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2006 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 47, NO. 1 

Commutative Zeropotent Semigroups 

VACLAV FLASKA AND TOMAS KEPKA 

Praha 

Received 27. September 2005 

Various examples of commutative semigroups 5( + ) such that 5 + 5 = 5 and 
2x + y = 2x are collected. 
Jsou sesbírány rozmanité příklady komutativních pologrup 5( + ) takových, že 
5 + 5 = 5 a 2x + y = 2x. 

1. Introduction 

Throughout the paper, the word "semigroup" will always mean a commutative 
semigroup. Unless specified explicitly, the associative and commutative binary 
operation of a semigroup will be denoted additively, i.e., by the symbol + . 

Let S be a semigroup. An element w e S is called an absorbing element of S if 
w + x = w for every x = S. There exists at most one absorbing element in S and, 
if it exists, it will be denoted by the symbol os (or only o). This fact will also be 
expressed by o e S. 

If A, B are subsets of S, then A + B = {a + b; ae A, beB}. A non-empty 
subset I of S is an ideal if / + S .= I. 

Lemma 1.1. 
(i) A one-element subset {w} of S is an ideal iffw = o5. 

(ii) If I is an ideal of S, then the relation (J x J) u ids is a congruence of S. 
(Hi) If oe S and r is a congruence of S, then the set {a;(a, 6)e r) is an ideal 

ofS. 
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Lemma 1.2. The following conditions are equivalent for a semigroup S: 
(i) \S + S\ = 1. 

(ii) oeS and S + S = o. 
(in) x + y = u + v for all x,y,u,ve S. 
(iv) x + y = x + z for all x,y,z e S 

A semigroup S satisfying the equivalent conditions of the foregoing lemma will 
be called a za-semigroup. 

Lemma 1.3. The following conditions are equivalent for a semigroup S: 
(i) oeS and 2x = o for every x e S. 

(ii) 2x + y = 2x for all x,y e S 

A semigroup S satisfying the equivalent conditions of the foregoing lemma will 
be called zeropotent (or a zp-semigroup). 

Lemma 1.4. Every za-semigroup is zp-semigroup. 

A zp-semigroup will be called zs-semigroup if S = S + S. 

2. The ordering Hs 

In this section, let S be a semigroup such that o e S; we put R = S\{o}. 
For every aeS, let (Anns (a) = ) Ann (a) = {xeS ; a + x = o] and 

(Anhs(a) = ) Anh(a) = {xe S; a + x + S = o). Further, Ann(S) = f] Ann (a), 
aeS. 

Lemma 2.1. 
(i) For every aeS, both Ann (a) and Anh (a) are ideals of S 

(ii) Ann(S) = {xe S; S + x = o}. 
(Hi) Ann (a) c= Anh (a) = {xe S; a + x e Ann(S)}. 
Now, define a relation H ( = -\s) on S by a H b iff Ann (a) c Ann (ft). 

Lemma 2.2. 
(i) H is reflexive and transitive (i.e., H is quasiordering). 

(ii) a H b implies a + x -\ b + xfor every xe S (i.e., H is compatible). 
(Hi) x -\ o for every x e S 
(iv) a e Ann (S) iff Ann (a) = S. 

Furthermore, define relations K (= KS) and Q (= QS) on S by (a, b)eK iff 
Ann (a) = Ann(b) and (c,d) e Q iff Anh(C) = Anh(d). 

Lemma 2.3. 
(i) Both K = Ker(H) and r are congruences of S and K ^ Q. 

(ii) Q/K = KT, T = S/K. 



Lemma 2.4. The following conditions are equivalent: 
(i) H is antisymmetric, 

(ii) H is an ordering 
(Hi) K = ids. 

If these equivalent conditions are satisfied, then S will be called separable. The 
semigroup S will be called semiseparable iff Ann (S) = o. 

Lemma 2.5. 
(i) T = S/K is separable iff K = Q. 

(ii) If S is semiseparable, then T is separable. 
(Hi) If S is separable, then S is semiseparable. 

Lemma 2.6. The following conditions are equivalent: 
(i) If a,b, c e R are such that a + b ^ o, a H c, b H c, then a + b H c. 

(ii) If a,b, ce R are such that a + b ^ o and Ann (a) u Ann (b) _= Ann (c), 
then Ann (a + b) £= Ann (c). 

A semigroup satisfying the equivalent conditions of foregoing lemma will be 
called upwards-regular. 

Lemma 2.7. Assume that S is separable. Then the following conditions are 
equivalent: 

(i) S is upwards-regular, 
(ii) Ifa,beR are such that a + b ^ o, then a + b = sup(a,b) in (S, ~\) (and (R, -\)). 

Lemma 2.8. The following conditions are equivalent: 
(i) If a,b,c e R are such that a + b ^ o, b + c 7-= o, c + a # o, then 

a + b + c 7* o. 
(ii) If a,b e R are such that a + b 7-= o, then Ann (a) u Ann (b) = Ann (a + b). 

If the equivalent conditions of foregoing lemma are satisfied, then S will be 
called strongly upwards-regular. 

Lemma 2.9. If S is strongly upwards-regular, then S is upwards-regular. 

In the sequel, let (T5 =) T = {(a,b)eS x S; a + b ^ 0} and (os =) 
o = {(a,b)eS x S; a + b = 0} = (S x S) \T. Finally, define a relation (vs =) 
v on S by (a, b) e v iff c H a and c H b for at least one ceS. Clearly, the relations 
T, a, v are symmetric and v is reflexive. 

Lemma 2.10. Assume that S is zeropotent. Then: 
(i) a e Ann (a) for every ae S. 

(ii) If a-\b, then (a, b)eo and {a,b} ^ Ann (a) n Ann (ft). 
(Hi) ic u v c (T. 

(iv) T is irreflexive and o is reflexive. 

If S is zeropotent and os = vs (see 2.10 (iii)), then we say that S is balanced. 



3. Nil-semigroups 

In this section, let S be a semigroup with oe S. 
An element a e S is said to be nilpotent (of index at most m) iff ma = o for 

a positive integer m. Let Nm (S) denote the set of nilpotent elements of index at 
most m and N(S) the set of nilpotent elements. 

Lemma 3.1. 
(i) Nm (S) is an ideal of S for every positive integer m. 

(ii) N (S) is an ideal of S. 
(Hi) {o}cz Ni(S) c /V2(S) <= ... and N(S) = [JNm(S), m > 1. 

The semigroup S is said to be a nil-semigroup (of index at most m) iff 
N(S) = S(Nm(S)| = S). 

Lemma 3.2. 
(i) S is a nil-semigroup of index at most 1 iff S = o. 

(ii) S is a nil-semigroup of index at most 2 iff S is a zp-semigroup. 

Lemma 3.3. N(T) = oT, where T = S/N(S). 

The semigroup S is said to be nilpotent (of index at most m) iff a\ + 
+ ... + am = o for all au ..., am e S. 

Lemma 3.4. 
(i) If S is nilpotent of index at most m > 1, then S is a nil-semigroup of index 

at most m. 
(ii) Sis nilpotent of index at most 1 iff S = o. 

(Hi) S is nilpotent of index at most 2 iff S is a za-semigroup. 

Lemma 3.5. If S is a finitely generated nil-semigroup, then S is finite and 
nilpotent. 

4. The ordering <s 

In this section, let S be a nil-semigroup. Define a relation :< (<s) on S by a -< b 
iff be(S + a)v {a}. 

Lemma 4.1. Let aybeS be such that a = a + b. Then a = o. 

Proof. We have a = a + b = a + 2b = a + 3b = ... = a + mb. But b is 
nilpotent. • 

Lemma 4.2. 
(i) -< is a compatible ordering of S. 

(ii) o is the greatest element of (S, :<). 
(Hi) If \S\ > 2, then S\(S + S) is the set of minimal element of(S, :<). 



Proof. 
(i) Clearly, < is reflexive, transitive and compatible. Now, if a <b < a9 

a 7* b9 then a = b + c9 b = a + d9 and so a = a + e9 e = c + d. By 4.1, 
a = o. Then b = o too, and hence a = b, a contradiction, 

(ii) Easy, 
(iii) Easy. 

• 
Corollary 4.3. / / \S\ > 2 and S + S = S, then the ordered set (S <) has no 

minimal elements. In particular, S is infinite and not finitely generated. 

Lemma 4.4. Ann(S)\{o} is the set of maximal elements of the ordered set (/?, 
<)9R = S\{o) 

Proof. Easy (use 4.1). • 

Corollary 4.5. If |S| > 2 and S is semiseparable, then the ordered set 
{R9 <) has no maximal elements. 

Lemma 4.6. If \S\ > 3, then the ordered set (S, <) does not have smallest 
element. 

Proof. Use 4.1. • 

Lemma 4.7. The followinng conditions are equivalent: 
(i) If a9b9c9d9eeR are such that a + b ^ o and a + d = c = b + e, then 

c = a + borc = a + b+f for some f eS. 
(ii) If a9b9ce R are such that a + b^o9a<c and b < c, then a + b <c. 

(iii) If a9be R are such that a + b 7-= o, then a + b = sup(a9b) in (S, <) (and 
(R, <))• 

If equivalent conditions of 4.7 are satisfied, then S will be called down­
wards-regular. 

Lemma 4.8. If a <b, then a-\ b. 

The semigroup S will be called decent if the relations <s and -\s coincide (i.e., 
if a-\sb implies a <s b). 

Lemma 4.9. Assume that S is decent. Then: 
(i) S is separable 

(ii) S is downwards-regular iff it is upwards-regular. 

Define a relation \i (= \is) on S by (a, b) e \i iff c < a and c < b for at least one 
ceS (i.e., a9be(S + c) u {c}).Clearly, \i is reflexive and symmetric. 

Lemma 4.10. 
(i) M = v. 

(ii) If S is zeropotent, then \x c v c a. 



If 5 is zeropotent and as = fis (see 4.10 (ii)), then we shall say that S is strongly 
balanced. 

Lemma 4.11. Assume that S is decent. Then: 
(i) fi = v. 

(ii) If S is zeropotent, then S is balanced iff it is strongly balanced. 

5. Ordered sets of special type 

5.1. Let (R, <) be a non-empty ordered set together with an irreflexive and 
symmetric relation x(= xR) defined on R. For a,beR, we put aVft = 
= sup (a, b), provided that this supremum exists in (R, <). Now, we will assume 
that the following condition is satisfied: 
(Z0) If a, b e R are such that (a, b) e x, then a V b exists. 

For ae R, let t(a) = [xe R; (a,x) e x}. Consider the following condition: 
(Zl) If (a, b)ex and (c, a V ft) G T, then (a, c)ex and (b, aWc)ex. 

Lemma 5.2. Assume that (Zl) is true. 
(i) If a,b,ceR are such that (a,b)ex and (c,a V b)eT, then (a,b), (a,c), 

(b, c)ex and (a, b V c), (b, a V c), (c, a V ft) G T. 

(ii) If a,be R are such that a < b, then (a,b) 4 t. 
(Hi) If (a,b) e T, then a / a V b # b. 

Consider some more conditions: 
(Z2) For every aeR there exist b,ceR such that (b,c)ex and a = b V c 
(Z3) For every ae R there exists at least one be R with (a, b)ex (i.e., t (a) # 0). 
(Z4) For all a, be R, a T-= b, (a, b) $ x, there exists at least one ce R such that 

either (a, c) e x, (b, c) $ x or (a, c) $ x, (b, c)ex (i.e., t (a) -̂  t (b)). 
(Z5) If a < b, a # b then there exists at least one ce R such that (a,c)ex and 

b = a V c. 
(Z6) If a, b e R are such that a < b, then t(b) _= t(a). 
(Z7) If a, b e R are such that (a,b) i x and t(b) c t(a), then a < b. 
(Z8) If a,b,ceR are such that (a,ft)GT and t(c) ^ t(a)n t(b), then r(c) c 

c t(aVft). 
(Z9) If a, ft G R are such that (a,ft) G T, then t(lj)nt(ft) = t(a V ft). 
(Z10) If a,b,ceR are pair-wise different such that (a,b)GT and a V d = c = 

= b V c for some d,e e R, (a, d) G T, (ft, c) G T, then there exists feR such 
that (a V b,f) GT and c = a V b V f 

(Zl 1) If a, ft G R are such that 0 ^ r (a) # t (ft) # 0 and (a, ft) £ T, then there exists 
CGJJ such that t(a) u f(ft) c t(c). 

(Z12) If a,ft G i? are such that a ^ ft and (a,ft) ^ T, then there exist c,d,ee R such 
that (c, d) e x, (c, e) e x, a = c V d, ft = c V e 

8 



5.3. Let (R, <) be a non-empty ordered set. Define a relation x on R by (a, b)ex 
iff the infimum a A b = inf (a,b) does not exist in (R, <). Clearly, x is irreflexive 
and symmetric. 

5.4. Let T(= (T, A, V)) be a distributive lattice with a smallest element 0T and 
a greatest element lrsuch that |T| > 3. Consider the basic order < defined on 
T and also the ordered set (R, <), where R = T\{0r, IT}. Define x on R by 
(a,b)e x iff a A b = 0T (see 5.3). Clearly, x is irreflexive and symmetric. Now, 
assume that the following condition is satisfied: 
(YO) If a, b e R and a A b = 0T, then a Vb =£ lT (and hence aV beR). 

Next, consider some more conditions: 
(Y2) For every ae R there exist b,ce R such that b A c = 0 and a = b V c 
(Y3) For every a G /? there exists at least one b e R with a A b = 0. 
(Y4) For all a,beR, a 7-= b, a A b ^ 0, there exists at least one ce R such that 

either aAc = 0^bAcoraAc^O = bAc. 
(Y5) For all a,beR, a < b, a # b, there exists at least one ceR such that 

a A c = 0 and b = a V c. 
(Y7) If a, b G /? are such that a A b ^ 0 and a £ b, then there exists at least one 

ceJ? with a A c = 0 7- i A c. 
(Y12) If a,fe G /? are such that a ^ b and a A b # 0, then there exist c,d,ee R 

such that c A d = 0 = c A e, a = cM d, b = cM e. 

Lemma 5.5. 
(7) The conditions (Z0), (Zl), (Z6), (Z8), (Z9), (Z10), (Zll) are satisfied, 

(ii) If i e {2,3,4,5,7,12}, then (Zi) is equivalent to (Yi). 

Example 5.6. Let a be an uncountable cardinal. Put X = {A^ a; \A\ < K0} u 
u {a}.Then X is a sublattice of the lattice of all subsets of a and r is a congruence 
of X, where (A, B)er iff \(A u B)\(A n B)\ < K0. Now, T = X/r is an (infinite) 
distributive lattice, Or = 0/r, lT = a/r and we consider the ordered set 
R = T\ {Or, IT} together with the irreflexive and symmetric relation x. If (a, b) e x, 
then a A b = 0T $ R and 1T # aV be R. Moreover, it is easy to check that all 
the conditions (Z0), ..., (Z12) are satisfied (use 5.5). 

6. One sort of examples of zs-semigroups 

Let (R, <) be a nonempty ordered set together with an irreflexive and symmetric 
relation x such that the conditions (Z0), (Zl) and (Z2) are satisfied. Let o be an 
element not belonging to R and 5 = R u {o}. We extend the ordering < to 
S setting a < o for every aeS. Now, define an addition on S by a + b = aVfc 
if (a, b) e x (see (Z0)) and a -\- b = o otherwise. 

Proposition 6.1. S (= S( + )) is a zs-semigroup. 



Proof. Since T is symmetric, the operation + is commutative. Further, (x, o) £ T 
for every x e S, hence x + o = o and o is an absorbing element. Since T is 
irreflexive, we have x + x = o for every xeS. The equality S = S + S follows 
from (Z2). It remains to show that S( + ) is associative. 

Let a,b,ceS. If o e {a,b,c}, then (a + b) + c = o = a + (b + c), and so we 
assume that a,b,c e R. 

If (a, b)$x and (b, c) <£ T, then a + b = o = b + c, and so (a + b) + c = o = 
= a + (b + c). 

If (a,b) <£ T and (b,c) e T, then a + b = o, b + c = b V c, (a,b V c) £ T by (Zl) 
and (a + ft) + c = o = a + (b + c). 

If (a, b) e T and (b, c) $ x, then a + b = a V b, b + c = o, (c, a V b) 4 T by (Zl) 
and (a + b) + c = o = a + (b + c). 

If (a, b)ex and (b, c) e T, then a + b = aVb ,b + c = b V c. Now, if (a, b V c) £ 
£ T, then (c,a V b) £ T by (Zl) and (a + b) + c = o = a + (b + c). Similarly, if 
(c,a V b) $ T. Finally, if (a,b V c) e T and (c,a V b) e T, then (a + b) + c = 
= (a V b) + c = (a V b) V c = sup(a,b,c) = a V (ft V c) = a + (ft V c) = 
= a + (b + c). • 

Lemma 6.2. 
(7) Ann (a) = S\t(a) for every ae R. 

(ii) Ann(o) = S. 

Lemma 6.3. Ann(S) = {ae R; t(a) = 0} u {o}. 

Lemma 6.4. 77*e semigroup S is semiseparable iff (Z3) is true. 

Lemma 6.5. If a, be Rf then (a, b)en iff t(a) = t (b) 

Lemma 6.6. The semigroup is separable iff the conditions (Z3) and (Z4) are 
satisfied. 

Lemma 6.7. Let a,be R,a ^ b. Then a<biffb = aV cfor some ce R such 
that (a, c) e x. 

Lemma 6.8. If a,beS are such that a <b, then a < b. 

Lemma 6.9. The relations < and < coincide iff the condition (Z5) is satisfied. 

Lemma 6.10. Let a,beR. Then: 
(i) a-\bijft(b)^t(a). 

(ii) o-\aijft(a) = 0. 
(Hi) a H o. 

Lemma 6.11. If a,b,ce R are such that a < b and (a,b), (b,c) e T, then 
a + c < b + c. 

Lemma 6.12. The ordering < of S is compatible with the addition iff < is 
contained in H and this is equivalent to the condition (Z6). 

10 



Lemma 6.13. The relations < and H coincide iff the conditions (Z3), (Z6) and 
(Z7) are satisfied. 

Lemma 6.14. The relations :<, < and H coincide (i.e., S is decent) iff the 
conditions (Z3), (Z5), (Z5) and (Z7) are satisfied. 

Lemma 6.15. The semigroup S is upwards-regular iff (Z8) is true. 

Lemma 6.16. The semigroup S is strongly upwards-regular iff (Z9) is true. 

Lemma 6.17. The semigroup S is downwards-regular iff (Z10) is true. 

Lemma 6.18. The semigroup S is (strongly) balanced iff (Z11) ((Z12)) is true. 

In the sequel, the semigroup S (= S( + )) will be denoted by 2£(-R, < ,T,O) . 

7. A few consequences 

Proposition 7.1. Let S be a non-trivial separable upwards-regular zs-semi-
group. Put R = S\{o], denote by < the restriction of the ordering -\s to R (see 
2.4) and define a relation xR on R by (a, b)exR iff a + b T-= o. Then: 

(i) (R, <) is an infinite ordcered set. 
(ii) xR is irreflexive and symmetric. 

(Hi) If (a, b) e XR, then a + fc = aVfc = sup (a, b) in (R9 <). 
(iv) The conditions (ZO), (Zl), (Z2), (Z3), (Z4), (Z6), (Z7) and (Z8) are 

satisfied, 
(v) The condition (Z5) is satisfied iff S is decent, 

(vi) The condition (Z9) is satisfied iff S is strongly upwards-regular, 
(vii) The condition (Z10) is satisfied iff S is downwards-regular, 

(viii) The condition (Zll) ((Z12)) is satisfied iff S is (strongly) balanced. 

Proof. See 2.4, 2.6, 2.7, 4.3 and 6. • 

Corollary 7.2. The following conditions are equivalent for a groupoid S: 
(i) S is a non-trivial separable upwards-regular zs-semigroup. 

(ii) oeS, \S\ > 2 and there exist an ordering < and an irreflexive and 
symmetric relation x defined on R = S\{o]such that the conditions (ZO), 
(Zl), (Z2), (Z3), (Z4), (Z6), (Z7) and (Z8) are satisfied and 
S = 2£(/?, < ,T ,O) (then < is -\s restricted to R, x is xs restricted to R, 
a + b = sup (a, b) for (a, b) e x and a + b = o otherwise). 

Proposition 7.3. Let S be a non-trivial downwards-regular zs-semigroup. Put 
R = S\{o}, denote by < the restriction of the ordering <s to R (see 4.2) and 
define a relation xR on R by (a, b)exR iff a + b ^ o. Then: 

(i) (R, <) is an infinite ordered set. 
(ii) XR is irreflexive and symmetric. 

11 



(Hi) If (a,b) e TR, then a + b = a V b = sup(a,b) in (R, <). 
(iv) The conditions (ZO), (Zl), (Z2), (Z5), (Z6) and (Z10) are satisfied, 
(v) The condition (Z3) is satisfied iff S is semiseparable. 

(vi) The conditions (Z3) and (Z4) are satisfied iff S is separable, 
(vii) The conditions (Z3) and (Z7) are satisfied iff S is decent, 

(viii) The condition (Z8) ((Z9)) is satisfied iff S (strongly) upwards-regular, 
(ix) The condition (Z1I) ((Z12)) is satisfied iff S (strongly) balanced. 

Proof. See 4.2, 4.3, 4.7 and 6. • 

Corollary 7.4. The following conditions are equivalent for a groupoid S: 
(i) S is a non-trivial downwards-regular zs-semigroup. 

(ii) oe 5, \S\ > 2 and there exist an ordering < and an irreflexive and 
symmetric relation T defined on R = S\{o}such that the conditions (ZO), 
(Zl), (Z2), (Z5), (Z6) and (Z10) are satisfied and S = &(R, < , r , o ) (then 
< is -<s restricted to R, T is TS restricted to R, a + b = sup (a, ft) for 
(a, b) e T and a + b = o otherwise). 

8. Particular examp les of zs-semigroups 

Example 8.1. Let I be a infinite set, |/| = a, and 3 the set of infinite subset of 
I. Define an operation ® on3by A ® B = A v Bif A n B = Qand A ® B = I 
otherwise. 

Proposition 8.2. 3 ( = 3(®)) is a zs-semigroup, where 03 = I. 

Lemma 8.3. 
(i) 21 = Ann (3) is the set of cofinite subsets of I. 

(ii) 713 = 03 = (21 x 21) u id3 

Corollary 8.4. 3 is not separable. 

Lemma 8.5. A -\% B iff either A c B or B is a cofinite subset of I (i.e., B e 21). 

Lemma 8.6. A <^B iff either A = BorB = IorA^B and B\A is infinite. 

Corollary 8.7. 
(i) If A < 3 B, then A ^ B. The converse is not true, 

(ii) If A c= B, then A -\% B. The converse is not true. 

Proposition 8.8. 3 is upwards-regular but neither strongly upwards-regular 
nor downwards-regular. 

Lemma 8.9. 
(i) (A,B) e (73 iff either AnB^0orAuB = I. 

(ii) (A, B) e V3 iff (A, B) e /X3 and iff A n B is infinite. 

12 



Corollary 8.10. /^ = V3 and 3 is not balanced. 

Let b be an infinite cardinal such that b < a. Put 

3b = { A e 3 ; | A | < b } u { / } . 

Proposition 8.11. For every b < a is ^b a subsemigroup of 3. 3b is also 
a non-trivial zs-semigroup, upwards-regular, but neither downwards-regular nor 
balanced. 

Proposition 8.12. If b < a, then 3b is separable, strongly upwards-regular and 
the relations <= and -\%b coincide. Moreover, the automorphism group Aut(3b) of 
3b operates transitively on 3b\{I}. 

Let ftbea (non-principal) maximal ideal of the Boolean algebra of all subsets 
of I such that A e ft for every A c I, \A\ < a. Put fi = {Be ft; \B\ = a} u {/}. 

Proposition 8.13. fi is a subsemigroup of 3 and £ is a non-trivial separable 
zs-semigroup. Moreover, the automorphism group Aut (£) of £ operates transiti­
vely on £ \{3}= {Beft; \B\ = a}. 

Proof Take 4 ,Bef i , A # / # B. Then A' = Azl^f t , B' = A B ^ f t and 
i ' n f f ^ ft. Since _4 u B e fi, we have \A' n B'\ = a. Consequently, A' n B' = 
= Ci u C2, Ci n C2 = 0, |Ci| = o = \C2\. Since i ' n f f ^ ft, we may assume 
that d ^ f t . Then C2 <= d e f t and C2eft. Further, Di = i ' \ C i C Cieft, 
Di e ft and D2 = Br \ Ci e ft. On the other hand, C2 c Di n D2, and so Du D2 e fi. 
Clearly, there is a permutation p of I such that p(̂ 4) = B, p(Di) = D2 and 
p | Ci = id. Now, define a transformation / of the Boolean algebra of subsets of 
/ by f(E) = p(E), for every E ^ I. Then f is a permutation of the Boolean 
algebra and f(A) = B. It remains to show that / is an automorphism of fi(©). 

If L e fi, L # I, then L = L\ u L2 u L3, L\ = L n A, L2 = L n Ci, 
L3 = L n Di, and f(L) = p ^ ) u p(L2) u p(L3) = B u L2 u Z)2 e ft. Thus 
f(L) = p(L) e fi. Quite similarly, f~\L) e fi. It follows that f | fi is a permutation 
of fi. The rest is clear. • 

Example 8.14. Define another operation fflon 3 (see example 8.1) by A EBB = 
= .4uBif.4n.Bis finite and A ffl B = I otherwise. 

Proposition 8.15. 3 (= 3 (ffl)) is a zs-semigroup, where o3 = I. 

Lemma 8.16. 
(i) 21 = Ann (3) is the set of cofinite subsets of I. 

(ii) 7i3 = (21 x 21) u id3. 
(Hi) (A,B) e Qz iff (A u B)\(A n B) is finite. 

Corollary 8.17. 3 is not separable. 

Lemma 8.18. A H3 B iff either A c B or A\B is finite and B\A is infinite or 
B is a cofinite subset of I (i.e., B e 21). 
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Lemma 8.19. A<^B iff either A = B or B = I or A c B and B\A is 
infinite. 

Corollary 8.20. 
(i) If A <3 B, then A c= B. The converse is not true, 

(ii) If A <= B, then A H3 B. The converse is not true. 

Proposition 8.21. 3 is neither upwards- nor downwards-regular. 

Lemma 8.22. 
(i) (A, B) e <r3 iff either A n B is infinite or A u B = I. 

(ii) (A, B) = v3 iff (A, B) e /x3 and iff A n B is infinite. 

Corollary 8.23. v3 = v3 and 3 is not balanced. 

Proposition 8.24. Q is a congruence of the semigroup 3, the factor 3 = 3/g is 
a non-trivial zs-semigroup and 3 is separable, upwards-regular, do­
wnwards-regular and decent. 3 is neither strongly upwards-regular nor balanced. 

Proposition 8.25. If a = K0, then the automorphism group Aut (3) of 3 oper­
ates transitively on 3 \{^} -

Proposition 8.26. Assume that a > K- and put R = { -4E3; \A\ = K0} u {/}. 
Then 

(i) SK is a subsemigroup of 3-
(ii) R is a non-trivial zs-semigroup. 

(Hi) If A, Be ft, then (A,B) e n* iff (A9B) e r (i.e., (A u B)\(A n B) is finite). 

Proposition 8.27. Assume that a > X- and put 2 = $t/nR (see Proposition 
8.26). Then 

(i) £ is a non-trivial zs-semigroup. 
(ii) £ is separable, strongly upwards-regular, downwards-regular, decent and 

strongly balanced. 
(Hi) Aut(£) operates transitively on £\{ofi}. 

Remark 8.28. The semigroup £ is identical with the semiroup constructed by 
means of Example 5.6 and Proposition 6.1. 
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