
Acta Universitatis Carolinae. Mathematica et Physica

Petr Dostál
Optimal trading strategies with transaction costs paid only for the first stock

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 47 (2006), No. 2, 43--72

Persistent URL: http://dml.cz/dmlcz/142754

Terms of use:
© Univerzita Karlova v Praze, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142754
http://project.dml.cz


2006 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 47, NO. 2 

Optimal Trading Strategies with Transaction Costs Paid Only 
for the First Stock 

PETR DOSTAL 

Praha 

Received 27. February 2006 

We consider an agent who trades with n stocks, where n is not so large, and pays 
proportional transaction costs. It is assumed that the vector of stock market prices is an 
n dimensional geometric Brownian motion and suppose that the agent is interested in 
a question what is the optimal investment policy for the i-th stock provided that he/she 
pays the transaction costs only for trades with this asset. We restrict ourselves to HARA 
utility functions and derive the first term in Taylor's expansion of function connecting 
the transaction tax and the width of no-trade region. 

1. Introduction 

We consider an investment problem with proportional transaction costs without 
consumption. We seek for a strategy that maximizes the asymptotics of expected 
utility of the portfolio market price similarly as in [2], [4], in contrast to [1], [3], 
[5], [8], [10], where the agent maximizes the expected value of the Laplace 
transform of the utility of consumption at a point chosen according to his/her time 
preferences. It is shown in [2] that the investment problem is a limiting case of the 
investment-consumption problem in case of logarithmic utility as the parameter of 
the Laplace transform goes to zero, i.e. when the consumption is postponed to the 
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future as much as it is possible. If there were no transaction costs, both approaches 
lead to the same optimal policy: to keep a constant proportion of the portfolio 
market price invested in each stock. Such a vector is called Merton proportion here, 
see [9]. We focus on the case when we pay the transaction costs only for the trades 
with one of several assets. 

We suppose that the vector of stock market prices X(t) is a M-dimensional 
geometric Brownian motion driven by an n-dimensional ^-Wiener process W(t) 
as follows 

(1) dX(t) = X(t)iidt + X (t) Z* dW(t), X (0) = x0 e (0, oo)", 

where \i e W and S^eR"x" is a positively definite matrix such that _2*_E* =: 2 
and X (t): = diag X (t) denotes the diagonal matrix of the vector X (t) and where 
ffit > 0) is an augmented filtration. Further, we denote by Y(t) the portfolio 
market price at time t > 0, by H (t) the vector of numbers of shares of each stock 
and by G(t) the vector of positions in the market. Then Y(t)G(t) = X(t)H(t). 

We will consider only utility functions with hyperbolic absolute risk aversion 
(HARA) Wy(x) = -xy if y < 0 and W0(x) = In x. The case y e (0,1] is omitted, 
since it leads to a too aggressive strategy. Further, denote ey (x): = tfty (e

x) and 
assume that Y(0) = yo > 0 and G(0) = go e Un are deterministic random variab­
les. We assume that the deposit part is not discounted and that we pay 
(1 + b)-multiple of the stock market price in order to obtain the first stock. On the 
other hand, we obtain (1 — c)-multiple of the stock market price, when we sell it, 
where b e (0, oo) and c e (0,1). The aim of this paper is to find 
fe C2(— 1/b, 1/c), v e U and a special strategy such that 

(2) ey(ln Y(t) — f(G\(t)) — vt) is a supermartingale, 

when considering a wide class of strategies, and such that (2) is a martingale if we 
consider the special one. We restrict ourselves to the strategies that keep the vector 
of positions G(t) within a compact set in ( — l/b, 1/c) x lRn_1. Then 

v = lim - ey 1 EeY (in Y (t)) > lim sup - <?y~
 1 Eey (in Y (t)), 

t—•oo t t—•00 t 

where Y(t) denotes the portfolio market price corresponding to the special strategy 
here. 

2. Dynamics 

We restrict ourselves to the strategies such that Y(t) > 0 and Gi (t) e ( — l/b, 1/c) 
hold for every t > 0 almost surely and we always assume that the transaction costs 
at time t are paid at the next moment after t. Let Hi (t) and H\ (t) denote the sum 
of shares of the first stock bought and sold on the time interval [0, t), respectively. 
We assume that these processes are non-decreasing Jf-adapted left-continuous with 
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right-hand limits and that Ht (t), Gt (t) and Y(t) are locally bounded Jf-progressive 
measurable processes for 1 < i < n. We are going to compute with stochastic 
differentials as every integrator was a continuous process, see remark 3.2 in [4] 
how to remove this assumption, and we refer the reader, who is not familiar with 
stochastic integration, to Chapter 3 in [7] for the corresponding theory. We need 
to distinguish between the derivative of / usually denoted by / ' and the 
transposition x' of vector x and therefore we write / instead of / ' for the derivative 
of / Later on, we will need some statements derived in [4] that relate to the 
dynamics of certain processes. By lemma 3.1 in [4], Ht (t), Hf (t) < oo hold 
almost surely and 

dY(t) = H(t)' dX (t) - bXi (t) dHt (t) - cX, (t) dHr (t). 

Let ei G IR" denote the column vector with 1 in the first row and 0 in the remaining 
ones and let x : = diag x e Rnxn denote the diagonal matrix of the vector x e Rn. 

By lemma 3.3 in [4], 

dGi(t) = Bi(G(t))dt + Si(G(t))dJV(t) + dGt(t) - dGr(t), 

where Bi(x) = eiB(x), Si(x) = eiS(x) and 

(3) B(x) = [x - xx'] [u - 2x], S(x) = [x - xx'] £% 

where the processes Gi+ (t), Gf (t) are non-decreasing Jf-adapted such that 

Y(t)dGt(t) = (1 + bG^X^dHt^), 
Y(t)dGr(t) = (1 - cGi(t))Xi(t)dHf(t). 

Further, we will abbreviate the notation 

h+ (Gi (t)) * dGf (t): = h+ ( d (t)) dGt (t) + h_ (G, (t)) dG^ (t) 

whenever h+ and h_ are continuous functions on ( — 1/b, 1/c). By lemma 3.4 in 
[4], U(t) := In Y(t) - f{Gi(t)) - vt is an Jf-semimartingale with 

^ P - = d}(G(t))dt + vf(G(t))dW(t) + SifaW + dGt®, 

whenever fe C2(—l/b, 1/c), where x : = eix, 

(4) vf(x) = x'Z,/2 - f(x) S, (x), tf± (x) =-3± (x) + f(x) 

(5) d}(x) = d(x) - v -/(x)e'1B(x) - i [ / ( x ) - y/(x)2]S1(x)S1(x)' 

(6) B(x) = [x - xx'] [n - (1 - y)Sx], d(x) = /I'X - ^~-x'l\x 

and where 3+(x) = ^7^? 3_ (x) = -r^—. Moreover, if we restrict ourselves to the 
strategies that keep the position G(t) within a compact set in ( — l/b, 1/c) x R"_1, 
we obtain by lemma 3.5 in [4] that 
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(i) If G,(t)e [a,/f] <= ( -1 /M/c) , d}(G(t)) = 0 and 

(7) J^ y+ (G, (*)) rfGf (s) = J ' y_ (G, (5)) «*G f (5) = 0 

hold for every t > 0 (almost surely, where veR, then EY(if < 00 holds for every 
6 < 0 and t > 0. 

(ii) If £y(tf < 00 holds for every S < 0 and t > 0, then 

(8) ./:= ey(U(0)) + Jexp { y o ^ t y l G l s ) ) ^ ) 

is an Jf-martingale. 
Let us consider the case when the transaction costs are zero and let us assume 

that the position G(t) is kept within some bounded set in R". Then 
Y(t)~ldY(t) = G(t)' [fidt + X±dW(t)] and therefore %(Y(t)) is a.s. equal to the 
product of an exponential martingale 

St\= txp\yrG(s)'^dW(s) - ]-y2 VG (s)rLG(s)ds\ 

and the process ey{ln 7(0) + jod(G(s))ds}. The function d attains its maximum 
v:= ^©ySGy at the Merton proportion x = 0 y : = y^-, where 0 : = S - 1 ^. 
Hence, the process ey(ln Y(t) — vt) = St - ey(Z(t)) is a supermartingale and it is 
a martingale only in case that Gt = 0 y holds for almost all t a.s., where 
Z(t) := In 7(0) + Jo d(G(s))ds — vt is a non-increasing process which is constant 
if and only if G (t) = 0 r holds for almost all t > 0. 

3. Preliminary computations 

The aim of this section is to show, how one can obtain some heuristic results. 
The obtained formulas also serve as the reference points for the next section. The 
key point of this paper is that the optimality condition (26) is of the same form as 
in the one-dimensional case. 

If x denotes the variable representing the position G (t), we write 

:= x *>-•©-
One can imagine that we would trade with the remaining assets in order to 
maximize the function d(x). Then we would keep ^ on 9y — _E-1Lx, where 
Qy;= Y~Q and 6 := S-1/!, and the function d is at every x = (x,£')' such that 
$ = Qy — S_1Lx holds of the form 

(9) ^ W + xfi - l-^-^a\ 
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where fi:= fa — L9 and a2:= a2 — L±~lL. The function (9) is obviously 
maximal at x : = 0y: = •—- a~2fi. It can be useful to compare the Merton proportion 
&y and the values 9y and 9y. Obviously, 

_ / a " 2 - _ • - _ - > 
_____\ ~~~ I »A _. A A _, • * _, * * ^ _ i 

V-s-^ f f - 2 z-1 + Z-^'ff^jCS-1 • 
and therefore the Merton proportion &y is equal to 

e r . p . . " ^ . - * 
The above considered strategy would be close to the optimal one only in case 

of small transaction costs, so we have to correct it. We define x i—• ex e Rn~l so 
that X = 9y - ±~lLx + ex. Then 

(10) d(x) := d(x) = -^\9'y±9y + d2(29yx - x2) - site J . 

Further, the diffusion coefficient of Gx (t) is of the form S! (x) St (x)' and it can be 
rewritten into the form 

S2(x):= x2[a2(l - x)2 + (9y - ±~lL+ ex)'±(9y - ±~{L+ ex)]. 

The first element of B (x) is of the form 

B^x) := (1 - y)x[&2(\ - x)(9y - x) + (9y - ±~lL+ ex)'±ex]. 

The martingale condition is of the form 

(11) 5 _ / W - yf(xf]S2(x)+f(x)Bl(x) - \d(x) - v] = 0. 

The optimal boundary condition for the remaining assets is of the form 

(12) \[f(x) ~ 7 / W 2 ] ^ ( x ) + f(x)^(x) - | [ i ( x ) - v] = 0 

and the boundary conditions for the first asset with the smoothness of fit are of the 
form 

(13) / (a) = -f9+(a), / (a) = -_i+(a) = 9+(<xf, 

(14) /(/?) = +s_(p), /(/?) = +$_($) = S_(f})\ 

provided that the special strategy will just keep the first position within the interval 
[a, />] ___; (— 1/fc, 1/c) and the remaining ones on values that depend on the value of 
the first position. Obviously, 
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1 r)92 

(15) ^(x) = x*±(ey-±->L+£x), 

(16) -^( .x) = (1 " y)x±(9y - Z - L + 28,), g ( * ) = - (1 - y)±8, 

and therefore the condition (12) is of the form 

[ j » - yf(xf]x2±(9y - ±~lL+ £x) + 

+ f(x)(l - y)x±(9y - ±~lL+ 2ex) + (1 - y)±£x = 0. 

Since E is a regular matrix, the above condition is also of the form 

(17) ex[x>f{x\-Jy
{x? + (\ + xf(x)Y] = 

(18) = (±~>L- 9y)[xJ{x\-_f
y
{x)2 + xf(x)(l + xf(x))] 

If expression in the brackets in (17) is not equal to zero, we can introduce ex so that 

(19) sx = (±-lL-9y)ex. 

If 9y 7-= ±~lL and there exist ex such that (19) holds, then the condition (12) is 
of the form 

(20) 1 + xf(x) - (1 - ex) [x
2 f{X\~J{xf + (1 + xf(x)f] = 0. 

Then the diffusion coefficient of G{(t) is of the form 

(21) S2(x) = a2x2[(l - x)2 + (1 - ex)
2K2l 

where K2:= a~2(9y - ±~lL)±(6y - ±~lL) ^ 0 if and only 9y ^ ±~lL. The 
modified drift coefficient is then of the form 

(22) B,(x) = d2(\- y)x_(\ - x)(9y - x) - ex(\ - ex)K
2

y\ 

(23) d(x) = l—^9'y±9y + ^-^d2[29yx - x2 - K2
ye

2
x\ 

The maximal value of v that can be reached corresponds to the case of zero 
transaction costs and the strategy that keeps the position on the Merton proportion. 
Hence, we obtain the right-hand inequality in (24). Further, we introduce co2, > 0 
such that we have the left-hand equality in (24) 

(24) ^-^{9'y±9y + d2(92 - co2)} = v < i^_-I(v292 + 9'y±9y). 

Then d(x) — v = ^ ^ 2 [ c o 2 — (9y — x)2 — K2e2
x\ Now, the martingale condition 

is of the form 

48 



*[(l-sr + (--^ / (*\J^x)2 + 
+ 2x[(1 - x)(Oy - x) - *„(1 - £x)Kf]f(x) + (8y - x)2 + K2

y4 - co) = 0. 

The conditions (13) and (14) at the boundary points a, /? together with the 
martingale condition give the following one 

(25) co] = (6y - Lf + K] ( ± ± - £ ) = (6y - z,f + K](^-^), 

where £a: = £+(a), £ , := £_(/}) and . + {x):= x £ £ , t-(x):= x - ^ . The condi­
tion (20) together with the conditions (13) and (14) give the following condition 
on e% at the points a, fi 

*A = i _ 1 _ x$±(x) _{~bcC) 

v V 1 + x9±(x) x5±(x) + 1 \ cfi J' 

Then the condition (25) is of the form 

(26) co] = (9y - Lf = (0r - Q2. 

4. Existence of function / 

This section provides the technical results necessary for the next section. It also 
introduces a notation used later on. The aim of this section is to prove theorem 
4.24. It is recommended to skip this section up to theorem 4.24 for the first reading. 
We always assume that K2 > 0 in this section. 

Lemma 4.1 Let x2 > 0, 9y # 0 and b > 0, ce(0,1). Denote £ (x, h): = 
:= x [ l — (1 — x)h] and 

F(x,h,w,n):= [r, + (1 + xhf] [(1 - xfr] + (0y - £(x,h))2 - w2] + K2
yr\. 

Then r\\-+F{x, h, w, rj) is a quadratic function. Denote si, 88, <€: U3 -> R the 
corresponding coefficient so that 

F(x,h,w,rj) = stf(x,h,w)rj2 + &(x,h,w)rj + C(x, h, w). 

Further, denote 

<D := {ue R3: ux # 0, 1 + uxu2 > 0, u\ < Ky, ^
2(u) > 4s/(u)%(u)}, 

where Kr := 02 A [(1 — 9y)
2 + K2], and 

(f):(x,h,w)e<b\-+ max[r\e R, F(x,h,w,r\) = 0}. 

Then (/> e C00 (<D). Moreover, ifueR3 is such that 

(27) i/j ^ 0, 1 + tt!u2 > 0 and (0y - ^(uhu2))
2 < u\ < Xy, 
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then u e O and n:= <j>(u) > 0 is the only non-negative solution of the equation 
F(u,n) = 0. 

Proof: Let a e <J>. If s/(u) > 0, then 

( 2 8 ) W " 2 ^ ) 

is an infinitely differentiable function in a neighbourhood of u. Obviously, 
s/(u) = (1 •— ux)

2. IfueR3 is such that u2 < Ky and s/(u) < 0, i.e., u{ = 1, then 
^(t/) = 0 and @(u) = (0y - l)2 + K2 - u? > 0. Hence, we get that 

(29) * M =2M 
@(u) + > / « 2 ( I I ) - 4 J / ( I I ) « ( I I ) 

is an infinitely differentiable function in a neighbourhood of u in case that 
j * (a) < 0. 

Let ueR3 be such that (27) is satisfied. We are going to show that 
@2(u) > 4J*(U)V(U). Since V(u) = F(u,0) < 0 and <S/(M) > 0, we get that 
4s/(u)c£(u) < 0. Hence, it is sufficient to show that &(u) > 0 in case that 
s/ (u) = 0 or # (w) = 0. Since we have showed that Si (u) > 0 in case **/ (u) = 0, 
we are only to consider the case ^(u) = 0. Then (9y — £ («i, t/2))

2 = u2 and 
therefore # ( I I ) = (1 + u{u2)

2(l - iii)2 + K2 > 0. 
Now, we are going to show that Y\ := 0(u) > 0. If J^(M) > 0, then we obtain 

that (j)(u) > 0 from (28) since ^(u) < 0. If J/(W) = 0, then &(u) > 0 as showed 
above and we get from (29) that (j)(u) = -<g(u)/$l(u) > 0, since <tf(u) < 0. Since 
#(w) < 0 < si (u), there cannot be another non-negative root 0 < fj -̂  r\ of the 
equation F(u,f/) = 0. D 

Lemma 4.2 Let c02 < Ky, K2 > 0 and fc > 0, c e (0,1). Let h be an infinitely 
differentiable function satisfying G (x, h (x), r\h (x)) = co2 m a neighbourhood of 
x0eR and rih(x0) = 0, where 

G(x,M):« (1 " *fy + Pr - « M P + "ML"1 + xhY + 'Z)"1 

and rjh(x): = x 2 ^ x ^ H Let x0 # 0 fee JIICA tAat 

(30) l + xofc(xo)>0 and 1 - (1 - x0)h(x0) > 0. 

77**71 [0y - €(x0,h(x0))]
2 = co2 and sign rjh(x0) = sign[0r - ^(x0,ft(x0))]. 

Moreover, if0y = € (x0, ft (x0)), then there exists S > 0 swcft tftat.»//. (x) < 0 holds 
for every x e R\{^b} such that |x — x0| < S. 

Proof: Since rjh(x0) = 0, we get that co2 = G (XQ, h (x0), 0) = [0y - £ (XQ, h (x0))]
2 

by the definition of G. Since ^/,(x0) = 0 and dG(x,h(x),rih(x))/dx = dco2/dx = 0, 
we get that 
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(31) 0 = ±{Or - *(*,*(*))? + itt(x)[(l - xf + K»(l + xh(x))~>] 

holds at x = x0. A straightforward computation using h(x0) = h2(x0) shows that 

(32) ^[£(x,Mx)) - fly] = [1 + x0/i(x0)][1 - (1 - x0)h(x0j] > 0 

holds at x = x0 by (30). Then the equality of signs in the first part of the statement 
follows from (31) and (32). If 0y = £(xo,/i(x0)), then coy = 0 and we obtain from 
(32) that there exists <5 > 0 such that £(x9h(x)) -̂  6y holds on (x0 — 5, 
x0 + ^M^}- If x ^ x0 is such that |x — x0| < <5, we obtain that r\h(x) < 0 = 
= r\h (x0) since the case r\h (x) ;> 0 leads to a contradiction co2 = G (x, h (x), r\h (x)) > 
(0y-^(x,ft(x)))2>O = co2. • 

Lemma 4.3 Let co2 < Ny, K2 > 0 and b > 0, c 6 (0,1). (7) Let x0 > 0, 
h(x0) = -#+(x0) or x0 < 0, h(x0) = i9_(x0), tAen (30) Wdj. 

(ii) Let 0 < x{ < x2 < co and heC1 [xb x2] be such that fy, i> 0 holds on 
(xi,x2) and such that h(xx) = — 9+ (x{). Then 

1 +xft(x)*>(l A (bx2)-
{)/2 > 0 

holds for every x e [xbx2] . 
(Hi) Let h e C1 [xu x2] be such that xt > 0 and h(x{) = — 5+(xi) I/I case 

0y > 0 0/u/ SMC/I t/wit x2 < 0 and ft(x2) = #_(x2) in case 0y < 0. Further, assume 
that 

G (x, h (x), //,, (X)) = co2 and .7,, (x) > 0 

hold on [xbx2] . Then (30) holds for every x 0 e [xbx2] . 

Proof: (i) Obviously, 

i 
l+bx0 

1 T x05±(x0) = 1 I, 1 ± (1 - Xo)9±(xo) = 

. - - < * « 

' i + K 1 

1 -c 

\ӯc^oj 

(ii) It follows from the assumption r\h *> 0 on (xhx2) that /i(x) > h2(x) > 0 and 
therefore h is a non-decreasing function on [x b x 2]. Further, if x e (xu x2) is such 
that h(x) ^ 0, then 

If x e [ x b x 2 ] is such that /i(x) ;> -l/(2x2), then J»(x) .> -l/(2x) and therefore 
1 + xfc(x) ;> 1/2. 
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Further, we can assume that h (x{) < - l/(2x2). If x0 e (xh x2] is such that 
h(x) < — l/(2x2) holds for every x e [x bx 0 ) , then 

1 + xh(x) = -h(x)r(x) > -h(x)r(xl) > l/(2bx2) 

holds for every x e [X^XQ), since r is a non-decreasing function on [x b x 0 ) with 
r(Xl) = 1/6. 

(iii) Since 1 — (1 — x)h(x) is a continuous function on [x1?x2] attaining by (i) 
a positive value at Xj or at x2, respectively, it is sufficient to show that it does not 
attain the value zero in order to verify that it is positive on [ x b x 2 ] , respectively, 
it is sufficient to show that it does not attain the value zero in order to verify that 
it is positive on [x1?x2]. Let us assume that x e [ x b x 2 ] is such that 
1 = (1 — x)h(x). Then £(x,h(x)) = 0 and we obtain a contradiction 
(o2 = G (x, h (x), rjh (x)) >92 > (o2, since rjh (x) > 0. 

If 9y > 0, we assume that xx > 0 and therefore the first inequality in (30) at 
every x0 e \_xh x2] follows from (ii). If 6y < 0, we assume that x2 < 0. If 
x e [ x 1 ? x 2 ] , we obtain from the previous part of the proof that 
h(x) < 1/(1 - x) < 1/x and therefore 1 + xh(x) > 0. • 

Lemma 4.4 Let (o2 < Ky, K2 > 0 and b > 0, c e (0,1). (i) Let (x0, h0) e R2 be 
such that 

(33) x0 7-- 0, 1 + x0h0 > 0, and (0y — £(x0,h0))
2 < co2. 

Then there exist 8 > 0 and h e C°° (x0 — 8, x0 + 6) such that 

(34) h (x) = q> (x, h (x), (oy), (x, h (x), (oy) e O, h (x0) = h0 

hold whenever \x — x0\ < S, where (p(x,h,w):= h2 + (1 — y)x~2(j)(x,h,w). 

(ii) Let hx(z),h2(z) solve (34) whenever ze \x,y\ and ie {1,2}. If there exists 
z e \x,y\ such that hx(z) = h2(z), then hx = h2 holds on [x ,y] . 

(iii) Let J be a bounded open interval with an extreme point x0 and h e C00 (J) 
satisfying (34) on J. Let h0: = linvBX-*x0h (x) e IR be such that (33) is satisfied if 
x0 is replaced by x0. Then there exist an open interval J 2 J containing x0 and 
he C00(J) satisfying (34) on J such that h = h on J. 

Proof: If (33) is satisfied, then (x0, h0, (oy) e O by lemma 4.1. Then (i)-(iii) follow 
from the theorem on existence and uniqueness of ODE, since (p e C00 (0) by lemma 
4.1. • 

Lemma 4.5 Let co2 < Ky, K2 > 0 and b > 0, c e (0,1). Let h0 = + d± (x0) and 
£(xo>h0) = 9y + (oy, where x0,9y are positive numbers in the upper case and 
negative in the lower one. 

Then there exists a unique infinitely differentiable function h with convex open 
domain Q)h such that h is a maximal solution of (34) and r\h (x0) = 0. Further, 
assume that (oy > 0 and denote 
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i>i (xo): = xi: = inf {x e Q)h n (x0, oo), h (x) = h2 (x)} if 9y > 0 

^( x o) : = x2:= sup {xe ^h n (— co,x0),h(x) = h2(x)} if 9y < 0. 

Then (i) x2 > x0 > 0 and h(x) > h2(x) holds on (x0, xt) in case that 9y > 0 and 
x2 < x0 < 0 and h (x) > h2 (x) holds on (x2, x0) if 9y < 0. 

(ii) If 9y < 0, then x2 = — oo and h > 0 on (—oo,x0] or ri(x2) = h2(x2). If 
9y > 0, then xt = oo and h < 0 on [x0, oo) or x^ = 1 and h(l_) = oo or 
fc>i) = h2(Xl). 

Proof: By lemma 4.3 (i), (30) holds with h (x0): = h0. By assumption 
G(x0,h0,0) = (9y — £(x0,h0))

2 = (o2. By lemma 4.4 (i), there exist S > 0 and 
he C°°(x0 — 5,x0 + d) satisfying (34) on (x0 — 5, x0 + 5). All infinitely differen­
tiate solutions h of (34) with convex open domain form a set arranged by inclusion 
so that every chain has an upper bound. By Zorn's lemma, there exists h a maximal 
solution of (34) with convex open domain 3)h such that h = h holds on (x0 — 8, 
x0 + d). If h is another function with such properties and domain Q)h, we obtain 
that h = h on Q)h n <2)h 3 x0 by lemma 4.4 (ii). Considering h\j he C00 (Q)h u _?/j) 
with convex open domain Q)h u Q)h, we obtain that Q)h = Q)h, since h and h are 
both maximal solutions. 

Since G (x0, h0,0) = co2, we obtain that F (u, 0) = 0, where u : = (x0, h0, coy). By 
lemma 4.1, <f)(u) = 0 and therefore rjh(x0) = (j)(u) = 0 as h(x0) = h0. 

(i) By lemma 4.2 and the assumption 9y — £(x0,h(x0)) = ±coy, we get that 
Ah (*o) > 0 ar1d therefore Xi > x0 if 9y > 0 and r/^ (x0) < 0 and therefore x2 < x0 

if 0y < 0. Since r\h is a continuous function, we obtain from the definition of Xi or 
x2 that Y]h > 0 holds on (x0,Xi) if 9y > 0 and on (x2,x0) if 9y < 0. In particular 
h > h2 > 0 holds on the above mentioned interval and therefore there exists 
h(xi_) or h(x2+), respectively. 

(ii) If Xi = oo and 9y > 0 or if x2 = — oo and 9y < 0, we obtain that 

(35) co2 = lim G(x,h(x),r\h(x)) > limsup \9y — x(l — (1 — x)h(x)J]2 

x->±oo . x-> ± 00 

and therefore h (± oo +) = 0. Since h increases on (x0, Xi) or (x2, x0), we then obtain 
that h < 0 on (x0, xt) or h > 0 on (x2, x0), respectively. The same argument as in 
(35) shows that xt = 1 if h(xx_) = +oo and 9y > 0 and that h(x2+) = — oo is 
impossible if 9y < 0. 

Now, let us assume that none of the previous cases happens. If 9y > 0, we obtain 
from lemma 4.3 (ii) that 

7 / \ -. , T / \ , . 1 A ( b x ) - 1 1 A ( b X i ) " 1 

1 + Xi/z(xi_) = lim 1 + xh(x) > lim v ; = v ; > 0. 
xfxj x|xx 2 Z 

If 9y < 0, we have by lemma 4.3 (iii) that 1 > (1 — x)h(x) holds on [x3,x0] for 
every x3 e (x2, x0), where x0 < 0. Then 

1 + x2h(x2+) > 1 + x2/(l - x2) = 1/(1 - x2) > 0. 
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The right-hand inequality in (33) with x0 replaced by xx or x2 and h0:= h(xx__) or 
h0: = h (x2+) can be obtained by modifying (35), where ± oo is replaced by X!_ or 
x2+, respectively. By lemma 4.4, there exists 5 > 0 such that (x, — S9xt + 8) c 
c Qh9 where i = 1 if 0y > 0 and i = 2 if 6y > 0. By definition of xx and x2, we 
get that h(xx) = h2(xx) holds in the upper case and h(x2) = h2(x2) in the lower 
one. • 

Remark 4.6 Denote 

coy(x):= ± (0 y -£ (x ,+S ± (x ) ) ) , 

where the upper case is considered when 0y > 0 and the lower one when 9y < 0. 
Further, denote 

I := {x > 0, 0 < coy(x) < y/Xy} if 0y > 0, 

J := {x < 0, 0 < coy(x) < jxy} if 6y < 0. 

Let Ky > 0 and x0, 0y be both positive or negative numbers such that co2 (x0) < Kr 

By K0
 w e denote the maximal solution of (34) with co2 equal to co2(x^) and 

h0:= — S+(x0) if 0y > 0 and /i0:= 5_(x0) if 0y < 0. Since (x0,x,/i)i—• 
h-> (/> (x, ft, coy (x0)) is an infinitely differentiable function on {(XQ9 X, h) e R3; 
(x,/i,cOy(x0))e<I)}, we obtain from the theorem on stability of ODE that (x9y)\-• 
i—• hx(y) is an infinitely differentiable function at all points (x9y) such that hx is 
defined at y. Put 

Q): = {(x,y) eU2:hx (y) is defined & (x, hx (y)9 coy (x)) e O}. 

Further, denote by Ix the set of all x0e I such that v{ (x0) < oo and hXo(vx (x0)_) < 
< oo, I2:= {xQeI9 vx(x0) = oo}, 73: = I\(lx u 72). Similarly, we put Ji: = 
: = {̂ b G J, t;2(x0) > — oo} and J2: = J\JX. 

Lemma 4.7 (i) The function (x9t)e®v^r\hx(t):= x2*^"^ is infinitely dif­
ferentiable on $). Moreover, if xx e Ix or x2 e Jif then t]hx (v{ (xt)) = 0 or 
VhX2(v2(x2)) = 0, respectively. 

(ii) Further, the following function is infinitely differentiable on Q 

(36) Z : (x , t ) e^ r - ,^ x ( t ) . 

If xxel, then Z(xi9Xi) > 0. Further Z (xi9 vx (xt)) < 0 holds in case that x{ e Ix. 
Similarly, we have that Z(x2,x2) < 0ifx2eJ and Z(x2,t;2(x2)) > 0 if x2 e Jx. 

Proof: (i) The first part follows from remark 4.6 as (x9y) H-> hx(y) is infinitely 
differentiable function. The moreover part follows from lemma 4.5 (ii). 

(ii) The first part follows from remark 4.6 again. If xel or x e J , then 
rjhJx) = 0 by lemma 4.5. Since hx(x) = — S+(x) if xel and hx(x) = $-(x) if 
x e J9 we get by lemma 4.3 (i), that the inequalities in (30) are satisfied with 
x0: = x,h: = hx. If xel or xeJ9 then 0y — £(x,hx(x)) is equal to coy(x) or 
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— C0y(x)9 respectively, where coy(x) > 0. By lemma 4.2, ijhx(x) > 0 if xel and 
fj/.x(x) < 0 if x e J. 

If x e Ii or x 6 Ju then lemma 4.3 (iii) gives that the inequalities in (30) are 
satisfied with x 0 : = vt{x)9h:= hx, where i = 1 or i = 2 respectively. By lemma 
4.2, i]hx(vi(x)) # 0. By lemma 4.5, rjhx cannot increase at v{(x) and therefore 
f/hx(vi(x)) < 0 in case that xelx and r\hx cannot decrease at t?2(x) and therefore 
*lhx(vi(x)) > 0 in case that xeJ{. • 

Lemma 4.8 If x0e I, then vx (x) is lower semi-continuous at x0. If x0eJ, then 
v2 is upper semi-continuous at x0. 

Moreover, if xe I is a cluster point of J3 such that V\ (x) > 1, then x e 73. 

Proof: We are going to show that v{ is lower semi-continuous at every x0 e I. 
The upper semi-continuity of v2 on J can be proved similarly. We will show that 

w,: = lim inf V\ (x) > vx (x0) 
/|9X->X0 

holds for i = 1,2,3. 
(i) We are going to show that wt < vx(x0) leads to a contradiction. Since 

Wj < oo, x0 is a cluster point of Ix. Let {x̂ } c /j be a sequence tending to x0 such 
that Vi (xm) -• Wj. By lemma 4.7(H), 

0 > Z(xm,t>i(xm)) -• Z(x09w{) & Z(x0,x0) > 0. 

Hence, wy # x0. Since w{ <- vx (xm) > xm -• x0 as m -* oo we get that wx > x0 

and therefore wx e (x0, v{ (x0)). Then (x0, wx) e Q> and we obtain from lemma 4.7 (i) 
that 0 = tikjpifa)) -> rihxo(wx) and therefore ftXo(wi) = ^(wj). This leads to 
a contradiction with the definition of vx (x0) > wx. 

(ii) Since v{ (x) = oo holds for every x e 72»
 w e g e t that w2 = oo > vt (x0) 

immediately. 
(iii) Let x m e / 3 be such that xm-• x0 and vt(xm)^> w3 as m-• oo. Then 

Vi (*m) = 1 holds for every meN. We are going to show that x0 e J3 provided that 
tfi(x0) > 1 = Wi. Let us assume that t>i(x0) > 1. Since xm < t>i(xm) = 1 and 
hXm(lJ) = oo hold for every m e N, there exists a sequence zm e (xm, 1) tending to 
1 such that hXm(zm) -• oo as m -» oo. If x04h and ^(XQ) ^ 1 held, then 
t>i (̂ o) > 1 > *o or vx (x0) = 1 and hXo(i) = hl0(i) by lemma 4.5. In particular, we 
get that (xo, \)e® holds in both cases and we are able to obtain a contradiction 
oo > ftxo(l) = limm^00ftXm(zm) = oo, since (x,y) i—• hx(y) is continuous at (xo, 1) by 
remark 4.6. Hence, x0 e 73 and therefore vx (XQ) = 1 in case that vx (x0) > 1 and that 
x0 is a cluster point of 73. If x0 is not a cluster point of J3 or if ^(xo) < 1, then 
w3 *> vx (x0) obviously holds. It follows from (i)-(iii) that 

lim inf t?i(x) > Wj л w2 л w3 ^ Vi (x0). 
/эx->x0 
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If x0 e J, it is sufficient to modify (i) and (ii) in order to show that 

lim sup v2(x) < max lim sup v2(x) < v2(x0). 
J3x-+x0 1=1,2 Ji^x-yXQ 

Lemma 4.9 Ifxel, then vx is an upper semi-continuous function atx.IfxeJ, 
then v2 is a lower semi-continuous function at x. 

Moreover, ifx^ is such that coy(x^) = 0, then vt(x) -> x^ as I ^ x ^> x^ in case 
that i = 1 and as J ^x -• x^ in case that i = 2. 

Proof: Similarly as in the proof of lemma 4.8, we focus on the case x e I and 
x = XQO > 0. Let I^xm-> x. We are going to show that 

(37) Woo - = lim sup vx (xm) < vx (x) 
m-*oo 

in case that xeI and that w^ < x in case x = x^. 
(i) If x e I2, then vx (x) = oo and therefore we obtain w^ < vx (x) immediately. 
In the remaining cases, we will show that w^ > vx (x) leads to a contradiction. 

Let {yw} be a subsequence of {x^ such that vx (ym) -> w^ > vx (x). Since 
ym -> x < vx (x), there exist m0eN and <50 > 0 such that ym < vx (x) — <50 and 
v! (x) + <50 < vi (ym) hold for every m > m0. 

(ii) Now, consider the case xel3. Then v1(x) = 1. Since hym > h2
m holds on 

(ym? vi (ym)) 9 1 f°r every m > m0, we get for every <5 e (0, <50) that 

lim inf h,m(l) > lim hym(l - <5) = hx(\ - <5). 
m-+oo * m-*oo 

Since hx(\ — <5) -> oo as <5 -> 0+, we obtain that hym(l) -> oo as m -> oo. Let 
mx > m0 be such that hym(\) > 0 holds whenever m > m{. Since ym < 1 < vx (ym) 
holds for every m > rhu we get that hym > h2

m holds on ( l , ^ ^ ) ) for every 
m > mx and therefore 

as mx < n —> oo, since /^(vf .) > hym(l) > 0 holds for every m > mb where 
»!"'.= î(ym). Hence, we get that w^ = lim^oov^y™) < 1 = ^(x). 

(iii) Consider the case x e Ix or x = x^, By lemma 4.5, rjhx(x) = 0 and if x e Iu 

then rjhx(v{(x)) = 0. By lemma 4.7, rjhx(vx (x)) < 0 in case xe Ix and therefore there 
exists <5 G (0, <50) such that (x, zs)\,e Q) and rjhx(zd) < 0, where zs: = vx (x) + <5. Such 
<5e(0,<50) exists also in case x = x^ by lemma 4.2. If m ^ m0, then 
ym< z5< vx(ym) and therefore (ym,zs) e Q). By lemma 4.7, rjhym(z5) -• rjhx(zs) < 0 
as m -> oo and therefore there exists mx > m0 such that rjhym(zs) < 0 holds for 
every > mx. Hence, we obtain hym(z3) < h2

m(zs) for every m > mx which is 
a contradiction with lemma 4.5 (i) as vx(ym) > zs > ym. 
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(iv) We are to show the moreover part. By (37) with v{ (x) replaced by x^, we 
get that Xoo = lim x < lim sup v{ (x) < x^ as 13 x -> x^. 

The proof of the remaining part of the statement can be obtained by modifying 
(i), (iii) and (iv). • 

Corollary 4.10 The function v^ is a continuous on I and v2 is continuous on J. 
In particular, I2 is a closed set in I and J2 in J. Further, I3 is a closed set in I by 
the moreover part of lemma 4.8. 

Lemma 4.11 The set I3 u I4 is relatively closed in I and J4 in J, where 

h'.= {xelhhx(vx(x)) > ^(v^xfi&v^x) < 1/c}, 

J4:= {xeJh hx(v2(x)) < —d+(v2(x))&v2(x) > — l/b}. 

Proof: By corollary 4.10, I3 is a closed set in I. Let I 3 x <- xw G I4 as m -• oo, 
then Vi (x) = limw_00 vx (xm) < 1/c < oo and therefore x <£ I2. Since I is a disjoint 
union of sets Il9 I2,13 and I3 _= I3 u I4, we are to show that x e I4 provided that 
x G /-. Let x e I{. If vx (x) 7- 1/c, then v{ (x) < 1/c and we obtain from continuity 
of 

(38) J :y e {ye I,; Vl (y) < 1/c} .-> hy(v, (y)) - 3_(Vl (y)) 

at y = x that ^(x) = limm^00 <f(xm) > 0 and therefore x e I4. Now, we are to 
show that vi (x) = 1/c is not possible. Since x e Iu we get a contradiction 

00 > hx(vi(x)) = lim hXm(vx(xm)) > lim 5_(i;i(xm)) = 00 
m->oo m-^oo 

in case vx (x) = 1/c. The proof that J4 is relatively closed in J would be quite 
similar. • 

Lemma 4.12 The set I2 u I5 is relatively closed in I and J2 u J5 in J, where 

I5: = {x e Il5 hx (v{ (x)) < 3_ (vx (x)) or vx (x) > 1/c} 

J5: = {x e Jb hx (v2 (x)) > — 9+ (v2 (x)) or v2 (x) < — l/b}. 

Proof: By corollary 4.10, I2 is a closed set in I. Let I 3 x <- xm e I5. We are to 
show that x e I5 provided that x £ I2. If Vi (x) > 1/c, we have that vx (x) 7- 1 and 
therefore x £ I3. Hence, x G I\(I2 u I3) _= I{ is such that vx (x) > 1/c and therefore 
x G I5. If Vi (x) < 1/c, we obtain from the continuity of vx that the same inequality 
holds for xw if m is large enough, and we obtain from continuity of J given by 
(38) that 0 > limm^00 J(xm) = J^(x) and therefore x G I5. The proof that J2 u J5 

is closed in J would be similar. • 

Lemma 4.13 (i) Let 9y > 0, then I = (x, x) 7- 0, where 

x = 00 if 9y > 1 + l/b, x = £-%) if 9y < 1 + l/b, 

x = 0 if 0y = V ^ , x = Z+1(9y-yft<y) if 0v>JKy. 

57 



Let 9y < 0, then J = (x,0) # 0, where 

x = - o o if 0 y < l - l / c , x = (^:1(0y) if l - l / c < 0 y < O . 

(7/J 7/0y > 0, then I2\JI5^ 0. 7/0y < 0, then J2uJ5^ 0. 

Proof: Let 0y > 0. By the definition, I is an intersection of two open intervals. 
The first one corresponds to the conditions x > 0, 0 < coy (x) and it is of the form 
(0, x), where x = oo in case that 0y > 1 + 1/fc, i.e. in case that 0y > x{^z holds 
for every x e (0, oo), and where x e (0, oo) is the unique solution of 0y = x y ^ on 
(0, oo) in case that 0y < 1 + 1/fc. The second interval corresponds to the condition 
coy(x) < y/tfy and it is of the form (x,oo), where x = 0 in case 
0y < [(1 — 0y)

2 + K2]1/2, i.e. in case that 0y = ^/Ky, and where x e (0, oo) is the 
unique solution of the equation 

1 4- h 
COy(X) = 6y- Xj-^ = -7(1 - Oyf + Ky = V ^ 

on (0, oo) in case that 6y > [(1 - 6yf + KJ]1/2 = J#r Since 

6y - (1 + 1/b) <9y-l<. .7(1 - 6yf + K] = v ^ , 

we obtain that 9y — y/#y < I + l/b in case that 6y > yfiSy and therefore 

!TTh = e>-^<<e>Al, + 1M-sTTV* 
Since x G [0, oo] i—> x ? ^ is an increasing function, we obtain that x < x and 
therefore I = (x, x) ^ 0. 

(ii) If 0y > 1 + 1/&, we put x : = 1 + (1/c v x). Then vt (X) > X > l/c and so 
x e JN(/3 u J4) c I2 u I5. 

Now, consider the case when 0y < 1 + 1/6. Then x < oo and coy (x) j 0 = 
= coy (x) as x f x. By the moreover part of lemma 4.9, vx (x) -» x as I s x -> x. Let 
I Bxm-+ x and zm e (xw, v{ (xm)) be sequences. Then zm -» x and therefore 
0 > — $+(x) = hx(x) «- hXm(zm) as m —> oo. Since zm e (xw,t?!(xw)) was arbitrary 
sequence, we get that hXm(vi(xm)_) < 0 holds for m large enough and therefore 
Xm G 72 U 75. 

The proof of the part of the statement corresponding to the case 0y < 0 would 
be similar and a little bit more simple, since (1 — 0y)

2 + Ky > 02 in this case. • 
Let x G R and / be C2 in a neighbourhood of x. We denote 

(0/)(x):= ieiS(x)S(x)'e1[/ ,(x) - y/(x)2] + eJB(x)/(x) - d(x), 

where x = (x,*')' and where S(x), B(x), d(x) are defined by (3) and (6). If 
rif(x) + [1 + x/(x)]2 # 0, we define 
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(39) , W/(x) + x f (x)[ l+x f (x)] 
( 3 9 ) * x - n/{x) + [1 + xf(x)]2 " " ^ 

(40) (^f)(x) = ^S2(x)[f(x) - yf(x)2] + B(x)f(x) - d(x), 

where S2(x), B(x), d(x) are defined by (21), (22), (23). 

Lemma 4.14 Let c e (0,1); b, K2 > 0 and 0,, £ {0,1 + K^}. T«en //.ere exist 

(41) fe C 2 ( - 1/fc, 1/c), e: x e [a,p] s (-1/6,1/c) H^ e, e R""1, 

(42) 0 > ^ { 0 ; t 0 r + ^ [0? - ((0, - l)2 + K2)] v 0} =: v0 

such that 
(i) a > inf Iif6y>0 and ft < 0 = sup J in case that 6y < 0, 

(U) f(x) = - 3+ (x) holds on ( - 1/fe, a], f(x) = S_ (x) on [jff, 1/c), 
(Hi) (@f) (x) + tf = 0 fto W8 for every x = (x, £')' swe/z t/wzt x G [a, /?] awd 

* = 0y - z -^x + ex. 

Proof: We choose ex in order to satisfy the following equation %x: = 
:= 0y - £- !Lx + sx = (1 - x)0y. Denote(f2:= (T2(l + K1)and 0y : = 0y/(l + K2). 
Then 0y£ {0,1} and 

(43) ei§ (x) S(x)'e! = a2x2 (1 - x)2 = : Sf1 (x), 

(44) eiB(x) = (1 - y)x(l - x)<x2[0y - x] = : J (x ) , 

(45) d(x) = 1-=-^ {0;L0y + <j2 [20yx - x2]} = : do (x) 

if x = (x,£x). Since ^ 2 , $ and d0 — ^ 0 y E 0 y are of a special form, we obtain by 
[4, corollary 6.5] that there exist cDye(O,|0y| A |1 — 0y|) such that —1/6 < a: = 
:= ^;1(0y - (by) < Zzl(9y + a)y) =: j8 < 1/c, that 0,1 £ [a,/?] andfe C2(- l /6, l /c) 
such that (5^(y) = <5_(z) = d}(x) = 0 hold whenever ye(-l/b,oc], z e [j8,l/c), 
xe[a,j3] and that ^(y) < 0, 5_(z) < 0, d}(x) < 0 whenever X G ( - 1 / 6 , 

l/c)\[a,0], y e (a, l/c),z e (-1/&, 0) with v = ^<^(0y - Wy). The conditions (ii) 
and (iii) are obviously satisfied with $: = ^ 0yE0y + v > v0. If 0y < 0, then 
0y < 0 and ct)ye(0y,O) and we get that p = £zl(Qy + a)y) < ^ ( O ) = 0 = sup J, 
since <!;_ is an increasing function on (-oo,l/c). Let 0y > 0. We will show 
that 0y — (dy > 0y — y/ity and then will we obtain that a = £+l(67 — coy) > 
> €+l(07 — x/^y) = inf/, since £+ is an increasing function on (— 1/fc, oo) 3 a. 

If 0y < 2» then Ky = 02 < (1 — 0y)
2 + K] and therefore the desired inequality 

obviously holds, since 9j = ^fesy in this case. If 0y > f, then Ky = (1 — 0y)
2 + JC2 

and Ky - (0y + (1 - 20y))
2 = \£ (1 - 20y)

2 > 0. If 0y e (i 1), then we get from the 
previous inequality that 0y - ^tY < 20z - 1 = 0y - |1 - 0y| < 0y - d)y. If 0y > 1, 
then 0y - d>y > 0y - |0y - 1| = 1 > 0y - JH7, since Ky > (1 - 0y)

2. D 
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Lemma 4.15 Let ft > 0, c e (0,1) and — 1/ft < a < /? < 1/c ftc suc/i f/zaf 
0 £ [a,/?]. Further, assume that a = x0, /? = ^(a), ^Xo(^) = $-(/?) if 9y > 0 and 
that x0 = jS, a = u2(j8)- ^x0(

a) = ~~ ^+(a) if 0y < 0. Then there exists 
fe C2(— 1/ft, 1/c) such that f(x) = hXo(x) on (a,/}) and 

W /(x) = - 5 + ( x ) on (-1/ft,a], f(x) = 5_(x) on [jS, 1/c) 
(7/J 1 + xf(x) > 0 holds on (—1/ft, 1/c) and 

(46) G (x, f (x), ^(x)) > co2 (x0), f (x) > f(x)2 

hold on (—1/ft, 1/c) so that the left-hand inequality is strict if and only ifx $ [a, /?] 
arid the right-hand one if and only if xe (a, jS). Further, 

(47) (2>J)(x) + v = ?l-^l[G(xJ(xUj(x)) - coy(x0)] > 0 

holds for every x e (— 1/ft, 1/c), where 

(48) v : = i - p {0;Z0y + <x2 (6y - co) (xo))}. 

Remark 4.16 (i) The reader can see from the proof of lemma 4.15 that 
£_(/?) = Qy + cOr(x0) in case that c > 0 and 9y > 0. Similarly, we would have that 
£+(a) = 6y — coy(x0) in case that ft > 0 and 6y < 0. 

(ii) If 0y > 0 and c < 0 or if 6Y < 0 and ft < 0, then the statement of lemma 
4.15 remains valid and the proof correct if we place 1/c by oo in case 9y > 0 and 
— 1/ft by — oo in case 6y < 0 provided that ft + c > 0. 

(iii) The statement of lemma 4.15 remains valid also in case that 9y > 0 and 
a e I2 or if 9y < 0 and /? e J2 provided that we remove the assumptions 
hX0(P) = i9_(/>), /? < 1/c and we replace 1/c by oo in case that 9y > 0 and we 
remove assumptions hxo(a) = — S+ (a), a > — 1/ft and that we replace — 1/ft by 
— oo in case that 9y < 0. It is very easy to modify the proof of lemma 4.15 in 
order to obtain the corresponding proof and therefore it is left to the reader. 

Proof of lemma 4.15: We are going to define f as a primitive function to some 
h e Cl(-l/b, 1/c). The condition (i) tells us, how to define h on (-1/ft, l/c)\(a, £). 
If x e [a,/?], we put h(x) := hXo(x). The assumptions of lemma 4.15 ensure that 
the definition is correct and that h e C(— 1/ft, 1/c). To show that h e C1 (— 1/ft, 1/c), 
we need to verify that h(oc+) = h(oc_) and h(f}+) = h(fi_). It follows from 
assumptions that x0 e Ir or x0 e Jl9 respectively. By lemma 4.5 and lemma 4.7, 
rjhx (y) = 0 holds at each y e {a,/J} and we get that 

h(a+) = hxo(a+) = hX0(af = 9l(«) = - 5 + ( a ) = h(a_) 

HP-) = K(P-f = hX0(pf = 9i(P) = +9_(P) = HP+)-
It follows from lemma 4.5 that f(x) > f(x)2 and that 1 + xf(x) > 0 hold on 
(a, /?), see the definition of <D containing all points of the form (x, hXo(x), coy (x0)) and 
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the definition of f(x) for x e (a, ft). The equality/(x) = f(x)2 and the inequality 
1 + xf(x) > 0 on ( — 1/b, l/c)\(a,j8) immediately follows from the definition of 
/ on this set. If x e [a,/J], then h solves the equation h(x) = cp(x,h(x),coy(x0)) at 
jc and therefore rjh (x) = cj)(x,h (x), coy (x0)) holds at x = x. Hence, the equality sign 
holds in the left-hand inequality in (46) for every x e [a, /?]. Now, we are going to 
show that 

(49) G (x, f (x), rjf(x)) = (07 - £ (xj(x)))2 > co2 (x0), 

hold whenever x e (— 1/b, l/c)\[a,/T|. The left-hand equality in (49) holds 
on (— 1/b, l/c)\(a, jS), since r//= 0 there. Moreover, £(x,f(x)) = £+(x) if 
x e (— 1/b, a] and £ (x, f (x)) = £_ (x) if x e [/?, 1/c) and therefore it is sufficient to 
show that 

(50) £+ (x) > £+(a) = 9y - coy(x0), 9y + coy(x0) = £_(p) < £_(y) 

hold, whenever — 1/b < x < a and /? < y < 1/c in order to verify the right-hand 
inequality in (49). By lemma 4.5 (i), rjf > 0 holds on (a, p). By lemma 4.2, 
(0y - i(zj(z)))2 = co2(x0) * 0 and sign ty(z) = sign[0y - Z(zj(z))] * 0 holds 
for every z e {cc,P}. Since r\f cannot be negative or zero at a and positive or zero 
at /?, we get the equalities in (50). The inequalities follows immediately, since £+, 
£_ are increasing functions on ( — 1/b, 1/c). Now, it remains to show that the 
left-hand equality in (47) holds, but it follows from remark 4.17 (see below) and 
(39), since ex - x(l - ex)f(x) = r//(x)/(^/(x) + [1 + xf(x)]2). • 

Remark 4.17 If v = ±f* {rj;Erjy + a2(62 - co2)} and / is C2 in the neighbour­
hood of x and rj/(x) + [1 + xf(xj]2 ^ 0, then 

{%f){x) + , = \s^{x)\f{x)-f{xf-\ 

• + ^ ^ { ^ - t{x>f{x)j\2 + K%{x,ex,f{xf - 0$, 

where C(x,e,h) = e — x(l — e)h and where ex is given by (39) and S2(x) by (21). 

Lemma 4.18 Let b > 0, c e (0,1) and x0 e ( — 1/b, 1/c) be such that x e I2 u I5 

if6y>0 and x0eJ2Kj J5 if 6y < 0. Let a = x0, /? = vx (a) if 6y > 0 and (i = x0, 
a = v2(fi) if 9y < 0. Then hXoe( — S+(x),9_(x)) holds for every xe(a, /?)n 
n ( - l / b , 1/c). 

Further, z(P)e( — b, c) if x0 e I5\I4 and z(oc)e( — b, c) if x0 e J5\J4, where z is 
given by formula (51). 

Proof: We focus on the case 6y > 0. It follows from the definition of hXo, 
lemma 4.5 and the definition of O that 1 + xhXo(x) > 0 holds for every x e (a, /?). 
Further, it follows from the properties of hXo that hXo (a) = — 3+ (a) and therefore 
we obtain for every x e (a,/?) that z(x) = z(a) + j^z(y)dy > z(a) = — b, where 
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(5i) Z(yy=^-^ and i ( y),y)-^>0 

holds for every ye(oL,fi) by lemma 4.5 (i). If XQG/J, then (x^f^eQi and 
(xfo/JjC^Xo^e*!). In particular, hXo is defined at /? and 1 + Phxo0) > 0 and the 
same argument as for xe(a,/J) can be used for x = /? in order to obtain that 
z(P) > —b. A straightforward computation using 1 + xhxo(x) > 0 gives that 
hXo (x) > — ^+ (x) holds for every x e (a, /?) n (— 1/b, 1/c) and a similar computation 
shows that z(x) < c holds if and only if hXo(x) < ^-(x) whenever xe(a,/?) n 
n (— 1/b, 1/c). If x0 G /x and /? < 1/c, we obtain by the same way that the same and 
the following equivalence z(x) < c = hXo(x) < ^-(x) holds also for x = /J. 

If P < 1/c, we obtain from the assumption x0 e I2 u /5 that x0 e I5 _ Ix and that 
/iXo(/J) < ^-(P)' Then z(/J_) = z(j5) < 1/c. Since z is an increasing function on 
(a,j8), we get that z(x) < z(/J_) < 1/c and therefore hxo(x) < ^-(x) holds for 
every x e (a, /?) _ ( - 1/fc, 1/c). 

Let /? > 1/c. We recall that hXo is an increasing function on (a,/J), since it 
satisfies hxo > h2

X0 there. If hxo(fl_) < 0, then we get hXo(x) < 0 < ^-(x) on 
(a, 1/c) = (a, j?) n (—1/6,1/c) immediately and it covers the case when x 0 e / 2 . 
Hence, we can assume that x0 e I5 _ / t and that hxJfi) = hXo(f}_) > 0. Then we 
obtain that 

zlx)<zM- K{® < A ^ I = 1 < C 
w w i + f U f l ^ ( W / s - c 

holds for every x 6 (a, /?) n (— 1/b, 1/c). D 

Lemma 4.19 Let b > 0, c e (0,1). Lef x0e(—1/fc, 1/c) fce sue/* that 
x0 G A(/3 u /4) //* 0y > 0 and x0 G A/ 4 lf 9y < 0. JAen f/iere exists 
feC2(- 1/b, 1/c) swcA that 

(i) %f + v > 0 fto/ds on (—1/6,1/c), where v w g/vcw by (48), 
(II; f = _-9+ on ( - l /6 ,x 0 ] if0y>O,f = d_ on [x0,1/c) ifOy < 0, 

(Hi) fe (- ^+, ^_) on (x0,1/c) ifdy>0 and on (- 1/b,x0) lf9y < 0. 

Proof: We focus on the case 9y > 0. Then x0 e (- 1/b, 1/c) n [7\(/3 u /4)]. If 
x0 G /2, we apply remark remark 4.16 (iii) in order to obtain fe C2(—l/b, oo) such 
that / = - ,9+ holds on (-1/6,a] , that (47) hold on (-1/b, oo) and f(x) = h^x) 
on (a, oo). Then (i), (ii) are satisfied and (iii) follows from lemma 4.18. 

Let x0 G/-. Then x0 e /i\(/3 u /4) _ /5V4. By lemma 4.18, hXo(x) e(-^+ (x),^_(x)) 
holds for every xe(oc,P) n ( -1 /M/c) and c := z(j8) = hXo(P)/(l + PhXo(/S))e 
e( — b,c). Then hxo(p) = c/(l — chXo(P)) and we obtain from lemma 4.15 or remark 
4.16 (ii) with c replaced by c that (hXo(x),x e a,/?)) can be extended to a function 
with a primitive function fe C2(—l/b, 1/c) satisfying (i) and (ii) in the statement 
of lemma 4.15, where 1/c is replaced by oo in case that c < 0. Then (i), (ii) are 
satisfied and we get that f(x) = &XO(X)G( —i9+(x),i9_(x)) holds for every 
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x e (a, p). If x e [0,1/c), then / (x) = c/(l - ex) e ( - 3+ (x), S_ (x)), since 
ce( — b9c) and therefore (iii) is verified. • 

Lemma 4.20 Let xe ( —1/6,1/c), / fee C2 in a neighbourhood of x. Let 
x = (x, *')' 6 R" fee such that 1 + x/(x) > 0 and f(x) > f(x)2. 

Then (®/)(x) > (S£/)(x) and both sides are equal to each other if and only if 
* = ey - t~xLx + (t-lL- 0^ where ex is given by (39). 

Proof: By assumptions, rj/(x) + [1 + x/(x)]2 > 0 and therefore ex is defined 
correctly. We introduce ex uniquely defined by the following equation 
* = ey - l~lLx + (t'xL - 0y)ex + ex. Then 

^e'1S(x)S(x)'e1 = -S2(x) + ft--ciS(x)S(x)'e1 + -x¥x£6x, 

rs 

e',B(x) = 5(x) + r x -e ; i (x) + (1 - y)x£i£, 

d(x) = d(x) + rx -d(x) - -^l?x±sX9 

where ^JeiS(x)S(x)'eb ^eilB(x), ^d(x) stand for the following expressions 
2 aT (*)>&(*)> *(*) S iven by (15) ^ d (16)» respectively. Since ex satisfies (20), we 
have that 

«.[(/•(*) - r/W2) |^e'1S(x)S(x)'e1 + f(x) | e i i ( x ) + | d (x ) ] 

is equal to zero and therefore (@f)(x) — (^/)(x) is equal to 

(52) ~^Mfa(x) + [f{x)x + l]2} > 0. 

Since the expression in braces is positive, we obtain that (52) is equal to zero if 
and only if &x£ex = 0 which happens if and only if ex = 0, since E is a positively 
definite matrix. • 

Lemma 4.21 Let K2 > 0 and 0y $ {0,1 + K2}. If 0y > 0, then I3 u I4 # 0. 
Further, J4 -̂  0 in case that 0y < 0. 

Proof: Let 73 u I4 = 0 if 07 > 0 or J4 = 0 if 0y < 0. We will show hat this 
assumption leads to a contradiction. By lemma 4.14, there exist $ satisfying (42) 
and /, e satisfying (41) and 

0 < £+l(07 - yfc) = x <*< P <l/c if 0y>0 

and - 1/fe < a < j8 < 0 = sup J if 0y < 0 such that (ii), (iii) in lemma 4.14 hold. 
Further, 0 < coy(x) | /̂Ky as x J, x if 0y > 0 and as x | 0 if 07 < 0 and therefore we 
get that there exists x0 e (x, a) in case 0y > 0 and x0 e (/J, 0) in case 0y < 0 such that 
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v : = ------- {&y±9y + a2 (62 - co2 (xo))} e (v0, f>). 

By lemma 4.19, there exists / e C2( — 1/fo, 1/c) such that 

f=-&+ on ( - 1 / M o ] , 'fe(-&+,&.) on (x0,l/c) if 0r > 0 

f=+&. on Oo,Vc), fe(-&+,&_) on (-l/l>,x0) if 0, < 0 

and 3)J + v > 0 on ( - 1/fc, 1/c). Then 

/(a) > -5+(a) =/(a) & /(/?) < &_(?)= f (ft). 

Hence, there exists x e (a,/?) such that f(x) = f(x) and f(x) > f(x). Then we 
obtain a contradiction 

0 = (2f)(%) + v > (2f)(%) + v > (3fJ)(x) + v > 0 

by lemma 4.20, where x := (x,xi)' and x% = 6y — ___1Lx + â . • 

Lemma 4.22 Let 9y = 1 + K2 > 1, then 73 u 74 7- 0. 

Proof: Obviously, 02 > Kr = (1 - 0y)
2 + K2 > (1 - 0y)

2. Hence, 0 < 6y -
— y/tfy < 1 and therefore 0 < x = t_ + l(9y — \A^) < 1- Since 9y > 1, we obtain 
from lemma 4.13 that x > 1 and therefore (x, 1) __ I. Let y e (x, 1). We are going 
to show that v1\ =

 vi(y) -̂  1. If y e I2 u 73, then we obtain the desired inequality 
immediately. Let yelu then we obtain from lemma 4.7 that Vhy(vi(y)) = 0. By 
lemma 4.5 (i), r/^ > 0 holds on (y,vl(y)) and therefore 77̂  does not increase at 
Vi (y). By lemma 4.2, 

(53) sign r\ky(v\j = sign [6y - £(vhhy(v$\ = sign {K2, + V}9 

where i^ \= (1 — £>i)[l +-Vihy(v1)~\. Since the left-hand side of (53) cannot be 
positive and 1 + vih^vi) > 0 holds by lemma 4.3 (ii), we get that v^ > 1 also in 
case that y e!Y = I\(I2 u I3). By lemma 4.3 (ii), lemma 4-15 and lemma 4.18, 

0 < ——*• < 1 + xhJx) < 1 + x$_ (x) = < < 00 
2 n ' v ; 1 - ex 1 - c 

holds for every xe(y9 1). Further, cO2(y)|Ky = K2 + Ky as y j x. Obviously, 
s/(x9h9coy) = (1 — xf > 0 and 

@(x9h9<Dy) = K* + K2 - co2 + 2(1 - x)(\ + xh)[(l - x)(l + xh) + K2~}9 

%(x9h9CDy) = (1 + Xh)2[(K2 + (1 + Xh)(l - X)f - CD2]. 

Since co2(y) < Ky = Ky + K2 holds whenever yel9 we obtain that &(x9hy(x)9coy(y)) > 
> 0 holds whenever x < y < x < 1. Since rjhy(

x) > 0 holds for every x e (y91), 
we get from the definition of G and the equation G(x9hy(x)9^y(x)) = co2(y) 
on (y91) that ^(x9hy(x)9coy(y)) < 0. Obviously, lim sup*.^ limsupy_>x+ 

V(x9hy(x)9coy(y)) < 0, 
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lim sup ăň (x, hy (x), æy (y)) = 0(1 — x) as x -> 1 _ 
У - Í + 

and the same formula holds provided that J1 is replaced by y/&2 — AstfW there. 
Since ^ ( x ) = 0(x,hy(x),coy(y)) holds for every x < y < x < 1, where </> is 
defined in lemma 4.1, we obtain from formula (29) that 

(54) lim inf lim inf ^ (x) (1 — x) > 0. 

It follows from the definition of ^ ( x ) that (54) holds provided that ^y is replaced 
by hr Then hy is not integrable from left at x = 1 if y > x+ is close to x+ enough 
and therefore y e I3 in this case. • 

Corollary 4.23 Let K2
y > 0. If 9y > 0, then I4nl5 # 0. If 6y < 0, then 

J4nJ5^ 0. 

Proof: Let 9y > 0. By lemma 4.13, I2 u I5 # 0. By lemma 4.12, it is closed in 
I. By lemma 4.11, I3 u I4 is closed in I and lemma 4.21 or lemma 4.22 gives that 
I3 u I4 7- 0. Obviously I = (I2 u I5) u (I3 u I4). By lemma 4.13, I is an open 
interval, i.e. a connected set, and therefore (I2 u I5) n (I3 u I4) 7- 0. Further, if 
x e I2, then x £ I3 u I4 and if x e I3, then x <£ I2 u I5. Hence, I4 n I5 7- 0 if 0y > 0 
and similar steps would lead to the conclusion that J4 n J5 7-= 0 if 0V < 0. • 

Theorem 4.24 Let 9y 7- 0, /c2. > 0 and b > 0, c e (0,1). 77icn t/ierc ejcwt 
fG C 2 ( - 1/fe, 1/c), - 1/b < a < /J < \/c, coy e (0, \07\) andveU such that a > 0 
if6y>0 and P < 0 if 9y < 0, lto 1 + xf(x) > 0 /ẑ Zds on (-1/fe, 1/c) and t/zaf 

(0 / > f2 holds on (a,P) and f = f2 on ( - 1/b, l/c)\(a, j8) 
(«; (^ / ) + v = 0 on [a, j8] and (_£/) + v > 0 on [-1/b, l/c)\[a,j8] 

(Hi) {+(a) = 0y - G)y, f_(i8) = 0y + coy, v = ^ { ^ + d2(9] - co2)} 
(iv) f= -3+ on(-l/b,a],fe(-S+,d_)on(x,p),f= 3_ on [P, 1/c) 

Proof: We focus on the case 9y > 0. By corollary 4.23, there exists a e I4 n I5. 
Hence, a e / j and a < /? := ^(a) < 1/c is such that K(P) = #-(/>). By lemma 
4.15 and lemma 4.18, there exists fe C2(—l/b,l/c) such that 1 + x/(x) > 0 
holds on (— 1/b, 1/c) and that (i), (ii) and (iv) hold with v := v given by (48). To 
verify (iii), it is sufficient to look at the definition of coy (a) =: coy and v : = v and 
at remark 4.16 (i). The proof corresponding to the case 9y < 0 would be similar. 

• 

5. Optimal strategies 

In this section, we prove that the strategy given by theorem 4.24 is optimal, see 
theorem 5.2, and we derive the first term in Taylor's expansion of function which 
connects transaction costs and the width of no-trade region. The proof of existence 
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of optimal strategies is left to the next section. We omit the singular case Ky = 0, 
i.e. 9y = ±~lL and left it to the reader. In this singular case, it is optimal to keep 
the remaining positions on x = 6y(l — x). Then every interval strategy [(a,/?)] 
such that 0,1 <£ [a, ft] ^ ( — 1/b, 1/c) can be explicitly evaluated and there exists the 
corresponding function / i n explicit form similarly as in the one-dimensional case. 

Remark 5.1 Let 0<£ [a, ft] _= (-1/b , 1/c). Denote by [(a,/?)], the strategy that 
keeps the first position within the interval [a,/?], that does not trade with the first 
stock when the first position is in (a, 0) and that keeps the remaining positions on 

(55) x = 6y - ±~lLx + (±~lL- 6y)sx, 

where #x is given by (39). Further, if a,/?,/ and v are such as in the theorem 4.24, 
then S{(a) = Si(P) = 0 and -d}(x) = (@f)(x) + v = (2J)(x) + v = 0 holds 
at every x e [a, /?] provided that x satisfies (55). 

Theorem 5.2 Let 6y 7-= 0 and Ky > 0. Let b, c > 0 and a, /?, / and v be such as 
in theorem 4.24. Let us consider a strategy that keeps the position G(t) within 
a compact set in (— 1/b, 1/c) x IR"-1 and E Yf < 00 for all S < 0 and t > 0. 

Then ey(U(t)) is a supermartingale. Moreover, if [(a,/?)]^ is applied, then 
ey(U(t)) is a martingale. 

Proof: It follows from the properties of / and v that (^ / ) + v > 0 and 
y+,y_ < 0 hold on (-1/b , 1/c). By lemma 4.20, (®/)(x) > (fyf)(x) holds for 
every x e ( -1 /b , 1/c) and JceR""1 and therefore -d}(x) = (@f)(x) + v > 0 hold 
for every x e Un. By lemma 3.5 in [4], V(t) is an ^-martingale. Further, we obtain 
from the inequalities <%,&+, SL < 0 and lemma 3.4 in [4] that ey(U(t)) is an 
^-supermartingale provided that we show that it is an integrable process. In case 
y = 0, we also obtain from the above-mentioned lemma and inequalities that 
V(t) > ey(U(t)) holds a.s. and therefore ey(U(t)) is a r.v. integrable from above 
for every t > 0. The same conclusion holds also for y < 0, since ey(U(t)) < 0 
holds in this case. We are going to show that ey (U (t)) is also integrable from below 
for every t > 0 > y. By assumption, Y(if is an integrable r.v. for every 
5 < 0 < t and obviously f(Gl(t)) + vt is a bounded r.v. Hence, Ees(U(t)) = 
= EY(t)ded(-[f(Gl(t)) + vt]) > -00 holds for every 5 < 0. If y = 0, we 
obtain from the inequality x > es(x) holding for every S < 0 and xeU that 
Eey(U(t)) =EU(t) > Ees(U(t)) > - 00 and therefore ey(U(t)) is integrable also 
from below. 

Now, we are going to prove the moreover part. We have from theorem 4.24 (ii) 
that (%f) + v = 0 holds on [a,jS] and lemma 4.20 gives that (@f)(x) = (^f)(x) 
holds for every x e [a, /?], provided that x is such that (55) and (39) hold. It follows 
from the properties of the strategy [(a,j8)], that -d}(G(t)) = (S)f)(G(t)) + v = 
= (£$f)(G{(t)) + v = 0 holds for every t > 0 almost surely. Further properties of 
the strategy [(a, P)\ ensure that conditions (7) are also satisfies for every t > 0 
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almost surely. By lemma 3.5 in [4], we get that ey(U(t)) is equal to an 
J^-martingale almost surely. • 

Remark 5.3 Similarly, as in [4, theorem 5.6], we could show that the optimality 
of the derived strategy is invariant under reasonable time change in model in case 
that y = 0, since the martingales remain martingales and supermartingales remain 
supermartingales. 

Lemma 5.4 Let 9y ^ 0, Ky > 0 and 0 < bx < b2 < oo, 0 < cx < c2 < 1. Let 
(/,a„j8„(oyti9v,) be as in theorem 4.24 with b:= bhc:= c,. Let b:=bx = b2 if 
8y > 0 and c:= cx = c2 if 6y < 0, then vt > v2. 

In particular, the values a,/J,a>v and v in theorem 4.24 are unique. 
Proof: We focus on the case 6y > 0. Let vx < v2. We are going to show that 

this assumption leads to a contradiction. Then cjy((Xi) > coy(cc2) and therefore 

9y - ^+(ccx) = co^ai) > coy(cc2) = 6y - £+(a2). 

Since ^+ is an increasing function on (— 1/b, oo) 3 aba2, we get that oc{ < a2. 
Since at < a2 < /?2 < l/c2 < 1/c-. and 

/ . N > -M«2)=AH fm -- Y^J2 *r=^&=^ 
we obtain that / — f2 is a continuous function on the interval [a2,/J2J with 
(/i — fi)(^i) > 0 > (/i — f2)(Pi)' Hence, there exists x e [a2,/J2] such that /2(x) > 
> /i(x) and /2(x) = f(x). Then - v 2 = (^/2)(x) > (^/)(x) > -v l f i.e. v2 < vlf 

a contradiction. Hence, we get that vt > v2. If b{ = b2 and cx = c2, we obtain that 
also vt < v2 and therefore vx = v2. Now, it is sufficient to realize that a„ /?, and 
coyi are uniquely determined by the value v.. • 

Lemma 5.5 Let Qv KL coy, b, c, a, /}, / and v be as in theorem 4.24. Let 
8e(-c,b\ Put fe:=y > 0 and c := f±fe(0,1). Then X := In \^c = ln£f. 
Further, put 

(56) y := ? ( * ) : - i [ +
J | r > f(y) := / (*) + In(l + **) 

and a := y(a), J? := y(jS). Fftcn tftc statement of theorem 4.24 remains valid if we 
replace (b9 c, a, /?,/) fey (£, c, a, j5,/). 

7n particular, v depends only on 6y9 Ky and X. Further, v is by lemma 5.4 
a non-increasing function in L 

Proof: Obviously, j ; : (—1/6,1/c) -> (— 1/fe, 1/c) is an increasing homeomor-
phism with p(x) = ( r ^ p and $(x) = - ^ ) . By (56), we get that 

J W - ~{x) >m- ~{x)2 
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Then 
\4 

(57) f(y) - f(yf = ^ ^ [f(x) - f(xf] 

and therefore Yy\y) = rjf(x)(l + 8x)2. Further, we get that 1 + yf(y) = 
= (1 + 8x) [1 + xf(xj] and therefore 

. _ - i + yf(y) = [i + xf(xj] (l + a*)-1 _ l - *x 

*y m(y) + [i + yf(y)f r,f(x) + (i + xf(x)f ~ 1 + sx 

Since 1 - y = YT£, we get that S2(y) = ^j^S2(x) and therefore 

v 1 — y 1 — y 

Similarly, we obtain that Z(y,f(y)) = i(xj(x)) and ^(y,Zy,f(y)) = C (x, ̂ ,/(x)). 
Hence, we get from the formulas above and remark 4.17 that (Slf)(y(x)) + v = 
= (3>£f) (x) + v holds for every xe( — 1/c, 1/b). Since y is an increasing homeo-
morphism mapping (a, /?) onto (a, p), we get that (ii) in theorem 4.24 holds. Further, 
we obtain (I) in theorem 4.24 from (57). Obviously, fe C2(-1/8,1/c). If 
y e (—1/b, a], then there exists x e (— 1/b a] such that y = y(x). Then 

/W-[-т 

b i & MУ + àxf 
+ bx 1 + 5x1 1 + 5 1 + by 

and similarly we would obtain that f(y) = j_yy if y e \fi, 1/c). Hence, (iv) is 
verified. Further, 

ey-coy = £+ (a) = f (a,/(a)) = 5 («,/(*)) = ~-~~~M"
 = ^+ ® 

and similarly, we would get 6y + coy = f(j8,/(j8)) = ^ j§ = |_ (/}). Q 

Lemma 5.6 Lc*> 0y 7-= 0 and TCJ > 0, thcrz coj (0y, KJ, A) -> 0 as X -> 0+, vv/zcrc 
coy (0r, KJ, /I) G (0, \9y\) is defined by the equation 

v(ey,K
2,x) = ]-^1{e;±ey + c2(92 - co2(evKix))}. 

Further, oc(9y,K
2,X), f}(9y,Ky,X) -> 9y as X -> 0+. 

Proof: By lemma 5.4 and lemma 5.5, v(9y,K
2,X) is non-increasing in X and 

therefore coy(9y, K
2,X) is non-decreasing in X. Hence, there exists cby > 0 such 

that at2 = limA_0+ w2 (9, K2, X). Let us consider bk = ex/2 — 1 > 0 and cx = 
= 1 — e~k'2 > 0, for example, in order to get that X = l n j ^ > 0. Then bh 

cx -* 0 as X -> 0+. Let/,aA, jŜ , coyh vx be as in theorem 4.24, then vx = v(0y, fcj;, A), 
OJ^ = coj (fy, fcj, >l) and 
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1 +bx 1 - c . 
— — = Vy — COyx, Pxz _T 
1 + 6„a„ 1 - c f̂l. ^ T T T T " = 0r _ ^ &:; ~~ = Qy + ^ > a 

and therefore /^ : = i-c^^Xwy^) ~* fy + ^y a n d similarly aA -> 0y — coy as 
X -> 0+. SincefA is an increasing function, which changes the sign on [a,/?], we 
obtain that 

as 2 —> 0+. Further, by Fatou's lemma 

to__i_____,_ 
A->0 + 1 — y A-0+ I 1 

0 _ lim ЛVІ-ЛЫ _ _ int fладj{«.<»<ft_ k 

> 

Since 0y — coy = limA_ ô+0}, — coyX > 0 if 6y > 0 and similarly 0y + coy < 0 if 
9y < 0, we obtain that 0$(9y — coy,9y + coy). Let x e ( 6 y - a>y,9y + coy), then 
x / 0 . Moreover, if lim infA_0+ rjfA(x) = 0, then there exists a sequence _lm -> 0+ 

such that Y]fx (x) -> 0 as m -> oo and we obtain a contradiction 

tf > (°y ~ xf <~ G(xJ^(x\nhSx)) = whm -+ <%> 
since 1 + xfXm(x) -> 1 > 0 as m -• oo. Hence, we obtain that 0 < l(x) : = 
: = lim infA_k0+ Y\fx(x)/x2 holds for every x e (9y — cov 9y + &y). We have obtained 
from Fatou's lemma that $t$l(€)5£ = 0 and therefore we get that coy = 0. • 

Lemma 5.7 Let 9y 7-= 0 and Ky > 0, then 

4(1 - y) _.;(_,, 4 я) 
я - ^ [ ( i - ľ)

2 + кj] + ° K ( Ö ^ V Д ) ) 

„ Í я -> 0+. 

Proof: If X > 0, we consider b = el/1 — \, c = \ — e~k/2 and f a,/J, v, coy 

given by theorem 4.24 without emphasizing the dependence on X. By lemma 5.6, 
a,/? -> 0y and 0 < coy -> 0 as X -> 0+. Further, 

(58) p - ey = a (/,) - 0 + p - z_(p) = a>y + /fc---£-^ = <oy + 0(11/11), 

and similarly, we obtain that 

1 — a 
(59) 9y - a = coy + ba- — = coy + 0(||f | |), where 

(60) l / l : - g - ft) - fip) , (-/(a)) = ^ v - ^ - 0 

69 



as X -> 0 + . Since 0 = (f$J)(x) + v holds for every x e [ a , / _ , we get from remark 
4.17 that 

( 6 1 ) , - 2 S 2 ( x ) / ( * ) _ / ( * ) 2 + (6y - Z(x,f(x))f + K 2 C ( X , , X , / ( X ) ) 2 = CO2. 

Since the left-hand side is a sum of three non-negative terms, each of them is 
bounded by the value co2. Obviously 

i _ , 1 + xf(x) 
^ ^(x) + [1 + x/(x)]2 > U 

holds for every x e [a,/f|. Further, we obtain from the inequality K^C(x,^x,f(x))2 < 
< co2 and the definition of £(x,#,h) = ^ — x(l — e)h that 

l iminf inf 1 — ex > 0 and therefore l iminf inf S2(x) > 0. 
A-0+ xe[a,/S] A-0+ xefa,^] V ' 

Then 

(62) Ц/II <f(ß)-f(a) = f f(x)dx <(ß- a)[oK) + Ц/ll2] 

and we get from (58)-(60) and (62) that | |/ | | = 0(coy

3) as X -* 0+. Further, we 
obtain that 

0y - _(x,f(x)) = 0y - x [ l - (1 - x)f(x)] = 0y - x + 0(coy

3) 

uniformly in x G [a,/J] as X -> 0 + and therefore (0y — £ (x, f (x)))2 = (0y — x)2 + 
+ O(coy) uniformly in x e [a,/?] as X -> 0+. From (61), we get that /jj(x) = O(co2) 
uniformly in x e [a, /}] as I -> 0+. Then 

_ >y(x) + x/(x)[l + */(*)] _ , 2. 
" X " ^/(x) + [ l+x f (x ) ] 2 ~ U ^ 

and therefore <_* (*> *x> f(x)f = (̂ x — * ( - — £x)f(x))2 = O(coy) all uniformly in 
x e [a,/?] as X -> 0 + . Hence, we obtain that 

.. o>2 - (g r - * ) 2
 + 0(a/) _ /_ _ ) _ _ _ _ _ _ _ _ _ _ _ + <, (_* 

^ ^ <T 2s 2 (x) / ( l - y) + " l yj l y!0^(1_^2 + K2j + ^ ^ 

uniformly in x e [a, /}] as A -• 0 + . Further, 

f(/3)-/(a)_f^m + ̂ ) , ^ r I_^ d < 
^ J ^ co2 J _ . A 3A 

as X -> 0 + , where A : = 0 2 [ (1 - 0r)
2 + K 2 ] / ( 1 - y), and 

/(g) - /(a) __ r__c__ ____]„______, t 
A |_1 - cp 1 + 6oY 1 - c 

as A -> 0+ . D 
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6. Existence of strategies 

This section is in a certain sense independent with the previous ones and it 
contains only statements of lemmas and theorem necessary in order to "prove" 
existence of optimal strategies, see corollary 7.5. The complete version can be sent 
to the reader if he or she is interested. 

In this section, we fix a probability space (Q, 3F, P) with a complete filtration 
Jf and an n-dimensional Jf-Wiener process W. If / is a continuous function on IR, 
we denote f\\:= f(t) - f(s) and ||/| | r := sups<J/(s)|. Further, || • || denotes the 
Euclidean norm on Un. 

Lemma 6.1 Let F (t) be a continuous ^{-adapted process and T an Jf-stopping 
time. If F(T) > a or F(T) < (I holds on [r < oo], then ^£^{F,T) or ^(F,T) is 
a continuous ^{-adapted process, respectively, where 

la(t):= ^(F,T)(t):= F(t) - inf [F(s) - a] A 0, 
T<s<r 

lp(t):= ^(F,x)(t): = F(t) - sup [F(s) - j ! ] v O . 
T<S<£ 

Moreover, 
/•oo /»oo 

I {L. > a}d(La - F) = 0, I{Lf> p}d(F - Ip) = 0. 

Lemma 6.2 Let B: R —> R, S: U -» R" be Lipschitz mappings. Then there exist 
a, b e (0, oo) such that 

E || ̂ (^(F^x) - ^(Pw(F2),x) \2<(a + bt)\ E\\Fl-F2 \\2
sds 

holds for every t > 0 whenever Fu F2 are ^{-adapted continuous processes and 
T an ^-stopping time such that F1 = F2 holds on [0, T) and F{ (T) = F2 (T) E [a, /?] 
holds on [T < oo], where FW(F) stands for the following ^-adapted continuous 
process 

t^F(t A T)+ B(F(s))ds + S(F(s))dW(s). 

The same statement holds when J% is replaced by j£?̂ . 

Lemma 6.3 Let G be a continuous ^{-adapted process and T an ^{-stopping 
time such that G(t A T) G [a,/J] for every t > 0. Let B :U -• R, S :U -+ Un be 
Lipschitz mappings. Then there exist continuous ^-adapted processes Ga > a, 
Gp < P such that Ga (t A T) = Gp (t A T) = G (t A T) holds for every t > 0 and 
such that 

Gx = J%(Fw(Ga),x), G„ = ^(Pw(Gf),x) 

hold almost surely. 

71 



Theorem 6.4 Let B : [a, /?] -> IR and S: [a, jS] -> W be a Lipschitz mappings, 
where — oo < a < /J < oo, and g0

 e [a? /?]• -fifrew f/zere exist ^-adapted conti­
nuous processes G, G+, G_ such that G starts from g0 and it does not leave the 
interval [a,/?], G+, G_ are non-decreasing processes starting from zero such that 

(63) dG(t) = B(G(t))dt + S(G(t))dW(t) + dG+(t) - dG_(t) 

and 

(64) (oo /»oo 

/ {G(t) > л}dG+(t) = 0, / (G(() < ß}dG_(t) = 0. 
o Jo Corollary 6.5 Let 9y # 0, Ky > 0 and b,c > 0. Let fa,P,(oy and v be as in 

theorem 4.24 with g0e[a,/T]. Then the statement of theorem 6.4 holds with 
B(x) := eiB(x) and S(x) = eiS(x), where x = (x,x')' and x is given by (55) with 
ex given by (39). 

Proof: Obviously, the function x e [a, fi\ \-> ^x given by (39) is infinitely 
differentiable on [a, /?]. Then the mapping x e [a, /}] i—• x = (x,^)' is also infini­
tely differentiable, where x is given by (55). Hence, x e [cc,fi\ \—> eiS(x) and 
x e [a, j8] h^ eiB (x) are also infinitely differentiable mappings and we obtain from 
theorem 7.4 that there exist processes G, G+, G_ such that (63) and (64) hold. • 
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