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A NOTE ON THE NUMBER OF SOLUTIONS OF THE

GENERALIZED RAMANUJAN-NAGELL EQUATION x2 − D = pn

Yuan-e Zhao, Yan’an, Tingting Wang, Xi’an

(Received December 14, 2010)

Abstract. Let D be a positive integer, and let p be an odd prime with p ∤ D. In this
paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer,
M.A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-
Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for N(D, p),
and also prove that if the equation U2 −DV 2 = −1 has integer solutions (U, V ), the least
solution (u1, v1) of the equation u2 − pv2 = 1 satisfies p ∤ v1, and D > C(p), where C(p)
is an effectively computable constant only depending on p, then the equation x2 −D = pn

has at most two positive integer solutions (x, n). In particular, we have C(3) = 107.
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1. Introduction

Let Z,N be the sets of all integers and positive integers respectively. Let D be

a positive integer, and let p be an odd prime with p ∤ D. Further let N(D, p) denote

the number of solutions (x, n) of the generalized Ramanujan-Nagell equation

(1.1) x2 − D = pn, x, n ∈ N.

By a classical result on the greatest prime divisor of x2 − D due to C. L. Siegel

[7], we know that N(D, p) is always finite. There are many papers concerned with

upper bounds for N(D, p). In 1981, using the hypergeometric method, F. Beukers

[2] proved that N(D, p) 6 4. Simultaneously, he proposed the following conjecture:
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Conjecture 1.1. N(D, p) 6 3.

In 1991, M.H. Le [3] basically verified Conjecture 1.1. Using the Baker method,

he proved that if max(D, p) > 10240, then N(D, p) 6 3. Conjecture 1.1 has been

completely solved by M.Bauer and M.A.Bennett [1].

In this paper, using a result on the rational approximation of quadratic irrationals

due to M. Bauer and M. A. Bennett [1], we give a better upper bound for N(D, p)

as follows.

Theorem. If the equation

(1.2) U2 − DV 2 = −1, U, V ∈ Z

has solutions (U, V ), the least solution (u1, v1) of the equation

(1.3) u2 − pv2 = 1, u, v ∈ Z

satisfies p ∤ v1, and D > C(p), where C(p) is an effectively computable constant only

depending on p, then N(D, p) 6 2. In particular, we have C(3) = 107.

In [2], F. Beukers showed that if D and p satisfy

(1.4) p =

{

3,

4a2 + 1,
D =















(3m + 1

4

)2

− 3m, 2 ∤ m,

(pm − 1

4a

)2

− pm, 2 | m,

a, m ∈ N, m > 1,

then (1.1) has three known solutions (x, n). The pair (D, p) is called exceptional

or non-exceptional according as D and p satisfy (1.4) or not. So far we have not

seen any non-exceptional pair (D, p) make N(D, p) > 2, so we propose the following

conjecture:

Conjecture 1.2. If (D, p) is a non-exceptional pair, then N(D, p) 6 2.

2. Preliminaries

Let d be a positive integer which is not a square. By the basic properties of Pell

equations (see [6, Chapter 8]), we have the following two lemmas.
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Lemma 2.1. The equation

(2.1) u2 − dv2 = 1, u, v ∈ Z

has solutions (u, v) with uv 6= 0, and it has a unique positive integer solution (u1, v1)

satisfying u1+v1

√
d 6 u+v

√
d, where (u, v) runs through all positive integer solutions

of (2.1). (u1, v1) is called the least solution of (2.1). Then, every solution (u, v) of

(2.1) can be expressed as

u + v
√

d = ±(u1 + v1

√
d)m, m ∈ Z.

Lemma 2.2. If the equation

(2.2) U2 − dV 2 = −1, U, V ∈ Z

has solutions (U, V ), then it has a unique positive integer solution (U1, V1) satisfying

U1 + V1

√
d 6 U + V

√
d, where (U, V ) runs through all positive integer solutions

of (2.2). (U1, V1) is called the least solution of (2.2). Then we have u1 + v1

√
d =

(U1 + V1

√
d)2, where (u1, v1) is the least solution of (2.1).

Lemma 2.3 ([3, Lemma 8]). Let (u, v) be a positive integer solution of (1.3) with

pr | v, where r is a positive integer. If the least solution (u1, v1) of (1.3) satisfies

p ∤ v1, then

u + v
√

p = (u1 + v1
√

p)prl, l ∈ N.

Lemma 2.4 ([5, Lemma 3]). If p ≡ 3 (mod 4), then the least solution (u1, v1)

of (1.3) satisfies u1 + v1
√

p > 2p − 3.

Let k be an integer such that |k| > 1 and gcd(k, d) = 1.

Lemma 2.5 ([3, Lemma 10]). For any fixed solution (A, B) of the equation

(2.3) A2 − dB2 = k, A, B ∈ Z, gcd(A, B) = 1,

there exist unique integers α, β, l such that βA − αB = 1, l = αA − dβB and

0 < l < |k|. We call l the characteristic number of the solution (A, B), and denote it

by 〈A, B〉. Moreover, if 〈A, B〉 = l, then l2 ≡ d (mod |k|) and A ≡ −lB (mod |k|).
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Lemma 2.6 ([3, Lemma 11]). Let (A1, B1) and (A2, B2) be two solutions of (2.3).

A necessary and sufficient condition for 〈A1, B1〉 = 〈A2, B2〉 is that

A2 + B2

√
d =

(

A1 + B1

√
d
)(

u + v
√

d
)

,

where (u, v) is a solution of (2.1).

Lemma 2.7. If (A1, B1) is a solution of (2.3) with 〈A1, B1〉 = l, then (A1,−B1)

is a solution of (2.3) with 〈A1,−B1〉 = |k| − l.

P r o o f. It is obvious that (A1,−B1) is a solution of (2.3). Let l′ = 〈A1,−B1〉.
Since 〈A1, B1〉 = l, by Lemma 2.5, we have l′ ≡ −A1/ − B1 ≡ −l (mod |k|) and
0 < l, l′ < |k|. Thus, we get l′ = |k| − l. The lemma is proved. �

Lemma 2.8 ([3, Lemma 3]). If D is not a square and the equation

(2.4) X2 − DY 2 = pZ , X, Y, Z ∈ Z, gcd(X, Y ) = 1, Z > 0

has solutions (X, Y, Z), then it has a positive integer solution (X1, Y1, Z1) satisfying

Z1 6 Z and 1 < (X1 +Y1

√
D)/(X1−Y1

√
D) < (u1 +v1

√
D)2, where Z runs through

all solutions (X, Y, Z) of (2.4), (u1, v1) is the least solution of the equation

(2.5) u2 − Dv2 = 1, u, v ∈ Z.

Moreover, every solution (X, Y, Z) of (2.4) can be expressed as

Z = Z1t, X + Y
√

D =
(

X1 + δY1

√
D

)t(
u + v

√
D

)

, t ∈ N, δ ∈ {±1},

where (u, v) is a solution of (2.5).

Lemma 2.9 ([1, Corollary 1.6]). For any fixed odd prime p and any positive

integers r, s, we have
∣

∣

∣

s

pr
−√

p
∣

∣

∣
> p−rC1(p),

where C1(p) is an effectively computable constant only depending on p with 0 <

C1(p) < 2. In particular, we have C1(3) = 1.65 if r 6= 7.
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3. Further lemmas on (1.1)

Lemma 3.1 ([3, Lemma 4]). Under the assumptions and the definitions as in

Lemma 2.8, every solution (x, n) of (1.1) can be expressed as

n = Z1t, x+δ
√

D =
(

X1+Y1

√
D

)t(
u1−v1

√
D

)s
, t ∈ N, s ∈ Z, 0 6 s 6 t, δ ∈ {±1}.

Lemma 3.2 ([3, Lemma 13]). Under the assumptions and the definitions as in

Lemmas 2.5, 2.8 and 3.1, if (x, n) is a solution of (1.1) with 2 ∤ n, then 2 ∤ Z1 and

the equation

(3.1) A2 − pZ1B2 = D, A, B ∈ Z, gcd(A, B) = 1

has a solution (A, B) = (x, pZ1(t−1)/2) with

〈x, pZ1(t−1)/2〉 ≡
{

−X1 (mod D), if 2 | s,

−X1u1 (mod D), if 2 ∤ s.

Lemma 3.3. Let (x′, n′) and (x′′, n′′) be two solutions of (1.1) with 2 ∤ n′n′′. If

(1.2) has solutions (U, V ), then we have

(3.2) n′ = Z1t
′, n′′ = Z1t

′′, t′, t′′ ∈ N, 2 ∤ t′t′′,

and

(3.3) x′′ + pZ1(t′′−1)/2
√

pZ1 =
(

x′ + λpZ1(t′−1)/2
√

pZ1

)(

u′ + v′
√

pZ1

)

, λ ∈ {±1},

where (u′, v′) is a solution of the equation

(3.4) u′2 − pZ1v′
2

= 1, u′, v′ ∈ Z.

P r o o f. Since (1.2) has solutions, D is not a square. Hence, by Lemma 3.1,

we get (3.2) immediately. Then, (3.1) has two solutions (x′, pZ1(t′−1)/2) and

(x′′, pZ1(t
′′
−1)/2). Let l′ = 〈x′, pZ1(t

′
−1)/2〉 and l′′ = 〈x′′, pZ1(t′′−1)/2〉. If l′ = l′′,

by Lemma 2.6, then (3.3) holds for λ = 1. If l′ 6= l′′, by Lemma 3.2, then we have

(3.5) l′′ ≡ l′u1 (mod D),

since u2
1 ≡ 1 (mod D). Further, by Lemma 2.2, we have u1 ≡ U2

1 +DV 2
1 ≡ U2

1 ≡ −1

(mod D), where (U1, V1) is the least solution of (1.2). Therefore, we see from

(3.5) that l′′ ≡ −l′ (mod D) and l′′ = D − l′. Furthermore, by Lemma 2.7,

(x′,−pZ1(t
′
−1)/2) is a solution of (3.1) with 〈x′,−pZ1(t

′
−1)/2〉 = D − l′. Thus, apply-

ing Lemma 2.6 again, (3.3) holds for λ = −1. The lemma is proved. �
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Lemma 3.4. If (1.2) has solutions (U, V ), then we have:

(i) (D, p) is a non-exceptional pair.

(ii) If (1.1) has solutions (x, n), then p ≡ 3 (mod 4) and 2 ∤ n.

P r o o f. By (1.2), we have either D ≡ 1 (mod 4) or D ≡ 2 (mod 8). However,

if (D, p) is an exceptional pair, then from (1.4) we get D ≡ 6 (mod 8) for p = 3, and

D ≡
{

3 (mod 4), if 2 | a or 2 | m,

0 (mod 4), otherwise,

for p = 4a2 + 1. Therefore, the conclusion (i) is proved.

Similarly, by (1.1), we have

pn ≡ x2 − D ≡
{

3 (mod 4), if D ≡ 1 (mod 4),

7 (mod 8), if D ≡ 2 (mod 8).

This implies that p ≡ 3 (mod 4) and 2 ∤ n. Thus, the lemma is proved. �

Lemma 3.5 ([4, Proof of Assertion 7]). Let (D, p) be a non-exceptional pair. If

(1.1) has three solutions (x1, n1), (x2, n2) and (x3, n3) with n1 < n2 < n3, then D is

not a square, pn1 <
√

D, 4
√

D < pn2 < 600D2 and pn3 > 4
9p8n2/3.

Lemma 3.6. Let (x, n) be a solution of (1.1) with 2 ∤ n. Then we have

(3.6) D > C2(p)p(2−C1(p))n/2,

where C2(p) = 2p(C1(p)−1)/2 and C1(p) is defined as in Lemma 2.9.

P r o o f. We see from (1.1) that x > pn/2 and

(3.7) D = (x + pn/2)(x − pn/2) > 2pn−1/2
( x

p(n−1)/2
−√

p
)

.

By Lemma 2.9, we have

(3.8)
x

p(n−1)/2
−√

p > p−C1(p)(n−1)/2.

Substituting (3.8) into (3.7), we obtain (3.6) immediately. The lemma is proved. �
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4. Proof of theorem

We now assume that (1.1) has three solutions (x1, n1), (x2, n2) and (x3, n3) with

n1 < n2 < n3. Then, by Lemma 3.5, D is not a square. Since (1.2) has solutions

(U, V ), by Lemmas 3.1, 3.3 and 3.5, we have p ≡ 3 (mod 4), 2 ∤ n1n2n3, (D, p) is

a non-exceptional pair,

(4.1) ni = Z1ti, ti ∈ N, i = 1, 2, 3, t1 < t2 < t3, 2 ∤ t1t2t3,

and

(4.2) x3 + pZ1(t3−1)/2
√

pZ1 =
(

x2 + λpZ1(t2−1)/2
√

pZ1
)(

u′ + v′
√

pZ1
)

, λ ∈ {±1},

where (u′, v′) is a solution of (3.4). Hence, by (4.1) and (4.2), we get

(4.3) x3 +
√

pn3 =
(

x2 + λ
√

pn2
)(

u′ + v′
√

pZ1
)

.

Since x3 +
√

pn3 > x2 +
√

pn2 > x2 + λ
√

pn2 > 0, we see from (4.3) that (u′, v′) is

a positive integer solution of (3.4). Further, since 2 ∤ Z1,

(4.4) (u, v) = (u′, p(Z1−1)/2v′)

is a positive integer solution of (1.3).

By (4.3), we have

(4.5) p(n3−1)/2 = x2v
′p(Z1−1)/2 + λu′p(n2−1)/2.

Since p ∤ x2, we see from (4.1) and (4.5) that pZ1(t2−1)/2 | v′. Hence, by (4.4), we get

(4.6) p(n2−1)/2 | v.

Therefore, since p ∤ v1, applying Lemma 2.3 to (4.6), we get from (4.4) that

(4.7) u′ + v′
√

pZ1 = u + v
√

p = (u1 + v1
√

p)p(n2−1)/2l > (u1 + v1
√

p)p(n2−1)/2

,

where (u1, v1) is the least solution of (1.3). Further, since p ≡ 3 (mod 4), by

Lemma 2.4, we have u1 + v1
√

p > 2p − 3 > p. Substituting it into (4.7), we get

(4.8) u′ + v′
√

pZ1 > pp(n2−1)/2

.
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By Lemma 3.5, we have pn2 < 600D2. It implies that

(4.9) x2 + λ
√

pn2 > x −√
pn2 =

D

x2 +
√

pn2
>

D√
600D2 + D +

√
600D2

>
1

25
.

Moreover, since pn3 > 4
9p8n2/3 and pn2 > 4

√
D, we have pn3 > 16D and

(4.10) x3 +
√

pn3 =
√

pn3 + D +
√

pn3 <
51

25

√
pn3 .

The combination of (4.3), (4.8), (4.9) and (4.10) yields

(4.11) 51
√

pn3 > pp(n2−1)/2

.

On the other hand, by Lemma 3.6, we have

(4.12) D > (2p(C1(p)−1)/2)p(2−C1(p))n3/2,

where C1(p) is defined as in Lemma 2.9. Since pn2 > 4
√

D, by (4.11) and (4.12), we

obtain

(4.13) log D > C3(p)D1/4 + C4(D),

where

(4.14) C3(p) =
2√
p
(log p)(2−C1(p)), C4(p) = log(2p(C1(p)−1)/2)−(2−C1(p)) log 51.

Since C1(p) < 2 by Lemma 2.9, we find from (4.13) and (4.14) that D < C(p). Thus,

if D > C(p), then (1.1) has at most two solutions (x, n).

In particular, since C1(3) = 1.65 if n3 6= 15, we can deduce from (4.13) and (4.14)

that C(3) = 107. The theorem is proved. �
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