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Commutative zeropotent

semigroups with few prime ideals

J. Ježek, T. Kepka, P. Němec

Abstract. We construct an infinite commutative zeropotent semigroup with only
two prime ideals.
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The following remarkable problem has been standing open for some time: Does
there exist an infinite commutative semigroup with only finitely many endomor-
phisms? We conjecture that if there is an example, then it can be found among
commutative zeropotent semigroups. In this paper we construct a commutative
zeropotent semigroup with only two prime ideals. Although this does not solve
the problem, we hope that an example of an infinite commutative semigroup with
only two endomorphisms could be possibly obtained by means of a similar, more
complicated construction.

We adopt the additive notation for commutative semigroups. By a commuta-
tive zeropotent semigroup, shortly czp-semigroup, we mean a commutative semi-
group A satisfying x+ x = y + y + y for all x, y ∈ A. Then x+ x = y + y for all
x, y ∈ A, the element x + x (for any x ∈ A) is denoted by oA (or just by o) and
x+ x = o, x+ o = o for all x ∈ A.

Natural examples of czp-semigroups can be obtained in the following way:
Take an arbitrary set X and let A be the set of all subsets of X ; for a, b ∈ A put
a + b = a ∪ b if a, b are nonempty and disjoint; in all other cases put a + b = ∅.
Subsemigroups embeddable into such semigroups A are called representable.

By an ideal of a czp-semigroup A we mean a subset I of A such that o ∈ I and
x + y ∈ I whenever x ∈ I and y ∈ A. By a prime ideal of A we mean an ideal I
of A such that whenever x+ y ∈ I then either x+ y = o or x ∈ I or y ∈ I.

If I is a prime ideal of a czp-semigroup A then the mapping φI : A → A defined
by φI(x) = o for x ∈ I and φI(x) = x for x /∈ I, is an endomorphism of A. Thus
if A has only finitely many endomorphisms then it has only finitely many prime
ideals. It is easy to see that an infinite representable czp-semigroup has always
infinitely many endomorphisms.

The work is a part of the research project MSM0021620839, financed by MŠMT and partly
supported by the Grant Agency of the Czech Republic, grant #201/09/0296.
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The aim of this note is to construct an infinite czp-semigroup with only two
prime ideals. The problem whether there is an infinite czp-semigroup with only
finitely many endomorphisms, remains open.

Denote by X the absolutely free algebra with four unary operations
α1, β1, α2, β2 and one binary operation γ, over an infinite countable set of vari-
ables. Elements of X will be called terms . Finite (non necessarily nonempty)
sequences of elements of {α1, β1, α2, β2} will be called words . For a term x,
the terms wx (where w is any word) are called x-based . Every x-based term
other than x can be uniquely expressed as νy for some x-based term y and some
ν ∈ {α1, β1, α2, β2}; the term y is called the chief subterm of νy.

Denote by T the free czp-semigroup over (the underlying set of)X ; its elements
are all finite subsets of X (we identify elements x of X with {x}), o = ∅, and

u+ v =

{
u ∪ v if u, v are nonempty and disjoint

o otherwise

Denote by R1 the set of the pairs 〈x, α1x + β1x〉, by R2 the set of the pairs
〈x, α2x+β2x〉, and by R3 the set of the pairs 〈α1x+α2x, y+γ(x, y)〉 for x, y ∈ X ,
x 6= y.

For u, v ∈ T \ {o} and j = 1, 2, 3 write u →j v if there is a pair 〈p, q〉 ∈ Rj such
that p ⊆ u, q is disjoint with u and v = (u \ p) ∪ q. Write u ≡j v if either u →j v
or v →j u. Thus ≡j is a symmetric relation on T \ {o}. Clearly, u ≡j v if and

only if there is a pair 〈p, q〉 ∈ Rj ∪R−1
j such that p ⊆ u, q is disjoint with u and

v = (u \ p) ∪ q.
By a derivation we mean a finite sequence u0, . . . , un (n ≥ 0) of elements of

T \ {o} such that for any i = 1, . . . , n, ui−1 ≡j ui for some j ∈ {1, 2, 3}. By
a derivation from u to v we mean a derivation, the first member of which is u
and the last member of which is v. Clearly, if u0, . . . , un is a derivation then
un, un−1, . . . , u0 is also a derivation.

Denote by U0 the set of the elements u of T \{o} for which there are j ∈ {1, 2, 3}
and a pair 〈p, q〉 ∈ Rj ∪R−1

j such that p ⊆ u and q is not disjoint with u. Denote

by U the set of the elements u ∈ T \ {o} such that there exists a derivation from
u to an element of U0. Thus if one member of a derivation belongs to U then all
members belong to U .

Define a binary relation ∼ on T as follows: u ∼ v if and only if either u, v ∈
U ∪ {o} or there is a derivation from u to v. It is easy to check that ∼ is an
equivalence on T .

Lemma 1. Let u, v ∈ T \ {o}, x ∈ X and j ∈ {1, 2, 3}. If u ≡j v then either
u + x ≡j v + x or both u + x and v + x belong to U ∪ {o}. If u ∈ U then
u+ x ∈ U ∪ {o}.
Proof: Let u ≡j v. We have v = (u \ p) ∪ q for some 〈p, q〉 ∈ Rj ∪ R−1

j with

p ⊆ u and q ∩ u = ∅. If x /∈ u ∪ q then evidently p ⊆ u ∪ {x}, q ∩ (v ∪ {x}) = ∅
and v ∪ {x} = ((u ∪ {x}) \ p) ∪ q, so that u+ x = u ∪ {x} ≡j v ∪ {x} = v + x. If
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x ∈ u \p then u+x = v+x = o. If x ∈ p then u+x = o and v+x = v∪{x} ∈ U .
If x ∈ q then u + x = u ∪ {x} ∈ U and v + x = o. The second statement is also
easy to see. �

Lemma 2. ∼ is the congruence of T generated by R1 ∪R2 ∪R3.

Proof: Using Lemma 1 one can easily check that ∼ is a congruence. Clearly,
R1 ∪ R2 ∪ R3 is contained in ∼ and if a congruence contains R1 ∪ R2 ∪ R3 then
it contains ∼. �

By a simple derivation we mean a derivation u0, . . . , un such that u0 ∈ X and
for all i ∈ {1, . . . , n} either ui−1 →1 ui or ui−1 →2 ui. Clearly, u1, . . . , un are
then sets of at least two u0-based terms different from u0.

Lemma 3. Let u0, . . . , un be a simple derivation; let {x,wx} ⊆ ui for some
i ∈ {0, . . . , n}, some term x and some word w. Then w is empty.

Proof: Suppose that some ui contains both x and wνx where w is a word and
ν ∈ {α1, β1, α2, β2}, and take the least index i with this property. We have i > 0,
since u0 contains only one term. By the minimality of i, either x or wνx does not
belong to ui−1. Since ui results from ui−1 by removing one term and adding two
other terms of the same length, precisely one of the terms x and wνx does not
belong to ui−1.

Case 1: x /∈ ui−1 and wνx ∈ ui−1. Since x belongs to ui but not to ui−1,
the chief subterm of x belongs to ui−1. But then ui−1 contains both this chief
subterm and its proper extension wνx, a contradiction with the minimality of i.

Case 2: x ∈ ui−1 and wνx /∈ ui−1. Since wνx belongs to ui but not to ui−1,
the chief subterm of wνx belongs to ui−1. By the minimality of i, w is empty and
the chief subterm is x. Thus x ∈ ui−1, a contradiction. �

Lemma 4. Let u0, . . . , un be a simple derivation and i ∈ {0, . . . , n}. Then neither
{wα1x,w

′α2x} ⊆ ui nor {wβ1x,w
′β2x} ⊆ ui for any x ∈ X and any words w,w′.

Proof: Suppose that i is the least index for which this is not true. It is sufficient
to consider the case when {wα1x,w

′α2x} ⊆ ui. At least one of these two elements
does not belong to ui−1. Without loss of generality, w′α2x /∈ ui−1. Since ui results
from ui−1 by removing one term and adding two other ones, the removed term
is the chief subterm of w′α2x. The other added element cannot be wα1x, so
wα1x ∈ ui−1. Thus if w

′ is nonempty then ui−1 contains two terms contradicting
the minimality of i. We get that w′ is empty. Thus ui−1 contains the terms x
and wα1x, a contradiction with Lemma 3. �

Lemma 5. No member of a simple derivation belongs to U0.

Proof: Let u0, . . . , un be a simple derivation and suppose that un ∈ U0. There
are j ∈ {1, 2, 3} and 〈p, q〉 ∈ Rj ∪ R−1

j such that p ⊆ un and q has a common

element with un. If p = {α1x, α2x}, we get a contradiction by Lemma 4. We
cannot have p = {y, γ(x, y)}, since un does not contain a term starting with γ
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(unless n = 0, but this is not the case since u0 contains only one term). Thus
j 6= 3. If p = {x} and q = {αjx, βjx} then un contains x and one of the terms
αjx, βjx, a contradiction by Lemma 3. Finally, if p = {αjx, βjx} and q = {x}
then un contains all these three terms, again a contradiction by Lemma 3. �
Lemma 6. Let u0, . . . , un be a derivation such that u0 ∈ X . Then un /∈ U0 and
if un is a singleton then un = u0.

Proof: Suppose that there is a derivation contradicting this assertion, and let
u0, . . . , un be one with the least possible n. Clearly, n > 0. Let i be the largest
index such that u0, . . . , ui is a simple derivation.

Suppose that i = n, so that u0, . . . , un is a simple derivation. If un ∈ U0, we
get a contradiction by Lemma 5. Clearly, un cannot be a singleton if n > 0, and
for n = 0 we have un = u0. Thus i < n.

If ui →3 ui+1 then ui contains both α1x and α2x for some x ∈ X , a contradic-
tion with Lemma 4.

If ui+1 →3 ui then ui has more than one element and contains a term starting
with γ, which is evidently not possible since u0, . . . , ui is simple.

If ui →j ui+1 for some j ∈ {1, 2} then u0, . . . , ui+1 is a simple derivation, a
contradiction with the maximality of i.

Thus ui+1 →j ui for some j ∈ {1, 2}. We have ui = (ui+1 \ {x}) ∪ {αjx, βjx}
for some x ∈ ui+1 and {αjx, βjx} ∩ ui+1 = ∅. Let k be the least index such
that either αjx or βjx belongs to uk; thus k ≤ i. Clearly, k > 0. It follows that
x ∈ uk−1 and both αjx and βjx belong to uk. Now it is easy to see that the
sequence

u0, . . . , uk−1, vk+1, . . . , vi, ui+2, . . . , un

where vl = (ul \ {αjx, βjx}) ∪ {x} for l = k + 1, . . . , i is a derivation from u0 to
un, a contradiction with the minimality of n. �
Theorem. T/ ∼ is an infinite czp-semigroup with only two prime ideals. (The
two prime ideals are T/ ∼ and {oT/∼}).
Proof: It follows easily from Lemma 6 that the elements x/ ∼ of T/ ∼, with x
running over X , are pairwise different and different from o′ = oT/∼. (We have
o′ = U ∪ {o}.) Let I be a prime ideal of T/ ∼ different from T/ ∼. Clearly,
there is an element x of X such that x/ ∼ /∈ I. Take any element y of X different
from x. Since x ∼ α1x+ β1x, we have α1x/ ∼ /∈ I. Since x ∼ α2x+ β2x, we have
α2x/ ∼ /∈ I. Thus (α1x + α2x)/ ∼ /∈ I. Since α1x + α2x ∼ y + γ(x, y), we have
y/ ∼ /∈ I. Thus the complement of I contains all elements z/ ∼ with z ∈ X and
I = {o′}. �
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Charles University, Faculty of Mathematics and Physics, Department of
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