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THE DOOB INEQUALITY AND STRONG LAW
OF LARGE NUMBERS FOR MULTIDIMENSIONAL
ARRAYS IN GENERAL BANACH SPACES

Nguyen Van Huan and Nguyen Van Quang

Dedicated to Professor Nguyen Duy Tien on the occasion of his 70th birthday

We establish the Doob inequality for martingale difference arrays and provide a sufficient
condition so that the strong law of large numbers would hold for an arbitrary array of random
elements without imposing any geometric condition on the Banach space. Some corollaries are
derived from the main results, they are more general than some well-known ones.
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1. INTRODUCTION

Smythe [18] obtained the Kolmogorov strong law of large numbers (SLLN) for mul-
tidimensional arrays of random variables. The Brunk–Prokhorov SLLN for multidi-
mensional arrays of random variables was established by Noszály and Tómács [11],
Móricz et al. [9] and was extended to multidimensional arrays of random elements
by Lagodowski [7]. The Rademacher–Menshov type SLLN for double arrays of quasi-
orthogonal random variables was studied by Móricz [8]. Afterwards, Móricz et al. [10]
and Rosalsky and Thanh [15] obtained some results on the SLLN problem for double
arrays of p-orthogonal random elements.

The method of subsequences is a basic method to prove the SLLN and has been used
by many authors. This method is to prove the desired result for a subsequence and then
reduce the problem for the whole sequence to that for the subsequence. In so doing, a
maximal inequality for cumulative sums is usually needed.

In this paper, we give an extension of the Doob inequality for martingale difference
arrays and provide a sufficient condition so that the SLLN would hold for an arbitrary
array of random elements taking values in a separable Banach space. These results are
then used to obtain two maximal inequalities and some SLLNs for various classes of de-
pendent arrays in which the Kolmogorov, Brunk–Prokhorov and Rademacher–Menshov
type SLLNs will be generalized, the main technique used in our proofs is based on the
method of subsequences. The rest of the paper is organized as follows. Some notations,
definitions and a lemma needed in this paper will be presented in Section 2. Section 3
is devoted to the main results and their proofs.
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2. PRELIMINARIES

Throughout this paper, the symbol C will denote a generic positive constant which is
not necessarily the same one in each appearance. Let d be a positive integer, the set of
all nonnegative integer d-dimensional lattice points will be denoted by Nd

0, and the set
of all positive integer d-dimensional lattice points will be denoted by Nd. We shall write
1, n, n+1, n−1,2n for points (1, 1, . . . , 1), (n1, n2, . . . , nd), (n1 +1, n2 +1, . . . , nd +1),
(n1− 1, n2− 1, . . . , nd− 1), (2n1 , 2n2 , . . . , 2nd), respectively. The notation m � n means
that mi 6 ni for all i = 1, 2, . . . , d, and the notation m ≺ n means that mi < ni for all
i = 1, 2, . . . , d. We define |n| =

∏d
i=1 ni, and the limit n →∞ means that |n| → ∞.

Let {ω1(j), j > 1}, {ω2(j), j > 1},. . . ,{ωd(j), j > 1} be strictly increasing sequences
of positive integers with wi(1) = 1 (1 6 i 6 d). For m ∈ Nd

0 and n ∈ Nd, we introduce
the following notation:

ωn =
(
ω1(n1), ω2(n2), . . . , ωd(nd)

)
,

∆n = {k : ωn � k ≺ ωn+1}, ∆(m) = {k : 2m � k ≺ 2m+1},

∆(m)
n = ∆n ∩∆(m), Λm = {k : ∆(m)

k 6= ∅},
r(m)
n (i) = min{r : r ∈ [ωi(ni), ωi(ni + 1)) ∩ [2mi , 2mi+1)} (n ∈ Λm, 1 6 i 6 d),

r(m)
n =

(
r(m)
n (1), r(m)

n (2), . . . , r(m)
n (d)

)
(n ∈ Λm),

ϕ(n) =
∑
k∈Nd

0

card(Λk) I∆(k)(n), ψ(n) = max
1�k�n

ϕ(k),

where card(Λk) denotes the cardinality of the set Λk and I∆(k) denotes the indicator
function of the set ∆(k). It is easy to verify that if ω(n) = 2n−1 (n ∈ Nd), then
ϕ(n) = ψ(n) = 1 for all n ∈ Nd.

Let (Ω,F ,P) be a probability space, and let {Fn,1 � m � n � M} be a d-
dimensional array of non-decreasing sub-σ-algebras of F related to the partial order
� on Nd. Let E be a real separable Banach space, let B(E) be the σ-algebra of all Borel
sets in E, and let {Xn,m � n � M} be a d-dimensional array of E-valued random
elements such that Xn is Fn/B(E)-measurable for all n ∈ Nd (m � n � M). Then
{Xn,Fn,m � n � M} is said to be an adapted array.

Let {Xn,Fn,m � n � M} be an adapted array. For n ∈ Nd
0 (m− 1 � n � M− 1),

we adopt the convention that Fn = {∅,Ω} if there exists a positive integer i (1 6 i 6 d)
such that ni = mi − 1 and set

F1
n =

∨
mi6li6Mi (26i6d)

Fn1l2l3...ld :=
M2∨

l2=m2

M3∨
l3=m3

· · ·
Md∨

ld=md

Fn1l2l3...ld ,

Fj
n =

∨
mi6li6Mi (16i6j−1)

∨
mi6li6Mi (j+16i6d)

Fl1...lj−1nj lj+1...ld if 1 < j < d,

Fd
n =

∨
mi6li6Mi (16i6d−1)

Fl1l2...ld−1nd
,

in the case d = 1, set F1
n = Fn.
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An adapted array {Xn,Fn,m � n � M} is said to be a martingale difference array
if E(Xn|F i

n−1) = 0 for all n ∈ Nd (m � n � M) and for all i = 1, 2, . . . , d.
Let {Xn,n ∈ Nd} be an array of E-valued random elements, and let {Fn,n ∈ Nd} be

an array of sub-σ-algebras of F . The array {Xn,Fn,n ∈ Nd} is said to be a blockwise
martingale difference array with respect to the blocks {∆k,k ∈ Nd} if for each k ∈ Nd,
{Xl,Fl, l ∈ ∆k} is a martingale difference array.

The notion of p-orthogonality was introduced by Howell and Taylor [4], and by Móricz
et al. [10]. A d-dimensional array of E-valued random elements {Xk,1 � m � k � M}
is said to be p-orthogonal (1 6 p <∞) if E‖Xk‖p <∞ for all m � k � M and

E
∥∥∥ ∑

m�k�l

aπ1(k1)π2(k2)...πd(kd)Xπ1(k1)π2(k2)...πd(kd)

∥∥∥p

6 E
∥∥∥ ∑

m�k�n

akXk

∥∥∥p

for all choices of m � l � n � M, for all arrays {ak,m � k � n} of constants, and for all
permutations π1, π2, . . . , πd of the integers {m1,m1 + 1, . . . , n1}, {m2,m2 + 1, . . . , n2},
. . . , {md,md + 1, . . . , nd}, respectively.

An array of random elements {Xn,n ∈ Nd} is said to be blockwise p-orthogonal
(respectively, blockwise independent) with respect to the blocks {∆k,k ∈ Nd} if for each
k ∈ Nd, the array {Xl, l ∈ ∆k} is p-orthogonal (respectively, independent).

As in Quang and Huan [13], the set of all martingale difference arrays is larger than
the set of all arrays of independent mean zero random elements. As a consequence of
this remark, the set of all blockwise martingale difference arrays is also larger than the
set of all arrays of blockwise independent mean zero random elements.

A Banach space E is said to be p-smoothable (1 6 p 6 2) if (possibly after equivalent
renorming)

ρ(τ) = sup
{‖x+ y‖+ ‖x− y‖

2
− 1, ∀ x, y ∈ E, ‖x‖ = 1, ‖y‖ = τ

}
= O(τp).

Let {Yj , j > 1} be a symmetric Bernoulli sequence, let E∞ = E × E × E × . . . and
define C (E) =

{
(v1, v2, . . . .) ∈ E∞ :

∑∞
j=1 Yjvj converges in probability

}
. Then E is

said to be of Rademacher type p (1 6 p 6 2) if there exists a positive constant C such
that

E
∥∥∥ ∞∑

j=1

Yjvj

∥∥∥p

6 C

∞∑
j=1

‖vj‖p for all (v1, v2, . . . .) ∈ C (E).

As in Assouad [1] and Woyczyński [20], a real separable Banach space E is p-
smoothable (respectively, of Rademacher type p) (1 6 p 6 2) if and only if for all
q > 1, there exists a positive constant C such that for all E-valued martingale differ-
ence sequences {Xj ,Fj , 1 6 j 6 i} (respectively, sequences of independent mean zero
E-valued random elements {Xj , 1 6 j 6 i}),

E
∥∥∥ i∑

j=1

Xj

∥∥∥q

6 C E
( i∑

j=1

‖Xj‖p
) q

p

. (1)

We close this section by giving a lemma which is the multidimensional version of
Lemma 2.2 of Huan et al. [5].
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Lemma 2.1. Let Φ1(.), Φ2(.), . . . ,Φd(.) be positive nondecreasing unbounded functions
on (0,∞), and let {xn,n ∈ Nd

0} be an array of real numbers such that

lim
n→∞

xn = 0.

Then the condition

sup
n∈Nd

0

( d∏
i=1

Φi(2ni)
)−1 ∑

0�k�n

d∏
i=1

Φi(2ki+1) <∞ (2)

implies

lim
n→∞

( d∏
i=1

Φi(2ni)
)−1 ∑

0�k�n

( d∏
i=1

Φi(2ki+1)
)
xk = 0.

3. MAIN RESULTS

The first pioneering work on two parameter martingales appeared in Cairoli and Walsh [2].
Afterwards, there were considerable amount of studies on two parameter martingales
and their application in stochastic calculus. In one parameter situation, the ordering
is unique following the natural distinction made between past and present. A similar
obvious ordering does not seem to exist for two parameter case. As a consequence, there
are several definitions for two parameter martingales and two parameter martingale
differences.

Consider an array {Fij , i > 1, j > 1} of sub-σ-algebras of F , and set

F1
ij =

∨
l>1

Fil, F2
ij =

∨
k>1

Fkj (i > 1, j > 1).

Cairoli and Walsh [2] introduced the F4 condition as follows: The array {Fij ,
i > 1, j > 1} is said to satisfy the F4 condition if F1

ij and F2
ij are conditionally in-

dependent with respect to Fij for all i > 1, j > 1, i. e.,

P(AB|Fij) = P(A|Fij) P(B|Fij)

for all i > 1, j > 1 and for all A ∈ F1
ij , B ∈ F2

ij .
The two parameter martingale theory is established on the basis of the F4 condition.

Many fundamental theorems and results in this theory do not hold if the F4 condi-
tion is not satisfied. In the following theorem, the Doob inequality for multiparameter
martingale differences will be established without the F4 condition.

Theorem 3.1. Let q be a real number (q > 1), let g be a nonnegative nondecreasing
convex function, and let {Xk,Fk,1 � k � n,n ∈ Nd} be a martingale difference array.
Then

E
(

max
1�k�n

g
(∥∥ ∑

1�l�k

Xl

∥∥))q

6
( q

q − 1

)qd

E
(
g
(∥∥ ∑

1�k�n

Xk

∥∥))q

. (3)
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P r o o f . Without loss of generality, assume that nd > 2. Clearly, for d = 1, the
conclusion (3) follows from Doob’s inequality (see, e. g., Gut [3], p. 505). Assume that
(3) holds for d = D − 1 > 1, we wish to show that it holds for d = D. For k ∈ ND

(1 � k � n), set

Sk =
∑

1�l�k

Xl, YkD
= max

16ki6ni (16i6D−1)
g(‖Sk‖).

Then

E(Sk1k2...kD−1kD
|FD

k1k2...kD−1kD−1)

= E(Sk1k2...kD−1kD−1|FD
k1k2...kD−1kD−1)

+ E(
∑

16li6ki (16i6D−1)

Xl1l2...lD−1kD
|FD

k1k2...kD−1kD−1)

= Sk1k2...kD−1kD−1.

It means that {Sk1k2...kD−1kD
,FD

k1k2...kD−1kD
, 1 6 kD 6 nD} is a martingale, and so

{g(‖Sk1k2...kD−1kD
‖),FD

k1k2...kD−1kD
, 1 6 kD 6 nD} is a nonnegative submartingale. It is

easy to show that {YkD
,FD

k1k2...kD−1kD
, 1 6 kD 6 nD} is a nonnegative submartingale.

Then by Doob’s inequality,

E
(

max
1�k�n

g(‖Sk‖)
)q

= E
(

max
16kD6nD

YkD

)q

6
( q

q − 1

)q

EY q
nD
. (4)

Set

X
(D−1)
k1k2...kD−1

=
nD∑

kD=1

Xk1k2...kD−1kD
, F (D−1)

k1k2...kD−1
=

∨
16kD6nD

Fk1k2...kD−1kD
.

Then {X(D−1)
k1k2...kD−1

,F (D−1)
k1k2...kD−1

, (1, 1, . . . , 1) � (k1, k2, . . . , kD−1) � (n1, n2, . . . , nD−1)}
is a martingale difference array. Therefore, by the inductive assumption,

EY q
nD

6
( q

q − 1

)q(D−1)

E
(
g(‖Sn‖)

)q
. (5)

Combining (4) and (5) yields that (3) holds for d = D. �

In the next two corollaries, we use Theorem 3.1 to obtain two maximal inequalities for
martingale difference arrays in p-smoothable Banach spaces and arrays of independent
mean zero random elements in Rademacher type p Banach spaces, respectively. The first
corollary generalizes the implication ((i)⇒(ii)) of Theorem 2.3 of Quang and Huan [14].

Corollary 3.2. Let E be a real separable p-smoothable Banach space (1 6 p 6 2).
Then, for all q > 1, there exists a positive constant C such that for all martingale
difference arrays {Xk,Fk,1 � k � n,n ∈ Nd},

E max
1�k�n

∥∥∥ ∑
1�l�k

Xl

∥∥∥q

6 Cd|n|max{ q
p ;1}−1

∑
1�k�n

E‖Xk‖q. (6)
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P r o o f . It is well known that every real separable p-smoothable Banach space (16p 62)
is q-smoothable for all q ∈ [1, p]. So, without loss of generality, assume that q > p. On
the other hand, since (6) holds in the case p = q = 1, we assume further that q > 1. By
virtue of Theorem 3.1, it suffices to show that

E
∥∥∥ ∑

1�k�n

Xk

∥∥∥q

6 Cd|n|
q
p−1

∑
1�k�n

E‖Xk‖q. (7)

Remark that for d = 1, (7) follows from (1) and Hölder’s inequality. Assume that
(7) holds for d = D − 1 > 1, we wish to show that it holds for d = D. For k ∈ ND, set
Sk =

∑
1�l�kXl. Then {Sn1n2...nD−1kD

,FD
n1n2...nD−1kD

, 1 6 kD 6 nD} is a martingale.
By (1) and Hölder’s inequality, we get

E‖Sn‖q 6 CE
( nD∑

kD=1

∥∥ ∑
16ki6ni (16i6D−1)

Xk1k2...kD−1kD

∥∥p
) q

p

6 C(nD)
q
p−1

nD∑
kD=1

E
∥∥∥ ∑

16ki6ni (16i6D−1)

Xk1k2...kD−1kD

∥∥∥q

. (8)

For a fixed positive integer kD (1 6 kD 6 nD), set

Y
(D−1)
k1k2...kD−1

= Xk1k2...kD−1kD
, F (D−1)

k1k2...kD−1
=

∨
16lD6nD

Fk1k2...kD−1lD . (9)

It is easy to show that {Y (D−1)
k1k2...kD−1

,F (D−1)
k1k2...kD−1

, (1, 1, . . . , 1) � (k1, k2, . . . , kD−1) �
(n1, n2, . . . , nD−1)} is also a martingale difference array. Therefore, by the inductive
assumption,

E
∥∥∥ ∑

16ki6ni (16i6D−1)

Y
(D−1)
k1k2...kD−1

∥∥∥q

6 CD−1(n1n2 . . . nD−1)
q
p−1

∑
16ki6ni (16i6D−1)

E‖Y (D−1)
k1k2...kD−1

‖q. (10)

Combining (8) – (10) yields that (7) holds for d = D. �

Corollary 3.3. Let E be a real separable Rademacher type p (1 6 p 6 2) Banach space.
Then, for all q > 1, there exists positive constants C1 and C2 such that for all arrays of
independent mean zero random elements {Xk,1 � k � n,n ∈ Nd} (with values in E),

E max
1�k�n

∥∥∥ ∑
1�l�k

Xl

∥∥∥q

6 C1C
d
2 |n|

max{ q
p ;1}−1

∑
1�k�n

E‖Xk‖q. (11)

P r o o f . Without loss of generality, we only need to consider the case q > p and
q > 1. It is easy to show that

{
Xk,Fk =

∨
1�l�k σ(Xl),1 � k � n

}
is a martingale

difference array. Then by using Theorem 3.1, Hölder’s inequality and Proposition 2.1 of
Woyczyński [20], we get (11). �
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The second result provides a sufficient condition so that the SLLN would hold for an
arbitrary array of random elements without imposing any geometric condition on the
Banach space. For the convenience of the reader, we recall the definition of the function
ψ: ψ(n) = max1�k�n ϕ(k), n ∈ Nd.

Theorem 3.4. Let {Xn,n ∈ Nd} be an array of random elements in a real separa-
ble Banach space, and let Φ1(.), Φ2(.), . . . ,Φd(.) be positive nondecreasing unbounded
functions on (0,∞) satisfying (2). Then the condition

( d∏
i=1

Φi(2mi+1)
)−1(

ψ(2m)
) 1−q

q
∑

k∈Λm

max
l∈∆

(m)
k

∥∥ ∑
r
(m)
k �t�l

Xt

∥∥ → 0 (12)

a.s. as m →∞ for some q > 1 implies

( d∏
i=1

Φi(ni)
)−1(

ψ(n)
) 1−q

q
∑

1�k�n

Xk → 0 a.s. as n →∞. (13)

P r o o f . For m ∈ Nd
0, set

γm =
( d∏

i=1

Φi(2mi+1)
)−1(

ψ(2m)
) 1−q

q
∑

k∈Λm

max
l∈∆

(m)
k

∥∥∥ ∑
r
(m)
k �t�l

Xt

∥∥∥.
Then by (12) and Lemma 2.1,

( d∏
i=1

Φi(2mi)
)−1 ∑

0�k�m

( d∏
i=1

Φi(2ki+1)
)
γk → 0 a.s. as m →∞. (14)

Next, for n ∈ Nd, let m ∈ Nd
0 be such that n ∈ ∆(m). Then

0 6
( d∏

i=1

Φi(ni)
)−1(

ψ(n)
) 1−q

q
∥∥ ∑

1�k�n

Xk

∥∥
6

( d∏
i=1

Φi(ni)
)−1(

ψ(n)
) 1−q

q
∑

0�k�m

( d∏
i=1

Φi(2ki+1)
)(
ψ(2k)

) q−1
q γk

6
( d∏

i=1

Φi(2mi)
)−1 ∑

0�k�m

( d∏
i=1

Φi(2ki+1)
)
γk. (15)

Combining (14) and (15) yields (13). �

The following corollary is a consequence of Theorem 3.4. In the special case where
Φi(x) = xαi (αi > 0, 1 6 i 6 d), from Corollary 3.5 we get the main result of Thanh [19].
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Corollary 3.5. Let {Xn,n ∈ Nd} be an array of random elements in a real separa-
ble Banach space, and let Φ1(.), Φ2(.), . . . ,Φd(.) be positive nondecreasing unbounded
functions on (0,∞) such that

sup
j>0

Φi(2j+1)
Φi(2j)

<∞, 1 6 i 6 d, (16)

inf
j>0

Φi(2j+1)
Φi(2j)

> 1, 1 6 i 6 d. (17)

Then the condition

( d∏
i=1

Φi(2mi+1)
)−1

max
2m�k≺2m+1

∥∥∥ ∑
2m�l�k

Xl

∥∥∥ → 0 a.s. as m →∞ (18)

implies

( d∏
i=1

Φi(ni)
)−1 ∑

1�k�n

Xk → 0 a.s. as n →∞. (19)

P r o o f . We will show that the conditions (16) and (17) imply (2). Assume that (16)
and (17) hold. Then by (17), there exists a positive constant C < 1 such that for all
i = 1, 2, . . . , d,

Φi(2j)
Φi(2j+1)

6 C, j > 0,

and so

sup
j>0

1
Φi(2j)

j−1∑
s=0

Φi(2s+1) 6
1

1− C
<∞.

This and (16) imply that

sup
j>0

1
Φi(2j)

j∑
s=0

Φi(2s+1)

= sup
j>0

( 1
Φi(2j)

j−1∑
s=0

Φi(2s+1) +
Φi(2j+1)
Φi(2j)

)
<∞, 1 6 i 6 d.

Therefore, (2) holds. The proof is completed by using Theorem 3.4 with ω(n) = 2n−1

(n ∈ Nd). �

In the proof of Corollary 3.5, we show that the conditions (16) and (17) imply (2).
However, the reverse is not true. We now show, via an example, that (2) does not
imply (17).
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Example 3.6. For x > 0 and 1 6 i 6 d, let

Φi(x) =

{
2 if 0 < x < 1,

22x(0)+(−1)x(0)

if x > 1,

where x(0) is a nonnegative integer such that 2x(0)
6 x < 2x(0)+1. Then for each i

(1 6 i 6 d), Φi(.) is a positive nondecreasing unbounded function on (0,∞) such that

Φi(21) + Φi(22) + · · ·+ Φi(2j+1)
Φi(2j)

=
1

22j+(−1)j

j∑
s=0

22(s+1)+(−1)s+1

6
16
4j

j∑
s=0

4s <∞ (j > 0),

and so (2) holds. However, (17) fails since

Φi(2j+1)
Φi(2j)

=

{
16 if j is odd,
1 if j is even,

for all i = 1, 2, . . . , d.

The following corollary establishes a SLLN for martingale difference arrays in general
Banach spaces.

Corollary 3.7. Let q be a real number (q > 1), let {Xn,Fn,n ∈ Nd} be a martingale
difference array, and let Φ1(.), Φ2(.), . . . ,Φd(.) be positive nondecreasing unbounded
functions on (0,∞) satisfying (16) and (17). Then the condition

∑
m∈Nd

0

( d∏
i=1

Φi(2mi+1)
)−q

E
∥∥∥ ∑

2m�l≺2m+1

Xl

∥∥∥q

<∞ (20)

implies (19).

P r o o f . Since {Xn,Fn,n ∈ Nd} is a martingale difference array, by using the “tower
property” of conditional expectation (i. e., if X ∈ L1(Ω,F ,P) and G,H are sub-σ-
algebras of F (H ⊂ G), then E

(
E(X|G)|H

)
= E(X|H)), we may show that {Xk,Fk,k ∈

∆(m)} is a martingale difference array for all m ∈ Nd
0. Then by Theorem 3.1 and (20),

∑
m∈Nd

0

E
(( d∏

i=1

Φi(2mi+1)
)−1

max
2m�k≺2m+1

∥∥ ∑
2m�l�k

Xl

∥∥)q

6 C
∑

m∈Nd
0

( d∏
i=1

Φi(2mi+1)
)−q

E
∥∥∥ ∑

2m�l≺2m+1

Xl

∥∥∥q

<∞.
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Applying Markov’s inequality, we get (18), and the conclusion (19) follows from Corol-
lary 3.5. �

Next we apply Theorem 3.4 to various classes of dependent arrays. The next corollary
extends the Brunk–Prokhorov SLLN to blockwise martingale difference arrays. For
p = q, it boils down to a version which extends the Kolmogorov SLLN to blockwise
martingale difference arrays. Corollary 3.8 also generalizes some results in [5, 12, 21].

Corollary 3.8. Let q be a real number (q > 1), let E be a real separable p-smoothable
Banach space (1 6 p 6 2), let {Xn,Fn,n ∈ Nd} be a blockwise martingale difference
array with respect to the blocks

{
∆k,k ∈ Nd

}
, and let Φ1(.), Φ2(.), . . . ,Φd(.) be positive

nondecreasing unbounded functions on (0,∞) satisfying (2).

(i) If

∑
n∈Nd

( d∏
i=1

Φi(ni)
)−q

|n|max{ q
p ;1}−1E‖Xn‖q <∞, (21)

then (13) holds.

(ii) If

∑
n∈Nd

( d∏
i=1

Φi(ni)
)−q(

ϕ(n)
)q−1|n|max{ q

p ;1}−1E‖Xn‖q <∞,

then (19) holds.

P r o o f . (i) For m ∈ Nd
0, we define γm as in the proof of Theorem 3.4. Then by Hölder’s

inequality and Corollary 3.2,

Eγq
m =

( d∏
i=1

Φi(2mi+1)
)−q(

ψ(2m)
)1−qE

( ∑
k∈Λm

max
l∈∆

(m)
k

∥∥ ∑
r
(m)
k �t�l

Xt

∥∥)q

6
( d∏

i=1

Φi(2mi+1)
)−q

(
card(Λm)

)q−1(
ψ(2m)

)q−1

∑
k∈Λm

E max
l∈∆

(m)
k

∥∥∥ ∑
r
(m)
k �t�l

Xt

∥∥∥q

6 C
( d∏

i=1

Φi(2mi+1)
)−q

|2m|max{ q
p ;1}−1

∑
k∈Λm

∑
l∈∆

(m)
k

E‖Xl‖q

6 C
∑

2m�k≺2m+1

( d∏
i=1

Φi(ki)
)−q

|k|max{ q
p ;1}−1E‖Xk‖q.

It thus follows from (21) that
∑

m∈Nd
0

Eγq
m < ∞, and so the condition (12) is satisfied.

Theorem 3.4 ensures that (13) holds.
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(ii) For m ∈ Nd
0, set

γm =
( d∏

i=1

Φi(2mi+1)
)−1 ∑

k∈Λm

max
l∈∆

(m)
k

∥∥∥ ∑
r
(m)
k �t�l

Xt

∥∥∥.
Then

Eγq
m =

( d∏
i=1

Φi(2mi+1)
)−q

E
( ∑

k∈Λm

max
l∈∆

(m)
k

∥∥ ∑
r
(m)
k �t�l

Xt

∥∥)q

6
( d∏

i=1

Φi(2mi+1)
)−q(

card(Λm)
)q−1 ∑

k∈Λm

E max
l∈∆

(m)
k

∥∥∥ ∑
r
(m)
k �t�l

Xt

∥∥∥q

6 C
∑

2m�k≺2m+1

( d∏
i=1

Φi(ki)
)−q(

ϕ(k)
)q−1|k|max{ q

p ;1}−1E‖Xk‖q.

Therefore,
∑

m∈Nd
0

Eγq
m < ∞, and so γm → 0 a.s. as m → ∞. Theorem 3.4 ensures

that (19) holds. �

By using Corollary 3.3 and the same arguments as in the proof of Corollary 3.8, we
get the next corollary which generalizes some results in [15, 16, 19, 20]. We omit its
proof.

Corollary 3.9. Let q be a real number (q > 1), let E be a real separable Rademacher
type p (1 6 p 6 2) Banach space, let {Xn,n ∈ Nd} be an array of blockwise independent
random elements with respect to the blocks

{
∆k,k ∈ Nd

}
and EXn = 0 (n ∈ Nd), and

let Φ1(.), Φ2(.), . . . ,Φd(.) be positive nondecreasing unbounded functions on (0,∞)
satisfying (2). Then the assertions of Corollary 3.8 hold.

We next establish the Rademacher–Menshov type SLLN for arrays of blockwise p-
orthogonal random elements in Rademacher type p (1 6 p 6 2) Banach spaces. The key
tool for proving Corollary 3.10 is the d-dimensional version of Lemma 3.2 of Móricz et
al. [10]. This corollary generalizes Theorem 3.1 of Móricz et al. [10].

Corollary 3.10. Let E be a real separable Rademacher type p (1 6 p 6 2) Banach
space, let {Xn,n ∈ Nd} be a array of blockwise p-orthogonal random elements with
respect to the blocks

{
∆k,k ∈ Nd

}
, and let Φ1(.), Φ2(.), . . . ,Φd(.) be positive nonde-

creasing unbounded functions on (0,∞) satisfying (2).
(i) If

∑
n∈Nd

( d∏
i=1

Φi(ni)
)−p d∏

i=1

(log ni)p E‖Xn‖p <∞, (22)

then (13) holds.
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(ii) If

∑
n∈Nd

( d∏
i=1

Φi(ni)
)−p(

ϕ(n)
)p−1

d∏
i=1

(log ni)p E‖Xn‖p <∞,

then (19) holds.

P r o o f . The proof of both assertions is similar, and so we only prove the first. For
m ∈ Nd

0, we define γm as in the proof of Theorem 3.4 (with q = p). Then

Eγp
m 6

( d∏
i=1

Φi(2mi+1)
)−p

(
card(Λm)

)p−1(
ψ(2m)

)p−1

∑
k∈Λm

E max
l∈∆

(m)
k

∥∥∥ ∑
r
(m)
k �t�l

Xt

∥∥∥p

6 C
( d∏

i=1

Φi(2mi+1)
)−p ∑

k∈Λm

d∏
i=1

(log 2mi)p
∑

l∈∆
(m)
k

E‖Xl‖p

6 C
∑

2m�k≺2m+1

( d∏
i=1

Φi(ki)
)−p d∏

i=1

(log ki)pE‖Xk‖p.

It thus follows from (22) that
∑

m∈Nd
0

Eγp
m < ∞, and so γm → 0 a.s. as m → ∞.

Theorem 3.4 ensures that (13) holds. �

Remark 3.11. It is interesting to observe that the maximal inequality is essential for
applying Theorem 3.4. Móricz et al. [9] established a maximal inequality for arrays
of M-dependent random variables and obtain a sufficient condition for an array of
blockwise M-dependent random variables with respect to dyadic blocks to obey the
SLLN

( d∏
i=1

Φi(ni)
)−1 ∑

1�k�n

Xk → 0 a.s. as min{n1, n2, . . . , nd} → ∞.

In this article, we consider the limit n →∞ which is equivalent to the limit max{n1, n2,
. . . , nd} → ∞. Clearly, if an array of real or complex numbers {Sn,n ∈ Nd} is convergent
to S as n → ∞, then it is convergent to S as min{n1, n2, . . . , nd} → ∞ (Pringsheim
convergence) and supn∈Nd |Sn| < ∞. However, the reverse is not true. By the same
arguments as in the proof of Corollary 3.8, we can use Lemma 3 of Móricz et al. [9]
to extend their main result to arrays of blockwise M-dependent random variables with
respect to arbitrary blocks. Moreover, the main result of Móricz et al. [9] can be
extended further to arrays of blockwise M-dependent random elements in Rademacher
type p Banach spaces. In the one-dimensional case, two applications of Theorem 3.4 can
be obtained by using Lemma 2.4 of Kim [6] and Theorem 2 of Shao [17], respectively.
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Schwartz 1975.

[2] R. Cairoli and J. B. Walsh: Stochastic integrals in the plane. Acta Math. 134 (1975),
111–183.

[3] A. Gut: Probability: A Graduate Course. Springer, New York 2005.

[4] J. O. Howell and R. L. Taylor: Marcinkiewicz–Zygmund Weak Laws of Large Numbers
for Unconditional Random Elements in Banach Spaces, Probability in Banach Spaces.
Springer, Berlin –New York 1981.

[5] N. V. Huan, N. V. Quang, and A. Volodin: Strong laws for blockwise martingale difference
arrays in Banach spaces. Lobachevskii J. Math. 31 (2010), 326–335.
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