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Abstract. We study the question of the existence, uniqueness, and continuous dependence
on parameters of the Carathéodory solutions to the Cauchy problem for linear partial
functional-differential equations of hyperbolic type. A theorem on the Fredholm alternative
is also proved. The results obtained are new even in the case of equations without argument
deviations, because we do not suppose absolute continuity of the function the Cauchy
problem is prescribed on, which is rather usual assumption in the existing literature.
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1. Introduction

On the rectangle D = [a, b] × [c, d], we consider the linear hyperbolic functional-

differential equation

(1.1)
∂2u(t, x)

∂t ∂x
= ℓ(u)(t, x) + q(t, x),

where ℓ : C(D;R) → L(D;R) is a linear bounded operator and q ∈ L(D;R). Under

a solution to the equation (1.1) were understand a function u : D → R absolutely

continuous on D in the sense of Carathéodory (see Proposition 2.1) which satisfies

the equality (1.1) almost everywhere on the set D.

For the hyperbolic equation

(1.2) utx = p(t, x)u+ q(t, x),

The research was supported by RVO: 67985840.
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which is a particular case of (1.1), a number of results is known especially in the

case where the coefficients p and q are continuous and the solution u to the equation

(1.2) is supposed to have continuous all derivatives up to the second order (see, e.g.,

[6], [7], [8], [12], [13], [18], [19], [20], [22] and references therein). In this case one can

pass from the canonical form (1.2) to the wave equation

utt − uxx = p̃(t, x)u + q̃(t, x)

and vice versa.

If the coefficients p and q in the equation (1.2) are discontinuous, the situation is

much more complicated. Nevertheless, the concept of Carathéodory solutions was

used and the results generalizing those known in the continuous case were obtained

(see, e.g., [1], [3], [4], [9], [10], [11], [21], [22]). We follow these results and consider

solutions to the equation (1.1) in the class of functions absolutely continuous on D

in the sense of Carathéodory (see Proposition 2.1). Various initial and boundary

value problems have been studied in the literature for hyperbolic equations and their

systems (see, e.g., [1], [3], [4], [6], [7], [8], [9], [10], [11], [12], [13], [18], [19], [20], [21],

[22], and references therein). In this paper, we investigate the Cauchy problem for

the equation (1.1) formulated in the following way: Let H be a strictly monotone

curve connecting the vertices (a, d) and (b, c) of the rectangle D, which is defined as

the graph of a decreasing continuous (not absolutely continuous in general) function

h : [a, b] → [c, d] such that h(a) = d and h(b) = c. The values u and u′[2] are

prescribed on H as follows:1

u (t, h(t)) = g(t) for t ∈ [a, b],(1.3)

u′[2]
(

h−1(x), x
)

= ψ(x) for a.e. x ∈ [c, d],(1.4)

where g ∈ C([a, b];R) and ψ ∈ L([c, d];R). The functions g and ψ cannot be chosen

arbitrarily, they must satisfy the so-called consistency condition (see Section 3). We

should mention here that every solution u to the problem (1.1), (1.3), (1.4) verifies

also the initial condition

(1.5) u′[1] (t, h(t)) = ϕ(t) for a.e. t ∈ [a, b],

where2

ϕ(t) =
d

dt

(

g(t) +

∫ d

h(t)

ψ(η) dη

)

for a.e. t ∈ [a, b]

1 The symbol u′
[2] stands for the partial derivative of u with respect to the second argument.

2 The existence of the derivative on the right-hand side of this equality is ensured by the
consistency conddition (see Proposition 3.1 below).
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(see Lemmas 3.3 and 3.4). Observe that the condition (1.4) is equivalent to

(1.4′) u′[2](t, h(t)) = ψ(h(t)) for a.e. t ∈ [a, b]

provided that h ∈ AC([a, b];R) and h−1 ∈ AC([c, d];R) (see Lemma 3.1 below).

In [3], K.Deimling formulates the Cauchy problem for the hyperbolic equation

with Carathéodory right-hand side as follows:

(1.6)











u (t, h(t)) = g(t),

u′[1] (t, h(t)) = ϕ(t),

u′[2] (t, h(t)) h
′(t) = g′(t) − ϕ(t),

where h ∈ CD([a, b]; [c, d]) is an absolutely continuous function, g ∈ AC([a, b];R),

and ϕ ∈ L([a, b];R). He proves, among other, that the problem (1.2), (1.6) has

a unique solution under the assumption h−1 ∈ AC([c, d];R). Formulation of the

Cauchy problem in the form of the initial conditions (1.3), (1.4) is more general,

because we do not need to suppose that the function h is absolutely continuous.

However, if we assume that h ∈ AC([a, b];R) and h−1 ∈ AC([c, d];R), then both the

formulations coincide (see Remark 3.2 below).

The aim of this paper is to prove the Fredholm alternative and theorems on the

continuous dependence of solutions to the problem (1.1), (1.3), (1.4) on the initial

conditions and parameters (see Sections 5 and 8). Moreover, some solvability con-

ditions for the problem considered are given in Section 7, and equations with the

so-called Volterra operators are studied as well.

The results obtained are applied to the equation with argument deviations

(1.1′)
∂2u(t, x)

∂t ∂x
= p(t, x)u(τ(t, x), µ(t, x)) + q(t, x),

where p, q ∈ L(D;R) and τ : D → [a, b], µ : D → [c, d] are measurable functions.

2. Notation and preliminary results

The following notation is used throughout the paper.

(i) N is the set of all natural numbers. R is the set of all real numbers, R+ =

[0,+∞[. Ent(x) denotes the entire part of the number x ∈ R.

(ii) D = [a, b] × [c, d], where −∞ < a < b < +∞ and −∞ < c < d < +∞.

(iii) The first and the second order partial derivatives of a function v : D → R at

a point (t, x) ∈ D are denoted by v′[1](t, x) (or vt(t, x), ∂v(t, x)/∂t), v
′
[2](t, x) (or
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vx(t, x), ∂v(t, x)/∂x), v′′[1,2](t, x) (or vtx(t, x), ∂2v(t, x)/∂t ∂x), and v′′[2,1](t, x)

(or vxt(t, x), ∂
2v(t, x)/∂x ∂t).

(iv) C(D;R) is the Banach space of continuous functions v : D → R equipped with

the norm ‖v‖C = max{|v(t, x)| : (t, x) ∈ D}.

(v) CD([a, b]; [c, d]) is the set of continuous decreasing functions v : [a, b] → [c, d]

such that v(a) = d and v(b) = c.

(vi) AC([α, β];R), where −∞ < α < β < +∞, is the set of absolutely continuous

functions u : [α, β] → R.

(vii) C∗(D;R) is the set of functions v : D → R admitting the representation

v(t, x) = e+

∫ t

a

k(s) ds+

∫ x

c

l(η) dη +

∫ t

a

∫ x

c

f(s, η) dη ds for (t, x) ∈ D,

where e ∈ R, k ∈ L([a, b];R), l ∈ L([c, d];R), and f ∈ L(D;R). Equivalent

definitions of the class C∗(D;R) are given in Proposition 2.1 below.

(viii) L(D;R) is the Banach space of Lebesgue integrable functions p : D → R

equipped with the norm ‖p‖L =
∫∫

D
|p(t, x)| dt dx.

(ix) L(D) is the set of linear bounded operators ℓ : C(D;R) → L(D;R).

(x) mesA denotes the Lebesgue measure of the set A ⊂ Rm, m = 1, 2.

(xi) If X , Y are Banach spaces and T : X → Y is a linear bounded operator then

‖T ‖ denotes the norm of the operator T , i.e.,

‖T ‖ = sup{‖T (z)‖Y : z ∈ X, ‖z‖X 6 1}.

(xii) A ÷ B stands for the symmetric difference of the sets A and B, i.e., A ÷ B =

(A \B) ∪ (B \A).

The following proposition dealing with equivalent characterizations of functions

absolutely continuous in the sense of Carathéodory plays a very important role in

our investigation.

Proposition 2.1 ([16, Theorem 3.1]). The following three statements are equiv-

alent:

(1) the function v : D → R is absolutely continuous on D in the sense of Carathéo-

dory3;

(2) v ∈ C∗(D;R);

(3) the function v : D → R satisfies the conditions

(a) v(·, x) ∈ AC([a, b];R) for every x ∈ [c, d], v(a, ·) ∈ AC([c, d];R);

(b) v′[1](t, ·) ∈ AC([c, d];R) for almost every t ∈ [a, b];

(c) v′′[1,2] ∈ L(D;R).

3 This notion is introduced in [2] (see also [16]).
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Remark 2.1. It is clear that the conditions (3a)–(3c) stated in the previous

proposition can be replaced by the symmetric ones, i.e.,

(3) the function v : D → R satisfies the conditions

(A) v(·, c) ∈ AC([a, b];R), v(t, ·) ∈ AC([c, d];R) for every t ∈ [a, b];

(B) v′[2](·, x) ∈ AC([a, b];R) for almost every x ∈ [c, d];

(C) v′′[2,1] ∈ L(D;R).

Moreover, for an arbitrary function v ∈ C∗(D;R), the equality

v′′[1,2](t, x) = v′′[2,1](t, x) for a.e. (t, x) ∈ D

holds.

Notation 2.1. Having a function h ∈ CD([a, b]; [c, d]), we put

(2.1)
H(t, x) = {(s, η) ∈ R

2 : min{h−1(x), t} 6 s 6 max{h−1(x), t},

min{h(s), x} 6 η 6 max{h(s), x}} for (t, x) ∈ D

(see the pictures below as an illustration). It is clear that, for any (t, x) ∈ D, the set

H(t, x) is a measurable subset of D.

H(t, x)

t

x

a b

c

d

H(t, x)

t

x

a b

c

d

3. Consistency condition

We first mention that the formulation of the Cauchy problem for the equation

(1.1) in the form of the conditions (1.3) and (1.4) is rather natural. Indeed, if

u : D → R is a function absolutely continuous on D in the sense of Carathédory (i.e.,

if u ∈ C∗(D;R)) then, using conditions (3a)–(3c) of Proposition 2.1 and (3A)–(3C)

of Remark 2.1, we get

u(·, h(·)) ∈ C([a, b];R), u′[1](·, h(·)) ∈ L([a, b];R), u′[2]
(

h−1(·), ·
)

∈ L([c, d];R)
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provided h ∈ CD([a, b]; [c, d]). As was said above, the functions g and ψ appearing

in the initial conditions (1.3) and (1.4) cannot be chosen arbitrarily. The following

definition is motivated by the notion of a consistency condition presented in the

monograph [22].

Definition 3.1. Let h ∈ CD([a, b]; [c, d]), g ∈ C([a, b];R), and ψ ∈ L([c, d];R).

We say that the pair (g, ψ) is h-consistent (in the space C∗(D;R)) if there exists

a function u ∈ C∗(D;R) satisfying the conditions (1.3) and (1.4).

Now we introduce conditions sufficient and necessary for a pair (g, ψ) to be h-

consistent; their proofs are postponed till Section 3.1 below.

Proposition 3.1. Let h ∈ CD([a, b]; [c, d]), g ∈ C([a, b];R), and ψ ∈ L([c, d];R).

Then the pair (g, ψ) is h-consistent if and only if the function

(3.1) t 7→ g(t) +

∫ d

h(t)

ψ(η) dη

is absolutely continuous on the interval [a, b].

Proposition 3.2. Let h ∈ CD([a, b]; [c, d]) be an absolutely continuous function,

g ∈ C([a, b];R), and ψ ∈ L([c, d];R). Then the pair (g, ψ) is h-consistent if and only

if the function g is absolutely continuous.

Remark 3.1. The assumption h ∈ AC([a, b];R) is not necessary for the existence

of an h-consistent pair. Indeed, let g ∈ AC([a, b];R). Then the pair (g, 0) is h-

consistent for an arbitrary h ∈ CD([a, b]; [c, d]).

Remark 3.2. Let h ∈ AC([a, b];R) and h−1 ∈ AC([c, d];R). It follows from

Proposition 3.2 that the pair (g, ψ) is h-consistent if and only if the function g is

absolutely continuous. Moreover, by using Lemma 3.1 below, we easily show that

the condition (1.4) is equivalent to (1.4′). Since h−1 ∈ AC([a, b];R), the inequality

h′(t) < 0 holds for almost every t ∈ [a, b] (see, e.g., [14, Chapter IX, Example 13]).

Therefore, if u ∈ C∗(D;R) satisfies the initial conditions (1.3) and (1.4) then it also

satisfies the conditions (1.6) with

ϕ(t) = g′(t) − ψ(h(t))h′(t) for a.e. t ∈ [a, b].

Conversely, if u ∈ C∗(D;R) satisfies the initial conditions (1.6) then it satisfies the

conditions (1.3) and (1.4), where

ψ(x) =
g′(h−1(x)) − ϕ(h−1(x))

h′(h−1(x))
for a.e. x ∈ [c, d].

Consequently, the Cauchy problems formulated in the form of conditions (1.3),

(1.4) and in the form of conditions (1.6) coincide in this case.
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A consistent pair can be also characterized in terms of the unique solvability of

the problem (1.1), (1.3), (1.4) with the zero operator ℓ. More precisely, the following

statement is true.

Proposition 3.3. Let h ∈ CD([a, b]; [c, d]), g ∈ C([a, b];R), and ψ ∈ L([c, d];R).

Then the pair (g, ψ) is h-consistent if and only if the problem (1.1), (1.3), (1.4) with

ℓ = 0 has a unique solution for every q ∈ L(D;R).4

3.1. Proofs. In order to prove propositions stated above we need the following

lemmas.

Lemma 3.1 ([14, Chapter IX, §3, Theorem 3]). Let f ∈ AC([α, β];R) be a de-

creasing function. Then the relation mes f(E) = f(α) − f(β) holds for an arbitrary

measurable set E ⊆ [α, β] such that mesE = β − α.

Lemma 3.2 ([16, Proposition 3.5]). Let f ∈ L(D;R) and

u(t, x) =

∫ t

a

∫ x

c

f(s, η) dη ds for (t, x) ∈ D.

Then

(i) there exists a set E ⊆ [a, b] such that mesE = b− a and

u′[1](t, x) =

∫ x

c

f(t, η) dη for t ∈ E and x ∈ [c, d];

(ii) there exists a set F ⊆ [c, d] such that mesF = d− c and

u′[2](t, x) =

∫ t

a

f(s, x) ds for t ∈ [a, b] and x ∈ F ;

(iii) there exists a set G ⊆ D such that mesG = (b− a)(d− c) and

u′′[1,2](t, x) = f(t, x) for (t, x) ∈ G.

4 The symbol 0 stands here for the zero operator.
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Lemma 3.3. Let h ∈ CD([a, b]; [c, d]), g ∈ C([a, b];R), and ψ ∈ L([c, d];R). Then

an arbitrary function u ∈ C∗(D;R) fulfilling the conditions (1.3) and (1.4) satisfies

(3.2) u(t, x) = g(t) +

∫ x

h(t)

ψ(η) dη +

∫∫

H(t,x)

u′′[1,2](s, η) ds dη for (t, x) ∈ D

and

(3.3) u(t, x) = g
(

h−1(x)
)

+

∫ t

h−1(x)

u′[1](s, h(s)) ds

+

∫∫

H(t,x)

u′′[1,2](s, η) ds dη for (t, x) ∈ D,

where the mapping H is defined by the formula (2.1).

P r o o f. Let a function u ∈ C∗(D;R) satisfy the conditions (1.3) and (1.4).

Then, using properties (3A)–(3C) of Remark 2.1, we obtain

∫∫

H(t,x)

u′′[1,2](s, η) ds dη =

∫ x

h(t)

∫ t

h−1(η)

u′′[2,1](s, η) ds dη

=

∫ x

h(t)

[u′[2](t, η) − u′[2](h
−1(η), η)] dη

= u(t, x) − u(t, h(t)) −

∫ x

h(t)

u′[2](h
−1(η), η) dη

for (t, x) ∈ D. Consequently, by virtue of the initial conditions (1.3) and (1.4), the

relation (3.2) holds.

On the other hand, using properties (3a)–(3c) of Proposition 2.1, we get

∫∫

H(t,x)

u′′[1,2](s, η) ds dη =

∫ t

h−1(x)

∫ x

h(s)

u′′[1,2](s, η) dη ds

=

∫ t

h−1(x)

[u′[1](s, x) − u′[1](s, h(s))] ds

= u(t, x) − u
(

h−1(x), x
)

−

∫ t

h−1(x)

u′[1](s, h(s)) ds

for (t, x) ∈ D and thus, in view of the initial condition (1.3), the relation (3.3) is

satisfied. �
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Lemma 3.4. Let h ∈ CD([a, b]; [c, d]), g ∈ C([a, b];R), and ψ ∈ L([c, d];R) be

such that the function (3.1) is absolutely continuous on the interval [a, b]. Moreover,

let

(3.4) u(t, x) = g(t) +

∫ x

h(t)

ψ(η) dη +

∫∫

H(t,x)

f(s, η) ds dη for (t, x) ∈ D,

where f ∈ L(D;R) and the mapping H is defined by the formula (2.1). Then

u ∈ C∗(D;R) and u satisfies the conditions (1.3), (1.4),

u′[1](t, x) = ϕ(t) +

∫ x

h(t)

f(t, η) dη for a.e. t ∈ [a, b] and all x ∈ [c, d],(3.5)

u′[2](t, x) = ψ(x) +

∫ t

h−1(x)

f(s, x) ds for t ∈ [a, b] and a.e. x ∈ [c, d],(3.6)

and

(3.7) u′′[1,2](t, x) = f(t, x) for a.e. (t, x) ∈ D,

where the function ϕ is given by the relation

(3.8) ϕ(t) =
d

dt

(

g(t) +

∫ d

h(t)

ψ(η) dη

)

for a.e. t ∈ [a, b].

P r o o f. In view of the formula (2.1), it follows immediately from the relation

(3.4) that the function u satisfies the condition (1.3). It is clear that the equality

(3.4) can be rewritten to the form

u(t, x) = g(t) −

∫ h(t)

c

ψ(η) dη −

∫ h(t)

c

∫ t

h−1(η)

f(s, η) ds dη

+

∫ x

c

ψ(η) dη −

∫ x

c

∫ h−1(η)

a

f(s, η) ds dη +

∫ x

c

∫ t

a

f(s, η) ds dη

for (t, x) ∈ D. Therefore, u(t, ·) ∈ AC([c, d];R) for every t ∈ [a, b]. Moreover, in view

of Lemma 3.2 (ii) there exists a set E1 ⊆ [c, d], mesE1 = d− c, such that

u′[2](t, x) = ψ(x) −

∫ h−1(x)

a

f(s, x) ds+

∫ t

a

f(s, x) ds for t ∈ [a, b], x ∈ E1,

whence we get u′[2]
(

h−1(x), x
)

= ψ(x) for x ∈ E1, and thus the function u satisfies

the conditions (1.4) and (3.6).
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On the other hand, the equality (3.4) can be rewritten to the form

u(t, x) = −

∫ d

x

ψ(η) dη −

∫ h−1(x)

a

∫ x

h(s)

f(s, η) dη ds

+ g(t) +

∫ d

h(t)

ψ(η) dη −

∫ t

a

∫ h(s)

c

f(s, η) dη ds+

∫ t

a

∫ x

c

f(s, η) dη ds

for (t, x) ∈ D. Consequently, by using the assumption on the function (3.1), we obtain

that u(·, x) ∈ AC([a, b];R) for every x ∈ [c, d]. Moreover, in view of Lemma 3.2 (i)

there exists E2 ⊆ [a, b], mesE2 = b− a, such that

u′[1](t, x) = ϕ(t) −

∫ h(t)

c

f(t, η) dη +

∫ x

c

f(t, η) dη for t ∈ E2, x ∈ [c, d],

where the function ϕ is given by the relation (3.8). Therefore, u′[1](t, ·) ∈ AC([c, d];R)

for every t ∈ E2 and, by virtue of Lemma 3.2 (iii), there exists E3 ⊆ D such that

mesE3 = (b − a)(d − c) and u′′[1,2](t, x) = f(t, x) for (t, x) ∈ E3. It means that the

conditions (3.5) and (3.7) are fulfilled and u′′[1,2] ∈ L(D;R).

We have shown that the function u satisfies the relations (1.3), (1.4), (3.5)–(3.7)

and the conditions (3a)–(3c) of Proposition 2.1, and thus u ∈ C∗(D;R). �

Lemma 3.5. Let f ∈ CD([a, b]; [c, d]) be an absolutely continuous function and

w ∈ C∗(D;R). Then the function z defined by the formula

(3.9) z(t) = w(t, f(t)) for t ∈ [a, b]

is absolutely continuous.

P r o o f. Let ε > 0 be arbitrary. Then there exists δ1 > 0 such that

(3.10)

∫∫

P

|w′′
[1,2](s, η)| ds dη <

ε

6
for P ⊆ D, mesP < δ21 .

Moreover, there exists δ2 > 0, δ2 6 δ1, such that
∫

I

|w′
[1](s, f(s))| ds <

ε

3
for I ⊆ [a, b], mes I < δ2,(3.11)

∫

J

|w′
[2]

(

f−1(η), η
)

| dη <
ε

3
for J ⊆ [c, d], mes J < δ2.(3.12)

Since the function f is absolutely continuous, there exists δ > 0, δ 6 δ2, such that

the relation

(3.13)
n

∑

k=1

|f(bk) − f(ak)| < δ2
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holds for an arbitrary system {]ak, bk[}n
k=1 of disjoint intervals in [a, b] with the

property

(3.14)

n
∑

k=1

(bk − ak) < δ.

Now let {]ak, bk[}n
k=1 be a system of disjoint intervals in [a, b] satisfying (3.14).

Since the function f is decreasing, {]f(bk), f(ak)[}n
k=1 forms a system of disjoint

intervals in [c, d] such that (3.13) holds, and {[ak, bk]× [f(bk), f(ak)]}n
k=1 is a system

of non-overlapping rectangles contained in D fulfilling

(3.15)

n
∑

k=1

(bk − ak)(f(ak) − f(bk)) 6 δ

n
∑

k=1

(f(ak) − f(bk)) < δδ2 6 δ21 .

It is not difficult to verify that, for any k = 1, 2, . . . , n, we have

z(bk) − z(ak) = w(bk, f(bk)) − w(ak, f(ak))

=

∫ bk

ak

w′
[1](s, f(bk)) ds−

∫ f(ak)

f(bk)

w′
[2](ak, η) dη

=

∫ bk

ak

w′
[1](s, f(s)) ds−

∫ bk

ak

∫ f(s)

f(bk)

w′′
[1,2](s, η) dη ds

−

∫ f(ak)

f(bk)

w′
[2]

(

f−1(η), η
)

dη +

∫ f(ak)

f(bk)

∫ f−1(η)

ak

w′′
[2,1](s, η) ds dη,

whence we get

|z(bk) − z(ak)| 6

∫ bk

ak

∣

∣

∣
w′

[1](s, f(s))
∣

∣

∣
ds+

∫ f(ak)

f(bk)

∣

∣

∣
w′

[2]

(

f−1(η), η
)

∣

∣

∣
dη

+ 2

∫ bk

ak

∫ f(ak)

f(bk)

|w′′
[1,2](s, η)| dη ds for k = 1, 2, . . . , n.

Consequently,

n
∑

k=1

|z(bk) − z(ak)| 6

∫

I

∣

∣

∣
w′

[1](s, f(s))
∣

∣

∣
ds

+

∫

J

∣

∣

∣
w′

[2]

(

f−1(η), η
)

∣

∣

∣
dη + 2

∫∫

E

|w′′
[1,2](s, η)| ds dη,
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where I =
n
⋃

k=1

[ak, bk], J =
n
⋃

k=1

[f(bk), f(ak)], and E =
n
⋃

k=1

[ak, bk] × [f(bk), f(ak)].

The last relation, together with (3.10)–(3.15), guarantees that

n
∑

k=1

|z(bk) − z(ak)| 6
ε

3
+
ε

3
+ 2

ε

6
= ε,

and thus the function z is absolutely continuous. �

Now we are in a position to prove Propositions 3.1–3.3.

P r o o f of Proposition 3.1. First suppose that the pair (g, ψ) is h-consistent.

Then there exists a function u ∈ C∗(D;R) satisfying the conditions (1.3) and (1.4).

According to Lemma 3.3, the function u admits the representations (3.2) and (3.3),

whose comparing and setting x = d yields

g(t) +

∫ d

h(t)

ψ(η) dη = g(a) +

∫ t

a

u′[1](s, h(s)) ds for t ∈ [a, b],

whereas u′[1](·, h(·)) ∈ L([a, b];R). It means, however, that the function (3.1) is

absolutely continuous on the interval [a, b].

Now suppose that h, g, and ψ are such that the function (3.1) is absolutely con-

tinuous on the interval [a, b]. Then, by virtue of Lemma 3.4, the function u defined

by the formula

(3.16) u(t, x) = g(t) +

∫ x

h(t)

ψ(η) dη for (t, x) ∈ D

belongs to the set C∗(D;R) and satisfies the initial conditions (1.3) and (1.4). Con-

sequently, the pair (g, ψ) is h-consistent. �

P r o o f of Proposition 3.2. If the pair (g, ψ) is h-consistent then, using

Lemma 3.5, we obtain that the function g is absolutely continuous on the inter-

val [a, b].

Conversely, let g ∈ AC([a, b];R). Then the function

(t, x) 7→ g(a) +

∫ d

c

ψ(η) dη +

∫ t

a

g′(s) ds−

∫ x

c

ψ(η) dη

is of the class C∗(D;R). Therefore, by virtue of Lemma 3.5, it is clear that the

function (3.1) is absolutely continuous on the interval [a, b] and thus the pair (g, ψ)

is h-consistent (see Proposition 3.1). �
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P r o o f of Proposition 3.3. If the problem (1.1), (1.3), (1.4) with ℓ = 0 has

a unique solution for every q ∈ L(D;R) then it is clear that the pair (g, ψ) is h-

consistent.

Conversely, let the pair (g, ψ) be h-consistent and let q ∈ L(D;R). Then, according

to Proposition 3.1, the function (3.1) is absolutely continuous on the interval [a, b]

and thus, by virtue of Lemma 3.4, the problem (1.1), (1.3), (1.4) with ℓ = 0 has at

least one solution. The uniqueness follows from Lemma 3.3. �

4. Auxiliary statements

The following proposition plays a crucial role in the proofs of statements given in

Sections 5, 7, and 8.

Proposition 4.1. Suppose that h ∈ CD([a, b]; [c, d]) and ℓ ∈ L(D). Then the

operator T : C(D;R) → C(D;R) defined by the formula

(4.1) T (v)(t, x) =

∫∫

H(t,x)

ℓ(v)(s, η) ds dη for (t, x) ∈ D, v ∈ C(D;R),

where the mapping H is given by (2.1), is completely continuous.

The above statement can be easily proved in the case where the operator ℓ is

strongly bounded, i.e., if there exists a function η ∈ L(D;R+) such that

(4.2) |ℓ(v)(t, x)| 6 η(t, x)‖v‖C for a.e. (t, x) ∈ D and all v ∈ C(D;R).

However, Schaefer proved that there exists an operator ℓ ∈ L(D) which is not strongly

bounded (see [15]). In order to prove Proposition 4.1 without the additional require-

ment (4.2) we need several notions and statements from functional analysis.

Definition 4.1 ([5, Definition II.3.25]). Let X be a Banach space, X∗ its dual

space.

We say that a sequence {xn}
+∞
n=1 ⊆ X is weakly convergent if there exists x ∈ X

such that f(x) = lim
n→+∞

f(xn) for every f ∈ X∗. The element x is said to be the

weak limit of this sequence.

A set M ⊆ X is said to be weakly sequentially compact if every sequence of

elements from M contains a subsequence which is weakly convergent in X .

A sequence {xn}
+∞
n=1 of elements from X is called a weak Cauchy sequence if

{f(xn)}+∞
n=1 is a Cauchy sequence in R for every f ∈ X∗.

We say that the space X is weakly complete if every weak Cauchy sequence of

elements from X possesses a weak limit in X .

403



Definition 4.2 ([5, Definition VI.4.1]). LetX and Y be Banach spaces, T : X →

Y a linear bounded operator. The operator T is said to be weakly compact if it maps

bounded sets in X into weakly sequentially compact subset of Y .

Definition 4.3. We say that a set M ⊆ L(D;R) has a property of absolutely

continuous integral if, for every ε > 0, there exists δ > 0 such that the relation

∣

∣

∣

∣

∫∫

E

p(t, x) dt dx

∣

∣

∣

∣

< ε for every p ∈M

holds whenever the measurable set E ⊆ D is such that mesE < δ.

The following three lemmas can be found in [5].

Lemma 4.1 (Theorem IV.8.6). The space L(D;R) is weakly complete.

Lemma 4.2 (Theorem VI.7.6). A linear bounded operator mapping the space

C(D;R) into a weakly complete Banach space is weakly compact.

Lemma 4.3 (Corollary IV.8.11). If a set M ⊆ L(D;R) is weakly sequentially

compact then it has a property of absolutely continuous integral.

P r o o f of Proposition 4.1. Let M ⊆ C(D;R) be a bounded set. We shall show

that the set T (M) = {T (v) : v ∈ M} is relatively compact in the space C(D;R).

According to the Arzelà-Ascoli lemma, it is sufficient to show that the set T (M) is

bounded and equicontinuous.

Boundedness. It is clear that

|T (v)(t, x)| 6

∫∫

H(t,x)

|ℓ(v)(s, η)| ds dη 6 ‖ℓ(v)‖L 6 ‖ℓ‖ ‖v‖C

for (t, x) ∈ D and every v ∈M . Therefore, the set T (M) is bounded in C(D;R).

Equicontinuity. Let ε > 0 be arbitrary. Lemmas 4.1 and 4.2 yield that the operator

ℓ is weakly completely continuous, that is, the set ℓ(M) = {ℓ(v) : v ∈M} is a weakly

relatively compact subset of L(D;R). Therefore, Lemma 4.3 guarantees that there

exists δ > 0 such that the relation

(4.3)

∣

∣

∣

∣

∫∫

E

ℓ(v)(t, x) dt dx

∣

∣

∣

∣

<
ε

4
for v ∈M

holds for every measurable set E ⊆ D satisfying mesE < max{b− a, d− c}δ.
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On the other hand, we have

|T (v)(t2, x2) − T (v)(t1, x1)|

=

∣

∣

∣

∣

∫∫

H(t2,x2)

ℓ(v)(s, η) ds dη −

∫∫

H(t1,x1)

ℓ(v)(s, η) ds dη

∣

∣

∣

∣

6

4
∑

k=1

∣

∣

∣

∣

∫∫

Ek

ℓ(v)(s, η) ds dη

∣

∣

∣

∣

for (t1, x1), (t2, x2) ∈ D, v ∈M,

where measurable sets Ek ⊆ D (k = 1, . . . , 4) are such that mesEk 6 (d− c)|t2 − t1|

for k = 1, 2 and mesEk 6 (b − a)|x2 − x1| for k = 3, 4. Hence, by virtue of the

relation (4.3), we get

|T (v)(t2, x2) − T (v)(t1, x1)| < ε

for (t1, x1), (t2, x2) ∈ D, |t2 − t1| + |x2 − x1| < δ, and v ∈M,

i.e., the set T (M) is equicontinuous in C(D;R). �

5. Fredholm alternative

Throughout this section, we fix a function h ∈ CD([a, b]; [c, d]). Along with the

problem (1.1), (1.3), (1.4) we consider the corresponding homogeneous problem

∂2u(t, x)

∂t ∂x
= ℓ(u)(t, x),(1.10)

u (t, h(t)) = 0 for t ∈ [a, b],(1.30)

u′[2]
(

h−1(x), x
)

= 0 for a.e. x ∈ [c, d].(1.40)

Observe that the homogeneous problem (1.10), (1.30), (1.40) is well-defined because

the pair (0, 0) is obviously h-consistent.

Now we establish the main result of this section, namely, the statement on the

Fredholmity of the problem (1.1), (1.3), (1.4).

Theorem 5.1. The problem (1.1), (1.3), (1.4) has a unique solution for an arbi-

trary h-consistent pair (g, ψ) and every q ∈ L(D;R) if and only if the corresponding

homogeneous problem (1.10), (1.30), (1.40) has only the trivial solution.

P r o o f. Let u be a solution to the problem (1.1), (1.3), (1.4). According to

Lemma 3.3, u is a solution to the equation

(5.1) v = T (v) + f
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in the space C(D;R), where the operator T is defined by the formula (4.1),

(5.2) f(t, x) = g(t) +

∫ x

h(t)

ψ(η) dη +

∫∫

H(t,x)

q(s, η) ds dη for (t, x) ∈ D,

and the mapping H is given by the formula (2.1).

Conversely, if the pair (g, ψ) is h-consistent, q ∈ L(D;R), and v ∈ C(D;R) is

a solution to the equation (5.1) with f given by (5.2) then, by virtue of Lemma 3.4,

v ∈ C∗(D;R) and v is a solution to the problem (1.1), (1.3), (1.4). Hence, the

problem (1.1), (1.3), (1.4) and the equation (5.1) are equivalent in this sense.

Note also that u is a solution to the homogeneous problem (1.10), (1.30), (1.40) if

and only if u is a solution to the homogeneous equation

(5.3) v = T (v)

in the space C(D;R).

According to Proposition 4.1, the operator T is completely continuous. It follows

from the Riesz-Schauder theory that the equation (5.1) is uniquely solvable for every

f ∈ C(D;R) if and only if the homogeneous equation (5.3) has only the trivial

solution. Therefore, the assertion of the theorem holds. �

Definition 5.1. Let the problem (1.10), (1.30), (1.40) have only the trivial so-

lution. An operator Ω: L(D;R) → C(D;R) which assigns to every q ∈ L(D;R) the

solution u to the problem (1.1), (1.30), (1.40) is called the Cauchy operator of the

problem (1.10), (1.30), (1.40).

Remark 5.1. It is clear that the Cauchy operator is linear.

If the homogeneous problem (1.10), (1.30), (1.40) has a nontrivial solution then,

by virtue of Theorem 5.1, there exist a function q and an h-consistent pair (g, ψ)

such that the problem (1.1), (1.3), (1.4) has either no solution or infinitely many

solutions. However, as follows from the proof of Theorem 5.1, a stronger assertion

can be shown in this case.

Proposition 5.1. Let the problem (1.10), (1.30), (1.40) have a nontrivial solution.

Then, for an arbitrary h-consistent pair (g, ψ), there exists a function q ∈ L(D;R)

such that the problem (1.1), (1.3), (1.4) has no solution.

P r o o f. Let u0 be a nontrivial solution to the problem (1.10), (1.30), (1.40) and

let (g, ψ) be an h-consistent pair.

It follows from the proof of Theorem 5.1 that u0 is also a nontrivial solution to the

homogeneous equation (5.3) in the space C(D;R). Therefore, by the Riesz-Schauder

theory, there exists f ∈ C(D;R) such that the equation (5.1) has no solution.
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Then the problem (1.1), (1.3), (1.4) has no solution for q ≡ ℓ(z), where

z(t, x) = f(t, x) − g(t) −

∫ x

h(t)

ψ(η) dη for (t, x) ∈ D.

Indeed, if the problem indicated had a solution u then the function u+ z would be

a solution to the equation (5.1), which would lead to a contradiction. �

6. Volterra operators

The following definition introduces the notion of a [t0, h]-Volterra operator which

is useful in the investigation of the Cauchy problem for the equation (1.1) (see, e.g.,

Theorem 7.2 below).

Definition 6.1. Let t0 ∈ [a, b] and h ∈ CD([a, b]; [c, d]). We say that ℓ ∈ L(D)

is a [t0, h]-Volterra operator if the relation

ℓ(v)(t, x) = 0 for a.e. (t, x) ∈ [a0, b0] × [h(b0), h(a0)]

holds for an arbitrary interval [a0, b0] ⊆ [a, b] and every function v ∈ C(D;R) such

that t0 ∈ [a0, b0] and

v(t, x) = 0 for (t, x) ∈ [a0, b0] × [h(b0), h(a0)].

Remark 6.1. If the operator ℓ in the equation (1.1) is a [t0, h]-Volterra one then

the Cauchy problem (1.1), (1.3), (1.4) can be restricted to an arbitrary rectangle

[a0, b0] × [h(b0), h(a0)] ⊆ D containing the point (t0, h(t0)).

Let the operator ℓ be defined by the formula

(6.1) ℓ(v)(t, x) = p(t, x)v(τ(t, x), µ(t, x)) for a.e. (t, x) ∈ D and all v ∈ C(D;R),

where p ∈ L(D;R) and τ : D → [a, b], µ : D → [c, d] are measurable functions.

Then clearly ℓ ∈ L(D). A sufficient and necessary condition for the operator ℓ to

be a [t0, h]-Volterra one is given in the next proposition.
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Proposition 6.1. Let t0 ∈ [a, b] and h ∈ CD([a, b]; [c, d]). Then the operator ℓ

defined by the formula (6.1) is a [t0, h]-Volterra one if and only if the conditions

(6.2) |p(t, x)|min{t0, t, h
−1(x)} 6 |p(t, x)|τ(t, x)

6 |p(t, x)|max{t0, t, h
−1(x)} for a.e. (t, x) ∈ D

and

(6.3) |p(t, x)|min{h(t0), h(t), x} 6 |p(t, x)|µ(t, x)

6 |p(t, x)|max{h(t0), h(t), x} for a.e. (t, x) ∈ D.

are satisfied.

To prove this proposition we need the following lemma.

Lemma 6.1. Let α, β : D → [γ1, γ2] be measurable functions and E ⊆ D a set of

positive measure such that

(6.4) α(t, x) < β(t, x) for (t, x) ∈ E.

Then there exist E0 ⊆ E and z0 ∈ ]γ1, γ2[ such that mesE0 > 0 and

(6.5) α(t, x) < z0 < β(t, x) for (t, x) ∈ E0.

P r o o f. Let

(6.6) En =
{

(t, x) ∈ E : α(t, x) − β(t, x) 6 −
1

n

}

for n ∈ N.

Clearly, E1 ⊆ E2 ⊆ . . . ⊆ E and
+∞
⋃

n=1

En = E. Therefore, in view of the assumption

mesE > 0, there exists n0 ∈ N such that

(6.7) mesEn0
> 0.

Moreover, (6.6) yields that

(6.8) α(t, x) − β(t, x) 6 −
1

n0
for t ∈ En0

.

Now we put

I(z) = {(t, x) ∈ En0
: α(t, x) < z} for z ∈ [γ1, γ2].
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Clearly, I(γ1) = ∅ and (z1) ⊆ I(z2) ⊆ En0
for γ1 6 z1 6 z2 6 γ2, and thus we can

set

(6.9) z∗ = sup{z ∈ [γ1, γ2] : mes I(z) = 0}.

It can be easily verified that

I(z∗) =

+∞
⋃

k=1

I
(

z∗ −
z∗ − γ1

k

)

and mes I
(

z∗ −
z∗ − γ1

k

)

= 0 for k ∈ N,

which guarantees that

(6.10) mes I(z∗) = 0.

Moreover, in view of (6.7) and (6.10) we have En0
\ I(z∗) 6= ∅, whence, on account

of (6.8), we get

z∗ 6 α(t, x) 6 β(t, x) −
1

n0
6 γ2 −

1

n0
for (t, x) ∈ En0

\ I(z∗)

and, in particular,

(6.11) γ1 < z∗ +
1

2n0
< γ2.

Put

(6.12) E0 =
{

(t, x) ∈ En0
: z∗ 6 α(t, x) < z∗ +

1

2n0

}

.

Then I(z∗ + 1/(2n0)) = I(z∗) ∪ E0 whereas the relation (6.9) guarantees that

mes I(z∗ + 1/(2n0)) > 0. Consequently, by using (6.10), we get

(6.13) mesE0 > 0.

On the other hand, by virtue of (6.8) and (6.12), we have

z∗ +
1

2n0
6 α(t, x) +

1

2n0
6 β(t, x) −

1

2n0
< β(t, x) for (t, x) ∈ E0

which yields

α(t, x) < z∗ +
1

2n0
< β(t, x) for (t, x) ∈ E0,

and thus the relation (6.5) holds with z0 = z∗ + 1/(2n0). �
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P r o o f of Proposition 6.1. Let the operator ℓ be defined by the formula (6.1).

If the inequalities (6.2) and (6.3) are satisfied then it is easy to verify that the

operator ℓ is a [t0, h]-Volterra one.

Conversely, let the operator ℓ be a [t0, h]-Volterra one. Assume that, on the

contrary, the first inequality in (6.2) does not hold, i.e., that

|p(t, x)|τ(t, x) < |p(t, x)|min{t0, t, h
−1(x)}

on a set of positive measure. Then, according to Lemma 6.1, there exist a set E0 ⊆ D

of positive measure and z0 ∈ ]a, b[ such that

(6.14) p(t, x) 6= 0, τ(t, x) < z0 < min{t0, t, h
−1(x)} for (t, x) ∈ E0.

Therefore, for every (t, x) ∈ E0 we have z0 < t, z0 < t0, and x < h(z0), which

guarantees that E0 ⊆ [z0, b] × [c, h(z0)]. Put

v(t, x) =

{

t− z0 for a 6 t 6 z0, x ∈ [c, d],

0 for z0 < t 6 b, x ∈ [c, d].

Then, clearly, v ∈ C(D;R) and

v(t, x) = 0 for (t, x) ∈ [z0, b] × [c, h(z0)].

However, the relations (6.14) yield that

p(t, x)v(τ(t, x), µ(t, x)) = p(t, x)(τ(t, x) − z0) < 0 for (t, x) ∈ E0,

which is a contradiction because the operator ℓ is supposed to be a [t0, h]-Volterra

one. The contradiction obtained proves that the first inequality in (6.2) holds. The

validity of the second inequality in (6.2) and the inequalities (6.3) can be proved

analogously. �

Proposition 6.1 yields

Corollary 6.1. Let t0 ∈ [a, b] and h ∈ CD([a, b]; [c, d]). Assume that

(τ(t, x) − t0)(τ(t, x) − t) 6 0 for a.e. (t, x) ∈ D

and

(µ(t, x) − h(t0))(µ(t, x) − x) 6 0 for a.e. (t, x) ∈ D.

Then the operator ℓ defined by the formula (6.1) is a [t0, h]-Volterra one.
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7. Existence and uniqueness theorems

In this section, we fix a function h ∈ CD([a, b]; [c, d]) and give some efficient

conditions guaranteeing the unique solvability of the problem (1.1), (1.3), (1.4) as

well as (1.1′), (1.3), (1.4). We first formulate all the results, their proofs being

postponed till Section 7.1 below.

Introduce the following notation.

Notation 7.1. Let ℓ ∈ L(D). Define the operators ϑk : C(D;R) → C(D;R),

k = 0, 1, 2, . . ., by setting

(7.1) ϑ0(v) = v, ϑk(v) = T (ϑk−1(v)) for v ∈ C(D;R), k ∈ N,

where the operator T is given by the formula (4.1).

Theorem 7.1. Let there exist m ∈ N and α ∈ [0, 1[ such that the inequality

(7.2) ‖ϑm(u)‖C 6 α‖u‖C

is satisfied for every solution u to the homogeneous problem (1.10), (1.30), (1.40).

Then the problem (1.1), (1.3), (1.4) has a unique solution for an arbitrary h-

consistent pair (g, ψ) and every q ∈ L(D;R).

Remark 7.1. The assumption α ∈ [0, 1[ in the previous theorem cannot be

replaced by the assumption α ∈ [0, 1] (see Example 9.1).

Corollary 7.1. Let there exist j ∈ N such that

(7.3) max

{
∫ b

a

∫ h(t)

c

pj(t, x) dxdt,

∫ b

a

∫ d

h(t)

pj(t, x) dxdt

}

< 1,

where p1 ≡ |p|,

(7.4) pk+1(t, x) = |p(t, x)|

∫∫

H(τ(t,x),µ(t,x))

pk(s, η) ds dη for a.e. (t, x) ∈ D, k ∈ N,

and the mapping H is defined by the formula (2.1). Then the problem (1.1′), (1.3),

(1.4) has a unique solution for an arbitrary h-consistent pair (g, ψ) and every q ∈

L(D;R).

Remark 7.2. Example 9.1 shows that the strict inequality (7.3) in Corollary 7.1

cannot be replaced by the nonstrict one.
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Theorem 7.2. Let ℓ be a [t0, h]-Volterra operator for some t0 ∈ [a, b]. Then the

problem (1.1), (1.3), (1.4) has a unique solution for an arbitrary h-consistent pair

(g, ψ) and every q ∈ L(D;R).

Corollary 7.2. Let there exist t0 ∈ [a, b] such that the conditions (6.2) and

(6.3) are satisfied. Then the problem (1.1′), (1.3), (1.4) has a unique solution for an

arbitrary h-consistent pair (g, ψ) and every q ∈ L(D;R).

Corollary 7.3. Let either

τ(t, x) 6 t, µ(t, x) > x for a.e. (t, x) ∈ D,

or

τ(t, x) > t, µ(t, x) 6 x for a.e. (t, x) ∈ D.

Then, for an arbitrary h ∈ CD([a, b]; [c, d]), the problem (1.1′), (1.3), (1.4) has

a unique solution for every h-consistent pair (g, ψ) and all q ∈ L(D;R).

Remark 7.3. Let h ∈ AC([a, b];R) and h−1 ∈ AC([c, d];R). The previous corol-

lary guarantees that the problem (1.2), (1.3), (1.4) is uniquely solvable without any

additional assumption imposed on the coefficient p. Since the problems (1.2), (1.3),

(1.4) and (1.2), (1.6) are equivalent in this case (see Remark 3.2), the corollary

obtained coincides with the result of K. Deimling established in the paper [3].

7.1. Proofs. Now we prove the statements formulated above.

P r o o f of Theorem 7.1. According to Theorem 5.1, it is sufficient to show that

the homogeneous problem (1.10), (1.30), (1.40) has only the trivial solution.

Let u be a solution to the problem (1.10), (1.30), (1.40). Then, by virtue of

Lemma 3.3, u satisfies

u(t, x) =

∫∫

H(t,x)

ℓ(u)(s, η) ds dη = T (u)(t, x) = ϑ1(u)(t, x) for (t, x) ∈ D.

Therefore, we get

u(t, x) = T (ϑ1(u))(t, x) = ϑ2(u)(t, x) for (t, x) ∈ D,

and thus u = ϑk(u) for every k ∈ N. Consequently, the relation (7.2) implies

‖u‖C = ‖ϑm(u)‖C 6 α‖u‖C ,

which guarantees that u ≡ 0, because α ∈ [0, 1[. �
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P r o o f of Corollary 7.1. It is clear that the equation (1.1′) is a particular case

of the equation (1.1), in which the operator ℓ is given by the formula (6.1). It is not

difficult to verify that

|ϑk(v)(t, x)| 6

∫∫

H(t,x)

|p(s, η)ϑk−1(v)(τ(s, η), µ(s, η))| ds dη

6 ‖v‖C

∫∫

H(t,x)

pk(s, η) ds dη for (t, x) ∈ D, k ∈ N, v ∈ C(D;R).

Since the functions pk are nonnegative, we get for any k ∈ N the relation

max
(t,x)∈D

{
∫∫

H(t,x)

pk(s, η) ds dη

}

= max

{
∫∫

H(a,c)

pk(s, η) ds dη,

∫∫

H(b,d)

pk(s, η) ds dη

}

.

Consequently, the assumptions of Theorem 7.1 are satisfied with m = j and

α = max

{
∫ b

a

∫ h(t)

c

pj(t, x) dxdt,

∫ b

a

∫ d

h(t)

pj(t, x) dxdt

}

.

�

To prove Theorem 7.2 we need the following lemma.

Lemma 7.1. Let t0 ∈ [a, b] and let ℓ be a [t0, h]-Volterra operator. Then

(7.5) lim
k→+∞

‖ϑk‖ = 0,

where the operators ϑk are defined by the formula (7.1).

P r o o f. Let ε ∈ ]0, 1[. According to Proposition 4.1, the operator ϑ1 is com-

pletely continuous. Therefore, by virtue of the Arzelà-Ascoli lemma, there exists

δ > 0 such that

(7.6)

∣

∣

∣

∣

∫∫

H(t2,x2)

ℓ(w)(s, η) ds dη −

∫∫

H(t1,x1)

ℓ(w)(s, η) ds dη

∣

∣

∣

∣

6 ε ‖w‖C

for (t1, x1), (t2, x2) ∈ D, |t2 − t1| + |x2 − x1| < δ, w ∈ C(D;R).

Since h ∈ CD([a, b]; [c, d]), there exists δ0 > 0 such that δ0 < δ/2, δ0 < max{t0 −

a, b− t0}, and

(7.7) |h(t2) − h(t1)| <
δ

2
for t1, t2 ∈ [a, b], |t2 − t1| 6 δ0.
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Let

n = max
{

Ent
( t0 − a

δ0

)

, Ent
(b− t0

δ0

)}

+ 1.

Choose yn+1 ∈ [a, t0] and yn+2 ∈ [t0, b] such that yn+2 − yn+1 = δ0, and put

yk = yn+1 − (n+ 1 − k)
yn+1 − a

n
for k = 1, 2, . . . , n,

yk = yn+2 + (k − n− 2)
b− yn+2

n
for k = n+ 3, n+ 4, . . . , 2n+ 2,

and

Dk = [yn+2−k, yn+1+k] × [h(yn+1+k), h(yn+2−k)] for k = 1, 2, . . . , n+ 1.

Using the relation (7.7) and the definition of the numbers yk, for any j, r =

1, 2, . . . , 2n+ 1, we get

(7.8) |t2 − t1| + |x2 − x1| < δ for (t1, x1), (t2, x2) ∈ [yj, yj+1] × [h(yr+1), h(yr)].

Having w ∈ C(D;R), we denote

‖w‖i = ‖w‖C(Di;R) for i = 1, 2, . . . , n+ 1.

Let v ∈ C(D;R) be arbitrary. We shall show that the relation

(7.9) ‖ϑk(v)‖i 6 αi(k)ε
k‖v‖C for k ∈ N

holds for every i = 1, 2, . . . , n+ 1, where

αi(k) = αik
i−1 for k ∈ N, i = 1, 2, . . . , n+ 1,(7.10)

α1 = 1, αi+1 = i+ 1 + iαi for i = 1, 2, . . . , n.(7.11)

By virtue of (7.6) and (7.8), it is easy to verify that, for any w ∈ C(D;R) and

i = 1, 2, . . . , n+ 1, we have

(7.12)

∣

∣

∣

∣

∫∫

H(t,x)

ℓ(w)(s, η) ds dη

∣

∣

∣

∣

6 iε‖w‖C for (t, x) ∈ Di.

Observe that the previous relation immediately implies

(7.13) ‖ϑ1(v)‖i 6 iε‖v‖C for i = 1, 2, . . . , n+ 1.
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Furthermore, on account of (7.6), (7.8), and the fact that ℓ is a [t0, h]-Volterra

operator, we obtain

|ϑk+1(v)(t, x)| =

∣

∣

∣

∣

∫∫

H(t,x)

ℓ(ϑk(v))(s, η) ds dη

∣

∣

∣

∣

6 ε‖ϑk(v)‖1 for (t, x) ∈ D1, k ∈ N.

Hence, by virtue of (7.13), we get

‖ϑk(v)‖1 6 εk ‖v‖C for k ∈ N

and thus the relation (7.9) holds for i = 1.

Now suppose that the relation (7.9) holds for some i ∈ {1, 2, . . . , n}. We shall show

that the relation indicated is also true for i+ 1. With respect to (7.8), we obtain

‖ϑk+1(v)‖i+1 = max

{∣

∣

∣

∣

∫∫

H(t,x)

ℓ(ϑk(v))(s, η) ds dη

∣

∣

∣

∣

: (t, x) ∈ Di+1

}

=

∣

∣

∣

∣

∫∫

H(t∗
k
,x∗

k
)

ℓ(ϑk(v))(s, η) ds dη

∣

∣

∣

∣

6

∣

∣

∣

∣

∫∫

H(t̂k,x̂k)

ℓ(ϑk(v))(s, η) ds dη

∣

∣

∣

∣

+

∣

∣

∣

∣

∫∫

H(t∗
k
,x∗

k
)

ℓ(ϑk(v))(s, η) ds dη −

∫∫

H(t̂k,x̂k)

ℓ(ϑk(v))(s, η) ds dη

∣

∣

∣

∣

for k ∈ N, where (t∗k, x
∗
k) ∈ Di+1, (t̂k, x̂k) ∈ Di, and |t∗k − t̂k| + |x∗k − x̂k| < δ for

k ∈ N. Therefore, on account of (7.6), (7.12), and the fact that ℓ is a [t0, h]-Volterra

operator, we get

‖ϑk+1(v)‖i+1 6 ε ‖ϑk(v)‖i+1 + iε‖ϑk(v)‖i 6 ε ‖ϑk(v)‖i+1 + iαi(k)ε
k+1‖v‖C

for k ∈ N. Consequently, for any k ∈ N we have

‖ϑk+1(v)‖i+1 6 ε(ε‖ϑk−1(v)‖i+1 + iαi(k − 1)εk‖v‖C) + iαi(k)ε
k+1‖v‖C .

Continuing this procedure, on account of (7.13) we obtain

(7.14) ‖ϑk+1(v)‖i+1 6 (i+ 1 + i(αi(1) + . . .+ αi(k)))ε
k+1‖v‖C for k ∈ N.

By using (7.10) and (7.11), it is easy to verify that

i+ 1 + i(αi(1) + . . .+ αi(k)) = i+ 1 + iαi(1
i−1 + . . .+ ki−1)

6 i+ 1 + iαikk
i−1 = i+ 1 + iαik

i

6 (i+ 1 + iαi)k
i = αi+1k

i 6 αi+1(k + 1).
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Therefore, (7.13) and (7.14) imply

‖ϑk(v)‖i+1 6 αi+1(k) ε
k ‖v‖C for k ∈ N.

Hence, by induction, we have proved that the relation (7.9) holds for every i =

1, 2, . . . , n+ 1.

Now it is already clear that, for any k ∈ N, the estimate

‖ϑk(v)‖C = ‖ϑk(v)‖n+1 6 αn+1k
nεk ‖v‖C for v ∈ C(D;R)

is fulfilled and thus

‖ϑk‖ 6 αn+1 k
n εk for k ∈ N.

Since we suppose that ε ∈ ]0, 1[ , the last relation yields the validity of the condition

(7.5). �

P r o o f of Theorem 7.2. According to Lemma 7.1, there exists a number m0 ∈ N

such that ‖ϑm0
‖ < 1. Moreover, it is clear that

‖ϑm0
(v)‖C 6 ‖ϑm0

‖ ‖v‖C for v ∈ C(D;R),

because the operator ϑm0
is bounded. Consequently, the assumptions of Theorem 7.1

are satisfied with m = m0 and α = ‖ϑm0
‖. �

P r o o f of Corollary 7.2. It is clear that the equation (1.1′) is a particular case of

the equation (1.1) in which the operator ℓ is given by the formula (6.1). By virtue

of the assumptions (6.2) and (6.3), Proposition 6.1 guarantees that the operator ℓ

is a [t0, h]-Volterra one. Consequently, the assertion of the corollary follows from

Theorem 7.2. �

P r o o f of Corollary 7.3. It follows immediately from Corollary 7.2 with t0 = a

and t0 = b, respectively. �

8. Well-posedness

In this section, the well-posedness of the problems (1.1), (1.3), (1.4) and (1.1′),

(1.3), (1.4) is studied. We first formulate all the results, their proofs being given in

Section 8.1 below.

Throughout this section, we fix a function h ∈ CD([a, b]; [c, d]) for which the

mapping H is given by the formula (2.1). On the graph of the function h we consider

the Cauchy problem (1.3), (1.4) for the equation (1.1). Call that the pair (g, ψ) is

supposed to be h-consistent.
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For any k ∈ N, along with the problem (1.1), (1.3), (1.4) we consider the perturbed

problem

∂2u(t, x)

∂t∂x
= ℓk(u)(t, x) + qk(t, x),(1.1k)

u (t, hk(t)) = gk(t) for t ∈ [a, b],(1.3k)

u′[2]
(

h−1
k (x), x

)

= ψk(x) for a.e. x ∈ [c, d],(1.4k)

where ℓk ∈ L(D), qk ∈ L(D;R), hk ∈ CD([a, b]; [c, d]), and gk ∈ C([a, b];R), ψk ∈

L([c, d];R) are such that the pair (gk, ψk) is hk-consistent.

Analogously to Notation 2.1, for given functions hk we put

Hk(t, x) = {(s, η) ∈ R
2 : min{h−1

k (x), t} 6 s 6 max{h−1
k (x), t},(8.1)

min{hk(s), x} 6 η 6 max{hk(s), x}} for (t, x) ∈ D, k ∈ N.

It is clear that for any (t, x) ∈ D and k ∈ N, the set Hk(t, x) is a measurable subset

of D.

Notation 8.1. Let Λ ∈ L(D) and γ ∈ CD([a, b]; [c, d]). Denote by M(Λ, γ) the

set of functions y ∈ C∗(D;R) admitting the representation

y(t, x) =

∫ x

γ(t)

∫ t

γ−1(η)

Λ(z)(s, η) ds dη for (t, x) ∈ D,

where z ∈ C(D;R) and ‖z‖C = 1.

Theorem 8.1. Let the problem (1.1), (1.3), (1.4) have a unique solution u and

(8.2) lim
k→+∞

λk = 0,

where

(8.3) λk = sup
(t,x)∈D

y∈M(ℓk,hk)

{∣

∣

∣

∣

∫∫

Hk(t,x)

ℓk(y)(s, η) ds dη −

∫∫

H(t,x)

ℓ(y)(s, η) ds dη

∣

∣

∣

∣

}
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for k ∈ N. Let, moreover,

lim
k→+∞

̺k

[
∫∫

Hk(t,x)

ℓk(y)(s, η) ds dη −

∫∫

H(t,x)

ℓ(y)(s, η) ds dη

]

= 0(8.4)

uniformly on D for every y ∈ C∗(D;R),

lim
k→+∞

̺k

[
∫∫

Hk(t,x)

qk(s, η) ds dη −

∫∫

H(t,x)

q(s, η) ds dη

]

= 0(8.5)

uniformly on D,

lim
k→+∞

̺k

∫ x

c

[ψk(η) − ψ(η)] dη = 0 uniformly on [c, d],(8.6)

lim
k→+∞

̺k

∫ h(t)

hk(t)

ψ(x) dη = 0 uniformly on [a, b],(8.7)

and

(8.8) lim
k→+∞

̺k‖gk − g‖C = 0,

where

(8.9) ̺k = 1 + ‖ℓk‖ for k ∈ N.

Then there exists k0 ∈ N such that for every k > k0, the problem (1.1k), (1.3k),

(1.4k) has a unique solution uk and

(8.10) lim
k→+∞

‖uk − u‖C = 0.

Remark 8.1. By using Lemma 3.3, it can be easily verified that the functions uk

and u in Theorem 8.1 also satisfy the condition

lim
k→+∞

̺k

∫ t

a

[uk
′
[1](s, h(s)) − u′[1](s, h(s))] ds = 0 uniformly on [a, b].

Note also that the sequence {hk} in the previous theorem does not necessarily con-

verge to the function h. Indeed, let ℓk = ℓ = 0,5 qk ≡ q ≡ 0, ψk ≡ ψ ≡ 0, and let

gk, g ∈ AC([a, b];R) fulfil the condition (8.8). Then the assumptions of Theorem 8.1

are satisfied for arbitrary functions hk, h ∈ CD([a, b]; [c, d]).

If we suppose that the operators ℓk are “uniformly bounded” in the sense of the

relation (8.11) then we obtain the following statement.

5 The symbol 0 stands here for the zero operator.
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Corollary 8.1. Let the problem (1.1), (1.3), (1.4) have a unique solution u, let

there exist a function ω ∈ L(D;R+) such that

(8.11) |ℓk(y)(t, x)| 6 ω(t, x)‖y‖C for a. e. (t, x) ∈ D and all y ∈ C(D;R), k ∈ N,

and

(8.12) lim
k→+∞

∫∫

Hk(t,x)

ℓk(y)(s, η) ds dη =

∫∫

H(t,x)

ℓ(y)(s, η) ds dη

uniformly on D for every y ∈ C∗(D;R).

Moreover, let

lim
k→+∞

∫∫

Hk(t,x)

qk(s, η) ds dη =

∫∫

H(t,x)

q(s, η) ds dη uniformly on D,(8.13)

lim
k→+∞

∫ x

c

[ψk(η) − ψ(η)] dη = 0 uniformly on [c, d],(8.14)

lim
k→+∞

∫ h(t)

hk(t)

ψ(x) dη = 0 uniformly on [a, b],(8.15)

and

(8.16) lim
k→+∞

‖gk − g‖C = 0.

Then the conclusion of Theorem 8.1 holds.

Remark 8.2. The assumption (8.11) in the previous corollary is important and

cannot be omitted (see Example 9.2).

Corollary 8.2. Let the problem (1.1), (1.3), (1.4) have a unique solution u and

let there exist a function ω ∈ L(D;R+) such that the relation (8.11) holds. Moreover,

let the conditions (8.13), (8.14), and (8.16) be satisfied,

(8.17) lim
k→+∞

∫∫

H(t,x)

[ℓk(y)(s, η) − ℓ(y)(s, η)] ds dη = 0

uniformly on D for every y ∈ C∗(D;R),

and

(8.18) lim
k→+∞

‖hk − h‖C = 0.

Then the conclusion of Theorem 8.1 holds.
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Remark 8.3. If the functions qk are such that

|qk(t, x)| 6 σ(t, x) for a.e. (t, x) ∈ D, k ∈ N

with σ ∈ L(D;R+), then the condition (8.13) in Corollary 8.2 and other statements

containing the assumption (8.18) can be replaced by the more convenient condition

lim
k→+∞

∫∫

H(t,x)

[qk(s, η) − q(s, η)] ds dη = 0 uniformly on D

(see Lemma 8.2 below).

Corollary 8.2 immediately yields

Corollary 8.3. Let the homogeneous problem (1.10), (1.30), (1.40) have only the

trivial solution. Then the Cauchy operator6 of the problem (1.10), (1.30), (1.40) is

continuous.

Now we give a statement on the well-posedness of the problem (1.1′), (1.3), (1.4).

For any k ∈ N, along with the equation (1.1′) we consider the perturbed equation

(1.1′k)
∂2u(t, x)

∂t ∂x
= pk(t, x)u(τk(t, x), µk(t, x)) + qk(t, x),

where pk, qk ∈ L(D;R) and τk : D → [a, b], µk : D → [c, d] are measurable functions.

Corollary 8.4. Let the problem (1.1′), (1.3), (1.4) have a unique solution u, let

there exist a function ω ∈ L(D;R+) such that

(8.19) |pk(t, x)| 6 ω(t, x) for a.e. (t, x) ∈ D, k ∈ N,

and

(8.20) lim
k→+∞

∫∫

H(t,x)

[pk(s, η) − p(s, η)] ds dη = 0 uniformly on D.

Moreover, let the conditions (8.13), (8.14), (8.16), and (8.18) be satisfied, and

lim
k→+∞

ess sup{|τk(t, x) − τ(t, x)| : (t, x) ∈ D} = 0,(8.21)

lim
k→+∞

ess sup{|µk(t, x) − µ(t, x)| : (t, x) ∈ D} = 0.(8.22)

Then there exists k0 ∈ N such that for every k > k0, the problem (1.1′k), (1.3k),

(1.4k) has a unique solution uk and the relation (8.10) holds.

Remark 8.4. The assumption (8.19) in the previous theorem is important and

cannot be omitted (see Example 9.2).

6 The notion of the Cauchy operator is introduced in Definition 5.1.
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Finally, we consider the hyperbolic equation without argument deviations (1.2) in

which p, q ∈ L(D;R). For any k ∈ N, along with the equation (1.2) we consider the

perturbed equation

(1.2k) utx = pk(t, x)u+ qk(t, x)

where pk, qk ∈ L(D;R).

The following statement can be derived from Theorem 8.1.

Corollary 8.5. Let the conditions (8.5)–(8.8) be satisfied,

(8.23) lim
k→+∞

̺k

[
∫∫

Hk(t,x)

pk(s, η) ds dη −

∫∫

H(t,x)

p(s, η) ds dη

]

= 0

uniformly on D,

and

(8.24) lim
k→+∞

̺k

∫∫

H(t,x)÷Hk(t,x)

|p(s, η)| ds dη = 0 uniformly on D,

where

(8.25) ̺k = 1 + ‖pk‖L for k ∈ N.

Then the relation (8.10) holds, where u and uk are solutions to the problems (1.2)–

(1.4) and (1.2k)–(1.4k), respectively.

Remark 8.5. If the relation sup{‖pk‖L : k ∈ N} < +∞ holds then the assump-

tion (8.24) of the previous corollary is guaranteed, e.g., by the condition (8.18) (see

Lemma 8.2 below).

Corollary 8.5 yields

Corollary 8.6. Let the conditions (8.14), (8.16), and (8.18) be satisfied,

(8.26) lim
k→+∞

‖pk − p‖L = 0,

and

(8.27) lim
k→+∞

‖qk − q‖L = 0.

Then the conclusion of Corollary 8.5 holds.

8.1. Proofs. In order to prove Theorem 8.1, we need the following lemma.
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Lemma 8.1. Let the problem (1.10), (1.30), (1.40) have only the trivial solution

and let the condition (8.2) hold, where the numbers λk are defined by the formula

(8.3). Then for any z ∈ C∗(D;R) there exist r0 > 0 and k0 ∈ N such that

(8.28) ‖y − z‖C 6 r0(1 + ‖ℓk‖)[‖∆(y, hk) − ∆(z, h)‖C + ‖Γk(y, z)‖C ]

for k > k0, y ∈ C∗(D;R),

where

(8.29) ∆(v, γ)(t, x) = v (t, γ(t)) +

∫ x

γ(t)

v′[2]
(

γ−1(η), η
)

dη

for (t, x) ∈ D, v ∈ C∗(D;R), γ ∈ CD([a, b]; [c, d])

and

(8.30) Γk(v, w)(t, x) =

∫∫

Hk(t,x)

[v′′[1,2](s, η) − ℓk(v − w)(s, η)] ds dη

−

∫∫

H(t,x)

w′′
[1,2](s, η) ds dη

for (t, x) ∈ D, v, w ∈ C∗(D;R), k ∈ N.

P r o o f. Let the operators T, Tk : C(D;R) → C(D;R) be defined by the formulas

(4.1) and

Tk(v)(t, x) =

∫∫

Hk(t,x)

ℓk(v)(s, η) ds dη for (t, x) ∈ D, v ∈ C(D;R), k ∈ N.

Clearly, we have

‖Tk(y)‖C 6 ‖ℓk(y)‖L 6 ‖ℓk‖ ‖y‖C for y ∈ C(D;R), k ∈ N.

Therefore, the operators Tk (k ∈ N) are linear bounded ones, and the relation

(8.31) ‖Tk‖ 6 ‖ℓk‖ for k ∈ N

holds. Moreover, the condition (8.2) with λk given by (8.3) can be rewritten in the

form

(8.32) sup{‖Tk(y) − T (y)‖C : y ∈M(ℓk, hk)} → 0 as k → +∞.

Assume that, on the contrary, the assertion of the lemma is not true. Then

there exist z ∈ C∗(D;R), an increasing sequence {km}+∞
m=1 of natural numbers, and

a sequence {ym}+∞
m=1 of functions from C∗(D;R) such that

(8.33) ‖ym − z‖C > m(1 + ‖ℓkm
‖)[‖∆(ym, hkm

) − ∆(z, h)‖C + ‖Γkm
(ym, z)‖C ]
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for m ∈ N. For any m ∈ N and all (t, x) ∈ D, we put

zm(t, x) =
ym(t, x) − z(t, x)

‖ym − z‖C
,(8.34)

vm(t, x) =
∆(ym, hkm

)(t, x) − ∆(z, h)(t, x) + Γkm
(ym, z)(t, x)

‖ym − z‖C
,(8.35)

z0,m(t, x) = zm(t, x) − vm(t, x),(8.36)

wm(t, x) = Tkm
(z0,m)(t, x) − T (z0,m)(t, x) + Tkm

(vm)(t, x).(8.37)

Obviously,

(8.38) ‖zm‖C = 1 for m ∈ N.

Using (8.29) and (8.30) in the relation (8.35), by virtue of Lemma 3.3 we get

(8.39) z0,m(t, x) = Tkm
(zm)(t, x) for (t, x) ∈ D, m ∈ N,

and thus

(8.40) z0,m(t, x) = T (z0,m)(t, x) + wm(t, x) for (t, x) ∈ D, m ∈ N.

Moreover, it follows from (8.33) and (8.35) that

(8.41) ‖vm‖C 6
‖∆(ym, hkm

) − ∆(z, h)‖C + ‖Γkm
(ym, z)‖C

‖ym − z‖C
<

1

m(1 + ‖ℓkm
‖)

for m ∈ N. Now the relations (8.31) and (8.41) yield

(8.42) ‖Tkm
(vm)‖C 6 ‖Tkm

‖ ‖vm‖C 6
‖ℓkm

‖

m(1 + ‖ℓkm
‖)
<

1

m
for m ∈ N.

Observe that the expression (8.39) and the condition (8.38) guarantee the validity of

the inclusion z0,m ∈M(ℓkm
, hkm

) for m ∈ N and thus, in view of (8.32), we obtain

(8.43) lim
m→+∞

‖Tkm
(z0,m) − T (z0,m)‖C = 0.

According to (8.42) and (8.43), it follows from (8.37) that

(8.44) lim
m→+∞

‖wm‖C = 0

and, by virtue of (8.38) and (8.41), the equality (8.36) implies ‖z0,m‖C < 2 for

m ∈ N. Since the sequence {‖z0,m‖C}
+∞
m=1 is bounded and the operator T is com-

pletely continuous (see Proposition 4.1), there exists a subsequence of {T (z0,m)}+∞
m=1
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which is convergent. We can assume without loss of generality that the sequence

{T (z0,m)}+∞
m=1 is convergent, i.e., that there exists z0 ∈ C(D;R) such that

lim
m→+∞

‖T (z0,m) − z0‖C = 0.

Then it is clear that

(8.45) lim
m→+∞

‖z0,m − z0‖C = 0,

because the functions z0,m admit the representation (8.40) and the relation (8.44)

holds. However, the estimate (8.41) is true for vm and thus, the equality (8.36) yields

lim
m→+∞

‖zm − z0‖C = 0

which, together with (8.38), guarantees that ‖z0‖C = 1. Since the operator T is

continuous and the conditions (8.44) and (8.45) are fulfilled, the relation (8.40) gives

z0 = T (z0). Consequently, by virtue of Lemma 3.3, z0 ∈ C∗(D;R) and z0 is a non-

trivial solution to the homogeneous problem (1.10), (1.30), (1.40), which is a contra-

diction. �

P r o o f of Theorem 8.1. Since the problem (1.1), (1.3), (1.4) has a unique so-

lution, the homogeneous problem (1.10), (1.30), (1.40) has only the trivial solution.

Therefore, the assumptions of Lemma 8.1 are satisfied and thus there exist r0 > 0

and k0 ∈ N such that

(8.46) ‖y‖C 6 r0(1 + ‖ℓk‖)[‖∆(y, hk)‖C + ‖Γk(y, 0)‖C ] for k > k0, y ∈ C∗(D;R)

and

(8.47) ‖y − u‖C 6 r0(1 + ‖ℓk‖)[‖∆(y, hk) − ∆(u, h)‖C + ‖Γk(y, u)‖C ]

for k > k0, y ∈ C∗(D;R),

where the operators ∆ and Γk are given by the formulas (8.29) and (8.30), respec-

tively.

It is easy to verify that if for some k ∈ N, u0 is a solution to the problem

(8.48)
∂2u(t, x)

∂t ∂x
= ℓk(u)(t, x),

u (t, hk(t)) = 0 for t ∈ [a, b],

u′[2]
(

h−1
k (x), x

)

= 0 for a.e. x ∈ [c, d],
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then ∆(u0, hk) ≡ 0 and Γk(u0, 0) ≡ 0. Therefore, the relation (8.46) guarantees

that for every k > k0, the homogeneous problem (8.48) has only the trivial solution.

Hence, for every k > k0, the problem (1.1k), (1.3k), (1.4k) has a unique solution uk

(see Theorem 5.1). Clearly, we have

∆(uk, hk)(t, x) = gk(t) +

∫ x

hk(t)

ψk(η) dη for (t, x) ∈ D, k > k0,

∆(u, h)(t, x) = g(t) +

∫ x

h(t)

ψ(η) dη for (t, x) ∈ D,

and

Γk(uk, u)(t, x) =

∫∫

Hk(t,x)

ℓk(u)(s, η) ds dη −

∫∫

H(t,x)

ℓ(u)(s, η) ds dη

+

∫∫

Hk(t,x)

qk(s, η) ds dη −

∫∫

H(t,x)

q(s, η) ds dη

for (t, x) ∈ D, k > k0. Observe that the assumptions (8.6) and (8.7) yield that

(8.49) lim
k→+∞

(1 + ‖ℓk‖)

[
∫ hk(t)

c

ψk(η) dη −

∫ h(t)

c

ψ(η) dη

]

= 0 uniformly on [a, b].

Therefore, by using the relations (8.4), (8.5), (8.6), (8.8), and (8.49), we get

(8.50) lim
k→+∞

(1 + ‖ℓk‖)[‖∆(uk, hk) − ∆(u, h)‖C + ‖Γk(uk, u)‖C ] = 0.

On the other hand, it follows from the inequality (8.47) that

(8.51) ‖uk−u‖C 6 r0(1+‖ℓk‖)[‖∆(uk, hk)−∆(u, h)‖C +‖Γk(uk, u)‖C ] for k > k0

and thus, by virtue of the relation (8.50), the condition (8.10) holds. �

P r o o f of Corollary 8.1. We shall show that the assumptions of Theorem 8.1

are satisfied. Indeed, the relation (8.11) yields ‖ℓk‖ 6 ‖ω‖L for k ∈ N. Therefore, it

is clear that, by virtue of the relations (8.12)–(8.16), the assumptions (8.4)–(8.8) of

Theorem 8.1 are fulfilled. It remains to show that the condition (8.2) holds, where

the numbers λk are given by the formula (8.3).

Assume on the contrary, that the condition (8.2) does not hold. Then there

exist ε0 > 0, an increasing sequence {km}+∞
m=1 of natural numbers, and a sequence

{ym}+∞
m=1 such that

(8.52) ym ∈M(ℓkm
, hkm

) for m ∈ N
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and

(8.53) max
(t,x)∈D

{∣

∣

∣

∣

∫∫

Hkm
(t,x)

ℓkm
(ym)(s, η) ds dη −

∫∫

H(t,x)

ℓ(ym)(s, η) ds dη

∣

∣

∣

∣

}

> ε0

for m ∈ N.

In view of (8.52) and Notation 8.1, we get

ym(t, x) =

∫∫

Hkm
(t,x)

ℓkm
(zm)(s, η) ds dη for (t, x) ∈ D, m ∈ N,

where zm ∈ C(D;R) and ‖zm‖C = 1 for m ∈ N. Since we suppose that the operators

ℓk are uniformly bounded in the sense of condition (8.11), we obtain ‖ym‖C 6 ‖ω‖L

for m ∈ N and thus the sequence {ym}+∞
m=1 is bounded in the space C(D;R). We

will show that the sequence indicated is also equicontinuous. Indeed, let ε > 0 be

arbitrary. Since the function ω is integrable on D, there exists δ > 0 such that the

relation

(8.54)

∫∫

E

ω(t, x) dt dx <
ε

2

holds for every measurable set E ⊆ D satisfying mesE < max{b− a, d− c}δ. Using

the condition (8.11), for any (t1, x1), (t2, x2) ∈ D and m ∈ N we get

∣

∣

∣

∣

∫∫

Hkm
(t2,x2)

ℓkm
(zm)(s, η) ds dη −

∫∫

Hkm
(t1,x1)

ℓkm
(zm)(s, η) ds dη

∣

∣

∣

∣

6

2
∑

k=1

∫∫

Ek

ω(s, η) ds dη,

where the measurable sets E1, E2 ⊆ D are such that mesE1 6 (d − c)|t2 − t1| and

mesE2 6 (b− a)|x2 − x1|. Therefore, by virtue of (8.54), we have

|ym(t2, x2) − ym(t1, x1)| < ε

for (t1, x1), (t2, x2) ∈ D, |t2 − t1| + |x2 − x1| < δ, m ∈ N.

Consequently, the sequence {ym}+∞
m=1 is equicontinuous in the space C(D;R). There-

fore, according to the Arzelà-Ascoli lemma, we can assume without loss of generality

that the sequence indicated is convergent. Hence, there exists p0 ∈ N such that

(8.55) ‖ym − yp0
‖C <

ε0
2(‖ω‖L + ‖ℓ‖ + 1)

for m > p0.
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Since yp0
∈ C∗(D;R) and the relation (8.12) holds, there exists p1 ∈ N such that

(8.56) max
(t,x)∈D

{
∣

∣

∣

∣

∫∫

Hk(t,x)

ℓk(yp0
)(s, η) ds dη −

∫∫

H(t,x)

ℓ(yp0
)(s, η) ds dη

∣

∣

∣

∣

}

<
ε0
2

for k > p1.

Now we choose a number M ∈ N satisfying M > p0 and kM > p1. It is clear that

∣

∣

∣

∣

∫∫

HkM
(t,x)

ℓkM
(yM )(s, η) ds dη −

∫∫

H(t,x)

ℓ(yM )(s, η) ds dη

∣

∣

∣

∣

6

∣

∣

∣

∣

∫∫

HkM
(t,x)

ℓkM
(yM − yp0

)(s, η) ds dη

∣

∣

∣

∣

+

∣

∣

∣

∣

∫∫

HkM
(t,x)

ℓkM
(yp0

)(s, η) ds dη −

∫∫

H(t,x)

ℓ(yp0
)(s, η) ds dη

∣

∣

∣

∣

+

∣

∣

∣

∣

∫∫

H(t,x)

ℓ(yp0
− yM )(s, η) ds dη

∣

∣

∣

∣

for (t, x) ∈ D.

Therefore, by virtue of the conditions (8.11), (8.55), and (8.56), the last relation

yields

max
(t,x)∈D

{
∣

∣

∣

∣

∫∫

HkM
(t,x)

ℓkM
(yM )(s, η) ds dη −

∫∫

H(t,x)

ℓ(yM )(s, η) ds dη

∣

∣

∣

∣

}

6 ‖ω‖L‖yM − yp0
‖C +

ε0
2

+ ‖ℓ‖‖yp0
− yM‖C < ε0,

which contradicts the condition (8.53).

The contradiction obtained proves the validity of the condition (8.2) and thus all

the assumptions of Theorem 8.1 are satisfied. �

To prove Corollary 8.2 we need the following lemma.

Lemma 8.2. Let the condition (8.18) hold and let {σk}
+∞
k=1 be a sequence of

functions from L(D;R) such that

(8.57) |σk(t, x)| 6 ω(t, x) for a.e. (t, x) ∈ D, k ∈ N,

where ω ∈ L(D;R+). Then

(8.58) lim
k→+∞

∫∫

H(t,x)÷Hk(t,x)

|σk(s, η)| ds dη = 0 uniformly on D
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and

(8.59) lim
k→+∞

[
∫∫

Hk(t,x)

σk(s, η) ds dη −

∫∫

H(t,x)

σk(s, η) ds dη

]

= 0

uniformly on D.

P r o o f. Let ε > 0 be arbitrary. Then there exists δ > 0 such that the relation

(8.60)

∫∫

E

ω(s, η) ds dη < ε

holds for every measurable set E ⊆ D with the property mesE < 2(b − a)δ. Put

P = {(t, x) ∈ D : |x− h(t)| 6 δ}. It is easy to verify that

(8.61) mesP < 2(b− a)δ.

In view of the condition (8.18), there exists k0 ∈ N such that

(8.62) |hk(t) − h(t)| < δ for t ∈ [a, b], k > k0,

and thus

(8.63) (H(t, x) \ P ) \Hk(t, x) = ∅, (Hk(t, x) \ P ) \H(t, x) = ∅

for (t, x) ∈ D, k > k0.

Obviously, for (t, x) ∈ D and k ∈ N we get

H(t, x) ÷Hk(t, x) = H(t, x) \Hk(t, x) ∪Hk(t, x) \H(t, x)

= [(H(t, x) \ P ) \Hk(t, x)] ∪ [(H(t, x) ∩ P ) \Hk(t, x)]

∪ [(Hk(t, x) \ P ) \H(t, x)] ∪ [(Hk(t, x) ∩ P ) \H(t, x)].

Therefore, by virtue of (8.57) and (8.63), the last relation yields

∫∫

H(t,x)÷Hk(t,x)

|σk(s, η)| ds dη

=

∫∫

(H(t,x)∩P )\Hk(t,x)

|σk(s, η)| ds dη +

∫∫

(Hk(t,x)∩P )\H(t,x)

|σk(s, η)| ds dη

6

∫∫

P

|σk(s, η)| ds dη

6

∫∫

P

ω(s, η) ds dη for (t, x) ∈ D, k > k0,

which, together with (8.60) and (8.61), guarantees the relation (8.58).
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On the other hand, it is clear that
∣

∣

∣

∣

∫∫

Hk(t,x)

σk(s, η) ds dη −

∫∫

H(t,x)

σk(s, η) ds dη

∣

∣

∣

∣

=

∣

∣

∣

∣

∫∫

Hk(t,x)\H(t,x)

σk(s, η) ds dη −

∫∫

H(t,x)\Hk(t,x)

σk(s, η) ds dη

∣

∣

∣

∣

6

∫∫

H(t,x)÷Hk(t,x)

|σk(s, η)| ds dη for (t, x) ∈ D, k ∈ N.

Consequently, the validity of the condition (8.59) follows immediately from the above-

proved relation (8.58). �

P r o o f of Corollary 8.2. We shall show that the assumptions of Corollary 8.1

are satisfied. Indeed, according to Lemma 8.2, the assumptions (8.11), (8.17), and

(8.18) guarantee the validity of the condition (8.12). It remains to verify that the

condition (8.15) holds.

Let ε > 0 be arbitrary. Clearly, there is a number δ > 0 such that
∣

∣

∣

∣

∫ x2

x1

ψ(η) dη

∣

∣

∣

∣

< ε for x1, x2 ∈ [c, d], |x2 − x1| < δ.

Moreover, the assumption (8.18) yields the existence of k0 ∈ N with the property

(8.62). Consequently, we have

∣

∣

∣

∣

∫ h(t)

hk(t)

ψ(η) dη

∣

∣

∣

∣

< ε for t ∈ [a, b], k > k0,

and thus the condition (8.15) holds. �

In order to prove Corollary 8.4, we need the following lemmas.

Lemma 8.3. Let f ∈ L(D;R), w ∈ C∗(D;R), and h ∈ CD([a, b]; [c, d]). Then

the relation

∫∫

H(t,x)

f(s, η)w(s, η) ds dη = z(t, x)w(t, x) −

∫ t

h−1(x)

z(s, x)w′
[1](s, x) ds

−

∫ x

h(t)

z(t, η)w′
[2](t, η) dη

+

∫∫

H(t,x)

z(s, η)w′′
[1,2](s, η) ds dη for (t, x) ∈ D

holds, where the mapping H is defined by the formula (2.1) and

z(t, x) =

∫∫

H(t,x)

f(s, η) ds dη for (t, x) ∈ D.
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P r o o f. Put

χ(t, x) =

{

1 for (t, x) ∈ D, x > h(t),

0 for (t, x) ∈ D, x < h(t)

and

z0(t, x) =

∫ t

a

∫ x

c

χ(s, η)f(s, η) dη ds for (t, x) ∈ D.

Clearly,

z0(t, x) =

{

z(t, x) if x > h(t),

0 if x < h(t).

It can be verified by direct calculation that for any (t, x) ∈ D such that x > h(t) we

have

∫∫

H(t,x)

f(s, η)w(s, η) ds dη =

∫ t

a

∫ x

c

χ(s, η)f(s, η)w(s, η) dη ds

= z0(t, x)w(t, x) −

∫ t

a

z0(s, x)w
′
[1](s, x) ds

−

∫ x

c

z0(t, η)w
′
[2](t, η) dη +

∫ t

a

∫ x

c

z0(s, η)w
′′
[1,2](s, η) dη ds

= z(t, x)w(t, x) −

∫ t

h−1(x)

z(s, x)w′
[1](s, x) ds

−

∫ x

h(t)

z(t, η)w′
[2](t, η) dη +

∫∫

H(t,x)

z(s, η)w′′
[1,2](s, η) ds dη.

By analogy, for any (t, x) ∈ D with the property x 6 h(t) we get

∫∫

H(t,x)

f(s, η)w(s, η) ds dη =

∫ b

t

∫ d

x

(1 − χ(s, η))f(s, η)w(s, η) dη ds

= z(t, x)w(t, x) +

∫ h−1(x)

t

z(s, x)w′
[1](s, x) ds

+

∫ h(t)

x

z(t, η)w′
[2](t, η) dη +

∫∫

H(t,x)

z(s, η)w′′
[1,2](s, η) ds dη.

Consequently, the assertion of the lemma holds. �

Using the previous statement, we prove the following Krasnosel’skij-Krein type

lemma.
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Lemma 8.4. Let h ∈ CD([a, b]; [c, d]), p, pk ∈ L(D;R), and α, αk : D → R be

measurable and essentially bounded functions (k ∈ N). Assume that the relations

(8.19) and (8.20) with H given by (2.1) are satisfied, and

(8.64) lim
k→+∞

ess sup{|αk(t, x) − α(t, x)| : (t, x) ∈ D} = 0.

Then

(8.65) lim
k→+∞

∫∫

H(t,x)

[pk(s, η)αk(s, η) − p(s, η)α(s, η)] ds dη = 0

uniformly on D.

P r o o f. We can assume without loss of generality that

(8.66) |p(t, x)| 6 ω(t, x) for a.e. (t, x) ∈ D.

Let ε > 0 be arbitrary. According to the assumption (8.64), there exists k0 ∈ N such

that

(8.67)

∫∫

D

ω(t, x)|αk(t, x) − α(t, x)| dt dx <
ε

4
for k > k0.

Since the function α is measurable and essentially bounded, there exists a function

w ∈ C(D;R) which has continuous all derivatives up to the second order and such

that

(8.68)

∫∫

D

ω(t, x)|α(t, x) − w(t, x)| dt dx <
ε

4
.

For any k ∈ N, we put

zk(t, x) =

∫∫

H(t,x)

[pk(s, η) − p(s, η)] ds dη for (t, x) ∈ D.

Clearly, the condition (8.20) can be rewritten in the form

(8.69) lim
k→+∞

‖zk‖C = 0.

Lemma 8.3 yields that
∫∫

H(t,x)

[pk(s, η) − p(s, η)]w(s, η) ds dη = zk(t, x)w(t, x)

−

∫ t

h−1(x)

zk(s, x)w′
[1](s, x) ds−

∫ x

h(t)

zk(t, η)w′
[2](t, η) dη

+

∫∫

H(t,x)

zk(s, η)w′′
[1,2](s, η) ds dη for (t, x) ∈ D, k ∈ N.
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Consequently, by using the relation (8.69), we get

lim
k→+∞

∫∫

H(t,x)

[pk(s, η) − p(s, η)]w(s, η) ds dη = 0 uniformly on D.

Hence, there exists a number k1 > k0 such that

(8.70)

∣

∣

∣

∣

∫∫

H(t,x)

[pk(s, η) − p(s, η)]w(s, η) ds dη

∣

∣

∣

∣

<
ε

4
for (t, x) ∈ D, k > k1.

On the other hand, it is clear that
∫∫

H(t,x)

[pk(s, η)αk(s, η) − p(s, η)α(s, η)] ds dη

=

∫∫

H(t,x)

pk(s, η)[αk(s, η) − α(s, η)] ds dη

+

∫∫

H(t,x)

[pk(s, η) − p(s, η)]w(s, η) ds dη

+

∫∫

H(t,x)

[pk(s, η) − p(s, η)][α(s, η) − w(s, η)] ds dη

for (t, x) ∈ D, k ∈ N. Therefore, in view of the relations (8.19), (8.66)–(8.68), and

(8.70), we get
∣

∣

∣

∣

∫∫

H(t,x)

[pk(s, η)αk(s, η) − p(s, η)α(s, η)] ds dη

∣

∣

∣

∣

6

∫∫

D

ω(s, η) |αk(s, η) − α(s, η)| ds dη

+

∣

∣

∣

∣

∫∫

H(t,x)

[pk(s, η) − p(s, η)]w(s, η) ds dη

∣

∣

∣

∣

+ 2

∫∫

D

ω(s, η) |α(s, η) − w(s, η)| ds dη < ε for (t, x) ∈ D, k > k1,

and thus the relation (8.65) holds. �

P r o o f of Corollary 8.4. Let the operator ℓ be defined by the formula (6.1). Put

(8.71) ℓk(v)(t, x) = pk(t, x)v(τk(t, x), µk(t, x))

for a. e. (t, x) ∈ D and all v ∈ C(D;R), k ∈ N.

We will show that the condition (8.17) is satisfied. Indeed, let y ∈ C∗(D;R) be

arbitrary. It is clear that the conditions (8.21) and (8.22) guarantee the validity of

the relation (8.64), where

αk(t, x) = y(τk(t, x), µk(t, x)), α(t, x) = y(τ(t, x), µ(t, x))
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for a. e. (t, x) ∈ D and all k ∈ N. Therefore, Lemma 8.4 guarantees the validity

of the condition (8.65) and thus the condition (8.17) holds. On the other hand, by

virtue of the relation (8.19), the condition (8.11) is satisfied.

Consequently, the assertion of the corollary follows from Corollary 8.2. �

P r o o f of Corollary 8.5. We first mention that, according to Corollary 7.3, the

problems (1.2)–(1.4) and (1.2k)–(1.4k) have unique solutions u and uk, respectively.

Let the operators ℓ and ℓk be defined by the formulas

(8.72) ℓ(v)(t, x) = p(t, x)v(t, x) for a.e. (t, x) ∈ D and all v ∈ C(D;R),

and

(8.73) ℓk(v)(t, x) = pk(t, x)v(t, x) for a.e. (t, x) ∈ D and all v ∈ C(D;R), k ∈ N,

respectively. Clearly,

(8.74) ‖ℓk‖ = ‖pk‖L for k ∈ N.

Therefore, the assumptions (8.5)–(8.8) of Theorem 8.1 are satisfied. In order to apply

Theorem 8.1, it remains to show that the conditions (8.2) and (8.4) are fulfilled.

It is easy to see that
∣

∣

∣

∣

∫∫

Hk(t,x)

[pk(s, η) − p(s, η)] ds dη

∣

∣

∣

∣

6

∣

∣

∣

∣

∫∫

Hk(t,x)

pk(s, η) ds dη −

∫∫

H(t,x)

p(s, η) ds dη

∣

∣

∣

∣

+

∫∫

H(t,x)÷Hk(t,x)

|p(s, η)| ds dη for (t, x) ∈ D, k ∈ N.

Therefore, the conditions (8.23) and (8.24) guarantee that

(8.75) lim
k→+∞

̺k‖fk‖C = 0,

where

(8.76) fk(t, x) =

∫∫

Hk(t,x)

[pk(s, η) − p(s, η)] ds dη for (t, x) ∈ D, k ∈ N.

Observe that for an arbitrary y ∈ C(D;R) we have

(8.77)

∣

∣

∣

∣

∫∫

Hk(t,x)

ℓk(y)(s, η) ds dη −

∫∫

H(t,x)

ℓ(y)(s, η) ds dη

∣

∣

∣

∣

6

∣

∣

∣

∣

∫∫

Hk(t,x)

[pk(s, η) − p(s, η)]y(s, η) ds dη

∣

∣

∣

∣

+

∫∫

H(t,x)÷Hk(t,x)

|p(s, η)y(s, η)| ds dη for (t, x) ∈ D, k ∈ N.
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Moreover, for an arbitrary y ∈ C∗(D;R), Lemma 8.3 guarantees that

(8.78)

∫∫

Hk(t,x)

[pk(s, η) − p(s, η)]y(s, η) ds dη = fk(t, x)y(t, x)

−

∫ t

h−1

k
(x)

fk(s, x)y′[1](s, x) ds−

∫ x

hk(t)

fk(t, η)y′[2](t, η) dη

+

∫∫

Hk(t,x)

fk(s, η)y′′[1,2](s, η) ds dη for (t, x) ∈ D, k ∈ N.

Let k ∈ N and y ∈ M(ℓk, hk) be arbitrary. Then, by virtue of Notation 8.1 and

Lemma 3.4, we get

|y(t, x)| =

∣

∣

∣

∣

∫∫

Hk(t,x)

pk(s, η)z(s, η) ds dη

∣

∣

∣

∣

6 ̺k for (t, x) ∈ D,(8.79)

|y′[1](t, x)| =

∣

∣

∣

∣

∫ x

hk(t)

pk(t, η)z(t, η) dη

∣

∣

∣

∣

6

∫ d

c

|pk(t, η)| dη(8.80)

for a.e. t ∈ [a, b] and all x ∈ [c, d],

|y′[2](t, x)| =

∣

∣

∣

∣

∫ t

h−1

k
(x)

pk(s, x)z(s, x) ds

∣

∣

∣

∣

6

∫ b

a

|pk(s, x)| ds(8.81)

for all t ∈ [a, b] and a.e. x ∈ [c, d],

and

(8.82) |y′′[1,2](t, x)| = |pk(t, x)z(t, x)| 6 |pk(t, x)| for a.e. (t, x) ∈ D.

By virtue of relations (8.79)–(8.82), it follows from the inequalities (8.77) and (8.78)

that
∣

∣

∣

∣

∫∫

Hk(t,x)

ℓk(y)(s, η) ds dη −

∫∫

H(t,x)

ℓ(y)(s, η) ds dη

∣

∣

∣

∣

6 4̺k‖fk‖C + ̺k

∫∫

H(t,x)÷Hk(t,x)

|p(s, η)| ds dη for (t, x) ∈ D, k ∈ N.

Therefore, according to the relations (8.24) and (8.75), the condition (8.2) holds,

where the numbers λk are given by the formula (8.3).

Now let y ∈ C∗(D;R) be arbitrary. Put

(8.83) ̺0 = ‖y‖C + max

{
∫ b

a

|y′[1](s, x)| ds : x ∈ [c, d]

}

+ max

{
∫ d

c

|y′[2](t, η)| dη : t ∈ [a, b]

}

+ ‖y′′[1,2]‖L.
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Then the inequalities (8.77) and (8.78) imply that

∣

∣

∣

∣

∫∫

Hk(t,x)

ℓk(y)(s, η) ds dη −

∫∫

H(t,x)

ℓ(y)(s, η) ds dη

∣

∣

∣

∣

6 ̺0

[

‖fk‖C +

∫∫

H(t,x)÷Hk(t,x)

|p(s, η)| ds dη

]

for (t, x) ∈ D, k ∈ N.

According to the relations (8.24) and (8.75), the last inequality yields the validity of

the condition (8.4).

Consequently, the assertion of the corollary follows from Theorem 8.1. �

P r o o f of Corollary 8.6. We will show that all the assumptions of Corollary 8.5

are satisfied. It follows from the condition (8.26) that

(8.84) sup{‖pk‖L : k ∈ N} < +∞.

Therefore, in view of the relations (8.14) and (8.16), the assumptions (8.6) and (8.8)

of Corollary 8.5 are satisfied. Moreover, analogously to the proof of Corollary 8.2 it

can be shown that the conditions (8.14) and (8.18) yield the validity of the relation

(8.15) and thus the assumption (8.7) of Corollary 8.5 holds. Furthermore, by virtue

of the relations (8.18) and (8.84), Lemma 8.2 guarantees that the condition (8.24)

holds.

On the other hand, it is clear that

(8.85)

∣

∣

∣

∣

∫∫

Hk(t,x)

pk(s, η) ds dη −

∫∫

H(t,x)

p(s, η) ds dη

∣

∣

∣

∣

6 ‖pk − p‖L

+

∣

∣

∣

∣

∫∫

Hk(t,x)

p(s, η) ds dη −

∫∫

H(t,x)

p(s, η) ds dη

∣

∣

∣

∣

for (t, x) ∈ D, k ∈ N,

and

(8.86)

∣

∣

∣

∣

∫∫

Hk(t,x)

qk(s, η) ds dη −

∫∫

H(t,x)

q(s, η) ds dη

∣

∣

∣

∣

6 ‖qk − q‖L

+

∣

∣

∣

∣

∫∫

Hk(t,x)

q(s, η) ds dη −

∫∫

H(t,x)

q(s, η) ds dη

∣

∣

∣

∣

for (t, x) ∈ D, k ∈ N.

Therefore, by virtue of the conditions (8.18), (8.26), (8.27), (8.84), and Lemma 8.2,

the relations (8.85) and (8.86) imply the validity of the assumptions (8.5) and (8.23)

of Corollary 8.5. �
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9. Counter-examples

Example 9.1. Let p ∈ L(D;R+) and h ∈ CD([a, b]; [c, d]) be such that the

relations
∫∫

H(b,d)

p(s, η) ds dη = 1,

∫∫

H(a,c)

p(s, η) ds dη 6 1

are fulfilled, where the mapping H is defined by the formula (2.1). Let, moreover,

the operator ℓ be defined by the formula

ℓ(v)(t, x) = p(t, x)v(b, d) for a.e. (t, x) ∈ D and all v ∈ C(D;R).

Then the condition (7.2) with α = 1 is satisfied for every m ∈ N and v ∈ C(D;R).

Moreover,

∫ b

a

∫ d

h(s)

pj(s, η) dη ds = 1,

∫ b

a

∫ h(s)

c

pj(s, η) dη ds 6 1 for j ∈ N,

where the functions pj are given by the formula (7.4).

On the other hand, the homogeneous problem (1.10), (1.30), (1.40) has a nontrivial

solution

u(t, x) =

∫∫

H(t,x)

p(s, η) ds dη for (t, x) ∈ D.

This example shows that the assumption α ∈ [0, 1[ in Theorem 7.1 cannot be

replaced by the assumption α ∈ [0, 1], and the strict inequality (7.3) in Corollary 7.1

cannot be replaced by the nonstrict one.

Example 9.2. Let D = [0, 1]× [0, 1],

rk(t) = k sin(k2t), fk(t) = k cos(k2t) for t ∈ [−1, 1], k ∈ N,(9.1)

yk(t) = ke−cos(k2t)/k

∫ t

0

ecos(k2s)/k cos(k2s) ds for t ∈ [−1, 1], k ∈ N,(9.2)

and

(9.3) zk(t) =

∫ t

0

yk(s) ds for t ∈ [−1, 1], k ∈ N.

It is not difficult to verify that for every k ∈ N we have

y′k(t) = rk(t)yk(t) + fk(t) for t ∈ [−1, 1], k ∈ N,(9.4)

|yk(t)| 6 1 + |t|e2 for t ∈ [−1, 1], k ∈ N,(9.5)
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and

(9.6) lim
k→+∞

yk(t) =
t

2
for t ∈ [−1, 1],

because

yk(t) =
1

k
sin(k2t) +

1

2
e−cos(k2t)/k

∫ t

0

ecos(k2s)/k ds

−
1

2
e−cos(k2t)/k

∫ t

0

ecos(k2s)/k cos(2k2s) ds for t ∈ [−1, 1], k ∈ N.

Obviously, the relations (9.2)–(9.6) yield the equality

z′′k (t) = −r′k(t)zk(t) + w′
k(t) + fk(t) for t ∈ [−1, 1], k ∈ N,

where

(9.7) wk(t) = rk(t)zk(t) for t ∈ [−1, 1], k ∈ N,

and, moreover, the relation

(9.8) lim
k→+∞

zk(t) =
t2

4
uniformly on [−1, 1].

Furthermore, it follows from (9.1) that

lim
k→+∞

∫ t

0

rk(s) ds = 0 uniformly on [−1, 1],(9.9)

lim
k→+∞

∫ t

0

fk(s) ds = 0 uniformly on [−1, 1].(9.10)

The relations (9.3) and (9.7) give

∫ t

0

wk(s) ds = zk(t)

∫ t

0

rk(s) ds−

∫ t

0

yk(s)

(
∫ t

0

rk(ξ) dξ

)

ds

for t ∈ [−1, 1] and k ∈ N and thus, by using (9.5), (9.8), (9.9), and the Krasnosel’skij-

Krein lemma, we get

(9.11) lim
k→+∞

∫ t

0

wk(s) ds = 0 uniformly on [−1, 1].
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Now, let p ≡ 0 and q ≡ 0 on D, g ≡ 0, ϕ ≡ 0, and ψ ≡ 0 on [0, 1],

τ(t, x) = t, µ(t, x) = x for (t, x) ∈ D,

and

h(t) = 1 − t for t ∈ [0, 1].

Moreover, for any k ∈ N, we put gk ≡ 0, ϕk ≡ 0, and ψk ≡ 0 on [0, 1],

pk(t, x) = −r′k(t+ x− 1) for (t, x) ∈ D,

qk(t, x) = w′
k(t+ x− 1) + fk(t+ x− 1) for (t, x) ∈ D,

τk(t, x) = t, µk(t, x) = x for (t, x) ∈ D,

and

hk(t) = 1 − t for t ∈ [0, 1].

It can be easily verified by direct calculation that

∫∫

H(t,x)

pk(s, η) ds dη = −

∫ x

1−t

∫ t

1−η

r′k(s+ η − 1) ds dη

= −

∫ x

1−t

rk(t+ η − 1) dη = −

∫ t+x−1

0

rk(ξ) dξ for (t, x) ∈ D, k ∈ N,

∫∫

Hk(t,x)

w′
k(s+ η − 1) ds dη =

∫ x

1−t

∫ t

1−η

w′
k(s+ η − 1) ds dη

=

∫ x

1−t

wk(t+ η − 1) dη =

∫ t+x−1

0

wk(ξ) dξ for (t, x) ∈ D, k ∈ N,

and

∫∫

Hk(t,x)

fk(s+ η − 1) ds dη =

∫ x

1−t

∫ t

1−η

fk(s+ η − 1) ds dη

=

∫ x

1−t

(
∫ t+η−1

0

fk(ξ) dξ

)

dη for (t, x) ∈ D, k ∈ N.

Therefore, by virtue of the conditions (9.9)–(9.11), the relations (8.13) and (8.20)

hold.

Consequently, the assumptions of Corollary 8.4 are satisfied except the condition

(8.19). Let the operators ℓ and ℓk be defined by the formulas (6.1) and (8.71),

respectively. Then, in view of Lemma 8.3, it is easy to verify that the assumptions

of Corollary 8.1 are fulfilled except the condition (8.11).
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On the other hand,

u(t, x) = 0 for (t, x) ∈ D

and

uk(t, x) = zk(t+ x− 1) for (t, x) ∈ D, k ∈ N

are solutions to the problems (1.1′), (1.3), (1.4) and (1.1′k), (1.3k), (1.4k), respectively,

as well as solutions to the problems (1.1), (1.3), (1.4) and (1.1k), (1.3k), (1.4k),

respectively. However, in view of the condition (9.8), we get

lim
k→+∞

uk(t, x) = lim
k→+∞

zk(t+ x− 1) =
(t+ x− 1)2

4
for (t, x) ∈ D

and thus the relation (8.10) does not hold.

This example shows that the assumption (8.11) in Corollary 8.1 and the assump-

tion (8.19) in Corollary 8.4 are essential and cannot be omitted.
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