14 = (β, γ + δ − β) →
(β, α + γ − β) → (γ + 1, δ) → (γ, δ)} of R. By Lemmas 3.1 and 3.3, there exists

a second distinct proper triangulation of R containing FT
(γ,δ)
χ .

Otherwise γ − 1 < β − γ. Then 2 = γ < α ≤ β ≤ 4. A pair of proper

triangulations of R both containing FT
(γ,δ)
χ = FT

(γ,δ)
1 is shown in Figure 7. �

Theorem 4.2. Let 0 < χ ≤ δ ≤ α ≤ β; γ ≤ β; α ≤ γ + δ − χ and R = (β, 0) →
(β, α) → (0, α) → (α, 0).

If 1 = β − γ = β −α = δ− χ, then there does not exist a proper triangulation

of R containing BT
(γ,δ)
χ .

Otherwise, if 1 = α or (α, β, γ, δ, χ) = (2, 3, 3, 2, 1) or α−δ, β−γ, γ+δ−α−χ ≤
1, then there exists precisely one proper triangulation of R containing BT

(γ,δ)
χ .

In cases other than the above, there exists at least two distinct proper trian-

gulations of R both containing BT
(γ,δ)
χ .

Proof: If 1 = β − γ = β − α = δ − χ, then, by inspection, there does not exist

a proper triangulation of R containing BT
(γ,δ)
χ .

Similarly, if 1 = α or (α, β, γ, δ, χ) = (2, 3, 3, 2, 1) or α−δ, β−γ, γ+δ−α−χ ≤ 1,
then, by inspection, there exists precisely one proper triangulation of R containing

BT
(γ,δ)
χ .
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By inspection, the other cases where α + β ≤ 6 have two distinct proper

triangulations of R containing BT
(γ,δ)
χ .

Henceforth, assume that 1 < α, 6 < α + β and either 1 < α − δ or 1 < β − γ
or 1 < γ + δ − α− χ.

Let m1 = min{γ + δ, β}, m2 = min{δ + χ, α} and m3 = max{α+ χ− γ, 0}.
Consider the tessellation {BT

(m1,α)
α+m1−γ−δ, BT

(γ−χ,m2)
m2−m3

, BT
(γ,δ)
χ , R1 = (m1, 0) →

(m1, γ+ δ−m1) → (γ, δ) → (γ, δ−χ) → (γ −χ, δ) → (γ−χ,m3) → (α, 0), R2 =
(β, 0) → (β, α) → (m1, α) → (m1, 0), R3 = (γ−χ,m3) → (γ+m3−m2−χ,m2) →
(γ−χ,m2) → (γ+ δ−α, α) → (0, α) → (α, 0), R4 = (γ, δ) → (γ+ δ−m2,m2) →
(γ − χ,m2) → (γ − χ, δ)} of R (see Figure 8 for an illustration of these cases).
Since the condition 1 = β− γ = β−α = δ−χ does not hold, the region R1 is not
equivalent to the regionX1. By Lemmas 3.1, 3.2, 3.3 and 3.4, there exists a proper

triangulation of R containing BT
(γ,δ)
χ . Furthermore if {R1, R2, R3, R4} 6⊂ X ∪ Z,

then there exists a second distinct proper triangulation.

Figure 8. Tessellations for cases of Lemma 4.2.
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m1 = β, m2 = δ + χ,
m3 = 0

R1

R3

R4

m1 = β, m2 = δ + χ,
m3 = α+ χ− γ

R1

R4

m1 = γ + δ, m2 = α,
m3 = α+ χ− γ

R2

m1 = γ + δ, m2 = α,
m3 = 0

R4

R1

R2
R3

R4

R1

R3

m1 = β, m2 = α,
m3 = 0

R1

R3

R2

R4

m1 = γ + δ, m2 = δ + χ,
m3 = α+ χ− γ

R1

R3
R2

R4

m1 = γ + δ, m2 = δ + χ,
m3 = 0

Otherwise {R1, R2, R3, R4} ⊂ X ∪ Z and we wish to establish the existence of
a second distinct proper triangulation when 1 < α. For 6 < α + β ≤ 12 there
are a small number of cases; these are dealt with individually in [11]. Henceforth
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we assume that 12 < α + β. Three cases are considered: Case A where χ = 1,
Case B where χ = 2 and Case C where 3 ≤ χ.

Case A: χ = 1.
Suppose first that γ 6= β and χ = 1 < γ + δ − α.
From Figure 8, R3 is equivalent to Z0 or Z1 or Z3. Thus α − δ ≤ 2 and

γ−α−χ ≤ 1. Since R2 is equivalent to Z0 or Z1, β−m1 ≤ 1. Since R1 ∈ Z ∪X
and χ = 1 < γ + δ − α, the region R1 is equivalent to either Z3 or X2 or X3 or
X5.

If R1 is equivalent to Z3, then α = β and δ = 3. Thus, α = β ≤ δ + 2 = 5, so
α+ β ≤ 10, a contradiction.

If R1 is equivalent to X2, then δ = 2 and either m1 − γ = 1, in which case
m1 = β and m1−α ≤ 3, or m1−γ = 2, in which case β−m1 ≤ 1 and m1−α = 2.
Thus, α ≤ δ+2 = 4 and β−α ≤ 3, so, β ≤ 7. Hence α+β ≤ 11, a contradiction.

If R1 is equivalent to X3, then δ = 3, α+ χ− γ = 1 and β + χ− γ = 3. Thus,
α ≤ δ + 2 = 5 and β = 2 + α ≤ 7. So α+ β ≤ 12, a contradiction.

If R1 is equivalent to X5, then δ = 1, β − m1 ≤ 1, 0 ≤ γ − α − χ ≤ 1 and
m1 − γ = 1. Thus, α ≤ δ + 2 = 3 and β ≤ α + 4 ≤ 7. So, α + β ≤ 10,
a contradiction.

Secondly, suppose that γ 6= β and γ + δ − α = χ = 1. Hence, R1 is equivalent
to Z1 or Z2.

If 3 ≤ γ, then consider the tessellation {BT
(2,α)
2 , BT

(m1,α−1)
m1−2 , BT

(γ,δ)
χ =

BT
(γ,α−γ+1)
1 , R1, R5 = (γ, δ) → (2, α − 1) → (2, α − 2) → (γ − 1, δ), R6 =

(β, 0) → (β, α) → (2, α) → (2, α − 1) → (m1, α − 1) → (m1, 0)} of R. By
Lemmas 3.1 and 3.2, there exists a second distinct proper triangulation of R

containing BT
(γ,δ)
χ .

If γ ≤ α − 2, consider the tessellation {BT
(α,2)
2 , BT

(α−1,α)
α−2 , BT

(γ,δ)
χ =

BT
(γ,α−γ+1)
1 , R7 = (α − 1, 2) → (γ, δ) → (γ, δ − 1) → (α − 2, 2), R8 = (γ, δ) →

(1, α) → (0, α) → (γ − 1, δ), R9 = (β, 0) → (β, α) → (α − 1, α) → (α − 1, 2) →
(α, 2) → (α, 0)} of R. By Lemmas 3.1 and 3.2, there exists a second distinct

proper triangulation of R containing BT
(γ,δ)
χ .

Otherwise α − 2 < γ < 3, so α ≤ 3. As R2 is equivalent to Z0 or Z1 and
γ + δ − α = χ = 1 it follows that β ≤ α+ 2. Thus, α+ β ≤ 8, a contradiction.

Thirdly, suppose that γ = β and γ + δ − α = χ = 1; then δ − 1 = α − β.
From the conditions for this lemma 0 ≤ δ − 1 and α − β ≤ 0. Thus α = β
and δ = 1. Note that 6 < α + β, so, 4 ≤ α = β. Consider the tessellation

{BT
(α−1,α)
α−1 , BT

(γ,δ)
χ = BT

(α,1)
1 , R10 = (α, 1) → (α, α) → (α− 1, α) → (α− 1, 1)}

of R. By Lemma 3.1, there exists a second distinct proper triangulation of R

containing BT
(γ,δ)
χ .

Finally assume γ = β and χ = 1 < γ + δ − α. Recall that R3 is equivalent to
Z0, Z1 or Z3, so, α − δ ≤ 2 and γ − α − χ ≤ 1. Hence, as γ = β and χ = 1, it
follows that β−2 ≤ α. If α ≤ 2, then β ≤ 4 and thus α+β ≤ 6; therefore, 3 ≤ α.
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If β − 2 < α + χ− δ, then β − 2 < 2 + χ, hence, β < 5, thus, 6 < α + β ≤ 8,
a contradiction.

Hence, assume α+ χ− δ ≤ β − 2.
If α− 2− (α− (β− 2)) < 0, then β < 4, so, α+ β ≤ 6, a contradiction. Hence,

α− 2− (α− (β − 2)) ≥ 0.

Let m4 = min{α−2, δ−1}. Consider the tessellation {FT
(β−2,m4)
2 , BT

(β−2,α)
β−2 ,

BT
(γ,δ)
χ = BT

(β,δ)
1 , R11 = (β, 0) → (β,m4) → (β − 2,m4) → (β − 2, α− β + 2) →

(α, 0), R12 = (β,m4) → (β, δ − 1) → (β − 1, δ) → (β, δ) → (β, α) → (β − 2, α) →
(β−2,m4+2)} of R. By Lemmas 3.1 and 3.3 there exists a second distinct proper

triangulation of R containing BT
(γ,δ)
χ .

Case B: χ = 2.
As R3 is equivalent to Z0, Z1 or Z3 and R4 is equivalent to Z0 or Z2, α− δ ≤ 1

(so, m2 = α) and γ − α − χ ≤ 1. Since R1 is equivalent to Z0, Z1, Z2, Z3, Z4,
X4 or X5, m1 = β, β − α ≤ 2, m1 + χ − γ ≤ 4 and δ ≤ 4. If δ = 4, then R1 is
equivalent to Z3, so, α = β and α− δ, β − γ, γ + δ − α− χ ≤ 1 contradicting our
assumption that either 1 < α − δ or 1 < β − γ or 1 < γ + δ − α − χ. So, δ ≤ 3.
Thus, α ≤ 4 and β ≤ 2 + α, so, α+ β ≤ 10, a contradiction.

Case C: 3 ≤ χ.
As Ri ∈ X ∪Z for all 1 ≤ i ≤ 4 it follows that β − γ, α− δ, γ + δ − α− χ ≤ 1,

a contradiction. �
Letting α = β in Theorem 4.1 and 4.2 describes precisely when at least one

or two proper triangulations exist for a three-sided region containing any fixed
triangle.

Note that, this result is described in terms of finding proper triangulations of
a backward triangle. However, the equivalences of regions (and indeed proper
triangulations) discussed earlier mean that a similar result holds for forward tri-
angles.
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Appendix

Regions equivalent to X5

Regions equivalent to X4

A Region equivalent to Z6

Regions equivalent to Z4

Regions equivalent to Z2Regions equivalent to Z1

Regions equivalent to Z3

Regions equivalent to X1

Regions equivalent to X3Regions equivalent to X2

Regions equivalent to Z5
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