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Groupoids and the Associative Law VIIA. 
(SH-Groupoids of Type (A, B, A) and their Semigroup Distances) 

MILAN TRCH 

Praha 

Received 4. October 2006 

Szasz-Hajek groupoids (shortly SH-groupoids) are those groupoids that contain just one 
non-associative (ordered) triple of elements. These groupoids were studied by G. Szasz 
(see [10] and [11]), P. Hajek (see [2] and [3]) and later in [6], [7], [8] and [9]. In this 
paper, which is a continuation of [12], SH-groupoids of type (a, b, a) having an arbitrary 
large semigroup distance are constructed. 

1. Preliminaries 

A groupoid G is called an SH-groupoid if the set {(a, ft, c) e G® \a- be 7-= ab- c] 

of non-associative triples contains just one element. Let G be an SH-groupoid and 

let (a, b, c) be the only non-associative triple. We shall say that G is of type: 

— (a, a, a) if a = b = c; 
— (a,a,b) if a = b 7-- c; 
— (a,b,a) if a = c ^ b\ 
— (a,b,b) if a ^ b = c; 
— (a,b,c) if a 7- fc 7- c 7̂  a. 

Furthermore, G will be called minimal if G is generated by the set {a,b,c). The 
following two assertions are easy: 

1.1 Proposition. Let G be an SH-groupoids and let a,b,ceG be such that 
a- be # ab • c. Then: 
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(i) G is of exactly one of the types (a, a, a), (a, a, b), (a, b, a), (a, b, b) and (a, b, c). 
(ii) If H is a subgroupoid of G, then either {a,b, c} c H and H is an 

SH-groupoid (of the samy type as G) or {a,b, c] £ H and H is a semigroup. 
(iii) The subgroupoid (a,b,c}o is a minimal SH-groupoid. 
(iv) If u,veG are such that uv e {a,b,c], then uv e {u,v}. 

1.2 Proposition. Let G be an SH-groupoid of type (a, b, a). Then: 
(i) Either c = ab ^ a, or d = ba 7-= a and either c = ab 7-= b or d = ba 7*- b. 

(ii) If u = ab = ba then au # ua. 
(iii) If ab = a and ba = b then a2 7*- a. 
(iv) Ifba = a and ab = b then a2 7-= a. 
(v) If G (*) is a minimal SH-groupoid then G contains at least three elements. 

Let G(*) and G(o) be two groupoids having the same underlying set. We put 
dist(G(*), G(o)) denotes card {(u,v) e G(2) | u * v =t u o v}). 

Let G be an SH-groupoid. The sdist(G) denotes the minimum of dist (G, G (*)), 
where G (*) is running through all semigroup with the same underlying set G. 

If G is a groupoid containing a subgroupoid H then G is also called an extension 
of H. If peG\H then the subgroupid H(p) generated by the set H u {p} is said 
to be a primitive extension of the groupoid H. In this case p will be called 
a primitive element (with respect to the groupoid H). 

1.3 Proposition. Let G be an SH-groupoid containing a minimal SH-groupoid 
H as a proper subgroupoid. Then there exists an element pe G and a primitive 
extension H (p) of the groupoid H such that H (p) is an SH-groupoid of the same 
type as G and H. 

Proof Obvious. 

2. Minimal SH-groupoid and its nearest semigroups 

2.1 Construction. Let A = {a,a2,a3,..., ak,ak+l,...} be a semigroup generated 
by one-element set {a} and let M = {b,b2,c,e,fg} be a six-element set disjoint 
with A. Put G = A u M. Define a mapping X of the set G into the set of natural 
numbers such that X(a) = 1 = X (b), X (ak) = k for each natural number k, 
X(c) = X(b2) = 2 and X(e) = X(f) = X(g) = 3. Finally, define on G a binary 
operation in such a way that A(-) is a subgroupoid of G() and in the remaining 
cases put: 

(i) ab = c, ba = a2, bb = b2; 
(ii) ab2 = cb = e, ac = be = a2b = f, ba2 = bb2 = b2a = b2b = a3, ca = g; 

(iii) ae = af = ag = be = bf = bg = b2b2 = b2c = cb2 = cc = ea = ab = 
= fa = fb = ga = gb = a4; 

(iv) b2e = b2f = b2g = ce = cf = eg = eb2 = fb2 = gb2 = a5; 
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(v) ee = ef = eg = fe = ff = fg = ge = gf = gg = a6; 
(vi) akb = bet = ak+1

9 akb2 = akc = b2ak = cak = ak+2
9 ake = akf = akg = 

= eak = fak = gak = ak+3 for every k > 1. 
Then G() becomes a groupoid satisfying the condition k(xy) = A(x) + k(y) for 
all x, y e G. 

2.2 Lemma. G (•) is a minimal SH-groupoid of type (a, b9 a). 

Proof, (i) If x9y9zeG are such that k = A(x) + A(y) + A(z) > 3 then 
x.yz = ak = xy.z. 

(ii) If x,y9z e G are such that k(x) + k(y) + A(z) = 3 then (x,y9z) is one of 
(a9a9a)9 (a9a9b)9 (a9b9a)9 (b9a9a)9 (b9b9a)9 (b9a9b)9 (a9b9b)9 (b9b9b) and 
a.aa = aa2 = a3 = a2a = aa.a, a.ab = ac = f = a2b = aa.b9 a.ba = 
= a3 # g = ca = ab.a9 b.aa = b.a2 = a3 = a2a = ba.a9 bb.a = a2a = 
= a3 = ba2 = b.ba9 b • ab = be = f = a2b = ba.b9 a.bb = ab2 = e = 
= cb = ab.b9 b.bb = bb2 = a3 = b2b = bb.b. 

(iii) It is obvious that G() is generated by the two element set {a,b) and the rest 
is clear. 

2.3 Lemma. sdist(G(-)) = 1. 

Proof. Define on G a binary operation * such that c * a = a37--g = ca and 
x * y = xy if (x, y) ^ (c, a). It is easy to see that A (x * y) = A (x) + A (y) for every 
x9yeG. Therefore x *(y * z) = ak = (x * y) * z whenever k = A (x) + A (y) + 
+ k(z) > 3. Further, c*a = ab*a = (a*b)*a = a3 = a*a2 = a*ba = a*(b*a) 
and it is easy to check that also in the remaining cases x * (x * z) = (x * y) * z. 
Thus dist(G(), G(*)) = 1 and sdist(G()) = 1. 

2.4 Lemma. If G(*) is a semigroup having the same underlying set as the 
SH-groupoid G (•) then just one of the following conditions takes place: 

(i) a * b T-= ab and b * a ^ ba9 

(ii) a* b T- ab and b * a = ba9 

(iii) a* b = ab and b * a ^ ba9 

(iv) a* b = ab = c9b * a = ba = d and a* d = ad = c * a # ca9 

(v) a*b = ab = c9b*a = ba = d and ad ^ a * d = c * a = ca9 

(vi) a* b = ab = c9b * a = ba = d and ad ¥= a* d = c * a ^ ca. 

Proof. Suppose the opposite and let a * b = ab = c, a * d = ad = f b * a = 
= ba = d9 c * a = ca = g. Then a*(b*a) = a*ba = a*d = ad=f^g = 
= ca = c * a = ab * a = (a* b)* a, a contradiction. 

2.5 Lemma. Let G (*) be a semigroup having the same underlying set as the 
SH-groupoid G() and such that sdist(G()) = dist(G(), G(*)). Then: 

(i) if x = a* b T-= ab then A(x) = 2, 
(ii) if z = b * a 9-= ab then A (z) = 2, 
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(iii) if a * b = ab = c, b * a = ba = d and y = c * a # ca then X (y) = 3, 
(iv) if a * b = ab = c, b * a = ba = d and y = a* d # ad then X (y) = 3. 

Proof. According to 2.3, sdist(G)()) is finite and therefore there exists a natural 
number m such that x * y = xy whenever X(x) + X (y) > m. In particular, 
x * ak = xak for every xe G and k > m, k > 3. Suppose that x = a * b # ab. 
Then xam = x * am = (a * b) * am = a * bam = a • bam. It follows from this that 
X(xam) = X(x) + X(am) = X(x) + m = X(a- bam) = 2 + m and therefore X(x) = 
= 2. The rest is similar. 

2.6 Proposition. There exists only one semigroup G (*) having the same under­
lying set as the groupoid G(-) and satisfying the condition dist(G(*), G(*)) = 
= sdist(G(-)). 

Proof With the respect to 2.3 and 2.4 just one of the following four conditions 
holds: a * b ^ ab, b * a ^ ba, d = ba and a * d ^ ad, c = ab and c * a ^= ca. 

(i) Suppose that x = a* b ^ ab. Then X (x) = 2 and therefore x $ {a2, b2}. For 
x = a2 we have f = a2b = aa* b = (a* a) * b = a* a2 = aa2 = a3, 
a contradiction. Similarly, for x = b2 we have / = a2b = aa*b = 
= (a * a) * b = a * (a * b) = a * b2 = ab2 = e, again a contradiction. 

(ii) Suppose that z = b * a ^ ba. Then X(z) = 2 and therefore z e {tf,c}. For 
z = b2 we have a3 = b2b = b2 * b = (b * a) * b = b * (a * b) = b * ab = 
= b * c = be = f, a contradiction. If z = c then g = ca = c*a = 
= (b * a) * a = b * (a* a) = b * aa = b • aa = ba- a = a2a = a3, again 
a contradiction with 2.3. 

(iii) Suppose that c = ab = a*b and b * a = ba = a2. If y = a * d 7-- ad = 
= a- ba = aa2 = a3 then ay = a*y = a*(b*a) = (a*b)*a = ab*a = 
= c * a = ca = g. However, the equation ay = g has no solution in G (•). 

(iv) If a* b = c, d = ba = b * a and y = c * a # ca then y = c * a = 
= (a*b)*a = a*(b*a) = a*ba = a*a2 = aa2 = a3 and the rest fol­
lows from 2.3. 

2.7 Remark. The semigroup G(*) constructed in 2.3 is the nearest semigroup 
to the groupoid G (•) among all semigroup having the same underlying set G. 

3. Primitive extension and its semigroup distance 

3.1 Construction. Consider the SH-groupoid G() constucted in 2.1. Let the set 
M = {p,u, v, w} be disjoint with G and put £ = G u M . Further, put X(p) = 1 and 
X(u) = X (v) = X (w) = 2. Define on E a binary operation in such a way that G (•) 
is a subgroupoid of £(•) and also the condition X(xy) = X(x) + X(y) for all 
x, y e E is satisfied. To this end, put: 

(i) ap = c, bp = u, pa = v, pb = w and pp = a2 (thus xy is defined for all 
x, y satisfying 2 = X (x) + X (y)); 
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(ii) e = aw = bv = few = pc = pu = ua = ub = vb = vp = wp, f = a2p = 
= bu = b2p = pa2 = pb2 = pw = va = wa = wfe, g = av and a3 = 
= au = cp = pv = up (thus xy is defined for all x, y satisfying 
3 = k(x) + k(y)); 

(iii) ak = xy whenever 4 < k = k (x) + k (y). 
Then £ (•) becomes a groupoid containing the minimi SH-groupoid G (•) as a proper 
subgroupoid. 

3.2 Lemma. £(•) is an SH-groupoid of type (a,b,c) generated by the 
three-element set \a,b,p). 

Proof. E (•) contains the minimal SH-groupoid G (•) as a proper subgroupoid. It 
is obvious that each triple (x, y, z) e E® satisfying k (x) + k (y) + k (z) > 4 is 
associative. We will check that every triple (a, fe, c) 7-= (x, y, z) e E® having k (x) + 
+ k(y) + k(z) = 3 is associative. In particular, we have a- ap = ac = f = 
= a2p = aa • p, a • bp = au = a3 = cp = ab • p, a • pa = av = g = ca = ap • a, 
a • pb = aw = e = cb = ap = fe, a • pp = aa2 = a3 = cp = ap • p, fe • ap = be = 
= f = a2p = ba • p, b • bp = bu = f = b2p = bb • p, fe • pa = bv = e = ua = 
= bp- a, fe • pb = few = e = ub = bp • fe, b • pp = ba2 = a3 = up = bp • p, 
p- aa = pa2 = f = va = pa- a, p • ab = pc = e = vb = pa • fe, p • ap = pc = 
= e = vp = pa • p, p • ba = pa2 = f = wa = pb • a, p • fefe = pfe2 = f = wfe = 
= pb - b, p• bp = pu = e = wp = pb • p, pp• a = pv = a3 = a2a = pp- a,p- pb = 
= pw = f = a2b = pp- b, p • pp = pa2 = f = a2p = pp • p. Finally, a- ba = 
= a 7̂  g = ca = a • ba. 

3.3 Lemma, sdist (£(•)) < 2. 

Proof. Define on £ a binary operation * such that c*a = a3 = a*v and 
x * y = xy whenever (c, a) 7-= (x, y) ^ (a, v). Then x * y = c only if either (x, y) = 
= (a, fe) or (x, y) = (a, p). Furthermore, x * y = v only if (x, z) = (p, a) and 
x* y ^ a for all x, y e E. Suppose that (r, s, t) satisfies the conditions 
(a, p) 7-= (r, s) 7-= (a, fe) and (s, t) 7-= (p, a). Then r * (s * t) = r * st = rs • t = rs * t = 
= (r * s) * t. In the remaining cases we have (a*b)*a = ab*a = c*a = a3 = 
= a- a2 = a* ba = = a*(b * a), (a*p)*a = ap*a = c*a = a3 = a*v = 
= a * pa = a * (p * a). It means that £ (*) is a semigroup having dist (£ (•), 
£(*)) = 2 and therefore sdist (£(•)) < 2. 

3.4 Lemma, sdist (£(•)) 7-= 1. 

Proof. Suppose that sdist (£(•)) = 1 and let £(0) be a semigroup satisfying the 
condition dist (£(•), £(0)) = 1. Then there exist a natural number m such that 
x O am = xam for every xeE. 

(i) Suppose first that z = a Q fe 7- ab. Then zam = z O am = (a O fe) O am = 
= aO(bOam) = aObam = a- bam. Therefore, k(zam) = k(a- bam) and it 
follows from k(z) + m = 2 + m that k(z) = 2. It means that 
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c 7* z e {o^fc^c.Mjtf.w}. Moreover, z£ {a2,.??2^} with respect to 2.6. For 
aob = u we have a o (a o b) = a o w = au = a3 and (a o a) o 6 = 
= aaOb = a2b = fa contradiction. For a o b = v we obtain ao(aOb) = 
= aOv = av = g and (a o a)o b = aaO b = a2b = f a. contradiction. 
For a o b = w we have a o ( a O b ) = aOw = aw = c and (a o a) o ft = 
= aaOb = a2b = f again a contradiction. Therefore aOb = ab. 

(ii) Suppose that z = b o a ¥= ba. There exists a natural number m such that 
x o am = xam for every x e E. In particular, zam = z O am = (b O a) O am = 
6 O (a O am) = b o aam = b • am+\ It follows from this that X(zam) = 
= X(b • am+l). Therefore X(z) = 2, and so z e {d,b2,c,u,v,w}. Of course, 
z £ {c?,b2,c} (in that case G(o) is semigroup and a subgroupoid of E(o), 
a contradiction with 2.6). If z = w then we obtain a O u = a o ( b O a ) = 
= (aOb)oa = abOa = cOa = ca = g¥zf = au, a contradiction. If 
z = i; then bOv = bo(bOa) = (bob)oa = bbOa = bb-a = a3^ 
^ e = bv, again a contradiction. If z = w then aOw = a o ( o O a ) = 
= (aOb)oa = abOa = cOa = ca = g^e = aw, a contradiction, 

(iii) Suppose that aob = ab = c, b o a = ba = a2 and c O a = ca = g. 
Then a; = cOa = abOa = (aOb )oa = ao (bOa) = aOoa = aOa 2 = 
= aa2 = a3, a contradiction, 

(iv) Suppose that a o b = ab,b o a = ba, z = c O a ^ ca. Then z = c O a = 
= abOa = (aOb)Oa = ao(bOa) = aOba = aOa2 and, further, 
a3 = c O a = a p O a = ( a O p ) o a = a o ( p O a ) = a O p a = aOt; = 
= av = g, a contradiction. 

3.5 Lemma, sdist (£(•)) = 2. 

Proof It follows immediately rom 3.2, 3.3 and 3.4. 

3.6 Proposition. Let H() be an SH-groupoid of type (a,b,a) containing the 
SH-groupoid E (•) as a subgroupoid and let H (*) be a semigroup having the same 
underlyin set as H (•). Then at least one of the following conditions takes place: 

(i) x * p ^ xp or p * x T-= px for some x e G; 
(ii) x * u T-- xu or u * x 7-= ux for some x e G; 

(iii) x * v 7-- xv or v * x ^ vx for some x e G; 
(iv) x * w 7* xw or w * x 7-= wx for some xe G. 

Proof. Suppose that the opposite takes place. Let H (*) be a semigroup having 
the underlying set H (i.e., H ^ E 2 G) and satisfying the conditions x * p = xp, 
x*u = xu, x * v = xv, x * w = xw, p * x = px, u* x = ux, v * x = vx, 
w * x = wx for each x e G. It is obvious that either a * b 7-= ab, or b * a ^ ba, or 
a* b = ab = c,b * a = ba = d. If a* b = ab = c,b * a = ba = d then a * d = 
= ad = c * a T̂  ca or ad 7-= a * d = c * a = ca, or ad 7-= a * d = c * a 7-= ca. 

Consider the triples (a,p,a), (a,p,b), (a,p,p), (b,p,p), (p,p,a} and (p,p,b). Then 
c*a = ap*a = a*p*a = a*pa = a*v = av = g, c*b = ap*b = a*p*b = 
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= a*pb = a*w = aw = e, a*a2 = a*pp = a*p*p = ap*p = c*p = 
= cp = a3, b*a2 = b*pp = b*p*p = bp*p = u*p = up = a3, a2 * a = 
= pp*a = p*p*a = p*pa = p*v = pv = a3, a2*b = pp*b = p*p*b = 
= p*pb = p*w = pw = f Further, consider the triples (p, a, a), (p, b, a), (p, b, b) 
and denote x = a * a, y = b * a, z = b * b. Then the following three conditins 
have to be valid in E(•): px = p*x = p*a*a = pa*a = v*a = va = f 
py = p * y = p * b * a = pb * a = w * a = wa = f pz = p*z = p*b*b = 
= pb*b = w*b = wb = f However, the corresponding equation has just three 
solutions in E(•) and therefore x,y,ze {a2,b2,w). Finally, denote t = a*b and 
consider the triple (a,b,p). Then the equation tp = t*p = a*b*p = 
= a*bp = a*u = au = a3 must be satisfied in E(•). It follows from this that 
te{c,u}. Thus there is only a finite number of acceptable values for elements 
t,x,y,z and each of these situations has to be investigated in more detail. 
Moreover, if t e {c,u} and x,y,z e {d,b2, w\ is an acceptable choices of elements 
t, x, y, z then the following eight conditions have to be valid: a * x = 
= a*a*a = x*a;x*b = a*a*b = a*t;t*a = a*b*a = a*y;t*b = 
= a* b * b = a*z;y*a = b*a*a = b*x;y*b = b*a*b = b*t;z*a = 
= b*b*a = b*y;b*z = b*b*b = z*b. 

(i) Suppose a*b = c. If b * a = a2 then g = c*a = a*b*a = a*a2 = a3, 
a contradiction. If b * a = w then e = ae = a*w = a*b*a = c*a = 
= g, again a contradiction. Therefore b * a = b2 ^ a2. Now, if b * b = a2 

then e = aw = a*w = a*pb = ap*b = c*b = a*b*b = a*a2 = 
= a3, a contradiction. If b * b = w then f = wb = w*b = b*a*b = 
= a2 * b = pp * a = p * pa = p * v = pv = a3, again a contradiction. 
Thus b * b = b2. Finally, if a * a = b2 then a3 = up = u*p = bp*p = 
= b*pp = b*a2 = b2*a = b*b*a = b*b2 = b*b*b = b2*b = 
= b*a*b = b*c = b*ap = b*a*p = b2*p = b2p = / a contra­
diction. If a * a = w then e = aw = a*w = a*a*a = w*a = wa=f 
a contradiction. It follows from this that a* a = a2. Now, / = b2p = 
= b2*p = b*a*p = b*ap = b*c = b*a*b = b2*b = b*b*b = 
= b*b2 = b*b*a = b2*a = b*a*a = b*a2 = b*pp = bp*p = 
= bp * p = u * p = up = a3, a contradiction. Therefore, c 7-= a* b. 

(ii) Suppose that b * a = u. If b * a = a2 then e = ua = u*a = a*b*a = 
= a* a2 = a3, a contradiction. If b * a = w then e = ua = u*a = 
= a*b*a = a*w = aw = f a contradiction. It means that b * a = 
= b2 7-= ba. If b * b = a2 then e = ub = u*b = a*b*b = a*a2 = a3, 
a contradiction. If b * b = w then e = bw = b*w = b*b*b = w*b = 
= wb = / again a contradiction. It follows from this that b * b = b2. 
Suppose that a * a = a2. Then a3 = au = a*u = a*a*b = a2*b = 
= pp*b = p*pb = p*w = pw = f a. contradiction. If a * a = w then 
e = aw = a * w = a * a * a = w * a = wa = f, again a contradiction. 
Now only the case a* a = a2 remains and then f = pw = p*w = 
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= p*pb = pp*b = a2*b = a*a*b = a*u = au = a3, a contradic­
tion. 

3.7 Propositon. There exists only one semigroup E(o) having the underlying 
set E and such that sdist (£(•)) = dist(£(o), £(•)). 

Proof. Let £(o) be a semigroup satisfying sdist £(•)) = dist(£(o),£(•) = 2. 
There is a natural number m such that x O y = xy whenever X (x) + X (y) > 
> m > 4. In particular, x O am = xam and am o y = amy for all x,yeE. It follows 
from 3.6 that just one of the conditions x O p ?= xp, p O x == px, x O u ^ xu, 
u O x 7«= ux, x O v 7= xv, v O x T-= vx, x O w T-= xw and w O x ^ wx holds for 
some x e G. It is obvious that also just one of the conditions a o b 7= ab = c, 
b O a it ba = a2, aOd = a'a2 = a3 = cOa^ca and a3^aOa2 = cOa = 
= ca = g is true. 

(i) Suppose that y = aO b 7= ab. It follows from yOam = aObOam that 
X (y) = 2. Thus y e {a2, b2, u, v, w} and y o z = yz for every y,z e G, 
(y,z) 7-- (a,b). Now, if y = a2 then f = a2ob = aObob = aObb = 
= a O b2 = ab2 = e, a contradiction. Similarly, if y = b2 then e = ab2 = 
= aOb2 = aOaOb = a2Ob = a2b = f again a contradiction. If 
y = u then either au = a O u or au 7-= a O u. In the first case, a3 = au = 
= aO aOb = aaOb = a2b = f a contradiction. In the second case, 
b O p = bp = u and uO p = up. Therefore aOu = aObOp = uOp = 
= up = a3 = au, again a contradiction. Further, if y = v then either 
a O v = av or aO v ^ av. In the first case, g = av = aOv = 
= aObOa = aOba = aOa2 = a3,di contradiction. In the second case, 
from a O v 7-= av it follows that p O a = pa and p O a = pa and 
aO p = ap. But then aOv = aOpOa = apOa = cOa = g = av, 
again a contradiction. Finally, let a * b = w. If a O w = aw then 
e = aw = aOw = aOaOb = aaOb = a2b = a3, a contradiction. If 
a O w 7-- aw then p o b = pb and a O p = ap. But then a O w = 
= aOpOb = apOa2 = cOb = cb = e = aw, again a contradiction. 
We have proved that ab = a Ob. 

(ii) Suppose that x = b O a ^ ba. It follows from xOam = bOaOam that 
X (x) = 2. Thus, x G {b2, c, u, v, w). If b O a = b2 then e = ab2 = a O b2 = 
= aObOa = abOa = cOa = ca = g, a contradiction. Similarly, if 
bo a = c then g = ca = cOa = bOaOa = bOaa = bOa2 = ba2 = 
= a3, a contradiction. Further, let b O a = u. If a O u = au then 
a O b = ab and c O a = ca, but then a3 = au = aOu = aObOa = 
= abOa = cOa = ca = g, a contradiction. If aO u ^ au and w = 
= b O a 7= ba then aOu = aObOa = abOa = cOa = ca = g. Now, 
if c O p 7-- c/7 then a3 = aa2 = aOpp = aOpOp = apOp = cOp = 
= abOp = aObOp = aObp = aOu = g, a contradiction. Thus 
c o p = cp. Further, if b o p = bp then g = aOu = aObp = 
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= aObOp = abOp = cOp = cp = a3,di contradiction. Therefore, we 
have bo p == bp. Finally, ifu=£y = bOp then py = pOy = pObOp = 
= pb O p = w O p = wp = e. The equation py = e has in E (•) only two 
solutions, namely, c, u. However, if b O p = c then f = ac = aOc = 
= aObOp = abOp = cOp = cp = a3, a contradiction. Similarly, if 
b O a = v then either a o v = av or a o v 7-= av. In the first case it follows 
from b o a =£ ba that a o a = aa and a2 o a = a2a. Therefore, 
g = av = aOv = aOaOb = aaOb = aa-b = f a contradiction. In 
the second case, it follows from aO v ^ av that p Ob = pb and 
a O p = ap. But then aOv = aOpb = aOpOb = apOa = ca = g = 
= av, a contradiction. Finally, suppose that b O a = w. Then either 
a o w = aw or a O w 7-= aw. In the first case, it follows from b o a ^ ba 
that a o a = aa and a2 0 a = a2a. Then e = flw = flOw = aOflOrj = 
= aaOb = a2b = f a contradiction. In the second case, it follows from 
a O w ^ aw and b o a =£ ba that p O b = pb, a O p = ap, c O b = cb. But 
then aOw = aOpOb = apOb = cOb = cb = e = ae, a contradic­
tion. We have proved that b O a = ba. 

(iii) Suppose that a O b = ab, b O a = a2 and let 3; = a O a2 # a3. It follows 
from y o am = aO a2 o am that /l(y) = 3 and thus y e {e,fg}. Suppose 
first that y = e. Then c = aOa 2 = a O b O a = abOa = cOa7-=c«. 
Now, a O a2 7-= «3 and c O a # ca. It follows from dist ((£(),£ (o)) = 2 
that x O y = xy for all x,y e E such that (a,a2) 7-= (x,y) ^ (c,a). But then 
a3 = a 2 Oa = a O a O a = aOa 2 = c, a contradiction. Similarly, if 
y = f then f=aOa2 = aObOa = abOa = cOa^ca and therefore 
x o y = xy whenever x, y e E are such that (a, a2) 7-- (x, y) ¥" (c, a). There­
fore, a3 = a2Oa = aOaOa = aOa2 = f a contradcition. Finally, sup­
pose that y = g. As dist ((£(•), £(0)) = 2, at least one of a o a = a2 and 
b Ob = a2 takes place. If a O a = a2 then g = a O a 2 = a O a O a = 
= a2 O a T£ a3. Now, x O 3; = xy whenever x, 3; e E are such that 
(a, a2) # (x, y) # (a2, a). But then also g = aOa2 = aObob = abOb = 
= c O b ^ cb = e, a contradiction. If b O b = a2 then g = aO a2 = 
= aobob = abOb = cOb^e. Now, it follows from dist((£(-),£(o)) = 
= 2 that x O y = xy for all x,yeE such that (a,a2) 7-= (x,y) 7-= (c,b). 
Therefore also a O a = a2 and g = aOa 2 = a O a O a = a a O a = a2a = 
= a3, a contradiction. We have proved that a3 = a O a2. 

(iv) Finally, let a O b = ab, a O b = a2 and y = c O a # ca. It follows from 
yaw = y o am = c o a o am = c • aam that A(y) = 3. Therefore y e {d,e,f}. 
Suppose first that a O p = ap and a O v = av. Then y = cOfl = 
= apOa = aOpOa = aOpa = aOv = av = g,& contradiction. The­
refore either a O p ^= ap or aO v ^ av. Suppose that x = a O p 7-- ap. 
Then xak = a o p o ak = a O pak = a - ak+1 for some natural number k. 
Therefore X(x) = 2 and x e {a2, b2, u, v, w}. It follows from cO a ^ ca and 

51 



a O p 7-- ap that x O y = xy if x, y e £ are such that (c, a) 7-- (x, y) # (#, p). 
In particular, if x = a2 then a3 = a2Oa = aOpOa = aOpa = 
= a O v = g, a contradiction; if x = b2 then a3 = b2a = b2 O a = 
= aOpOa = aOpa = aOv = av = g, a contradiction; if x = u then 
e = ua = uOa = aOpOa = aOpa = aOv = av = g, a contradic­
tion; if x = v then f = va = vOa = aOpOa = aOpa = aOv = 
= av = g, a contradition; if x = w then / = wa = wOa = a O p O a = 
= aOpa = aOt? = av = g, a contradiction. Therefore, aO p = ap and 
let z = a O v it av. It follows from zak = z O ak = a O v O ak = a • vak 

that k(z) = 3 and therefore ze{d,e,f). Further, it follows from 
c o a 7-= ca and aO v ^ av that x o y = xy whenever (a, v) 7-= (x, y) ¥= 
# (c, a). Now, if z = e then a3 = a2a = abOa = aObOa = abOa = 
= cOa = apOa = aOpOa = aOpa = aOv = e, a contradiction. If 
z = / then a3 = a2a = abOa = aObOa = abOa = cOa = apOa = 
= aOpOa = aOpa = aOv = fdi contradiction. Thus z = a3 and we 
have proved that there exists only one semigroup £(0) having the 
underlying set E and satisfying the given conditions. This is just the 
semigroup £(*) constructed in 3.3. 

4. SH-groupoids having large semigroup distance 

4.1 Construction. Let A = {a,a2,a3,..., ak,ak+\...} be a semigroup generated 
by one-element set {a} and let M = {b,b2,c,e,fg} be a six-element set disjoint 
with A. Let I be an arbitrary index set and for each i e I consider the 
sets Pi = {pi,uhvhWi} such that A,M,PhP} are pairwise disjoint sets for all 
ij e I, i 7-- j . Consider the SH-groupoid G() constructed in 2.1. Put G u P( = £, 
for each iel and for every iel consider the SH-groupoid £,(•) constructed 
according to 3.1. Put £7 = (j£, and define on £7 a binary operation in such a way 
that each of SH-groupoids £,(•) is a subgroupoid of £/(). Finally, for every i,ke I 
put: 

(i) Pipk = a2; 
(ii) PiUk = p(vk = ptwk = utpk = vtpk = wtpk = a3; 

(iii) UiUk = UiVk = utwk = vtuk = vtvk = vtwk = w{wk = wtvk = wtwk = a4. 
Then £/(•) becomess a groupoid containing the minimal S-groupoid G() as 
a subgroupoid. It is obvious that £/(•) is generated by the set {a,b} u {pt\ i e I}. 

4.2 Lemma. £/(•) satisfies the condition X(xy) = k(x) + X(y) for every 
x,yeEt. 

Proof. Obvious. 

4.3 Lemma. £7 (•) is an S-groupoid of type (a, b, a). 
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Proof, (i) If x, y, z e £7 are such that X (x) + X (y) + X (z) = k > 3 then 
x • yz = ak = xy • z. 

(ii) If x,y,z e Ej are such that (a, b, a) ^ (x, y, z) and X (x) + X (y) + X (z) = 3 
then x,]/,ze {a,b} u {p, | z G / } . Let i,j,kl and consider the triples (x,y,z) 
containing at least two elements pb pk. Then apt • pk = cpk = a3 = aa2 = 
= a • Pipk, pta • pk = vtpk = e = ptc = Pi • apk, p{pk • a = a2a = a3 = ptvk = 
= Pi' Pv.a, bpi • pk = Uipk = a3 = ba2 = b- ptpk, ptb • pk = wtpk = e = 
= ptuk = Pi • bpk, Pipk -b = a2b = f = ptwk = pt • pkb, ptpj • pk = a2pk = 
= a3 = PiO2 = Pi • Pjpk. The remaining triples (x, y, z) 7-= (a, b, a) are asso­
ciative because for each i e I the groupoid £,(•) is an SH-groupoid of type 
(a, b, a). 

4.4 Lemma, sdist (£/(•) < 1 + card(J). 

Proof. Define on £7 a new binary operation * such that a * vt = a3 = c * a for 
every i e I and w * y = xy whenever x, y e £7 are such that (a, i;,) ^ (x, y) ^ (c, a) 
for every i e I. It follows from the construction that £7 (*) is a semigroup and it is 
obvious that dist (£7 (•), £7 (*)) = 1 + card(/). The rest is clear.. 

4.5 Lemma, dist (£7 (•), £7 (*)) > 1 + card(J). 

Proof. Suppose that £7 (*) is a semigroup having the same underlying set as the 
SH-groupoid £7 (•). It is obvious that at least one of the following conditions takes 
place: 

(i) a * b 7-- ab or b * a 7-= ba; 
(ii) if a * b = ab = c and b * a = ba = a2 then c * a =£ ca or a * a2 7*- a3. 

Finally, let i e I and consider the elements ph ub vh wt. According to 3.6, at least 
one of the following conditions has to be valid: 

(i) x * p, T«- xpi or Pi* x 7-= PiX for some xeG; 
(ii) x * w, 7-= xut or px * u 7-= PM for some xeG; 

(iii) x * v, 7-= xVi or vt* x 7-= vtx for some xeG; 
(iv) x * w, 7-= xwt or w, * x ^ w,x for some xeG; 

Therefore dist (£7 (•), £7 (*)) > 1 + card(J). 

4.6 Lemma.sdist (£/()) = 1 + card (I). 

Prof. It follows immediately from 4.4 and 4.5. 

4.7 Theorem. Let K be an arbitrary cardinal number. Then there exists an 
SH-groupoid H (•) of type (a, b, a) such that sdist (H (•)) = K. 

Proof. If K = 1 then it follows from 2.1 and 2.3. If K = 2 then it follows from 
3.1 and 3.5. The rest follows 4.5. If K is finite and K > 3 then it is needed to use 
index set I having card(J) = K — 1. If K — 1. If K is infinite then it is needed to 
use index set / having card (/) = K 
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5. Conclusion 

It was proved above that there exist SH-groupoid of type (a, b, a) having an 
arbitrary large semigroup distance. It seems that it is true also for SH-groupoids 
of type (a, a,b). Furtermore, it seems that it can be proved in a similar way. 
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