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ON A PROBLEM BY SCHWEIZER AND SKLAR

Fabrizio Durante

We give a representation of the class of all n–dimensional copulas such that, for a fixed
m ∈ N, 2 ≤ m < n, all their m–dimensional margins are equal to the independence copula.
Such an investigation originated from an open problem posed by Schweizer and Sklar.

Keywords: copulas, distributions with given marginals, Fréchet–Hoeffding bounds, partial
mutual independence

Classification: 60E05, 62E10

1. INTRODUCTION

The representation and the construction of n–dimensional distribution functions (=d.f.’s)
with given lower dimensional marginal distributions is one of the classical problem in
probability theory, due to its relevance to applications. Questions of this kind arise, for
example, when one wants to build a multivariate stochastic model and has some idea
about the kind of dependence, or knows exactly certain marginal distributions (see, for
instance, [1, 2, 3, 7, 9] and the references therein).

In this note, we investigate a special problem of this type, namely we consider the class
of all possible joint d.f.’s of a random vector X = (X1, X2, . . . , Xn) such that: (a) Xi has
a continuous d.f. Fi, for each i ∈ {1, 2, . . . , n}; (b) for a given m ∈ N, 2 ≤ m < n, every
sub-vector of m–elements in X is formed by independent random variables (=r.v.’s).
Such a problem has been originally posed by Schweizer and Sklar (see [10, Problem
6.7.3]) in the class of all distribution functions whose univariate margins are uniformly
distributed on [0, 1], i.e., in the class of copulas.

In fact, in view of Sklar’s Theorem [12], copulas are exactly the objects that allow
to capture the dependence properties of a random vector. Therefore, in this note, we
investigate the above-stated problem in terms of multivariate copulas and its lower-
dimensional margins.

The paper is organized as follows. First, in section 2 we define the basic elements
that are necessary in order to make the paper self-contained. Then, in section 3, we
characterize the dependence structures of the previous type by providing also some
upper and lower bounds.
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2. PRELIMINARIES

Let n, m be in N, 2 ≤ m < n. We denote by Pn,m the class of all permutations
σ = (σ1, σ2, . . . , σn) of (1, 2, . . . , n) such that

σ1 < σ2 < · · · < σm and σm+1 < σm+2 < · · · < σn.

For example, P3,2 = {(1, 2, 3), (1, 3, 2), (2, 3, 1)}.
We denote by x = (x1, . . . , xn) any point in Rn and by In the product of n copies

of the unit interval I = [0, 1]. For basic definitions and properties about copulas, we
refer to [6, 8]. Here we recall that an n–copula is a function C : In → I satisfying the
following properties:

(C1) C(u) = 0 whenever u ∈ In has at least one argument equal to 0;

(C2) C(u) = ui whenever u ∈ In has all the arguments equal to 1 except possibly the
ith one, which is equal to ui;

(C3) C is n–increasing, viz., for each n–box B = ×n
i=1[ui, vi] ⊆ In, ui ≤ vi for any

i ∈ {1, 2, . . . , n},
VC (B) =

∑
z∈B

sgn(z)C(z) ≥ 0,

where the sum is taken over all vertices z in B, zi ∈ {ui, vi} for every i in
{1, 2, . . . , n}, and sgn(z) = −1, if the number of ui’s among the arguments of
z is odd, and sgn(z) = 1, otherwise.

We denote by Cn the set of all n–copulas. For all C ∈ Cn and for all u ∈ In,

Wn(u) ≤ C(u) ≤ Mn(u), (1)

where

Wn(u) = max

{
n∑

i=1

ui − n + 1, 0

}
, Mn(u) = min{u1, u2, . . . , un}.

These inequalities are called Fréchet–Hoeffding bounds [7, 8]. Notice that Mn ∈ Cn, but
Wn ∈ Cn only for n = 2. Another important n–copula is Πn(u) =

∏n
i=1 ui, which is

associated with independent r.v.’s.
Given C ∈ Cn, the m–marginals of C, 2 ≤ m < n, are the

(
n
m

)
m–copulas obtained

by setting (n −m) of the arguments of C equal to 1. Moreover, we denote by Cn(Πm)
the class of all n–copulas such that all their m–marginals are equal to Πm.

Here, we present a method for constructing n–copulas, which we shall use in the
sequel.

Proposition 2.1. Let C = {Ct}t∈Im−1 be a family in Cn−m+1 indexed by a parameter
t ∈ Im−1. Then C : In → I given by

C(u) =
∫ u1

0

. . .

∫ um−1

0

Ct(um, . . . , un) dt1 . . .dtm−1. (2)

is in Cn, provided that the above integral exists.
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P r o o f . It is immediate to prove that the function C given by (2) satisfies (C1) and
(C2). In order to prove that C is n–increasing, consider the n–box B = ×n

i=1[ui, vi] in
In, ui ≤ vi for any i ∈ {1, 2, . . . , n}. Then, we have that

VC(B) =
∫ v1

u1

. . .

∫ vm−1

um−1

VCt([um, vm]× · · · × [un, vn]) dt1 . . .dtm−1,

which is non–negative because, for any t ∈ Im−1, Ct belongs to Cn−m+1 and hence
t 7→ VCt([um, vm]× · · · × [un, vn]) is non–negative. �

Example 2.2. Let C and {Ct}t∈Im−1 be in Cn−m+1 and suppose that Ct = C for every
t ∈ Im−1. Then elementary integration yields

D(u) =

(
m−1∏
i=1

ui

)
· C(um, . . . , un),

which is the n–d.f. of the random vector (U1, U2, . . . , Un) such that: Ui are uniformly
distributed on I, C is the d.f. of (Um, Um+1, . . . , Un), Πm−1 is the d.f. of (U1, . . . , Um−1),
and (U1, . . . , Um−1) and (Um, . . . , Un) are independent random vectors.

Example 2.3. Let {C(t1,t2)}(t1,t2)∈I2 be in C2 defined by

C(t1,t2)(u1, u2) =

{
Π2(u1, u2), t1 ≤ 1

2 ,

M2(u1, u2), otherwise.

Then, by using Proposition 2.1, we obtain that C4 : I4 → I given by

C4(u1, u2, u3, u4) =
∫ u1

0

∫ u2

0

C(t1,t2)(u3, u4) dt1 dt2

=

{
Π4(u1, u2, u3, u4), u1 ≤ 1

2 ,
u2u3u4

2 +
(
u1 − 1

2

)
u2M2(u3, u4), otherwise,

is a 4–copula such that all its 2–marginals are equal to Π2. The copula C4 can be also
obtained by means of a gluing construction [11].

Remark 2.4. If C ∈ Cn, then, for every permutation σ = (σ1, σ2, . . . , σn) of (1, 2, . . . , n)
the function Cσ : In → I given by

Cσ(u1, . . . , un) = C(uσ1 , . . . , uσn)

is also in Cn. In particular, if C is the copula given by (2), then, for every permutation
σ = (σ1, σ2, . . . , σn) of (1, 2, . . . , n), Cσ : In → I given by

Cσ(u) =
∫ uσ1

0

. . .

∫ uσm−1

0

Ct(uσm
, . . . , uσn

) dt1 . . .dtm−1 (3)

is also in Cn.
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3. DESCRIPTION OF A SPECIAL CLASS OF COPULAS

Following our approach, the description of the class of all possible joint d.f.’s of a random
vector X = (X1, X2, . . . , Xn) such that, for a given m ∈ N, 2 ≤ m < n, every sub-vector
of m–elements in X is formed by independent r.v.’s, is equivalent to the description of
the class Cn(Πm). The elements of such a class are described in the following result.

Theorem 3.1. Let n, m ∈ N, 2 ≤ m < n. The following statements are equivalent:

(a) C ∈ Cn(Πm);

(b) for every σ ∈ Pn,m, there exists a family Cσ = {Cσ
t }t∈Im−1 in Cn−m+1 such that,

for every u ∈ In,

C(u) =
∫ uσ1

0

. . .

∫ uσm−1

0

Cσ
t (uσm , . . . , uσn) dt1 . . .dtm−1. (4)

P r o o f . Let C be in Cn(Πm). Then, there exist a probability space (Ω,F , P) and
a random vector U = (U1, U2, . . . , Un), Ui uniformly distributed on I for every i ∈
{1, 2, . . . , n}, such that C is the joint d.f. of U. Let σ ∈ Pn,m. Then, for each u ∈ In,

C(u) = P(U1 ≤ u1, . . . , Un ≤ un)

=
∫ uσ1

0

. . .

∫ uσm−1

0

Fσ
t (uσm , . . . , uσn) dt1 . . .dtm−1,

where, for every t = (t1, t2, . . . , tm−1) ∈ Im−1, Fσ
t : In−m+1 → I defined by

Fσ
t (uσm , . . . , uσn) = P

(
n⋂

i=m

{Uσi ≤ uσi} | Uσ1 = t1, . . . , Uσm−1 = tm−1

)
,

is the (conditional) d.f. of (Uσm , . . . , Uσn) given (Uσ1 = t1, . . . , Uσm−1 = tm−1). The
one–dimensional marginals of Fσ

t are uniformly distributed on I, because any subset of
m elements in {U1, U2, . . . , Un} is composed by independent r.v.’s. Therefore, Fσ

t is a
copula and (b) follows.

In the other direction, let C : In → I be such that, for every σ ∈ Pn,m there exists
a family Cσ = {Cσ

t }t∈Im−1 ⊆ Cn−m+1 such that C can be represented in the form
(4). Because of Proposition 2.1 (and Remark 2.4), C is a copula. Therefore, we have
only to prove that all the m–marginals of C are equal to Πm. To this end, let Cm be
the m–marginal of C obtained by setting equal to 1 the arguments of C with indices
ξ1 < ξ2 < · · · < ξn−m, viz.

Cm(u1, . . . , um) = C(ũ),

where ũ ∈ In is obtained by setting ũi = 1 for i ∈ {ξ1, . . . , ξn−m}, and ũi = ui, otherwise.
Consider the (unique) permutation ξ̂ ∈ Pn,m given by

ξ̂ = (ξn−m+1, . . . , ξn, ξ1, . . . , ξn−m).
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Then there exists a family Cbξ = {Cbξ
t }t∈Im−1 in Cn−m+1 such that

C(u) =
∫ uξn−m+1

0

. . .

∫ uξn−1

0

C
bξ
t (uξn , uξ1 . . . , uξn−m) dt1 . . .dtm−1. (5)

Since C
bξ
t satisfies (C2), equality (5) implies that Cm = Πm. For the arbitrariness of

ξ1, ξ2, . . . , ξn−m, it follows that C ∈ Cn(Πm). �

Remark 3.2. Since Theorem 3.1, if C ∈ Cn(Πm), then there exist
(

n
m

)
families Cσ =

{Cσ
t }t∈Im−1 in Cn−m+1, each family associated with σ ∈ Pn,m, such that C can be written

in
(

n
m

)
different forms by means of (4). Moreover, for a fixed σ ∈ Pn,m, {Cσ

t }t∈Im−1 is
not uniquely determined: in fact, there exist infinitely many families Dσ = {Dσ

t }t∈Im−1

such that Cσ
t 6= Dσ

t for every t belonging to a subset of Im−1 with (m− 1)–dimensional
Lebesgue measure 0, and C can be represented in terms of Dσ by means of (4).

In the case n = 3 and m = 2, Theorem 3.1 can be reformulated in this form.

Corollary 3.3. A 3–copula C3 ∈ C3(Π2) if, and only if, there exist three families of
2–copulas {C(1)

t }t∈I, {C(2)
t }t∈I and {C(3)

t }t∈I, such that

C3(u1, u2, u3) =
∫ u1

0

C
(1)
t (u2, u3) dt =

∫ u2

0

C
(2)
t (u1, u3) dt =

∫ u3

0

C
(3)
t (u1, u2) dt.

In particular, we have that, for every i ∈ {1, 2, 3},∫ 1

0

C
(i)
t (u1, u2) dt = u1u2. (6)

A method for constructing families of 2–copulas that satisfy (6) is provided in [8, Ex-
ample 3.10]. Specifically, for any 2–copula C, we can construct the family of 2–copula
{Ct}t∈I given by

Ct(u1, u2) =

{
C(1− t + u1, u2)− C(1− t, u2), u1 ≤ t,

u2 − C(1− t, u2) + C(u1 − t, u2), u1 > t,

which satisfies condition (6).

Example 3.4. Let Cθ be a member of the Eyraud–Farlie–Gumbel–Morgenstern family
of 3–copulas given by

Cθ(u1, u2, u3) = u1u2u3(1 + θ(1− u1)(1− u2)(1− u3)),

where θ ∈ [−1, 1] (see [8]). Then Cθ has all the 2–marginals equal to Π2 and it can be
expressed, for example, into the form

Cθ(u1, u2, u3) =
∫ uσ1

0

Cσ
t (uσ2 , uσ3) dt,
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where σ = (σ1, σ2, σ3) ∈ P3,2, and C = {Cσ
t }t∈I is the family of 2–copulas given by

Cσ
t (u, v) = uv + θuv(1− u)(1− v)(1− 2t),

for every t ∈ I and σ ∈ P3,2.

Theorem 3.1 can be rewritten in a simpler form if we suppose that C ∈ Cn(Πm) is
exchangeable, viz. it does not change under permutation of its arguments.

Corollary 3.5. Let n, m be in N, 2 ≤ m < n. Let C be an exchangeable copula. Then
C ∈ Cn(Πm) if, and only if, there exists a family C = {Ct}t∈Im−1 in Cn−m+1 such that,
for every u ∈ In,

C(u) =
∫ u1

0

. . .

∫ um−1

0

Ct(um, . . . , un) dt1 . . .dtm−1. (7)

P r o o f . Let n, m be in N, 2 ≤ m < n. Let C be exchangeable. If C ∈ Cn(Πm), then
Theorem 3.1 ensures that there exists a family C = {Ct}t∈Im−1 in Cn−m+1 such that, C
admits the representation (4). Conversely, if C can be represented in the form (7), then

C(u1, . . . , um, 1, . . . , 1) =
m∏

i=1

ui,

and, because C is exchangeable, all its m–marginal d.f.’s are equal to
∏m

i=1 ui, and, thus,
C ∈ Cn(Πm). �

Pointwise upper and lower bounds for the class Cn(Πm) have been given in [4] (when
n = 3 and m = 2, see also [5]). Theorem 3.1 provides also a way for obtaining them. In
fact, for every σ ∈ Pn,m there exists a family Cσ = {Cσ

t }t∈Im−1 in Cn−m+1 such that
C ∈ Cn can be represented in the form (4). Now, because every copula satisfies the
inequalities (1), it follows that, for every u ∈ In−m+1 and for every t ∈ Im−1,

Wn−m+1(u) ≤ Cσ
t (u) ≤ Mn−m+1(u).

Thus, the following inequalities can be easily derived:

CL(u) ≤ C(u) ≤ CU (u), (8)

where we define

CL(u) = max
σ∈Pn,m

{(
m−1∏
i=1

uσi

)
·Wn−m+1(uσm

, . . . , uσn
)

}
,

CU (u) = min
σ∈Pn,m

{(
m−1∏
i=1

uσi

)
·Mn−m+1(uσm

, . . . , uσn
)

}
.

An improvement of these bounds can be achieved by writing the expression for the
survival d.f. associated with C and impose that it is non–negative (see [7] for this pro-
cedure).
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[6] P. Jaworski, F. Durante, W. Härdle, and T. Rychlik, eds.: Copula Theory and its
Applications. Lecture Notes in Statistics – Proceedings 198, Springer, Berlin –Heidelberg
2010.

[7] H. Joe: Multivariate Models and Dependence Concepts. Monographs on Statistics and
Applied Probability 73, Chapman & Hall, London 1997.

[8] R. B. Nelsen: An Introduction to Copulas. Second edition. Springer Series in Statistics,
Springer, New York 2006.
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