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2006 ACTA UNTVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 47, NO. 1 

Groupoids and the Associative Law VII. 
(Semigroup Distance of SH-Groupoids) 

MILAN TRCH 

Praha 

Received 4. October 2005 

Szasz-Hajek groupoids (shortly SH-groupoids) are those groupoids that contain just 
one non-associative (ordered) triple of elements. These groupoids were studied by G. 
Szfcz (see [10] and [11]), P. Hajek (see [2] and [3]) and later in [6], [7], [8] and [9]. 
The present short note is concerned with semigroup distances of SH-groupoids of type 
(a, a, a). 

1. Preliminaries 

A groupoid G is called an SH-groupoid if the set {(a,ft, c) e G*3' | a • be 7-= ab • c} 
of non-associative triples contains just one element. Let G be an SH-groupoid and 
let (a, ft, c) be the only non-associative triple. We shall say that G is of type: 

- (a, a, a) if a = ft = c; 
- (a, a, ft) if a = ft # c; 
- (a, ft, a) if a = c 7- ft; 
- (a, ft, ft) if a 7-= ft = c; 
- (a, ft, c) if a # ft =?-: c 71- a; 

Furthermore, G will be called minimal if G is generated by the set {a,ft,c}. The 
following assertions are easy: 

1.1 Proposition. Let G be an SH-groupoids and let a,b,ceG be such that 
a • be -̂  aft • c. Then: 

(i) G i5 of exactly one of the types (a, a, a), (a, a, ft), (a, ft, a), (a, ft, ft) and (a, ft, c). 
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(ii) If H is a subgroupoid of G, then either {a,b,c} <= H and H is an 
SH-groupoid (of the same type as G) or {a,b, c} £ H and H is a semigroup. 

(iii) The subgroupoid (a,b,c}G is a minimal SH-groupoid. 
(iv) If u,veG are such that uv e {a,b,c], then uv e {u,v}. 
Let G(*) and G(o) be two groupoids having the same underlying set. We put 

dist(G(*), G(o)) = card {(11,1;) e G(2) | u * v 7- u o v}). 
Let G be an SH-groupoid. Then sdist(G) denotes the minimum of dist(G, G(*)), 

G(*) running through all semigroups with the same underlying set as G. 

2. Semigroup distances of SH-groupoids of type (a, a, a) 

2.1 Construction. 
Let K denote the set of integers k > 4, M be a four-element set {a,b,c,d} such 

that M n K = 0 and let H = K u M. Define an operation o on H in the 
following way: a o a = b, a ob = c, b o a = d, aoc = coa = aod = 
= doa = bob = 4, boc = cob = bod = dob = 5, coc = cod = 
= doc = dod = 6 and aok = koa = k + l, bok = kob = k + 2, 
cok = koc = dok = kod = k + 3, kom = mok = m + k for all 
m,ke K. Furthermore, define a mapping o of H onto the set of positive integers 
by o(a) = 1, o(b) = 2, o(c) = o(d) = 3 and o(k) = k for every k e K. 

2.1.1 Lemma. o(x o y) = o(x) + o(x) + o(y)for all x,yeH. 

Proof. Easy to check. 

2.1.2 Lemma. Let (x,y,z)eH{2,) be such that o(x) + o(y) + o(z) > 4. Then 

x o (y o z) = (x o y) o z. 

Proof. Easy to check. 

2.1.3 Lema. Let (x,y,z)e H® be such that o(x) + o(y) + o(z) = 3. Then 
x = y = z = a and x o (y o z) # (x o y) O z. 

Proof Easy to check. 

2.1.4 Lema. H(o) is a minimal SH-groupoid of type (a, a, a) (i.e., H(o) is 
generated by the one-element set {a}). 

Proof Easy to check (the structure of SH-groupoids of type (a, a, a) is described 
in [6]). 

2.1.5 Lemma, (a o a) o (a o a) = a o ((a o a) o a). 

Proof. Easy to check. 

2.1.6 Lemma. sdist(H(o)) = 1. 
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Proof. Put bV a = c and x V y = x o y whenever (x, y) # (b, a). It is easy to 
check that H (V) is a groupoid satisfying the identity o (x V y) = o (x) + o (y) for 
all x, y e H and all triples (x, y, z) e if̂ 3' are associative. Thus H (V) is a semigroup 
and sdist(H(o)) = 1. 

2.2 Construction. 
Consider the groupoid H(o) constructed in 2.1 and let a set A = {p,v,w,r,s,t} 

be disjoint with the set H. Put E = H u A and consider the mapping o from 2.1. 
Further, put o(p) = 1, o(v) = o(w) = 2, o(r) = o(s) = o(t) = 3. Now, define 
a binary operation on E in the following way: 
- xy = x o y for all x, y e H; 
- ap = b, pa = v, pp = w; 
- aw = bp = c, av = d, pb = va = vp = r, pv = wa = s, pw = wp = t; 
- ar = as = at = pc = pd = pr = ps = pt = bv = bw = vb = vv = vw = 

= wb = wv = ww = cp = dp = ra = rp = sa = sp = ta = tp = 4; 
- kp = pk = k + 1 for each k e K; 
- vk = kv = wk = kw = k + 2 for each ke K; 
- dk = kd = fk = kf = gk = kg = k + 3 for each keK. 
Then £ is a groupoid containing H (o) as a proper subgroupoid. Moreover, every 
triple (x,y,z)eE^ such that <r(x) + o(y) + o(z)> 4 is associative. The triple 
(a, a, a) is non-associative and it is easy to check that the triples (a,a,p), (a,p,a), 
(p,a,a), (a,p,p), (p,a,p), (p,p,a) and (p,p,p) are associative. The groupid £ is an 
SH-groupoid of the type (a, a, a) and it is generated by the two-element set {a,p}. 

2.2A Lemma. sdist(£) > 1. 

Proof Suppose that the opposite case takes place. Then there exists at least one 
semigroup (£,*) having the same underlying set £ such that dist (£,£(*)) = 1. Of 
course, the equality a * (a * a) = (a * a) * a is true. Therefore either aa ^ a * a or 
ba 7̂  b * a or ab ^ a * b. 

If aa 7-= a * a = z, then we have xz = x*z = x*(a*a) = (x*a)*a = 
= xa* a = (xa) a for every a # xe K. From this it follows immediately that 
o(z) = 2 and therefore z e {v,w}. But for z = v we obtain d = av = a*v = 
= a*ap = a*(a*p) = (a*a)*p = v*p = vp = r,a. contradiction. Similarly, 
for z = w we have c = aw = a*w = a*pa = a*(p*a) = (a*p)*a = 
= ap * a = vp = r, a contradiction again. 

If ba # b * a = z, then we have z = b*a = (a*a)*a = a*(a*a) = a*aa = 
= a* ab = c. But we have d = av = a*v = a*pa = a*(p*a) = (a*p)*a = 
= ap*a = b*a = c, a contradiction. The case ab ^ a* b is similar. Thus 
sdist(£) > 1. 

2.2.2 Lemma. sdist(£) = 2. 

Proof Define on £ a new binary operation * such that c = b * a 7-- ba, 
c = p * w 7* pw and x* y = xy whenever (b,a) 7* (x,y) ^ (p, w). It is obvious 
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that £(*) is a groupoid satisfying the identity a(x*y) = a(x) + a(y) for all 
x, y e E. Therefore, it is easy to check that every triple (x, y, z) e E® is associative. 
Thus dist (£,£(*)) = 2 and sdist (£) < 2. The rest follows from 2.2.1. 

2.2.3 Corollary. There is at least one SH-groupid E of type (a, a, a) containing 
a proper SH-subgroupoid H such that sdist (H) < sdist (E). 

2.3 Construction. 
Let K and M be the same sets as in 2.1 and consider the groupoid H(o) 

constructed in 2.1. Put B = {r,s,t} and let I be an arbitrary set of indexes. For 
every iel consider a three-element set At = {p,v„w,} and denote A = [JieiAi. 
Further, put C = {q}md suppose that the sets K, M, A, B, C are pair-wise disjoint. 
Finally, putG/ = _ 4 u B u C u K u M and denote £i = A u B u K u M for 
each i e I. On each set £,-, let us define a binary operation in the way described in 
2.2. Now, define a binary operation on G/ such that £, is a subgroupoid of G/ for 
each i e I. Further, for every i, ke I, i ^ k, put: 

- PiPk = q\ 

- aq = c, qa = s = ptvk, vtpk = r and qpt = pxq = ptwk = wtpk = t; 
- bq = qb = qq = qvt = qw, = aw, = vtq = wtq = vtvk = vtwk = wtvk = 

= Wiwk = 4; 
- qc = cq = qd = dq = qr = rq = qs = sq = tq = at = 5. 

Finally, put mq = qm = m + 2 for every meK and a(q) = 2. Then G/ becomes 
a groupoid containing each of SH-groupoids £, as a proper subgroupoid and the 
equation a(xy) = a(x) + a(y) holds for all x,y e G7. 

2.3.1 Lemma. G/ is an SH-groupoid of type (a, a, a) satisfying the condition 
(aa)(aa) = a((aa)a). 

Proof. It is tedious but not difficult to check that G/ contains just one 
non-associative triple, namely (a, a, a). 

2.3.2 Lemma, sdist (G/) < 1 + card(J). 

Proof Define on G/ a new binary operation * such that c = b * a 7-= ba, 
c = a * Vi 7*- avt = d for each i e I and x * y = xy whenever (b, a) ^ (x, y) =?-
T* (p, Wj) for every i e I. Then G/ (*) becomes a groupoid satisfying the identity 
a (x * y) = a (x) + a (y) for all x,y e G/. It is obvious that every triple (x, y, z) 
having a(x) + a(y) + a(z) > 4 is associative. There is a finite number of triples 
(x,y,z) having a(x) + a(y) + a(z) < 3. It is tedious but possible to check that all 
of them are associative. Thus G/ (*) is a semigroup and the rest is clear. 

2.4 Semigroup distance of the groupoid G/. 
In this section, let G/ be the groupoid from 2.3, let card (/) = K and let G/ (*) be 

a semigroup having the same underlying set G/ such that dist(G/,G/(*)) = sdist (G/). 
Further, for every i e I consider the following sets: L(pt) = {xe G/1 x * p, ^ xp,}, 
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L(vt) = {xeGi\x*Vi^ xvi}, L(wt) = {x e G/1 x * w, 7-= xw,}, R(p) = {x e G/1 p, * x ^ 
# pix},R(v!) = {xe G/1 Vi * x # vtx}, R(w) = {xe G/1 w, * x 7-- WJX}. 

2.4.1 Lemma. Ifba = b*a,aa = a*a anda*b ^ ab, then dist(G/,G/(*)) > 
> I + K. 

Proof. Suppose that L(pt) = 0 for some i e I. Then c = bpt = b * p, = 
= aa* pi = (a* a)* pi = a*(a * pt) = a * apt = a * b 7-= c, a contradiction. 
Therefore, L(pt) 7-= 0 for every i e I. 

2.4.2 Lemma. If ba = b * a, b = aa # a* a and a* b = abf then dist(G/, 
G7(*)) > 1 + K. 

Proof. Suppose that L(pl) = 0 for some i e I. If y = a * a then ypt = y * p, = 
= (a * a) * pt = a * (a * p,) = a * apt = a * b = ab = c. However, the equation 
ypi = c is solvable in G/ if and only if y = b, a contradiction. Therefore L(pt) ^ 0 
for every i e I. 

2.4.3 Lemma. Ifba^b*a, then dist (G/, G/ (*)) > 1 + K. 

Proof Suppose that L(pt) = R(pi) = R(vt) = 0 for some i e I. Then d = avt = 
= a * Vi = a * (pta) = a * (p, * a) = (a * pt) * a = apt * a = b * a ^ d, a contra­
diction. Therefore at least one of the sets L(pt), -R(p,), R(v) is non-empty for every 
iel. 

2.4.4 Lemma. Ifaa =£ a* a = y and a (y) > 3 then dist (G/, G/ (*)) > 1 + K. 

Proof. Suppose that R (p,) = 0 = R (vi) for some i e I. Then we have o (pty) = 
= (5 (pt) + a (y) > 4. But pty = p, * y = p, *(a* a) = (p, * a) * a = pta * a = 
= Vi* a = Via. Thus c(piy) = 3, a contradiction. Therefore at least one of the sets 
R (pt), R (vt) is non-empty for every i e I. 

2.4.5 Lemma. If a = a* a then dist (G/, G/(*)) > 1 + K. 

Proof. Suppose that R (pt) = 0 = R (vt) for some i e I. Then vt = pta = 
= pi* a = pi * (a * a) = (p, * a) * a = pta * a = vt* a = vta = r, a contradic­
tion. Therefore at least one of the sets R (p,), R (i;,) is non-empty for every i e I. 

2.4.6 Lemma. Ifpk = a* afar some kel and b*a = bay then dist(G/, G/(*)) > 
> 1 + K. 

Proof. Suppose that pkPk = Pk* Pk and apk = a* pk. Then wk = PkPk = 
= Pk* Pk = (a * a) * (a * a) = ((a * a) * a) * a = (a * (a * a)) * a = (a*pk)*a = 
= apk * a = b * a = ba = d, a contradiction. Therefore either pkPk # Pk* Pk or 
a* pk 9-= apk. Further, suppose that k ^ iel and R (p,) = R (vt) = 0. Then q = 
= PiPk = Pi * Pk = Pi * (a * a) = (pi * a)* a = pta* a = Vi* a = Via = r, a con­
tradiction. Therefore, at least one of the sets R (pt), R (i;,) is non-empty for every 
k # i6 J. 
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2.4.7 Lemma. If a * a = vk for some ke I and b * a = ba then 
dist(G/,G/(*)) > 1 + K. 

Proof. It is obvious if L\PX) ̂  0 for each i e I. Suppose first that a* pk = apk 

and a * pi 7-= apt for every k ?- i e I. If a * b = ab nd vk * pk = vkpk then c = 
= ab = a*b = a* (apk) = a * (a * pk) = (a * a) * pk = vkpk = r, a contradic­
tion. Thus we have a* a ^ aa and either a * b ^ ab or vk * pk ^ vkpk in this case. 
Further, suppose that L(P}) = 0 for some k ^ jel. Then a * b = a * (apj) = 
= a* (a* pj) = (a * a) * p} = vk * pj = vkpj = r 7-= c = ab. If R (px) = 0 = R (vx) 
for some k ^ ie I, then s = piVk = p, * vk = p, * (a * a) = (p, * a) * a = pxa * a = 
= Vi* a = Vi* a = vta = r, a contradiction. Thus at least one of the sets R(p), 
R (vx) is non-empty for every k 7-= ie I. Moreover, a* b 7-= ab and a * a # aa in 
this case. 

2.4.8 Lemma. If a* a = wk for some ke I and b * a = ba, then 
dist(G/,G/(*)) > 1 + K. 

Proof. It is obvious if L(px) # 0 for all i e I. Suppose first that a* pk = apk and 
a * pi 7-- api for every k ^ ie I. If a * b = ab and v k * pk = vkpk then c = ab = 
= a * b = a * (a * pk) = (a * a) * pk = vk * Pk = VkPk = r, a contradiction. Thus 
we have a* a ^ aa and either a * b # ab or vk * pk ¥= vkpk. Further, suppose that 
there is k ^ j e I such that L(p}) = 0. Then a* b = a* (apj) = a* (a* p,) = 
= (a * a) * pj = vk * Pj = vkpj = t. Thus we have a* a 7-= aa and a * b 7- ab. If 
-R (Pi) = 0 = ^ (v) for some k =£ ie I then t = p, W/c = p, * W& = p, * (a * a) = 
= (pi * a) * a = pia * a = Vi * a = vta = r, a contradiction. Therefore at least one 
of the sets R (p,), r (vx) is non-empty for every k ^ ie I. 

2.4.9 Lemma. If a * a = q and b * a = ba then dist(G7, G/(*)) > 1 + K. 

Proof. Of course, a * a 7-= aa and the assertion is obvious if a * p, 7-- ap, for 
every i e I. Now, let ke I be such that a* pk = apk. If q* pk = qpk and 
a*b = ab, then c = afc = a*b = a* ap^ = a * (a * p/c) = (a * a) * pk = q * pk = 
= qpk = t, a contradiction. Hence we have either q* pk 7-= qpk or a* b ^ ab. 
Finally, let k ^ ie I. Then either a * p, ^ ap{ (and then L(p,) 7*- 0), or a * p, = apt. 
In the second case, suppose that R (pt) = 0 = R (vx). Then t = pxq = px * q = 
= pi * (a * a) = (p, * a) * a = pxa * a = vxa = r, a contradiction. Therefore, at 
least one of the sets R (p,), # (vx) is non-empty. 

2.4.10 Proposition. sdist(G/) = 1 + card(J). 

Proof. With respect to 2.3.2, dist(G/, G/ (*)) < 1 + K. Of course, at least one of 
the conditions a* a 7-= aa, a*b ^ ba, b * a ^ ba has to be valid (otherwise 
c = ab = a*b = a*aa = a*(a*a) = (a*a)*a = aa*a = b*a = ba = d, 
a contradiction). For b * a ^ ba see 2.4.3, for b * a = ba, a* b = ab and 
a * a 7-= aa see 2.4.2, for b * a = ba, a * b ^ ab and a * a = aa see 2.4.1. The 
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remaining case depends on the value of y = a * a ^ aa and the result follows 
from one of 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8 and 2.4.9. 

3. Conclusion 

It was proved above that there exist SH-groupoids of type (a, a, a) satisfying the 
equation aa- aa — a (aa • a) and having an arbitrary large semigroup distance. Is 
the same true also for SH-groupoids G of type (a, a, a) satisfying the condition 
aa- aa # a (aa • a) for at least one a e Gils it true for S-groupoids of other types? 
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