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Abstract. In the paper, we discuss convergence properties and Voronovskaja type theorem
for bivariate g-Bernstein polynomials for a function analytic in the polydisc Dr, X Dgr, =
{z € C: |z| <R} x{z € C: |z| < Ry} for arbitrary fixed ¢ > 1. We give quantitative
Voronovskaja type estimates for the bivariate g-Bernstein polynomials for ¢ > 1. In the
univariate case the similar results were obtained by S. Ostrovska: g-Bernstein polynomials
and their iterates. J. Approximation Theory 123 (2003), 232-255, and S. G. Gal: Approx-
imation by Complex Bernstein and Convolution Type Operators. Series on Concrete and
Applicable Mathematics 8. World Scientific, New York, 2009.
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1. INTRODUCTION AND MAIN RESULTS

For each integer k > 0, the g-integer [k], and the g-factorial [k],! are defined by

1-¢"
if ge R\ {1},
(kg = l—gq 1 VL for £ € N and [0}, = 0,
k if g=1

[k]g! :==[1]4]2]q - - . [k]q for k € N and [0]! = 1.

For integers 0 < k < n, the ¢g-binomial coefficient is defined by

For fixed ¢ > 1, we denote the g-derivative D, f(z) of f by

Ja2) = 1)
D) =4 -z @ 7Y
1'(0), z=0.
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Let 1 <r < R/q, q > 1, Dr := {# € C: |z| < R}, H(Dr) denote the set of all

analytic functions on Dg. For f € H(Dg) and |2| < R/q we introduce an operator L,

defined in [8]

(1—2)(Dyf(2) = ['(2)
qg—1

for ¢ > 1.

Ly(f;2) =

It is clear that for f € H(DRg)

o0
Zam

q—l

where f(z) = E amz™, em(z) = 2™.
In several recent papers, convergence properties of complex g-Bernstein polyno-
mials, proposed by Phillips [7] for real variables, defined by

Bnq(f;2) Zf<i>” nﬁll—qz

and attached to an analytic function f in a closed disk, were intensively studied by
many authors, see [2] and the references theirin. It is known that the cases 0 < ¢ < 1
and g > 1 are not similar to each other. This difference is caused by the fact that, for
0 < ¢ <1, By, 4 are positive linear operators on C[0, 1] while for ¢ > 1, the positivity
fails ([5], [4]). The lack of positivity makes the investigation of convergence in the
case ¢ > 1 essentially more difficult than for 0 < ¢ < 1. There are few papers ([5],
[6], [8], and [9] ) studying systematically the convergence in the case ¢ > 1. If ¢ > 1
then qualitative Voronovskaja-type and saturation results for complex g-Bernstein
polynomials were obtained in Wang-Wu [8]. Wu [9] studied saturation of convergence
on the interval [0, 1] for the ¢-Bernstein polynomials of a continuous function f for
arbitrary fixed ¢ > 1. Notice that the results for the complex univariate g-Bernstein
operators can be extended to the case of several complex variables. For simplicity,
the results are presented for bivariate case, but from the proofs it is easy to see that
they remain valid for several complex variables.

We consider the bivariate complex g-Bernstein polynomials of tensor product kind
given by

Brm.q(fi(21,22) = Z f (% %)pn,k(% 21)Pm,j (45 22),
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n—k—1 .
where p, x(q;2) = quk [T (1—-¢%2). If f € H({Dg, x Dg,) we assume that
3=0

[e°] &) .
f(z1,22) = 32 3 g j2h2) for all (21, 22) € Dg, X Dg,.
k=0 j=0
Note that in the case of several real variables, the tensor product Bernstein polyno-

mial was first introduced and studied in Hildebrandt-Schoenberg [3] and Butzer [1].
In the next theorem, approximation properties of the above bivariate complex poly-
nomials will be proved.

Theorem 1. Let ¢ > 1, f € H(Dg, x Dg,). For all |z1| < 71, |22| < re, with
1<ri1 <Ri/q, 1 <re < Ro/qand n,m €N we have

|Bn,m,q(f§ (21, 22)) - f(Zh ZQ)l < C?"u?"mn,m(f)v

where

37"2(]. +7’2) o — L. j—2.7-2_k
Criramm(f) = o], S lewsliG — g2}
9 k=0;=0

3ri(l+71) o~ o _ k-2, k=2 ]
+ ZZ|ij|k(k g™y 3.
2nlq k=0 j=0

Remark 2. It is worth mentioning that in the univariate case the results similar
to Theorem 1 were obtained by Ostrovska [5] and Gal [2]. On the other hand in the
classical case (¢ = 1) the similar result is given in [2].

Next a Voronovskaja type result for B,, ,, q is presented. It is the product of the
parametric extensions generated by the Voronovskaja formula in the univariate case.
Indeed, for f(z1,22) defining the parametric extensions of the Voronovskaja formula
by

1
mL(I(f('a 22)7 2’1),

1
[mlq

Ly (f(-,22);21) 1= Bug(f (-, 22);21) — (21, 22) —

L o(f(21,-); 22) 7= B g(f(21,-):22) = f(21, 22) — Ly(f(21,°); 22),

their composition gives

(1) (L2, 0Lh )(fi(21,22) = Bmg(L} ,(f(-,22); 21); 22) — Ly, o (f (-, 22); 21)
_ﬁLq(L}“q(f; (21,7)); 22) =1 By — By — E3.
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Theorem 3. Let f € H(Dg, x Dg,), ¢ > 1,1 <1 < Ri/¢* 1< ry < Ro/q>
The following Voronovskaja-type result holds

(L2, ;0 LY )(f3 (21, 22))] < Cry o f)(i N L)

[nl; ~ [mlg
where
Cry o (f) =
Z ( Z |k, J|7"2 + Z 2|k, Z ) w (QQTl)k_B(k - 1)2(k - 2)2,
k=0 7=0

|z1] < 71, |22| <712 and n,m € N, m > 3.

Remark 4. It should be mentioned that in the univariate case the Voronovskaja
type results were obtained in [8]. Our result is new even for the univariate case since
the estimate given in Theorem 3 has quantitative character. The classical case was

studied by Gal [2].

2. PROOFS OF THE MAIN RESULTS

Lemma 5. Let f € H(Dg,), 1 <r < Ry1/q and ¢ > 1. Then we have

3r(l+r)

o k= 1) (e

|Br,q(ex; 2) — ex(2)] <

foralln eN, |z| <7

Proof. Let us start with the recurrence formulas

(2) Bn,q(ek; Z) = Z(:E-T]_(IZ) Dan,q(ekfl; Z) + Zan,q(ekfl; Z);
Bra(exs2) = u(2) = L2 Dy (Buleniz) = ()

It is known that by a linear transformation, the Bernstein inequality in the closed

unit disk becomes

k
[P (2)] < o Pillgr, - for all |2] < gr, r > 1,
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which combined with the mean value theorem in complex analysis implies
k
|DyPi(2)] < ||Pgllgr < ;”Pk”qrv

for all |z| < r, where Py(z) is a complex polynomial of degree < k. From the above
recurrence formula we get

Braeni) = ex(2)] < L e [ Buglenn) = it
+ 7| Bn,q(ek—1;2) — ex—1(2)| + % "1+ r)
< L I B glern)lr + len-allor)
+ 7| Bn,q(ek—1;2) — ex—1(2)| + % P14 7r)
< 2= DA (@) 1B i) = s ()
+ [k[;]l]q rkfl(l +7)
3(k—1)

<7|Bng(er—1;2) —er—1(2)[ + r(1+7)(qr)" 2.

[n]q
By writing the last inequality for £k = 1,2,..., we easily obtain, step by step, the
following

|Buglen: 2) — en(2)] < % @2k =14 k—24 ... +1)
~3r(1+7) B
= o k= 1))

O

Proof of Theorem 1. Denote ey j(z1, 22) = ex(21)ej(z2) = 2F2). Clearly we get

|Bn,m.q(f; (21, 22)) = f(21, 22)]
o0 o0
<D0 lenjllBumagleni (21, 22) = ex (21, 22)]

k=0 j=0

But taking into account the estimate in Lemma 5, for all |z1| < 71, |22] < ro we

obtain

[Bn.m.a(er.j; (21, 22)) — ex,j (21, 22)|
= |Bnq(en; 21) Bm.qg(ej3 22) — 2123

< |Buyglen; 21) Bm.g(es; 22) — Bug(en; 21)23| + | Bug(en; 21)23 — 2F2)]
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< |Bug(ex; 21)||Bmg(ej; 22) — 23| + |23 | B, en; z1) — 21

3ro(l+12) .. o ig 3r1(1+4r) o j_
g k _ 1 J 2.7 J k k _ 1 k—2_ k—2
1 72[m]q g )¢y 4y 42[7% ( )"y

which immediately implies the estimate in Theorem 1. O

Lemma 6. We have

3) (Linq © Lng) (f5 (21, 22))
= Z(Z Ch.jBm.q(ej; 22) — fu(22) chw (€55 22 )

ﬁLq(ek;zl)]

x {qu(ek; z1) —eg(21) —

Proof. By the hypothesis we can write

f(z1,22) = E E ijzle E Jr(22 217

k=0 j=0

o0
where fi(z2) = > ¢k sz The second term of (1) can be written as follows.
7=0

By = Ly o(f (-, 22); 21)

= B qg(f(-s22);21) — f(21,22) — ﬁ Lg(f (- 22);21)
= 3" i) [ Buatlens 21) = enlz1) = = Lylexs 21)|.
= [n]q

Applying now B,, 4 to the last expression with respect to z2, we obtain the expression
for the first term of (1)

Ey

Bm (L}z,q(f('v 32); Zl); ZQ)

1

Bonq(fr: 22) [Bn,q(ek; z1) —ep(21) — ﬁ Ly(er; zl)]

(i ko mqej,zz)) [B"’q(ek“l)—ek(zl)—ﬁ

q

=
Il
=]

Ttlﬂg

Lq(ek;zl)}.
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For the third term we have

[m)gBs = Lg(Ly, o(f3 (21,)); 22)
(1 = 22)(DqLy, o (f3 (21, 22)) = (L3, o(f3 (21, 22))))
qg—1
= Buq(Lq(f(-s22); 22); 21) — Lo (f (21, 22)5 22) — ﬁf?q o Lq(f(-,22); 21),

where
(o]
Lo(f(,22); 22) = ZLq(fk(22)§22 =chm (€53 22)21,
= k=0 j=2
Buq(Lq(f(+; 22); 2 chm (e 22) Bn q(ex; 21),
k=0 j=2
(LgoLg)(f(+ 22); 2 (ZZCM (ej; 22 nyzl)
k=0 j=2
[ee] [ee]
= Zch,JLq(eJ7z2)Lq(€k§Zl)-
k=0 j=2

Introducing the expressions of E1, E2 and Ej3 in (1), we arrive at (3).

Lemma 7. Let f € H(Dg,), 1 <71 < R1/¢* and q > 1. Then we have

By q(€m; 21) — em(21) — ﬁ Ly(em; 1)

< M (q2r1)m—3(m — 1)2(m — 2)2

c 2

for allmn e N, m > 3, |z1] <

Proof. Let us consider the relationship given by

m—1
1
(4) Epm(z1) = B g(em;21) — em(z1) — —— 1= z),
n]q 1,=1
2’1(1 — Zl)
En,m(zl) = T Dq(Bn,q(em—1§ Zl) - em—l(zl))
q
1 m—2
+ 21 (Bn,q(em—l;zl) em—1(21) — = 11— 21))
TL 1,=1
2’1(1 — Zl)
En,m(zl) = TDQ(Bn,q(em—ﬁ Zl) - em—l(zl)) + ZlEn,m—l(Zl)7
q
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for all m > 2, n € N and #z; € C. Lemma 5 with » = ¢ry and (4) imply for |z| <r

ri(l+7r) m
|Enm(21)| < r1]Enm—1(21)] + ] = | Bn,g(em—1) — em—1llgr
q
3r1(1 4 gr)? —
<71|Bnm-1(21)| + W(m —1)%(m —2)(¢*r)™ 3.
q

By writing the last inequality for m = 3,4,... we easily obtain, step by step, the
following

3r1 (14 gr)? o, .
Bumlen)] < G (2 ym s 3 - 12 - 2
q j=3
< 3r1(1 4 qr1)?

2[nlg

(q2r1)m*3(m — 1)2(m — 2)2.

Proof of Theorem 3. By the hypothesis we can write

f(z1,22) = E E Ck,lezQ E Jr(2z2 217

k=0 j=0

o0 .
where fi(z2) = > ¢k j23. It follows, by Lemma 6 that
§=0

|(L$n,q © L}L,q)(fv (zl’ 22))|

<D 1D ckiBmglesiz) — fil(z) ZC’W (ej; 22)
k=01j=0
1
X ‘B”’q(e’“zl) —er(z1) — . Lq(6k§zl)"
q

Using now Lemma 7 with |21 < 71 < R1/q?, |22] < ra < R2/q* and the inequalities

| Bm.q(e5; 22)| <13,

i .
(22 <Y lew,ylrd,
=0

J
|k, La(ej; 22)| < 2lex ;| Y lilgrd
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we have
(L7, 0 Ly )(f; (21, 22))]

00 j—1
<3 Z|ckj|r2+2|ck,]|r2 LS 2l S il
Tila
=0 i=1

k=0

1
X‘Bn,q(ek;m)—ek(zl) m (ek;m)‘
q

[n]y
< Z(ZZWMV% Zzlck,1|z qrz)

k=0 7=0 9 j=0 i=1
3r1(1 4 gry)? _
il +ar)” 1 ) (¢%r1)F =3 (k — 1)2(k — 2)2.
2[n]?

Note that if we estimate now |(L?2, oL} )(f;(z1,22))|, then by reasons of symmetry
we get a similar order of approximation, simply interchanging above the places of n
and m. In conclusion,

(L2, ;0 LY )(f3 (21, 22))] < Cry o f)(iz N ;2)

O
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