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Transitive Closures of Binary Relations I. 

VÁCLAV FLAŠKA, JAROSLAV JEŽEK, TOMÁŠ KEPKA AND JUHA KORTELAINEN 

Praha, Oulu 

Received 5. October 2006 

Transitive closures of binary relations and relations a with the property that any two 
a-sequences connecting two given elements are of the same length are investigated. 
Vysetfuji se tranzitivni uzavery binarnich relaci a relaci a s vlastnosti, ze kaide dve 
a-posloupnosti spojujici dane dva prvky maji stejnou delku. 

The present short note collect a few elementary observations concerning the 
transitive closures of binary relations. All the formulated results are fairly basic 
and of folklore character to much extent. Henceforth, we shall not attribute them 
to any particular source! 

1. Preliminaries 

Let S be a set, ids = {(a,a) \ a e S} and irs = (S x S) — ids. 
Let a be a binary relation defined in S (i.e., a .= S x S). We put i(a) = a n irs 

and r (a) = a u ids. The relation a is called 
— irreflexive if a c irs (equivalently, a n ids = 0 or i (a) = a); 
— reflexive if ids ^ a (or r (a) = a); 
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— strictly (or sharply) antisymmetric if (a, b) e a implies (b, a) $ a; 
— antisymmetric if a = b whenever (a, b) e a and (b, a) G a; 
— symmetric if (a, b) e a implies (b, a) e a; 
— transitive if (a, c) e a whenever (a, b) e a and (b, c) e a; 
— a quasiordering if a is reflexive and transitive; 
— a strict (or sharp) ordering if a is irreflexive and transitive; 
— a near-ordering if a is antisymmetric and transitive; 
— a (reflexive) ordering if a is reflexive, antisymmetric and transitive; 
— a tolerance if a is reflexive and symmetric; 
— an equivalence if a is reflexive, symmetric and transitive. 

1.1 Lemma. Let a be a binary relation on a set S. 
(i) a is both irreflexive and reflexive iff a = 0 = S. 

(ii) a is strictly antisymmetric iff a is irreflexive and antisymmetric. 
(iii) a w both antisymmetric and symmetric iff a <= ids. 
(iv) I/* a w transitive then a w irreflexive iff OL is strictly antisymmetric. 
(v) Tjf a is irreflexive, symmetric and transitive then a = 0. 
(vi) If OL is symmetric, transitive and if for every OLE S there is at least one b e S 

with either (a, b)e OL or (b, a) e a then a is an equivalence. 

Proof. It is obvious. • 

1.2 Lemma. Let OL be a binary relation on a set S. 
(i) i(a) is the irreflexive core of OL (i.e., the largest irreflexive relation 

contained in OL). 
(ii) r(a) is the reflexive closure of OL (i.e., the smallest reflexive relation 

containing OL). 
(iii) i(a) = ir(a) c r(a) = ri(a). 
(iv) If OL is antisymmetric then i(a) is strictly antisymmetric and r(a) is 

antisymmetric. 
(v) If OL is symmetric then i(a) and r(a) are symetric. 

(vi) If OL is transitive then r (a) is a quasiordering. 
(vii) If OL is a near-ordering then i (a) is a strict ordering and r (a) is an ordering. 

Proof. It is obvious. • 

2. I so la ted e lements 

Let a be a binary relation on a set S. For every element aeS put R(a,a) = 
= [b| (a,b) e a} and L(a,a) = {b\ (b,a) e OL}. 

2.1 Lemma. The following conditions are equivalent for a binary relation OL on 
a set S: 
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(i) a is irreflexive (reflexive, resp.); 
(ii) a ^ R (a, a) (a e R(a, a), resp.) for every a G S; 

(iii) a ^ L (a, a)(a e L (a, a), resp.) for every e S. 

Proof. It is obvious. • 

2.2 Lemma. Let a be a binary relation on a set S. 
(i) a is strictly antisymmetric iff R(a, a) n L(a, a) = 0for every ae S. 

(ii) a w antisymmetric iff R (a, a) n L (a, a) £ {#} far every aeS. 

Proof. It is obvious. • 

2.3 Lemma. The following conditions are equivalent for a binary relation a on 
a set S: 

(i) a is symmetric; 
(ii) R (a, a) ^ L (a, a) for every a e S; 

(iii) L (a, a) .= R (a, a) for every a G 5; 
(iv) R(a,a) = L(a,a)for every ae S. 

Proof It is obvious. • 

2.4 Lemma. TTie following conditions are equivalent for a binary relation a on 
a set S: 

(i) a is transitive; 
(ii) R(b,a) c R(a?a)for all ae S and b eR(a,a); 

(iii) L(b,a) c L(a,a) for all ae S and b eL(a,a). 

Proof It is obvious. • 

An element a e 5 is called 
— right (or upwards) strictly a-isolated if R (a, a) = 0; 
— right (or upwards) a-isolated if R(a,a) _= {a}; 
— right (or upwards) a-pseudoisolated if R (a, a) _= L (a, a). 

Left (or downwards) (strictly) a-(pseudo)isolated elements are defined dually. 

2.5 Lemma. Let a be a binary relation on a set S. 
(i) If a is irreflexive then every right isolated element is right strictly isolated. 

(ii) If a is reflexive then no element is right strictly isolated. 
(iii) If a is strictly antisymmetric then every right pseudoisolated element is 

right strictly isolated. 
(iv) If a is antisymmetric then every right pseudoisolated element is right 

isolated. 
(v) If a is symmetric then an element is right (strictly) isolated iff it is left 

(strictly) isolated. 

Proof. It is obvious. • 
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2.6 Lemma. The following conditions are equivalent for a binary relation oc on 
a set S: 

(i) oc is symmetric; 
(ii) Every element is right pseudoisolated; 

(iii) Every element is left pseudoisolated. 

Proof. It is obvious. • 

2.7 Lemma. Let oc be a binary relation on a set S. If oc is transitive, ae S is 
a right pseudoisolated element and (a, b) e oc then b is right pseudoisolated. 

Proof. It is obvious. • 

2.8 Lemma. Let oc be a binary relation on a set S. 
(i) An element is right strictly i (oc)-isolated iff it is right i (oc)-isolated and iff it 

is right oc-isolated. 
(ii) An element is right i (oc)-pseudoisolated iff it is right oc-pseudoisolated. 

(iii) An element is right r (^(-isolated iff it is right oc-isolated. 
(iv) An element is right r (oc)-pseudoisolated iff it is right oc-pseudoisolated. 

Proof. It is obvious. • 

3. F in i te a-sequences 

Let a be a binary relation on a set S. A finite sequence (ao,ai,..., am), m > 1, of 
elements of S is an a-sequence if (a , ,a I + i )ea for every 0 < i < m — 1. The 
positive integer m is the length of the sequence. Furthermore, we say that an 
a-sequence (bo,..., bn) is a reduct of the a-sequence (a0,..., am) if there are integers 
0 = jo < ji < ... < jn-i = m such that b, = aji for every 0 < i < n. 

An a-sequence (ao,..., am) is called 
— weakly pseudoirreducible if a, ^ a,-+i whenever 2 < m and 0 < i < m; 
— pseudoirreducible if at 7-= a} whenever 0 < i < j < m and (ij) 7-- (0, m); 
— irreducible if (a„ a}) $ oc whenever 2 < m and 0 < i < i + 2 < j < m. 

3.1 Lemma. Let (a0,..., am) be an oc-sequence. 
(i) If the sequence is pseudoirreducible then it is weakly pseudoirreducible. 

(ii) If the sequence is irreducible then it is pseudoirreducible. 
(iii) If the sequence is pseudoirreducible and a0 # am (a0 = am, resp.) then the 

elements a0,..., am (a0,..., am_i, resp.) are pairwise different. 
(iv) If m = \ then the sequence is irreducible. 

Proof, (ii) Let (a0,...,am) be an irreducible a-sequence. Suppose that a, = a, 
where 0 < i < j < m. If j < m then (au aj+i)eoc, a contradiction. If 0 < i then 
(a,_i,a;) e a, a contradiction. Thus (ij) = (0,m). 

The other items are easy to see. • 
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3.2 Proposition. Every finite a-sequence has at least one irreducible reduct. 

Proof. Let (oo,..., am) be an a-sequence such that m > 2 and (ahaj)e a, where 
0 < i < i + 2 < j < m. Then (a0,..., a^q,..., aw) is an a-sequence of length at 
most m — 1. Consequently, we can proceed by induction on m. • 

3.3 Corollary. An a-sequence is irreducible if and only if it has no proper 
reduct. 

3.4 Lemma. Every a-sequence is weakly pseudoirreducible if and only if a is 
irreflexive. 

Proof. It is obvious. • 

The relation a is called superirreflexive if every a-sequence is pseudoirreducible. 

3.5 Lemma. The following conditions are equivalent for a relation a: 
(i) a is superirreflexive; 

(ii) a0 7- amfor every a-sequence (a0,..., am); 
(iii) The elements a0,..., am are pairwise different for every a-sequence (a0,..., am). 

Proof, (i) implies (ii). If a0 = am then (a0,..., am,ai) is a non-pseudoirreducible 
a-sequence. 

(ii) implies (iii). Let (a0,..., am) be an a-sequence with a, = a;, 0 < i < j < m. 
Then (a„a I +i , . . . , a,-) is an a-sequence contradicting (ii). 

(iii) implies (i). This is trivial. • 

3.6 Lemma. If a is superirreflexive then a is irreflexive and strictly antisym­
metric. 

Proof It is easy. • 

The relation a is called 
- (totally) antitransitive if every a-sequence is irreducible; 
- regular ifm = n whenever (a0,..., am) and (b0,..., bn) are a-sequences such that 

a0 = bo and am = bn\ 
- weakly regular if m = n whenever (oo,..., am) and (bo,..., bn) are irreducible 

a-sequences such that a0 = b0 and am = bn. 

3.7 Lemma. Let a be a relation. 
(i) If a is regular then a is antritransitive. 

(ii) If a is antitransitive and weakly regular then a is regular. 

Proof. It is obvious. • 

3.8 Example. Put S = {0,1,2,3,4}. 
(i) ai = {(0,1), (1,0)} is irreflexive, weakly regular, but not superirreflexive. 

(ii) a2 = {(0,1), (1,2), (0,2)} is superirreflexive, but not antitransitive. 
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(iii) a3 = {(0,1), (0,3), (1.2), (2,4), (3,4)} is antitransitive, but not weakly regular 
(and thus not regular), 

(iv) a4 = {(0,1}) is regular. 

4. Transitive closures 

Let a be a binary relation on a set S. We define a relation y = t(a) on S by 
(a, b) e y if and only if there exists at least one finite a-sequence (ao, au..., am) such 
that ao = a and am = b. 

4.1 Proposition. Let cc be a binary relation on a set S; put y = t (a). 
(i) y is the transitive closure of a, i.e., y is the smallest transitive relation 

containing a. 
(ii) (a,b)ey if and only if there exists an irreducible OL-sequence (ao,...,am) 

such that ao = a and am = b. 
(iii) If a is reflexive (symmetric, resp.) then y is reflexive (symmetric, resp.). 
(iv) If a is a tolerance then y is an equivalence. 

Proof. It is easy (use 3.2). • 

4.2 Proposition. Let a be a binary relation on a set S. 
(i) The relation 3 = rt(a) = tr(a) is the quasiorder closure of a, i.e., the 

smallest quasiordering containing a. 
(ii) If a is symmetric then 8 is an equivalence. 

(iii) it (a) c ti(a) c t(a). 

Proof. It is easy. • 

4.3 Proposition. Let a be a binary relation on a set S; put y = t(a). The 
following conditions are equivalent: 

(i) y is irreflexive; 
(ii) y is strictly antisymmetric; 

(iii) y is a strict ordering; 
(iv) a is superirreflexive. 

Proof. It is easy (use 3.5). • 

4.4 Proposition. Let a be a binary relation on a set S and let d be the 
quasiorder closure of a. The following conditions are equivalent: 

(i) 5 is antisymmetric; 
(ii) 8 is an ordering; 

(iii) a0 = ai = ... = am whenever (a0,ax,...,am) is an a-sequence with a0 = a ^ 
(iv) i (a) is superirreflexive. 

Proof It is easy. • 
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4.5 Proposition. Let a be a binary relation on a set S, put y = t (a). 
(i) An element of S is right strictly y-isolated if and only if it is right strictly 

OL-isolated. 
(ii) An element of S is right y-isolated if and only if it is right cc-isolated. 

Proof. It is easy. • 

4.6 Proposition. Let cc be a binary relation on a set S and let 5 be the 
quasiorder closure of OL. An element ofS is right 5-isolated if and only if it is right 
cc-isolated. 

Proof. It is easy. • 

4.7 Lemma. If S is finite and OL is superirreflexive then for every ae S there 
exists at least one right strictly cc-isolated element be S with (a, b) e 5, where S is 
the quasiorder closure of cc. 

Proof. It is easy. • 

5. Infinite a -sequences 

Let a be a binary relation on a set S, y = t (cc) and 8 = r t (a). An infinite (right 
or upwards directed) sequence (a0,a1,a2,...) of elements of S is an a-sequence if 
v% at+i) e a f° r every i > 0. 

An (infinite) a-sequence (a0,a1,a2,...) is called 
— weakly pseudoirreducible if a, # a I+1 for every i > 0; 
— pseudoirreducible if a, / a, for all 0 < i < j (i.e., if the elements 

do, au a2,... are pairwise different); 
— irreducible if (at, a,) $ OL for al 0 < i < i + 2 < j . 

5.1 Lemma. Let OL be a binary relation on a set S. 
(i) Every irreducible infinite OL-sequence is pseudoirreducible. 

(ii) Every pseudoirreducible infinite cc-sequence is weakly pseudoirreducible. 

Proof. It is obvious. • 

5.2 Lemma. The following conditions are equivalent for a binary relation OL on S: 
(i) Every finite cc-sequence can be extended to an infinite one; 

(ii) Every right strictly OL-isolated element is left strictly cc-isolated. 

Proof. It is easy. • 

5.3 Lemma. The following conditions are equivalent for a binary relation OL on S: 
(i) Every weakly pseudoirreducible finite cc-sequence can be extended to 

a weakly pseudoirreducible infinite one; 
(ii) Every right cc-isolated element is left OL-isolated. 

Proof. It is easy. • 
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5.4 Proposition. Let a be a binary relation on a set S and assume that there 
exist no weakly pseudoirreducible infinite o-sequences. Then: 

(i) a is antisymmetric; 
(ii) i (a) is superirreflexive; 

(iii) For every aeS there exists at least one right cc-isolated element be S with 
(a, b) e S. 

Proof. It is easy (for (ii) see 3.5 and 4.4). • 

5.5 Proposition. Let a be a binary relation on a set S and assume that there 
exist no infinite o-sequences. Then: 

(i) a is strictly antisymmetric and superirreflexive; 
(ii) For every ae S there exists at least one right strictly o-isolated element 

be S with (a, b) e d. 

Proof. It is easy. • 

5.6 Lemma. Let a be a binary relation on a set S. 
(i) Every infinite oc-sequence is weakly pseudoirreducible if and only if OL is 

irreflexive. 
(ii) Every infinite oc-sequence is pseudoirreducible if and only if OL is superir­

reflexive. 
(iii) If OL is antitransitive then every infinite o-sequence is irreducible. 
(iv) If OL is a near-ordering then every weakly pseudoirreducible infinite 

o-sequence is pseudoirreducible. 

Proof It is easy (for (i) use 3.4 and for (ii) use 3.5). • 

5.7 Example. Consider the relation a2 from 3.8(ii). This relation is not antit­
ransitive. Clearly, there exist no infinite a2-sequences and hence every infinite 
a2-sequence is irreducible. 

5.8 Lemma. Let (a0,aha2,...) be an infinite y-sequence with (ai+ha)$y for 
every i > 0. Then (ak, a}) $ d for every 0 < j < k (in particular, the sequence is 
pseudoirreducible). 

Proof If k =j + 1 then (ak,a}) = (aj+uaj)$y and, if ak = a} then (ak,a}) = 
= (apaj) = (aj,j+i) e y , a contradiction. If j + 2 < k and (ak,a}) e y then (aj9ak_i) e 
e y and (ak,a}) e y yields (ak,ak_l) e y, a contradiction again. Finally, if j + 2 < k 
and ak = a} then (aj9ak_i) e y and (aj9 ak_{) = (ak,ak_{) $ y, a contradiction. • 

6. Confluent r e l a t ions 

A binary relation a on a set S is said to be 
— right (or upwards) strictly confluent if for all a, b,c,e S such that (a, b)ea 

and (a, c)eo there exists at least one deS with (b, d) e a and (c, d) e a; 
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— right (or upwards) confluent if for all a,b,c e S such that (a,b) e OL, 
(a,c)eoL and b =£ c there exists at least one deS with (b,d)eoL and 
(c,d)ea; 

— right (or upwards) almost confluent if for all a,b,ce S such that (a,b) e cc, 
(a, c) e OL, (b, c) $ OL, (C, b)$a and b ^ c there exists at least one deS with 
(b, d)e OL and (c, d) e cc (then b 7-= d 7-- c and b 7-= a ^ c). 

Left (or downwards) confluent relations are defined dually. 

6.1 Lemma. Let cc be a binary relation on S. 
(i) If OL is right almost confluent then i (cc) is right almost confluent. 

(ii) If OL is right almost confluent then r (a) is right strictly confluent. 

Proof. It is obvious. • 

6.2 Lemma. Let cc be a right almost confluent relation on S and let a,b,ceS 
be such that (a, b)eoL and (a, c) e OL. 

(i) Ifb is right pseudoisolated then either (c,b) e r (a) or there exists an element 
deS such that (c, d) e OL, (d, b)eoL and (b, d)eoc (then (c, b)eoL provided that 
a is transitive). 

(ii) If b is right isolated then (c, b)er (OL). 

Proof. It is obvious. • 

6.3 Lemma. Let OL be a right almost confluent relation on S. Then for every aeS 
there exists at most one right isolated element b eS such that (a, b) e cc. 

Proof. Use 6.2. • 

6.4 Lemma. A binary relation a on S is right strictly confluent if and only 
if OL is right confluent and every right strictly isolated element is left strictly 
isolated. 

Proof. It is obvious. • 

6.5 Lemma. A binary relation OL on S is right confluent if and only if cc is right 
almost confluent and the following two conditions are satisfied: 

(a) if a,b,c e S arepairwise different elements such that (a,b) e OL, (a, c) e OL and 
(b, c)eoL then (b, d)e OL and (c, d)e OL for at least one d e S; 

(b) if a,b eS are such that a 7*- b, (a, a)e OL and (a, b)e OL then (a, e)ecc and 
(b, e)ecc for at least one eeS. 

Proof. It is obvious. • 

6.6 Lemma. Let OL be an irreflexive relation. Then OL is right confluent if and 
only if OL is right almost confluent and satisfies 6.5(a). 

Proof. Use 6.5. • 
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6.7 Lemma. Let oc be a transitive relation. Then oc is right strictly confluent if 
and only if oc is right almost confluent and every right strictly isolated element is 
left strictly isolated. 

Proof. It is obvious. • 

6.8 Proposition. Let oc be a right almost confluent relation on S. Then: 
(i) The transitive closure y = t(oc) is right almost confluent. 

(ii) The quasiorder closure S = r t (a) is right strictly confluent. 

Proof. By 6.1(ii), the relation jS = r(a) is right strictly confluent. We are going 
to show that 5 = t(/J) is also right strictly confluent. Let (a0,..., am) and (b0,..., bn) 
be (5-sequences such that a0 = bo-

Consider first the case m = 1. Using induction, we find elements cu...,cneS 
in the following way: Since /} is right strictly confluent, there is an element c{e S 
with (au Ct) e /J and (bl9c{) e /?. Now, if 1 < j < n and cu..., c}- are found such that 
the sequence (a{,chc2,..., c;) is a //-sequence and all the pairs (bi9Ci)9 

(b2,c2),...,(bj,Cj) are in (I then (cj,cJ+l)eP and (bj+l,cJ+l) e/? for some cJ+leS. 
Consequently, by induction, (bn,cn)e(i and (auch..., cn) is a /J-sequence. Thus 
(am,cn)ed and (bn,cn)e 5. 

In the general case we proceed by induction on m + n. In view of the preceding 
part of the proof, assume that m > 2. Then there is a c e S with (aw_i,c) e 5 and 
(bn,c)ed. Furthermore, (am_ham)e ft and hence (am,d)ed and (c,d)ed and 
(c, d)ed for at least one deS. Consequently, (am, d)e 8 and (bn, d) e 3. 

We have proved that 5 is right strictly confluent and the fact that y is rigth 
almost confluent follows easily. • 

6.9 Proposition. Let a be a right almost confluent relation on S such that every 
right strictly oc-isolated element is left strictly oc-isolated. Then t (oc) is right strictly 
confluent. 

Proof. By 6.8(i), t(a) is right almost confluent. The rest follows from 6.7. • 

6.10 Proposition. Let ocbe a right almost confluent relation on S. The following 
conditions are equivalent for an element ae S: 

(i) a is right y-pseudoisolatedf where y = t (a); 
(ii) a is right S-pseudoisolated, where 5 = rt (oc); 

(iii) (b, a) e y for every b e R (a, oc); 
(iv) (b, a) e d for every b e R (a, /?), where fi = r (a). 

Proof. Clearly, (i) is equivalent to (ii), (iii) is equivalent to (iv) and (i) implies 
(iii). It remains to show that (iii) implies (i). 

Let (a,b)ey. Then a = a0 and b = am for an a-sequence (a0,..., am). We are 
going to prove (b, a) e y by induction on m. We can assume that a 7- b. The case 
m = 1 is clear. Let m > 2. We have (am_ua)ey by induction and we have 
(am_u b) e oc. Proceeding similarly as in the proof of 6.8, we find an element c e S 
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such that (a, c) e /J and (b, c) e 5. Then (c, a)ed and hence (b, a) e 8, so that 
(b,a)ey. • 

6.11 Lemma. Let a be a right confluent relation on S. If a,b,ce S are such 
that (a,b) e a, (a ,c)et(a) and (b,c) $ rt(a) then there is deS with (c,d)e a and 
(b,d)Gd(a). 

Prao/ Since (a,c) e t(a), there is a finite a-sequence (a0,..., am), m > 1, such that 
a0 = a and am = c. If b = a!, then (b,c) = rt(a), a contradiction. Thus b ^ ax 

and, since a is right confluent, there is b{ e S with (b, b{) e a and (al5 bx) e a. Now, 
if b0 = b, bu ..., bn, n < m, are such that (b^^b^eoL, 1 < i < n, (a^b^eoL, 
0 < j < < n, then fen 7- an+1 (otherwise (b,c) e rt(a)) and we find bn+leS with 
(bn,bn+l)eoL and (an+1,b„+1) G a. Proceeding by induction we obtain bmeS such 
that (bm_u bm) e a and (am, bm) e a, and hence (c, bm) e a and (ft, bm) e t (a) and we put 
d = bm, which completes the proof. • 

7. Free confluent extensions 

Let a be a binary relation on a set S. 
Denote by g (S, a) the set of two-element subsets {b,c} _= S such that there exists 

at least one ae S with (a, b) e a, (a, c) e a, but no d e S with (b, d) e OL, (C, d) e a 
(notice that £ (S, a) is empty if and only if a is right confluent). Let / be a bijection 
of Q (S, a) onto a set T disjoint with S. Put a (S) = S u T and a (a) = 
= a u {(b,f({b,c})),(c,f({b,c}))\ {b,c}eQ(S,a)}. 

7.1 Lemma. Let OL be a binary relation on a set S. 
(i) S = <r (S), OL _= O(OL) and OL = cr(a) \ S. 

(ii) f({b,c}) is right strictly a (^-isolated for every {b,c}e Q(S,OL). 

(iii) If {x,y} e Q(O (S), a (OL)) then either x$ S or y $ S. 
(iv) If OL is antitransitive then a (OL) is so. 

Proof. It is easy. • 

Consider the infinite sequence a = a0(a) _= ex1 (a) _= G2(OL) __ ... where 
<r'+1(a) = a (a1(OL)) for i > 0. Put r(a) = U £ 0 **(«). 

7.2 Proposition. Let OL be a binary relation on a set S. 
(i) a c T(a). 

(ii) T (a) is rig/tf confluent. 
(iii) 7/" a is antitransitive then x (a) is so. 

Proo/ Easy to check (use 7.1). • 

Denote by zc(a) the set of right stictly a-isolated elements aeS such that a is 
not left strictly a-isolated. Let g be a bijection of K (OL) onto a set R disjoint with 
S. Put vl(S) = S u i? and k(a) = a u {(0,0(0)) I 0 e ic(a)}. 
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7.3 Lemma. Let oc be a binary relation on a set S. 
(i) 5 = X(S), OL _z X(OL) and a = X(OL) \ S. 

(ii) g(a) is right strictly X(a)-isolated for every a e /c(a). 
(iii) ic(A(a))nS = 0. 
(iv) //* a is antitransitive then X (a) is so. 
(v) If OL is right confluent then X (a) is so. 

Proof. It is easy. • 

Consider the infinite sequence a = X°(OL) _= A1 (a) c X2(OL) _Z ... where 
A'+1(a) = X(X1(OL)) for i > 0. Put //(a) = U ^ o ^ ( a ) and 5(a) = ^r(a). 

7.4 Proposition. Let OL be a binary relation on a set S. 
(i) a c /x(a). 

(ii) Every rig/tf strictly \x (ot)-isolated element is left strictly \i (oc)-isolated. 
(iii) If OL is antitransitive then \i (a) is so. 
(iv) If a is right confluent then fi (a) is so. 

Proof. It is easy (use 7.3). • 

7.5 Proposition. Let OL be a binary relation on a set S. 
(i) OL c 9(OL). 

(ii) 5(a) is right strictly confluent. 
(iii) 7/" a is antitransitive then 9(a) is so. 

Proof. Combine 7.2 and 7.4. • 

8. Regular relations 

8.1 Proposition. Let a be a right confluent relation on a set S. If(a0,..., am) and 
(b0,..., bn) are a-sequences such that a0 = b0, am = bn and am is right strictly 
OL-isolated then m = n. 

Proof. We will proceed by induction on m + n. We have m + n > 2 and, 
if m + n = 2, then m = 1 = n. Henceforth, assume that 1 < n < m and 
2 < m. 

If a! = b! then n > 2, since am = bn is right strictly a-isolated. Consequently, 
(#!,..., am) and (bl9..., bn) are a-sequences of length m — 1 and n — 1, resp. Now, 
m— 1 = n — l b y induction and then m = n. 

It remains to consider the case ax # bx. Since a is right confluent, there is 
an element c{ = S with (a, c{) e OL and (bb c^ e OL. Since b„ is right strictly 
a-isolated, we have n > 2, proceeding similarly, we find an index 1 < k < n and 
elements c1?..., cfc such that (chci+l) e OL for every 1 < i < fc, (bj9Cj) e OL for every 
1 < j < k and cfc = bk+x (use again the fact that bn is right strictly a-isolated). 
Clearly, (aucu..., ck_ubk+u..., bn) and (ax,a2,...,am) are a-sequences of length 
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n — 1 and m — 1, resp. Thus n— l = m — l b y induction and we get m = n 
again. • 

8.2 Proposition. Let o.be a right confluent relation on a set S. If(a0,..., am) and 
(b0,..., bn) are o-sequences such that a0 = b0, am = bn and (am,a) E rt(a) for at 
least one right strictly a-isolated element a, then m = n. 

Proof. If am is right strictly a-isolated then the equality m = n is proved in 8.1. 
If am is not right strictly a-isolated then there is an a-sequence (am,am+l,..., am+k), 
k > 1, such that am+k = a. Then (a0,..., am+k) and (b0,...,bn,am+k,...,am+k) are 
a-sequences of length m + k and n + k, resp. Thus m + k = n by 8.1 and hence 
m = n. • 

8.3. Corollary. Let a be a right confluent relation on a set S such that for every 
ae S there exists at least one right strictly OL-isolated element be S with 
(a, b)ert (a). Then a is regular (and hence it is strictly antisymmetric and 
antitransitive). 

8.4 Proposition. Let a be a right almost confluent relation on a set S such that 
for every ae S there exists at least one right a-isolated element be S with 
(a,b) e rt(a). Then i(a) is regular if and only if (a,c) $ a whenever a,b,ceS are 
such that a 7-= b 9-= c / a,(a,b)eoL and (b,c) e a. 

Proof. Only the converse implication needs a proof. By 6.1(i), i(a) is right 
almost confluent. Hence i (a) is right confluent by 6.6. Further, rt(a) = rti (a) and 
our result follows from 2.8(i) and 8.3. • 

8.5 Proposition. Let a be a right almost confluent relation on a finite set S. 
Then a is regular if and only if a is superirreflexive. 

Proof. Combine 4.7 and 8.3. • 

8.6 Example. Put 5 = {0,1,2,3}. 
(i) a- = {(0,1), (1,2), (2,0), (2,3), (3,1)} is both right and left strictly confluent, 

strictly antisymmetric, but not regular, 
(ii) a2 = {(0,1), (0,2), (1,0), (1,2), (2,1)} is both right and left strictly confluent, 

irreflexive, symmetric, transitive, but not regular. 

8.7 Example. Put 5 = {0,1,2,...} and a = {(i,i + 1), (i,i + 2) \ i = S). Then 
a is right strictly confluent and superirreflexive. On the other hand, a is not weakly 
regular. 

8.8 Example. Consider the relation a3 from 3.8(iii) and put e = 3(a) (see 
Section 7). Then e is antitransitive and right strictly confluent. On the other hand, 
e is not weakly regular. 

8.9 Example. The relation {(0,1), (2,1), (2,3)} on {0,1,2,3} is an example of 
a regular which is neither right nor left almost confluent. 
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9. Roots of near-orderings 

Let a be a near-ordering on a set S. The root (or the covering relation) £ = V a 

of a is the binary relation defined by (a, b)e£ if and only if (a, b) e i (a) and 
c e [a,b] whenever (a, c) e a and (c, b) e a. 

9.1 Lemma. Let cube a near-ordering on a set S. 

(i) Va — a and Va i5 antitransitive. 

(ii) Va = V*(a) = Vr(a) = UVa)-
(iii) Va = t(Va) = i(a) = a = r(a). 
(iv) Itot/i t (Va) and i (a) are strict orderings on S. 

Proof. It is obvious. • 

9.2 Remark. Let a be a near-ordering on S. 
(i) >/a = 0 if and only if a is dense. That is, for all (a, b) e i (a) there exists at 

least one ceS with (a, c) e i (a) and (c, b) e i (a). If this condition is satisfied 
then either a ^ ids or 5 is infinite. 

(ii) ^/a = a if and only a is irreflexive and every finite a-sequence has length 1. 

A near-ordering will be called resuscitable if a = rt (Va)-

9.3 Lemma. Let cube a resuscitable near-ordering. 

(i) Va = t(Va) = j(a) = a = r(a) § rt(Va). 
(ii) 7/* a is reflexive then a = rt (Va)-

(iii) If a is irreflexive then a = t(V-<). 
(iv) Both i (a) and r (a) arc resuscitable. 

Proof It is obvious. • 

9.4 Lemma. Every near-ordering on a finite set is resuscitable. 

Proof. It is obvious. • 

9.5 Lemma. Let a be a resuscitable near-ordering on a set S such that ft = V a 

is right confluent. If a,b,ceS are such that (a,b)efi and d = sup^)(a,c), 
e = supr(a) (b, c) exist in S then either d = e or (d, e) e /J. 

Proof. If a = d then (c, a) e r (a), and hence (c, b) e r (a), e = b and (d, e) = 
= (a, b) e p. Now, we can assume that a # d. Then (a, d) e i (a) = t (/J). Moreover, 
if (b, d)er (a), then d = e, and so we can also assume that d ^ e and (b, d) 4 r (a). 
Then (M) £ rt(j8) and, by 6.11, there is fie S with (d,fi) e p and (b,f) e t(j8) = a. 
From this (e, f)er (a) and, since d 7-= c, we get e = fi • 

9.6 Lemma. Let fi be a binary relation satisfying the equivalent conditions of 
4.4. Put a = t(P). 
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(i) a is a near-ordering. 

(ii) V a - P ^ a ^ t(Va) - a-
(iii) If i(P) is antitransitive, then i(/?) = Vi(a), i(a) = it(j8) c ti(j8) = 

= t (>/i (a)) _= t (Va) 0 fld a i= ri (a) _= rt (>/a) (in particular, a w resuscit-
able). 

9.7. Corollary. Let /? be an antitransitive binary relation satisfying the equiva­

lent conditions of 4.4. Then ft = y/t(ft) and t(0) is resuscitable. 

9.8 Lemma. Let fi be a binary relation on a finite set such that /? satisfies the 

equivalent conditions of 4.4. Put a = t(/J). Then t(>/a) = i(a) .= a ^ rt(Va) =" 

S r(a). 

Proof Combine 9.4 and 9.6. • 
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