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Multiplication Groups of Quasigroups and Loops IV. 

ANTONÍN JANČAŘÍK, TOMÁŠ KEPKA AND MILAN VÍTEK 

Praha 

Received 7. October 2004 

Quasigroups with prime number of inner permutations are studied. 
Studují se kvazigrupy s prvočíselným počtem vnitřních permutací. 

1. Auxiliary results (A) 

1.1. Throughout this section, let G be a group such that G = AB = {ab; ae A, 
be B} where A and B are (possible non-abelian) subgroups of G. Notice, that then 
we also have G = BA (if xe G and x~l = ab, a e A, b e B, then x = b~la~x e 
eBA). 

We put C = A n B and we denote by S (resp. T) the set of left (right) cosets 
modulo C in A (resp. B); that is S = {aC; ae A} and T = {Cb; b e B}. The coset 
aC will be denoted by a. 

The following two lemmas are obvious: 

1.2 Lemma. The following conditions are equivalent: 
(i) A (B) is a left transversal to B (A) in G. 

(ii) A (B) is a right transversal to B (A) in G. 
(Hi) A (B) is a two-sided transversal to B (A) in G. 
(iv) A (B) is stable transversal to B (A) in G. 
(v) C = 1. 

13 Lemma. A is a selfconnected transversal to Bin G iff C = 1 and A is abelian. 
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1.4. Let a e A and be B. Then ba = axbx for some axe A, bxe B and, if 
ba = a2b2, then axC = a2C e S. Furthermore, if a3 = ac, ce C, then ba3 = axbxc, 
bxc e B. Now, we see that the element b determines a transformation qb of the set 
S given by qb(a) = ax, since a4

lba e B for all a4 e ax. 

1.5 Lemma, (i) qb is a permutation of S for every be B and qb = ids iff be 
elG(B). 

(H) qblqb2 = qb,b2for all bx, b2 e B. 

Proof, (i) First, let q(a{) = q{a~2\ q = qb. Then bax = a3bx, ba2 = a3b2i baxbx
x = 

= a3 = ba2b2\ a2
iax = b2

lbx e C and ~ax=~a2 and a3 e q(a). Then q is a permu­
tation of S. For the rest note that L G(B) = {&; a~lbae B for every a e 4}. 

(ii) We have b2a = a ^ , ax e qb~(a\ bxax = a2b4, a2 e qbl (a[) = qbxqb2(a). Now, 
bxb2a = bxaxb3 = a2b4b3 and a2eqblb2(a). A 

1.6 Corollary. The mapping (p: B -+ S\, cp(b) = qbt is a homomorphism of the 
group B into the symmetric group S! of permutations of S and Kcr((p) = LG(B). 

1.7 Corollary, (i) Ifk = [A : C] is finite, then [B: lG(B)] < kl 
(ii) If A is finite and B infinite, then LG(B) 7-= 1. 

1.8 Corollary. Ifm = card (A) and n = card (B) are finite and ifk = card (C) 
and L= card(LG(B)), then I > n/(m/k)\. 

1.9. For a e A, let la denote the permutation of S defined by la(a[) = aa[ = aaxC. 
Now, let a2b2 = a3b3. Then la2qb2(a) = a&4, b2a = a4b4, la3qb3(a) = a ^ , b3a = 

= a5b5, a2a4b4 = a2b2a = a3b3a = a3a5b5 and a^ = lHja5. Thus we can define 
a mapping <X>: G -• S! by O (ab) = laqb. 

1.10 Proposition, (i) O is a homomorphism ofG into S! and Ker(O) = CLG(B). 
(ii) Q> \ A is injective and <S>(a) = lafor every ae A. 

(Hi) <D T B = (p (1.6) and Q>(b) = qbfor every beB. 

Proof, (i) Let bxa2 = a3b3 and axbxa2b2 = a4b4. Now, a = <l>(a1b1)0(a2b2) = 
= htfbja^bv bxa2a = a3b3a and qbJa2 = la3qby Hence a = laJa3qb3qb2 = laia3Qb3br 

On the other hand, /? = Q>(axbxa2b2) = la4qb4 and axbxa2b3 = axa3bxb2. Now, we 
can choose a4 = axa3, b4 = b3b2 and we see a = ft. 

If O(ab) = ids, then laqb(l) = 1 and consequently a = I, a e C , la = ids, 
qb = ids and be i-G(B). 

(ii) and (iii) Easy. A 

1.11 Corollary. If m = card (̂ 4) and n = card(B) are finite and if k = card(C) 
and t = card(CH_G(£)), then t > n/((m - k)/k\). In particular, if C = 1, then 
t = card(LG(B)) and t > n/(m - 1)! (cf. 1.8.). 

1.12 Remark, (i) Proceeding as in 1.4, we define a permutation pa of T, a e A, 
by bab4

l e B for every b4 e Cbx = pa(Cb\ ba = axbx. Now, \j/ : A -> T!, \j/(a) = 
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= pa, is a homomorphism into the opposite group (Tl)op (then a —> pa-\ is 
a homomorphism of A into T!) and Ker(i/t) = LG(A). 

(ii) Proceeding similarly as in 1.9, we get a homomorphism *F : G -> (T!)op such 
thatKer(^) = CLG(A). 

1.13 Lemma. Let H be a subgroup of G such that A n H = 1. ITzert 
card(II) < card(B). Moreover, if C = 1 and G = AH, then card (If) = card(B). 

Proof. Suppose, on the contrary, that card(B) < card (II). There are mappings 
f.H^A and g : II -> B such that x = f(x)g(x) for every x e II. Clearly, g is 
not injective, and so g(x) = g(y) for some x, yII, x ^ y. Now, xy_1 = 
= f (x) f (y)~l e A n H = 1 and x = y, a contradiction. A 

1.14 Lemma. Suppose that A is abelian. Then: 
(i) C c LG(I?). 

(ii) IflG(B) = 1, then C = 1 and Z(G) 9\ A. 
(Hi) IflG(A) = 1 = LG(B), then Z(G) = 1. 

Proof, (i) Obvious. 
(ii) Let zeZ (G), z = ab. Then, for every ax e A, abax = zax = axz = 

= axab = aaxb and so, bai = b and it is clear that b e LG(B) = 1. Thus z = ae A. 
(iii) Use (ii). A 

1.15 Proposition. Suppose that A is abelian and let N be normal subgroup of 
G such that N/lG(B) = Z(G/lG(B)). Then NG(B) = NB. 

Proof. We can assume that LG(B) = 1. Then Z(G) n B = 1, Z(G) c A and 
C = 1. 

For every x e N G (B), define a transformation tx of A by ax e tx (a) B for every 
ae A. First, we show that txe A\. To that purpose, let x = cd, ce A, de B. If 
t*(fli) = tx(^ then (a~lax)

x e B, a~lax = c~la~laxc e C = 1, ax = a2. Further, if 
a3 G A, then da3 = a4e, a4e A, ee B and we have a4 = a4 = (a4ee~l)d = a3e~ld, 
and so tx (a4) = a3. 

Now, let x, )>GNG(JB) and aeA. We have ax = tx(a)bx, bxeB, tx(a)y = 
= ty (tx (a))b3, where b3 = b2b\ e B. On the other hand, axy e txyy (a) B, and hence 
txy(a) = ty(tx(a)). 

We have proven that the mapping T : x -• tx-\ is a homomorphism of NG(B) into 
A\. Clearly, K = A n NG(B) <= Ker(r) and Ker(i) n B ^ LG(B) = 1. On the 
other hand, since B c NG(B), we have NG(B) = KB. Thus K = Ker(r) and 
both B and K are normal subgroups of NG(B). Since K n B = 1, we have 
NG(B) = J ( x B a n d i ( c CG(B). Of course, K £\ CG(A), and so K c Z(G). On 
the other hand, Z(G) 91 A n NG(B) = K trivially. A 

1.16 Corollary. Suppose that A is abelian and LG(B) = 1. Then: 
(i) C = 1, Z(G) c: A and NG(B) = Z(G) x B. 
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(ii) If Z(G) = 1, then NG(B) = B. 
(Hi) If lG(A) = 1, then Z(G) = 1 and NG(B) = B. 

2. Auxilliary results (B) 

2.1. In this section, let G be a group such that G = AB, where A nd B are abelian 
subgroup of G. 

2.2 Proposition. G is metabelian and G = (J[A, B]) w abelian. 
2.3 Proposition, (ij Mc(.4) = 4G' and MG(B) = BG'. 
(»') If A # B and af /easf one o/ die subgroups A, B is finite, then either 

MG(A) T* GorMG(B) # G. 

Proo/ See [2] • 

2.4 Lemma. Lei* C be a subgroup of G such that A £ C. Tnen: 
(j> C = / l(Cni9). 

(H) Z (C) = (Z (C) n 4) (Z (C) n B). 
f»0 Z ( C ) n B £ Z(G). 
(iv) If Z(G) n B = 1, i7ien Z(C) £ A 
(v) / / C=3 G, then Z(C)=3 G am/ 4G' £ C. 

Proo/ (i) and (v) are obvious and (iv) follows from (ii), (iii). 
(ii) Let ae A and be B n C be such that abeZ(C). Then ab = ba and, for 

every ce B n C, abc = cao = cba = oca. Thus ax = xa for every x e B n C, 
and so aeZ(C) by (i). Since abeZ(C), we also have beZ(C). 

(iii) Z(C) n B £ Cc(,4) n CC(B) £ CG(A u B) = Z(G). • 

2.5 Corollary. (0 .4 n B £ Z(G) n Lc(/4) n LC(B). 
fii; Z(G) = (Z(G) n /4)(Z(G) n B). 
C*«"> / / Z(G) n /I = 1 (resp. Z(G) n B = 1), thenZ(G) £ B (resp. Z(G) £ /4). 
(iv) If lG(A) = 1 (resp. lc(B) = 1), then A n B = 1 and Z(G) £ B (resp. 

Z(G) £ 4). 
(v) / / y4 n B = 1 and oorh A and B are torsionfree, then Z (G) is torsionfree. 

2.6 Lemma. Put R = A n G. Then: 
(i) MG(A) = AG £ CC(R)<! G. 

(ii) R £ Z(Cc(J?))=g G. 
fi«; / / Z(G) n B = 1, dien # £ Z(CC(K)) £ Lc(/4) £ A. 
(iv) If R^\, then either Z(G) n B # 1 or Lc(,4) ^ 1. 

Proof, (i) Since /? £ G and G' is abelian, we have G £ Cc (R) ^ G. Similar­
ly, A £ C c ( 4 

(ii) Since CC(J?)^ G, we have Z(Cc(i?))^ G and, since /? is abelian, 
R £ Z(CC(J?)). 
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(iii) Combine (ii) and 2.4(iv). 
(iv) If Z(G) n B = 1, then LG(_4) ^ 1 by (iii). • 

2.7 Corollary. Suppose that either A n G' ^ 1 or B n G' # 1. Then either 
LG(_4)# l<?rLG(B)?- 1. 

2.8 Proposition. Suppose that G ^ 1 and t/za1 af least one of the subgroups _4, 
B is finite, Then: 

(i) Either LG(_4) ?- 1 or LG(5) *- 1. 
(n) // A n G' = 1 = B n G', then Z(G) ± 1. 

Proof (i) By 1.7(i) and 2.7, we can assume that n = card(G) is finite and 
A n G' = 1 = B n G'. Now, we shall proceed by induction on n. 

If A = B, then LG(_4) = A = G ^ 1. Hence, let A =£ B and, by 3.3, let M = 
= MG(A) 7- G. By 2.4(i), M = _4C, where C = M n B ^ B. By induction, 
there is a normal subgroup N ____" M such that _V ?- 1 and either N _= _4 or _V _= D. 
We have N n M' __= N n G' ___ (.4 n G') u (B n G') = 1. Thus N n M' = 1 and 
consequently _V ___ Z(M) and Z(M) # 1. If Z(G) n _B # 1, then LG(B) ?- 1. If 
Z(G) n B = 1, then Z(M) _= _4 by 2.4(iv). However, M ^ G. 

(ii) According to (i), let L = LG(_4) 7-= 1. Then L n Gr _= _4 n G7 = 1 and 
L<_= Z(G). • 

2.9 Lemma, (i) LG(_4)(_4 n G') _= Z(_4G') and LG(B)(B n G') __= Z(BG'). 
(») CG(A) = AZ(G) and CG(B) = BZ(G). 
(iii) NG(A) = AZX and NG(B) = BZ* where Z{/lG(A) = Z(G/LG(_4)) and 

Z2/LG(B) = Z(G/LG(B)). 
(iv) r>JG(_4)/CG(^) s ZJZ(G) and NG(B)/CG(B) ^ Z2/Z(G). 

Proof (i) The inclusion A n G' _= Z(AG') follows from the fact that both 
A and G' are abelian. Further, if aeLG(_4), then aef]Ax, xeG9 and hence 
a e Z(MG(A)). But MG(A) = AG' by 2.3(i). 

(ii) We have CG(A) = ABU where B{ = B n CG(A) _= Z(G). The rest is clear. 
(iii) and (iv). Use 1.15. • 

2.10 Proposition. Suppose that MG(A) = G = MG(B). Then: 
(i) AG' = G = BG'. 

(ii) If A 7-= B, then both A and B are infinite. 
(iii) If Z(G) = 1, then A n G' = 1 = B n G' and LG(A) = 1 = LG(B). 
(iv) Z(G) = 1 if and only if lG(A) = 1 = lG(B). 

Proof. Combine 2.3, 2.5, 2.7 and 2.9. • 

2.11 Lemma. Suppose that Z(G) n B = 1 (e.g., if lG(B) = 1). Then: 
(i) AnB = 1 andZ(G) __= LG(_4) _= A. 

(ii) CG(A) = A and Z(AG') = LG(_4). 
(iii) AnG' c LG(_4) and _4 n G' _^ G. 
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Proof, (i) See 2.5(i), (ii). 
(ii) A c C(G) = AC, C = CG(_4) n B <= Z(G) n B = 1, and so CG(A) = A, 

and Z(4G') c A. On the other hand, Z(AG)^ G implies Z(^G') c lG(A). 
Now, Z(zlG') = LG(,4) by 2.9. 

(iii) We have A n G' = lG(A) n G', and so A n G' ̂  G. The rest is clear 
from (ii) and 2.9 (see also 2.6(iii)). A 

2.12 Proposition. Suppose that Z(G) = 1. Then: 
(i) A n B = 1. 

(ii) CG(A) = A and CG(B) = B. 
(iii) lG(A) = Z(AG') and lG(B) = Z(BG'). 
(iv) AnG' c lG(A) and B n G ^ LG(B). 
(v) A n G <3 G and B n G ^ G. 

Proof See 2.11. A 

2.13 Lemma. Put L= lG(A) and C = CG(L). Then: 
(i) A c C ̂  G and C = Afl-, where B2 = B n C. 

(ii) L c Z ( C ) < G . 
(iii) If Icfti) = 1, then Z(C) = L. 
(iv) If LG(B) = 1, then lc(B{) = 1. 
(v) If LC(B) = 1, A ^ C and if JB- w characteristic in LBU then A = C and 

zl_<3 G. 

Proof (i) and (ii). Obvious. 
(iii) We have Z(C) = (Z(C) n A) (Z(C) n Bx)) and Z(C) n Bx c Lc(B.) = 1. 

ThusZ(C) c L. 
(iv) If b e L^Bi), then fcfleB for every ae A, be lG(B) = 1 and b = 1. 
(v) First, .4:< C implies C c A. But then C ^ G implies C ' < G a n d C ' c 

c L g l B j C C . Consequently, L^ ^ C and Bj ^ C. But lc(Bl) = 1 implies 
B2 = 1 and C = A. A 

2.14 Proposition. Assume fhaf B is finite, LG(B) = 1 and *fp « a prime such 
that p | card (B), fhen LG (A) does not contain any element of order p. Then A^ G. 

Proof. We proceed by induction on card(B). Assume, on the contrary, that 
A^G. It follows from 2.13(v) that A^C (we have LBX = L x JB-). Now, by 
induction, Bx = B, C = G and L = Z(G). 

Put N = NG(B). By 1.15, AT = BZ(G) = B x L. Further, LG(N) = L x B2, 
B2 = N n B. Of course, B2 is characteristic in LG(IV), and hence Bi^ G and 
B2 = 1. Thus LG_(_/V) = L. Finally, G = G/L = (A/L)(N/L) =AB, LG(A) = 
= 1 = LG(B) and G = 1 by 2.8(i). This means that L = G and v4 = G, a contra­
diction. A 

2.15 Remark. Assume that A ^ G, the primary 2-component of the torsion part 
of ,4 is cyclic (or quasicyclic) and that B is a finite 2-group, with LG (B) = 1. By 
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2.14, L = LG(_4) contains some elements of order 2. However, the 2-socle S of Lis 
cyclic, card(S) = 2, and S^ G. On the other hand, every normal 2-element 
subgroup is in the center. Thus S __= Z(G) and Z(G) # 1. 

2.16 Proposition. Assume that B is a finite p-group for a prime p and that 
LG(B) = 1. Then either A^GorZ(G)*\. 

Proof. Assume A _^ G. Let L = LG(_4). B 2.14, the p-socle P of L is non-trivial 
and, of course, P^ G. Now, take eeP, e ?-= 1, and put E — ii;beB}. Then 
£ is a finitely generated p-elementary abelian group and consequently, E is finite. 
Clearly, £__̂  G and we put K = EB. Then _K is finite p-group, and K ^ B. 
Consequently, K is nilpotent and N = NK(B) ^ B. But N __= NG(B) = BZ(G). 
ThusZ(G) # 1. A 

3. Auxiliary results (C) 

3.1. Throughout this section, let G be a group such that G = _4_f_T, where A is 
an abelian subgroup of G and / / is a finite cyclic subgroup with LG(H) = 1 and 
card(tf) = n > 2. 

Now, A n H = I L =lG(A) * 1 (by 2.8(i)) and Z(G) __= L. 
In the sequel, fix a generator we H. Then there are mappings Q : A -> _4 and 

a:_4 -* {0, 1, ..., n — 1} such that wa = g(a)w^a) for every aeA. We put 
At = {ae .4; <x(_4) = /} for every 0 < i < n — 1. 

3.2 Lemma. (7) g is a permutation of order n of A. 
(ii) _40 = 0 and A is the disjoint union of the sets Au ..., An_{. 

(Hi) _4j = LG(_4), Q(AX) = _4j, and Q\ AX is an automorphism of Ax. 
(iv) AnG' ___; Ax. 
(v) Z(G)= {aeA;Q{a) = a}czAl. 

(vi) If A n G' = 1, t/ien Z(G) = Ax and Q(O) = afar every a e Ax. 
(vii) A _____ G if and only if a (a) = 1 for every aeA. 

Proof, (i) We have Q = qw, where qfw is the permutation defined in 1.4 and 
1.5(i). 

(ii) Since A n H = 1, we have _40 = 0 and the rest is clear, 
(iii) and (iv) First, A n G' 91 L = lG(A) by 2.11(iii). If a e L, then 

^ ( a j w ^ - 1 = waw^eX, and so wa^~leAnH = 1, <r(a) = 1 and aeAx. 
Conversely, if a e _4t, then wa = Q(O)W, and hence g(a)a - 1 = waw~la~l e 
e A n G' 9\ L 9\ Ax and e(a) e Ax. Thus ^(-4t) __= Ax and, since ^ is a permu­
tation of finite order, it follows that Q(AX) = Ax (the fact that Q \ Ax is in 
automorphism of Ax is obvious). Finally, if 1 < i, then wlaw~l = 
= wi~lQ(a)w1~i = w'-Vfajw2"' ' = ... = Qi(a)eAx. This means that Ax 91 L, 
and so Ax = L. 
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(v) If aeZ(G) , then it is clear that Q(O) = a and o(a) = 1. Conversely, if 
ae A and Q(Q) = a, then a~lwa = a~xawa^ = wa^a\ aeNG(H) = T(G)H and 
a G 1(G). 

(iv) This is clear from (v) and the proof of (iii). 
(vii) This is clear. A 

3.3 Lemma. Let a, be A. Then: 
(i) Q(ab) = Q(a)QW(b). 

(ii) o(ab) = oQa^~l(b) + oQa^~2(b) + ... + OQ(b) + o(b) (mod n). 
(iii) Q(O)~1 = r^(a~l). 

(iv) Ifo(a) = o(b\ then ab~l e Ax and Q(ab~l) = Q(a)Q(b)~l e Ax. 

Proof, (i) and (ii). We have wab = Q(O)W<% = Q(a)w^~l • Q(b) = ... = 
= Q(a)Q^(b)w\ i = oQ

a^~l(b) + ... + o(b). 
(iii) This follows from (i) for b = a~l. 
(iv) By (i) and (iii), Q(ab~l) = Q(a)Ql(b~l) = e(a)o(b)_1 , i = o(a). Further, 

wab~l = Q(ab~l)wi
9 where j = o(ab~l). On the other hand, wab~l = Q(a)wjb~\ 

and so e (b )~V = w'b-1, wjb = Q(b) w' = wb, wj = wj = 1. Thus o(ab~l) = 1 
and ab~l e Ax. A 

3.4 Lemma. Let 1 < in — 1 be such that A{ ^ 0. Then: 
(i) At = Axb for every b e Ah 

(ii) Ql~l(a) = a and wl~la = awl~l for every a e Ax. 
(iii) Q(A^) = Ajfor some 1 < j < n — 1. 

Proof, (i) If aeAu then cr(ab) = o(b) = i by 3.3(ii), and hence abeAh 

Consequently, if c e Ah then cb~l e Ax by 3.3(iv). 
(ii) If beAh then Q^Q^O) = Q(ba) = Q(ab) = Q(a)Q(b) = Q(b)Q(a) by 

1.3(i). Consequently, a = Q*~l(a) and wl~la = e /_1(a)w'"1 = awl~l. 
(iii) Let a, beAt. Then e(afc-1) = Q(a)Q(b)~l ~ Ax by 1.3(iv), and so Q(O), 

Q(b)eAj for suitable j (see 1.4(i)). We have Q(A^ 91 A} and, since the index 
\A : Ax] < n — 1 is finite, in fact Q(A) = Aj. A 

3.5. 1 < ix < i2 < ... < im < n — 1 be all the indices with Atj ^ 0. Then 
ix = 1 and, by 1.4(i), Ah = Au Ai2,..., Aim are just all blocks(cosets) modulo Ax in 
A, A/Ax = {415 ..., Aim} and [A : Ax] = m. 

Let rx denote the smallest number such that 1 < rx < n and Qri (a) = a for every 
a e Ax. Further, put r2 = gcd(n, i2 — 1, i3 — 1, ..., im — 1), r2 = n if m = 1 and 
Hj = (^}, Gj = AHpj = 1,2. 

3.6 Lemma, (i) rx \ r2 and rx \ n. 
(ii) Gx and G2 are normal subgroups of G. 

(iii) G -\G2~\Gx-\ G. 
(iv) H2 <= Hx and LGJ(HJ) = hj = 1, 2. 

(v) Z(Gj) = AxJ= 1,2. 
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Proof, (i) Use 3.2(i) and 3.4(ii). 
(ii) and (iii). Put r = rj9 1 < j < 2. If aeA, then wra = Qr(a)wk, 

k = GQr~x(a) + ... + oQ(a) + o(a) = (<JQr~x(a) - 1) + ... + (GQ(O) - 1) + 
-I- (a (a) — 1) + r. Clearly, r divides k, and so w* e if,-. Consequently, H/l c AH, 
and Hj/1 = AH, = G; is a subgroup of G. Further, a-1wra = crVfaJw** so that 
a~lwraeGj. We see that x~lHjX ~l G, for every x e G. Similarly, waw-1 = 
= Q(O) wff^~l e Gj (since r divides a (a) — 1) and, again, x~lAx _= G;. Now, it is 
clear that G, ^ G and G' ~\ Gj. 

(iv) Since A c G„ we have Q-G,(#;) £ LG(H) = 1. 
(v) By 2.4(iv), Z(G,) c A, so that Z(G,) c lG(A) = Ax. On the other hand, if 

a e Au then wra = Qr(a)wr = awr, which shows that a e Z(G,). A 

3.7. Put G3 = AG'. Then G3 = AH3, H3 = G3n H, H3 = <W3>, where 
1 < r3 < H and r31 n. 

3.8 Lemma, (i) r2 | r3. 
(ii) G ~\G^-\ G2 and H3 c Jf2. 

(III) Z(G3) = ^ 

Proof. Easy. • 

3.9 Lemma. The following conditions are equivalent: 
(i) G, = G. 

(ii) ^ = H. 
(iii) r, = 1. 
(iv) o(a) = a for every a e A{. 
(v) 2(G) = Ay. 

Proof. Easy. • 

3.10 Lemma. The following conditions are equivalent: 
d) G3 = A. 

(ii) H, = 1. 
(iii) r3 = n. 
(iv) G' j= A. 
(v) A, = A. 

(vi) A^G. 

Proof. Easy. • 

3.11. Since A, j= LC(A,JI), we have Lc(A,fl0) for H0 = Hn LC(^,H) = 
= <W°>, 1 < r0 < n, r01 n. Further, G0 = AH0 is a subgroup of G (since 
G0 = .4 • A,n0) and AXH0 £ LC(G0). Clearly, LCo(H0) = 1. 

3.12 Lemma. The following conditions are equivalent for k > 1: 
W to I k. 

(ii) Qk(a)a~l e Ax for every aeA. 
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Proof. Ifk = lr0, then wk e H0 and a~lwka e AXH0. However, wka = Qk(a)u for 
some ue H, and so a~lQk(a) e Ax. Conversely, if (ii) is true, then a~lwka e AXH 
and so wk e AXH0, wk e H0 and r0\k. • 

3.13 Lemma. The following conditions are equivalent: 
(i) AXH^ G. 

(ii) G' -\ AXH. 
(Hi) r0 = 1. 
(iv) H0 = H. 
(v) Q(a)a~l e Aifor every ae A. 

(vi) Q(A^) = Aifor every 1 < i < n — 1. 

Proof. Easy (use 3.12). • 

3.14. Denote by (p the natural projection of G onto G = G/AXH0. Then 
G = AH, where A = (p(A) = AH0/AXH0 s A/Au R = q>(H) = AXH/AXHX s 
= H/H0, LG(H) = 1 and H is a cyclic group of order r0. 

(i) Assume that r0 > 2. Again, there are a permutation Q of A and a mapping 
~ : A -+ -> {1,2, ..., r0 - 1} such that (p(wa) = (p(w)(p(a) = Q(p(a) • (p(w)&ip{a) = 
= Q(p(a) • (p (wd(p{a)) for every ae A. Of course, <p (wa) = q>Q (a) • q> (wa{a)), and 
therefore Q(p (a) = (pQ(a) and r0 divides a (a) — <7<l> (a). 

Now, put B = {aeA; r0\(a(a) - 1)} and C = (p~\Ax) = ( p - ^ L ^ ) ) . Then 
Ax = (p(C), B = C n A is a subgroup of 4̂ and C = BH0 = L(G0). Clearly, 
Ax <~\ B and C^ G. Moreover, since ^ ^ 1, we have B 7-= A and C # ^ ^ Q . 
Finnaly, B^G, (otherwise B = Ax) and H0 7-= 1. It follows that r0 < n — 1. 

(ii) If r0 = 1, then we put B = A and C = G. 

3.15 Lemma. r0 < ri — 1 and H0 ^ 1. 

Proof See 3.14. • 

3.16 Lemma. The following conditions are equivalent: 
(i) B = A. 

(ii) r01 r2 (resp., G2 ~\ G0 or H2 ~\ H0). 
(Hi) r0 I r3 (resp. G3 £\ G0 or H3 ~\ H0 or G' 9\ G0). 
(iv) G0<3 G. 
(v) AxHj^ G for at least one j , 1 < j < 3. 

(vi) AxHj^ G for every j , 2 < j < 3. 
(vnj £5(a)- !(b) ft"1 e Ax for all a, be A. 

(viii) e^" 1 ^ , - ) = Aifor every 1 < i < n - 1. 
(ix) Qr2(A) = Aifor every 1 < i < n — 1. 
(xj Qr3(A) = Aifor every 1 < i < n — 1. 

Proof First, (i) is equivalent to (ii) by 3.14.; (ii) implies (Hi), since r21 r3; (iii) 
is equivalent to (iv), since G0^ G iff G' ~\ G0; (ii) and (v) are equivalent by 3.12. 
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Further, if G 0 ^ G, then C = BH0 = lG(G0) = G0, and so B = A (see 3.14). 
Now, it is clear that the conditions (i), (ii), (iii), (iv) and (vii) are equivalent. 

Assume that A{Hj^ G for some 1 <j < 3 and put r = r{. For a e A, 
a~lwrae A{Hj. However, a~lwra = a~xQr(d)u, ueH, and so a~lQr(a)e A{. Now 
r0 | r by 3.12, and hence r0 | r3. We have shown that (v) implies (iii). 

Let 2 < j < 3 be such that r0 divides r = r}. Then, for every ae A, a~lwra = 
= a~lQr(a)ue AHj n A{H = A{Hj (use 3.12), and so a~lHia~\AxHJ and 
a~lA{Hja ~\ A{Hj. 

The rest is clear. A 

3.17. Put G = G/Au A = A/A{ and ft = HAJHX s H. Then G = AH, 
LG(A) = 1 and, by 3.4, Q indces a permutation Q of A and cr induces an injective 
mapping a: A -• {1,2,..., n — 1} such that \jj(w)^/(a) = \j/(wa) = ij/Q(a)(w(T{a)) = 
= QXJJ (a) • ij/ (w)**W for all ae A; here, xjj : G -* 6 is the natural projection. Further, 
by 3.3, we have Q(\l/(a)ij/(b)) = Qij/(a) • ^ ( % ( b ) ) for all a, ft e ii, f(l) = 1 and 
m = card(/3) = card (a (A)). According to 3.12, the order of § s just r0; notice that 
r0 < n - 1. By 3.11, LG(i?) = B0 = AlH0/Al ^ H0. Since A n G ' c Ab we 
have A n (C)' = 1. 

Now, consider the following three conditions: 
(Rl) Q is an automorphism of A\ 
(R2) Q = i&A\ 
(R3) a is a homomorphism of A[ into Z* (the multiplicative group of invertible 

elements of the ring Z = Z/Zn). 

3.18 Lemma. (Rl) is true if and only if the equivalent conditions of 3.16 are 
satisfied. 

Proof. If (Rl) is true and if aeA and beAh then g(a)ft = g(ae-1(ft)) (mod 
A{). On the other hand, ^(a^_1(ft)) = ^ (a )^ _ 1 ( f t ) by 1.3. This implies that 
C°M-lb e At and Q°W-l(b)b~l e At. 

The rest is clear. A 

3.19 Lemma. (R2) is true if and only if the equivalent conditions of 3.13 are 
satisfied. 

Proof. Obvious. A 

3.20 Lemma. (R3) is true if and only ifa(ab) = a (a) a (ft) (mod n)for all a, be A 
(i.e., a : A -> Z*is a homomorphism). 

Proof. Obvious. A 

3.21 Lemma. (R2) implies (Rl) and (R3). 

Proof If (R2) is true and a, be A, then aQk(b) = a(b) for every k > 1, and 
hence a(ab) = a(a)a(b) (mod n) by 3.3. A 
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3.22 Lemma. If (R2) is true, then either A^GorZ(G)^l. 

Proof. Put £(A, i) = Qi(a)a~l eA (see 3.3(iv)) for all aeA and i > 0. Then 
£(fl, 0) = 1, t;(a9 1) = Q(a)a~l = b and, by induction on i, we check that 
£(A, i) = bo(b)... Ql-l(b) for every i > 1. Indeed, £(fl, i + 1) = e '+ I(a)a_ 1 = 
= Q

i + l(a)Q(a)-lb = Q(Q
i(a)a-l)b = QZ(a9i)b = Q(bQ(b)... Ql-l(b))b = 

= Q(b)Q2(b)... Ql(b)b (use 3.3(iv) and the fact that Q \ A{ is an automorphism of 
A{). 

Now, Q^(a9 r{) = Q(bQ(b)... Q
r^'(b)) = Q(b)Q

2(b)... Q^(b) = Q(b)... Qr^l(b)b = 
= £(A, r{)9 since be A{ and Qri(b) = b. By 3.2(v), ^(fl, r jeZ(G). In particular, if 
Z(G) = 1, then £ri(fl)fl-1 = £(a, n) = 1 and Qn(a) = a for every aeA. This 
implies that r{ = n and m = \ (otherwise ^ would divide r2 — 1 and then r{ = 1 
and Z (G) = Xt) and A __ G. • 

3.23 Lemma. G is generated by the elements $ (a) a~xwl
91 = r/(fl) + ce(fl) + 

+ ... + o-g*"1^) - k9 1 < k < n - 1, A e A 

Procf We have G = <[,4,H]>. A 

3.24 Lemma. Assume that n = p is a prime number and that A^G (or 
m > 2). Then: 

(i) p > 3, m\ p — 1 and A/A{ is cyclic, 
(ii) r0 = r{ = r2= 1. 

(Hi) Z(G) = A{ and Q(O) = afar every a e A{. 
(iv) The condition (R2) is satisfied. 
(v) G __ A{H = Z(G)H = f^G(H). 

Proof. Since r2 divides both i2 — 1 and n9 we have r2 = 1 and consequently also 
r{ = 1. Further, r0 = 1, since r01 p and r0 < p — 1 by 3.14, and so the conditions 
(R2) and (R2) are satisfied by 3.19 and 3.2,1. In particlar, a is a homomorphism 
of A into Z* __ Zp_j( + ), and therefore m | p — 1. • 

3.25 Lemma. Assume that n = p2 for a prime p. Then at least one of the 
following three cases takes place: 

(i) r{ = r2 = 1 and Z(G) = A{. 
(ii) r0 = 1 and (R2) is satisfied. 

(Hi) A^G. 

Proof. Assume A ^ G and r2 == 1. Then m > 2, r2 = p and p divides i; — 1 for 
every 1 < j < m (see 3.5). Thus 1 < i, = /, • p + 1 < p2 — 1 and m < p. On the 
other hand, Q is a permutation of __, card (A.) = m9 Q(\) = \ and the order of Q is 
r0. Now, T = £ | k _ 5 _ = _ 4 \ {l}As a permutation of /, card(_) = m— l < p — 1 
the order of T is r0 and r0 | p. From this, r0 = 1. • 

3.26 Lemma. (/) Tjf m = [_4 : _4i] i_; a prime number, then the condition (Rl) 
is satisfied. 



(ii) If m < 2 then, the condition (R2) is satisfied. 

Proof, (i) Since m is prime, Ax is a maximal subgroup of A. But Ax ~\ N ~l A 
and AX±B (see 3.16). Thus B = A and (Rl) is true (3.18, 3.16). 

(ii) Q is a permutation of A and card (A) < 2. Consequqntly Q = id. A 

4. Auxiliary results (D) 

4.1. This section is a continuation of the preceding one. Moreover, we will 
asume here that the condition (R2) is satisfied (see 3.17, 3.19, 3.21, 3.22) and that 
A ^ G. Then m > 2, Q (A) = At for every 1 < i < n — 1, G' ~\ A{H and a may 
be viewed as a homomorphism of A into Z* We have Ker(rj) = Au and so 
m -= [_4 : A j divides <g (ft), (g being the Euler function. 

For aeA and i > 0, put £(a, i) = ^"(fljfl"1 (cf. the proof of 3.22). Then 
£(a, i j e .^, £(a, 0) = 1, X(a) = £(a, 1) = Q(a)a~1 = & and f(a, i) = oo(b)... 
g1'"[ (b) for every i > 1. Finally, /c(a) = £ (a, r) G Z (G), r = r^ 

4.2 Lemma, (i) 1 < r < M — 1, r | n and 2 < n/r. 
(ii) K(O) = k(d)QX(a)... Qr~xX(a) e Z(G) for every ae A. 

(Hi) Z(G) * 1. 
(7vJ £ (a, fcr) = /c (a)fc for all ae A and k > 0. 
(v) /c (a) = K (ft) for a// 1 < i < n — 1 and a, b e At. 

(vi) If 1 < i, j < n — I, a e A( and b e Ajy then £ (a, j — 1) = £ (b, i — 1). 

Proof (i), (ii) and (iii). See 4.1 and 4.22. 
(iv) This is clear from 4.2 and the fact that Qr \ Ax = id. 
(v) Since Q(A) = Ah we have Qr(ab~l) = Qr(d)Qr(b)~l by 3.3(iv). On the other 

hand, ab"1 e Au and so Qr(ab~l) = ab"1. Now, K(O) = Qr(a)a~l = Qr(b)b~l = 
= K(b). 

(vi) £(a, j)£(a, l)"1 = Q}(a)Q(a)-1 = Q(^-l(a)a-1) = ^ ( a , j - 1) and 
Z(b, i)£(b, l ) - 1 = Qi(b, i - 1) by 3.3(iv). On the other hand, Q(a)t(b, i)b = 
= Q(a)Q

i(b) = e(ab) = Q(ba) = e(b)o>(a) = Q(b)£(a,j)a. Thus Z(a,j)l(a, l)"1 = 
= Z(b, i)£(b, I)"1 and we see that £(a,j - 1) = Z(b, i - 1). • 

4.3 Lemma. (i) XQ (a) = QX (a) for every aeA. 
(ii) X(ab) = X(a) X(b)for all a e Au be A and X \ At is an endomorphism of 

Ax. 
(iii) X(ab~l) = X(a)X(b)~l for all 1 < i < n - 1 and a, be At. 
(iv) Z(G) = {aeA; X(a) = a}, 
(v) KQ(O) = QK(a) = K (a) for every aeA. 

(vi) *(a)M'>-1Vr = K(bf®-lV'for all a, be A. 
(vii) X(ab) = X(a)X(b)K(bf^-^r = X(a)X(b)K(af^-^r for all a, be A. 

(viii) K (df/r = 1 for every aeA. 
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(ix) K(O) = 1 for every ae A{. 
(x) If 1 < k < (n — r)/r, then K(af # 1 for at least one ae A. 

(xi) K(ab) = K(a)K(bfa) = K(af/b• K(b)for all a, be A. 

Proof, (i) XQ(a) = Q2(a)e(a)-[ = Q(Q(a)a~l) = QX(a) by 1.3(iv). 
(ii) X(ab) = Q(ab)a-lb-x = Q(a)a-

l
Q(b)b-1 = X(a)X(b). 

(iii) X(ab-[) = e(afe_1)fea_1 = e(a)a_1 • e(fc"> = A(a)A(6_1) by 1.3(iv) 
(iv) See 1.2(v). 
(v) Since K(O) e Z(G), we have QK(O) = K(O). Further, since ag(a) = a (a), we 

also have KQ (a) = K (a). 
(vi) x(aP ) _ 1 ) / r = £(a,<x(fc) - 1) = £(b,a(a) - 1) = K (ft)W -1)/r by 2.3(iv), 

(vi). 
(vii) X(ab) = e(ab)a-lb-1 = Q(a)a~l • Q^(b)b-X = X(a)^(b, a(a)) = 

= X(a)X(b)Q^(b, a(a)- 1) = X(a)X(b)Q(K(bfa)"1)/r) = X(a)X(b)K(bfa)-l)/r 

(use the fact that Q$(b, a(a) - 1) = Q(Q^")-1 (b)b~[) = -^(fc)-(&)"1 = Q«a)(b)b-1 • 
•e(b)-lb = Z(b,a(a))X(b)). 

(viii) K(af/r = £(a, rf/r = £(a, n) = Qn(a)a~l = 1. 
(ix) This is obvious. 
(x) We have Qrk # id ,̂ and therefore K(af = I; (a, rk) = Qrk(a)a~i # 1 for 

at least one ae A. 
(xi) By (vii), QX (ab) = QX (a) QX (b) K (bfa) " ,)/r, Q

2X (ab) = Q
2X (a)Q

2X (b) 
K(bfa)-^r,.... Now, K(ab) = X(ab)QX(ab)... Qr~1X(ab) = K(a)K(b)K(bfa)-1 = 
K(d)K(bfaX (use 4.2(H)). • 

4.4 Lemma, (i) X(a-1) = A(a)_1K:(a-1)' = X(a)~iK(a)i for all aeA and 
i = (l-a(a))/r,j = (l-a(a-i))/r. 

(ii) X(ab-X) = X(a)X(b)~l • (K(d)K(b)-1f for all a, be A and k = (a(b~l) - l)/r. 

Proof, (i) By4.3(vii), 1 = X(aa~l) = X(a)X(a~l)K(a-1)- and 1 = X(aa~l) = 
= X(aa~l) = X(a)X(a-{)K(a)-J. 

(ii) By 4.3(vii), X(ab'1) = X(a)X(b~l)K(af. But, by(i), X(b~l) = X(b)-lK(b)~k. A 

4.5 Lemma. Let a, be A. Then X(a) = X(b) if and only ifX(ab-1) = 1 and also 
if and only if ab~l e Z(G). In that case, a (a) = a(b), and K(O) = K(b). 

Proof. First, let X(a) = X(b). Then K(O) = K(b) by 4.2(H), and so X(ab~l) = 1 
by 4.4(H). Conversely, if X(ab~l) = 1, then ab~l = Q(ab~x) and ab~l eZ(G) (see 
4.3(iv)). Finally, if ab~l e Z(G) = A„ then a (a) = a(b) and X(a) = X(b). A 

4.6 Lemma, (i) X2 is a homomorphism of A into /4l4 

(ii) Z(G) <= Ker(A2) = {aeA; X(a)eZ(G)} = {aeA; Q2(d)Q(a)-2a = 1}. 
(iii) X2(a) = Q2 (a) Q (a)~2 for every aeA. 

Proof. Let a, be A. Then, by 4.3(vii), QX(ab) = QX(d)QX(b)K(bfa)-,)/r, and 
hence X2(ab) = QX(ab)X(ab)~l = QX(a)X(a)-l

eX(b)X(b)-1 = X2(a)X2(b). Further, 
X2(a) = QX(a)X(a)-1 = g(g(a)a_1)g(a)_1a = Q

2(a)Q(a)~2a. The rest is clear. A 
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4.7 Lemma. Z(G) contains at least one element of order n/r (and so 
card(Z(G)) > n/r). 

Proof. For every i, 1 < i < (n — r)/r, choose an element a, e A such that 
K (a,)' ?- 1 (see 4.3(x)) and denote by K the subgroup of Z (G) generated by all a,. 
Then K is finite and an/r = 1 for every ae K. Moreover, it is easy to see that 
K contains at least one element of order n/r. • 

4.8 Remark, (i) With regard to 4.3(vii), X induces a homomorphism of A into 
AX/Z(G). The kernel of this homomorphism is just {ae A; g2(a)g(a)~2a = 1} = 
= Ker(A2) (see (4.6)). 

(ii) K induces a mapping v : A/Ax -» Z(G), v(aAx) = K(O). 
(iii) a induces an injective homomorphism \i: A/Ax -• Z* 
(iv) v(xy) = v(x)v(yY{x) = v(x)^- v(y), v ^ ) ^ " 1 ^ = v(y}^~l/r and v(x)n/r = 

= 1 for all x, ye A/Ax. 
(v) By 4.5, X induces an injective mapping v of A/Z(G) into Ai9 t;(aZ(G)) = 

= X (a). In particular, card (a/Z(G)) < card (Ax) and m < card (Z(G)). 

4.9 Remark, (i) Put 3(a) = aq(a)... Qr~l(a) for evey aeAx. Then 3: Ax -• 
-• Z(G) is a homomorphism, 3(a) = ar for every a G Z(G) and 3(b) ^ 1 for at 
least one be Ax. 

(ii) K = SA, /l(a)M/r e Ker (5) for every aeA.IfbeAmd X(b) eZ(G) (i.e., if 
beKer(X2)),thenX(b)n = 1. 

4.10 Lemma. G' c ^ i ^ . 

Proof We have G' s Xj// n AH4 = ^ ^ 4 . • 

4.11 Lemma. Suppose that r = 1. 77ien: 
(i) X(a) = /c(a) = £(a, 1) = ^(a)a_ 1eZ(G) = Ax for every a e A. 

(ii) ĉ (a, b) = X(affor all aeA and k > 0. 
(iff) A (aft) = A (a) A ( 6 ^ ' = X(b)X(afb^ for all a, be A. 
(iv) X (a)n = 1 for every aeA. 
(v) Z(G) = Ax contains at least one element of order n. 

(vi) X(a) = X(b)iffa(a) = a(b). 

Proof. Obvious. • 

4.12 Lemma. Suppose that n = p is a prime number (see 3.24). Then: 
(i) m\p — 1, A/Ax is cyclic, Z(G) = Al9 r = 1. 

(ii) \x : A/Ax -> Z*(= Zp_x( + )) is an injective homomorphism. 
(iii) X = K. 

(iv) v is an injective mapping of A/Ax into Au v(xy) = v(x)v(y^ = v(x)^ • 
• v(y) and v(xf = 1 for all x, y e A/Ax. 

Proof. See 3.24, 4.8 and 4.11. • 
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4.13 Lemma. Let = p be a prime, a e A/Ax a generator of A/Ax (see 4.12) 
and let k = p((x) > 2. For 1 < i, let y(i) be such that 0 < y(i) < p — 1 and 
y(i) = (1 + k + ... + k'"1) (mod p)f y(0) = 0. Then: 

(i) v(a') = v(u)y^for every i > 0. 
(ii) The order ofv((x) in Ax is just p. 

(Hi) The numbers 0, 1, y(2), ..., y(m — 1) are pair-wise different, 
(iv) The order of k in Z* is just m. 
(v) k' — 1 = (k — 1)7(1) (mod p) for every i > 0. 

Proof, (i) The equality is clear for i = 0 and we can further proceed by 
induction; v(a,+1) = v(a)v(a')fc = v(a)(v(x)y{i)f = v(a)y(0 + /c + 1 = v(a)*, + 1) (see 4.12). 

(ii) This follows from (i) and 4.3(x). 
(iii) We have A/Ax = {1, a, ..., a"1"1} and so v(A/Ax) = {1, v(a), v(a)y(2), ..., 

v(a)y(m_1^}. Now, take into account that v is injective. 
(iv) k = v (a) is of the same order as a. 
(v) This is clear from the definition of y (i). A 

5. Some special cases (A) 

5.1. Let G be a group such that G = AH, where A is an abelian subgroup of 
G, A _̂ G, [\4 : A^\ = 2, Ax = LG (A), H is a finite cyclic subgroup of order n > 2 
and LG (H) = 1. Further, let w e H be generator of H and assume that waw e A for 
at least one ae A. Then m = 2, An_x ^ 0, A = Ax u An_u n > 3, <r(A) = {1, 
n — 1} and the condition (R2) is satisfied. Moreover, r = rx divides both n and 
n — 2. Consequently, either r = 1 or r = 2 and n > 4 is even. 

5.1.1 Lemma. Let r = 1. Then: 
(i) X(a) = K(CL) = Q(a)a~l G Z ( G ) = Ax and X(a)n = 1 for every as A. 

(ii) X(An_x) = {e}is a one-element set end e is an element of order n in An. 
(iii) Q(O) = a for every ae Ax and Q(b) = be for every be An_x = A\AX. 
(iv) G = <eW_2> is a cyclic group of order n. 
(v) G n A = 1 = G n H if n is odd. 

(vi) G r\ A = <^/2) is a two-element group and G n H = 1 if n is even, 
(vii) card (GH) = n2. 

Proof. First, (i) and the equality X(An_X) = [e] follow from 4.11. Further, 
Q(b) = X(b)b = eb and Ql(b) = exb for all i > 0 and b e An_x. The order of Q is 
rc, and hence the same is true for e. The rest is clear from 1.2. A 

5.1.2 Lemma. Let r = 1. Then: 
(i) Ifn>3 is odd, then AG = G # HG. 

(ii) Ifn>4is even, then AG 7-= G 7-= HG. 

Proof. Use 5.1.1. A 
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In the remaining part of 5.1, we will assume that r = 2; then n > 4 is even. 

5.1.3 Lemma, (i) K(O) = £(a, 2) = Q2(a)a~l for every aeA. 
(ii) K(A{) = 1 and Q2(a) = afar every a e Ax. 

(Hi) K(An_i) = [e],where eel.(G) and the order of e is n/2. 

Proof. See 4.1, 4.2 (ii), (v), 4.3(viii), (x). A 

5.1.4 Lemma, (i) Ifa,beA and either aeAxorbe Ah then X (ab) = X (a) X (b). 
(ii) X \ Ai is an endomorphism of A{. 

(Hi) If a, beAn_{ = A\Ah then X(ab) = X(a)X(b)e~\ 
(iv) X2(a)X(af = e for every ae An_{. 

Proof, (i), (ii) and (iii). See 4.3(ii), (vii) and 5.L3. 
(iv) We have Q2(a) = a. But Q2(a) = Q(X(a)a) = QX(a)Q(a) = X2 (a) X (a)2 (a). 

Thus X2 (a) X (a)2 = 1. 
(v) By (iii), X(a2) = X(afe~l and e = X (a)2 X (a2)~\ 

Further, a2 e Al9 and so X(a2)'1 = X(a~2) and e = X(a)2X(a'2). Finally, X2(a) = 
= X(Q(a)a~l) = Q(Q(a)a~l)Q(a)-{a = Q(a"l)Qn(a)Q(a)~la = Q(a-l)Q(a)-la2. 
But l = Q(aa~l) = Q(a)Q-l(a-%Q(a-1) = Q-l(a~% Q(a~2) = ^ ( a - ^ - ^ a " 1 ) = 
= Q(a-x)Q(a)-x and X2(a) = Q(a~[)Q(a)-la2 = Q(a~2)a2 = X(a~2). A 

5.15 Lemma. LetueAn_uv = X(u\z = X(u~l\v' = X(u)u2cuidz' = XiyT^.Then: 
(i) X(v) = X2(u) = X(u~2) = X(u2)~l = X(u2)~l = X(u~x)2e~x = z2e~\ 

(ii) X(z) = X2(u~l) = X(u2) = X(u~2)-1 = X(u2)e~l = v2e~\ 
(iii) X (z) = X(v) e and v2 = X (z) e. 
(iv) vz = e = Q(U)Q(U~1). 

(v) z = X(v)v = Q(V) and v = X(z)z = Q(Z). 

(vi) v' = vu\ z' = zu~2, v\ z' eT(G) and X(v') = X(z') = 1. 
(vii) vz = v'z' = e. 

(viii) Q(O) = X(u)aandQ(au) = X(a)avu = X(a)av'u~l = Q(O)VU = Q(a)v'u~l 

for every a e Ax. 

Proof (i) X(v) = X2(u) = ^(w-2)-1 by 5.1.4 and its proof. Further, by 5.L4(iii), 
X(u-2) = X(u-lfe-l = z2e-\ 

(ii) We can proceed similarly as in (i) (we replace u by w-1). 
(iii) Combine (i) and (ii). 
(iv) By 5.1.4(iii), 1 = X(uu~l) = ^ ( w ) ^ - 1 ) ^ - 1 = vze~\ and so vz = e. Fur­

ther, Q(U) = tO(w_1) = X(u)uX(u~l)u~l = X(u)X(u~l) = e. 
(v) By (iii) and (iv), z2 = X(v)e = X(v)vz = Q(V)Z, and so z = Q(V). Quite 

similarly, v = X(z)z = Q(Z). 
(vi) Obviously, v' = vu2 and z' = zu~2. Further, v9 u

2 e Au and hence X(v') = 
= X(v)X(u2) = X(u~2)X(u2) = X(u~2u2) = 1. Similarly, X(z') = 1. 

(vii) By (vi) and (iv), v'z' = vu2zu~2 = vz = e. 
(viii) Q (au) = Q(O)Q (W), and the rest is clear. • 
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5.1.6 Lemma. Consider the situation from 5.1.5 and moreover, assume that 
u2 = 1. Then: 

(i) v = v\ z = z' and v, z e __ (G). 
(iL) v2 = e = z1. 

(Hi) If w/2 is even, then the order of both v and z is n. 
(iv) If w/2 is odd, then the order of both v and z is w/2. 

Proof, (i) See 5.1.5. 
(ii) By (i) and 5.L5(iii), X(v) = X(z) = 1 and v2 = z2 = e. 

(iii) and (iv). This is clear from (ii) and the fact thhat the order of e is w/2. • 

5.1.7 Remark. If v4x is finite and of odd order, then w/2 is odd and there exists 
at least one ue An_x with u2 = 1. 

5.1.8 Lemma. Let ue An_{ (see 5.1.5). Then: 
(i) Q1(U) = e{i~lV2 • v'u' = e^-1*2 • Q(U) = e(/~1)/2 • vufor every i > 1 odd. 

(ii) Q1 (u) = el/1 • u for every i > 2 even. 

Proof. First, Q(U) = vu = X(u)u = v'u~l and Q2(U) = Q(VU) = Q(V)Q(U) = 
= Q(V)VU = zvu = eu by 5.1.5(iv), (v). Now, we will proceed by induction on i. 

If i > 1 is odd, then Qi + l(u) = e(e(/"1)/2 • vu) = e(/"1)/2 • Q(VU) = e{i + l)/2 • u. 
If i > 2 is even, then Qi + l(u) = Q(ei/l • u) = ei/2 • Q(U) = ei/2 • vu. A 

5.1.9 Remark, (i) X(a) # 1 for every aeAn_l (if X (a) = 1, then Q(O) = a 
and a e Z (G) _z A{). 

(ii) a~lwaw~l = a~lQ(a)ww~1 = X(a) for every ae A{. 
(iii) a~lwaw~{ = a~lQ(a) w " ^ - 1 = X(a)w~2 for every aeAn_l. 
(iv) X(a)~l = X(a~l)e~l = X(a-l)e^n~2)/2 for every aeAn_x. 
(v) (eiX(a)w1)-1 = e~iwn-JX(a-1) = e-lQn-JX(a~l)wn-J = e-iXQ-J(a~l)w-J 

for all a e Au 0 < i < (n - 2)/2, 0 < j < n - 1. 
(vi) (eiX(a)wJ)~1 = e~j~l • wn~J• X(a~l) = e""1 • XQ-J(a~l)w~j^for all aeAn_u 

0 < i < (w - 2)/2, 0 <j < n - 1. 
(vii) eU (a) wk • eU (b) w1 = e/+^ • A (a) QkX (b) wk+l = ei+j -X(a)X (a) XQ

k (b) wk+l = 
= ei+J • X(aQk(b))wk+l for all a, b e Ah 0 < ij < (n - 2)/2, 0 < k, I < n - 1. 

(viii) eiX(a)wk • eJX(b)wl = ei+J • X(aok(b))wk + l and e^(b)w' • e'/l(a)wA = 
= ei+J-X(Ql(a)b)wk~l for all aeAh beAn_u 0 < i, j < (n - 2)/2, 0 < fc, 
/ < w - 1. 

(ix) eiX(a)wk-e,X(b)wl = ei+J+l - X(aQk(b))wk + l for all a, fce4_b 0 < i, 
j < (w - 2)/2, 0 < k, I < n - 1. 

5.1.10 Lemma. G = {eiX(a)w~4i; aeAh 0 < i< (n - 2)/2} u {eU(a)w-4/-2; 
a e 4 - i , 0 < / < ( n - 2)/2}. 

Proof. Denote by F the set on the right side of the above equality. It follows 
from 5.1.9 that F is a subgroup of G. Further, b~leiX(a)w-4i - b = e^^w"4' 
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(we have Q2(b) = b), c"V/l(a) w~4i • c = ell(a)w4', w"VA(a)w"4' • w = 
= e'^(a) w-4', 6"VA(c) w"4 '-2 • b = e'A(a)w-4/-2, d-VA(c)vv-4'-2 • d = 
= e-'"1 • A(c) w4, + 2 and w" VA(c) w"41"2 • w = e'^(a) w"4 '-2 for all a, be Au c, 
de An_{. Now, we see that F __ G and, by 5.1.9(H), (iii), we have [aF, wF] = 1 
in G/F for every ae A. Since G/F = <aF, wF>, we conclude that G/F is abelian, 
i.e., G' $ F. 

Conversely, k(Ax) ~\ G' and l(a)w"2Gff for every aeAn_x. Further, 
(A(a)w-2)"1 = e-ll(a~1)w2eG' and ( ^ ( f l - 1 ) ^ ) 2 = ^ ( a " 2 ) * ^ G'. Since 
a " 2 e 4 we have k(a~2)eG' and r V e f f . on the other hand, 
e'w-4i-/l(a)w-2 = ^(ajw"4*-2 for aeAn_x and eSv4 '- A (a) = eU(a)w-4/ for 
a e Ax. Now, it is clear that F _\ G'. A 

5.1.11 Lemma, (i) Ifn = 4k,k> 1, tfzen G' n ,4 = A ^ ) u ^(-4-) ^ 1. 
(ii) Ifn = 4fc + 2, fc > 1, r/ien G' n ,4 = A(At) n ^ ( i i , . - ) # 1. 
(iii) Hx = H2 = H3 = <w2> (see 3.5, 3.6, 3.7) and Gx = G2 = G3 = AG' = 

= X<w2> 7* G (see 3.7). 

Proof. Use 5.1.10. • 

5.2 Construction, (cf. 5.1.1 and 5.1.2) Let Axbt a non-trivial subgroup of index 
2 in an abelian group A (denoted multiplicatively) and let e e Ax be an element of 
order n > 3. Define a permutation £ of .4 by Q (a) = a and Q (b) = be for all ae Ax 

and b e A \ Ax; the order of Q is just n. 
Now, put & = (_*, Q; aeA)_lA\ (here, La(x) = ax, a, xeA). Then 

^ = si - Jtf, where si = {_*; ae A} _z A and Jf = <g> is a cyclic group of 
order n; we have gLfl = LaQ and toLfc = L^Q'1 = LQ^Qn~l for all aeAx and 
fte/lX^. Clearly, L^Jf) = 1, l<*(st) = Z(9) = s/x = {!<,; aeAx}_i Ax and 
^ ' = (LaQ

n~1y is a cyclic group of order n. 

5.3 Remark. Let Ax be a non-trivial subgroup of index 2 in an abelian group 
A and £ = A X ^ . Let Q be an endomorphism of Ax such that g2 = id. Put 
X(d) = Q(a)a~l for every a e Ax; then X2(d) = X(a)~2. 

(i) Let ueA and U G ^ be such that X(v) = X(u~2). Put z = A(v)i;. Then 
X(z) = k2(v)X(v) = A(tr2)A(i>) = X(v~l) = X(u2) and X(z)z = v. Further, k(vz) = 
= X(v)X(z) = k(u~2)X(u2) = 1 and vz = X(v)v2 • X(z)z2. If v' = vw2 and z' = 
= zu~2, then i? = v'u~2, z = z'u2, u, z e Ker(A) and vz = X(v)v2 = X(z)z2 = 
= (v')2u~Ak(u~2) = (z')2uAX(u2)(= e). 

(ii) Let e, v' e Ker (A), u e E, be such that (i/)2 = eu4X (u2). Then, for v = v'u2, 
we have A(v) = X(u~2). v' = vu2 and e = X(v)v2. 

(iii) Take ueE (see (i) and (ii)), v' = vu~2, then X(v) = X(u~2). If u2 = 1, 
ve Ax and g(t;) = v, then A(r) = A(w~2)(= 1). 

(iv) Assume that Ax is of finite odd order. Then there exists e E with w2 = 1. 
Finnaly, if Q(O) # a - 1 for some ae Ax and t; = g(a)a, then z; ^ 1, Q(V) = v and 
i;2 =* 1. 
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5.4 Construction, (cf. 5.1.3, ..., 5.1.11). Let Ax be a non-trivial subgroup of 
index 2 in an abelian group A. Put £ = A \ Ax and consider an authomorphism 
Q of A! such that Q2 = id ^ e . Let u e £ and t; e Ax be such that e (vu2) = vu2 and 
the order of e = VQ (V) is n/2 for n > 4 even (see 5.3). 

Extend e to a permutation of A by Q(OU) = Q(O)VU(= Q(av~l)eu) for every 
a e Ax. Then e becomes a permutation of order n of A, Q(AX) = Au Q(E) = E, 
QLa = Le(a)Q and QLb = L6(P)Q"~1 for all ae Ax, bs E. 

Let <S = <L, e, a e A) <= X!. Then <S = s4 • tf, where j / = {L; a e X} ^ 4 
•^ = <^>is a cyclic group of order n, L^(j'f) = 1, Q_̂ (_as/) = s/t = {L; a e / l ^ = 
= Ax, Z(<S) = {L; fle^ii e(a) = a} (we have m = rx = 2 and s/„_l = {_«,; 
ae£ ± 0}. 

5.5 Example. Let A = Z16( + ), /l, = 2A, e(a) = 3a for every aeAx (Ax is 
a cyclic group of order 8), u = 1 e E = A\AX, v = 6e Ax. Then Q(V + 2M) = 
= e (8) = 8 = v + 2M, e = v + Q (V) = 8, n = 4. 

Further, /1(a) = 2a, __,_,, and e(l) = 7, e(3) = 13, e(5) = 3, Q(1) = 9, 
e(9) = 15, e ( n ) = 5, e(i3) = n , e(i5) = 1, e(i) = 6, A(3) = 10, x(5) = 14, 
X(l) = 2, X(9) = 6, X(U) = 10, „(13) = 14, A(15) = 2, e(2) = 6, Q(4) = 12, 
e(6) = 2, e(8) = 8, e(10) = 14, e(12) = 4, e(14) = 10, A(2) = 4, X(4) = 8, 
X (6) = 12, A (8) = 0, A (10) = 4, A (12) = 8, A (14) = 12. Consequently, A (Ax) = 
= {0,4, 8, 12}, A(E) = {2,6, 10, 14} and Ker(A) = {0,8}. 

Now, consider the corresponding group <S = stf • Jf (see 5.4). Then stf =• A = 
= Z16( + ), 34? = <e> =s Z4(+), ^ ' = <L,e

2> = {La; a e A(A,)} u {Lb6
2; b e A(£)} 

is a cyclic group of order 8, <S' n Jf = 1, Z(^) = {_o, Lg} =. Z2( + ), N»(_f) = 
= Z ( ^ ) j r _ Z 2 ( + ) x Z 4 ( + ), N^(3if)^<S, Nv(stf) = sJ-io2) = <S'-sS # 

5.6 Example. Let A = Z30( + ), A; = 2A, e(a) = 4a for every aeAx (A, is 
a cyclic group of order 15), u = 1 6 £ = A \ Ax, v = 8 e Av Then e (D + M) = 
= e(10) = 10, e = v + Q(V) = 10, n = 6. Further, A (a) = 3a for every aeAx 

and e(l) = 9, e(3) = 17, e(5) = 25, e(7) = 3, e(9) = 11, e(H) = 19, e(13) = 
= 27, e(15) = 5, e(17) = 13, e(19) = 21, e(21) = 29, e(23) = 7, e(23) = 7, 
e(25) = 15, e(27) = 23, e(29) = 1, A(l) = 8, A (3) = 14, A (5) = 20, A (7) = 26, 
A(9) = 2, X(U) = 8, A(13) = 14, A(15) = 20, A(17) = 26, A(19) = 2, A(21) = 8, 
A (23) = 14, A (25) = 20, A (27) = 26, A (29) = 2, e(2) = 8, e(4) = 16, Q (6) = 24, 
e(8) = 2, e(10) = 10, e(12) = 18, e(14) = 26, e(16) = 4, e(18) = 12, e(20) = 
= 20, e(22) = 28, e(24) = 6, e(26) = 14, e(28) = 22, A (2) = 6, A (4) = 12, 
A(6) = 18, A(8) = 24, A(10) = 0, A(12) = 6, A(14) = 12, A(16) = 18, A(18) = 
= 24, A (20) = 0, A (22) = 6, A (24) = 12, A (26) = 18, A (28) = 24. Consequently, 
X(AX) = {0,6, 12, 18, 24}, A(£) = {2, 8, 14, 20, 26} and Ker(A) = {0, 10, 20}. 

Now, consider the corresponding group <S = stf • 3€ (see 5.4). Then 
s/ =- A = Z30( + ), Jf = <e> =• Z6( + ), <S' = <I<e2> is a cyclic group of order 
15, . ' n . . f " = 1, Z(0) = {L>, Lxo~, l^o} ~<Z3( + ). 
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6. Some special cases (B) 

6.1. Let G be a group such that G = AH, where A is an abelian subgroup of 
G, A ^ G and H is a (finite cyclic) group of order p, p > 2 being a prime, such 
that lG(H) = 1. Now, by 3.24 and 4.12, we have p > 3, Z(G) = Ax = lG(A), 
m | p — 1, m = [A : Ax~]. Further, by 4.7 (see also 4.13), Z(G) contains at least one 
element of order p. Let P and R denote the p-primary component of A and the 
p-socle of A, resp. Clearly, R c f c Z(G). 

6.1.1 Lemma. G' ~= RH = R x H ^ G, G' £ A, G' is a p-elementary abe­
lian group and G = AG'. 

Proof By 3.24(v), G' <= Z(G)H = Z(G) x H. Thus Z(G)H <_• G and, since 
RH = R x H is characteristic in Z (G) H, we also have i?H ^ G. Finally, since 
G' £ ,4, [G: ,4] = p is a prime and A "= 4G' ~= G, we conclude easily that 
AG' c G. • 

6.1.2 Lemma, [w, a] = [a, w_1] = [a, w]_1f9r all ae A and w e H. 

Proof. We may assume that w # 1. Then (see 3.1) we have [a, w_1] = 
= a-{waw~l = a-1^(a)w<r^-1,a-1o(a) = ^(a)a~1Gv41 = Z(G) (3.13 and 3.14), 
w\a, w_1] = a"lQ(a)w(T^ = a~xwa and [a, w_1] = w~la-lwa = [w, a]. Simi­
larly, [a, w] = a~lw~law = w _ ^ ( a ) - 1 a w = g(a)~1aW~o(fl) + 1 and [a, w]"1 = 
= a-1e(a)w^fl>-1 = [a,w~1]. • 

6.1.3 Lemma, w [w, a] = [w, a] w for all ae A and w eH. 

Proof Use 6.1.2. • 

6.1.4 Lemma, [w, a]"M = (a~lQ(a)Y{a) • w ^ ^ ' ^ f o r all aeA and weH. 

Proof. We have [w, a] = a~1^(a)w^a)-1 and a"^(a)G Z(G). A 

6.1.5 Lemma, a - 1 [w, a]a = [w, a]^a)/or all ae A ad we H. 

Proof We have [w, a]a = a~lQ(a)w(T^-1 • a = a _ 1 ^(a)w^- 2 • wa = 
= a-lQ(a)w*M-2 • Q(a)wG^ = (a '^(a))2 • w ^ " 2 • aw°<fl) = (a~^(a))2 • w ^ ~ 3 • 
• wa • w ^ ) = ra-^(a))2 • w ^ - 3 • o(a) w2cr^ = (a_1o(a))3 • w^ ' " 3 • aw2*^ = ... = 
= (a-lQ(a)yw • aw^M*)-1) = a • (a-V(a))^ • vv^^" 1 ^ = a - [w, a]a{a) (use 
6.L4). • 

6.1.6 Proposition. Let ae A be such that the finite cyclic group A/Ax (see 
1.24(i)) iss generated by the block aAv The G' = <[w, a]> for every weH, 
w 7-= 1. In particular, G' is a p-element group, A n G' = 1 and G = AG'. More­
over, M = <a>H is a normal metacyclic subgroup of G and G = M x ^4/<a>. 

Proof. Put K = <[w, a]>. Then K ^ G', and so K is a cyclic p-group. If 
K = 1, then a e NG(H) = AXH (3.24(v), aeA{ and Ax = A, a contradiction with 
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A^G. Thus K =£ 1 and consequently, K is a p-element group. Clearly, 
Ax = Z(G) c r>JG(K) and its follows from 6.1.5 that a eHG(K). Thus A c |\|C(K) 
and, in fact ^JG(K) = G, since w e NG(K) by 6.1.4. We have proven that K^ G. 
If K ^ A, then w~laweA and it follows easily that W G N G ( / 1 ) and A^ G, 
a contradiction. Consequently, K £ A, A n K = 1 A ^ AK and AK = G. From 
this, G/K is abelian, and therefore G' £ K. Thus K = G'. • 

6.1.7 Lemma. R n G' = 1 and RH = R x H = R x G'. 

Proof. By 6.1.6, .4nC = 1 and G' is a p-element group. Thus G' $ R and 
RH = RG' = R x G'. • 

6.1.8 Lemma. Let K be a p-element subgroup of RH such that K §£ R and 
K 7- G'. TTien AnX = l, LG(K) = 1 and G = AK. 

Proof. We have RH = RK and AK = ARK = ARH = AH = G. • 

6.1.9 Lemma. Let I > 0 be such that Z{G) c ^ and HZ{G) ^ G. 77ien 
Z,(G)^Zl + 1 ( G ) c A 

Proof We have G/Z,(G) = G = A- R, where ^ = -4/Z,(G) and R = 
= HZ/(G)/Z/(G) ( ^ H). NOW, ^ ^ G and H ^ G. Thus 1 =* Z(G) c ^ (3.24 and 
4.12). • 

6.1.10 Lemma. There exists k > 1 such that Zk(G) c 4 . LG(HZ,(G)) = Z/(G) 
for every 0 < / <kand HZk(G) ^ G. 

Proof We have Z-(G) = Z(G) c A and LG(HZ0(G)) = LG(H) = 1 = Z0(G). 
Further, if 0_G(HZr(G)) ^ Zr(G) for some r > 1, then HZr(G)^ G, and hence 
HZS(G) :< G for every 5 > r. The result is now clear from 6.1.9 and the fact that 
G/Z(G) is finite. • 

6.1.11 Lemma. Let k > I be as in 6.1.10. Then Zt(G) c A and HZt(G) = 
= G'Zt(G)±3 G for every t > k. 

Proof Assume that Zf(G) £ A and i f Z t ( G ) ^ G for some t > k (see 6.1.10). 
Then G/Zf (G) = G = A • # , where A = A/Zt (G), A ^ G and R = HZt (G)/Zt (G) <g 
<] G, H ^ # . Clearly, 5 = G', and so HZ r (G) = G'Z, (G). Further, since .4 ^ G, 
we have R £ Z(G), and so R n Z(G) = 1 and Z(G) c A by 2.5(ii). Thus 

Zf + , ( G ) c A . • 

6.1.12 Corollary. Z,(G) c ,4 for every / > 0. 

6.1.13 Lemma. Let v be the smallest non-negative integer such that 

ZV(G) = Zv + l(G). Then v>l, ZV(G) c A, HZV(G) = G'ZV(G)^ G and 
[ G : Z . ( G ) ] | p ( p - l ) . 

Proof. Easy. • 
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6.2 Proposition. Let G be a group such that G = AH, where A is an abelian 
subgroup of G and H is a (finite cyclic) subgroup of prime order p > 2. Then 
exactly one of the following five cases takes places: 

(1) H c; A = G and G is abelian; 
(2) A n H = 1, A^ G, and G = A x H is abelian; 
(3) AnH = 1, A <3 G, lG(H) = 1, G' c A, G / AG' and G is not abelian; 
(4) A n H = 1, A ^ G, G' = H (:< G), G = AG', p > 3 and G w not abelian; 
(5) AnH = 1, A^G, lG(H) = 1 # Z(G), H # G', G' w a subgroup of 

order p, G = AG', p > 3 and G is not abelian. 

Proof See 6.L • 

6.3 Corollary. Let G be a group such that G = AH, where A is an abelian 
subgroup and H is a subgroup of a prime order p. If A^G, then p > 3, G' is 
a subgroup of order p and G = AG'. If, moreover, Z(G) = 1, then H = G', A is 
a finite cyclic group, card (A) \ p — 1 and card(G) \ p(p — 1). 

6.4 Corollary. Let G be a group such that G = AH where A is a cyclic 
subgroup of G and H is a subgroup of prime order. Then G is metacyclic. 

6.5 Remark. Let G be a group such that G = AH, where A is abelian, A ^ G, 
H is p-element for a prime p > 2 and H ^ G. Then A n H = \, p > 3 and 
H = G' (see 6.2(4)). Further, the mapping </>: A -> Aut (H), ((f>(a))(x) = axa~\ is 
a homomorphism and Ker(</>) = Z(G) = LG(A) = Ax. The group Aut(H) is 
a cyclic group of order p — 1, and hence A/Ax is a non-trivial cyclic group whose 
order divides p — 1. Clearly, /? c Au where i? is a the p-socle of A. Now, there 
exists a subgroup Hi of G such that card (if j) = p, LG(H{) = 1 and G = AH! if 
and only if R # 1. In that case, KH! = i?G\ 

(i) If G = AH! for a subgroup H! such that card(H t) = p and tG(H{) = 1, 
then R x H{ = RH{ = RG' = R x G', and hence i? = 1. 

(ii) If H! is a subgroup of G such that H! _= i?G' and card(Hi) = p, then 
H! ^ G if and only if H2 c j? or H! = G'. 

(iii) If H! is a subgroup of i?G' such that Hx £ R, Hx # G' and c a r d ^ ) = p 
(such a subgroup exists if and only only if R # 1), then LG(H!) = 1, RH{ = i?G' 
and G = AH,. 

Quasigroups whose inner permutation groups 
are finite of prime order 

7.1 Theorem. Let Q be a quasigroup such that card(/(Q)) = p for a prime 
p > 2. Then Q is either medial or stably nilpotent of class 2. Moreover, in the 
latter case, the following are true: 

(i) P > 3. 
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(ii) Q/SQ is a (non-trivial) cyclic group whose order divides p — 1. 
(iii) If Z is the block of sQ such that eeZ e being the unique idempotent 

element of Q), then Z is an abelian group containing at least one element of order 
P-

(iv) If Q is finite, then p divides card (Q). 

Proof. Use 6.1, 6.2 and [1, Part 3]. A 

7.2 Construction. Let G = AH be a group as in 6.1. For every veH, there 
exist a permutation QV of A and a mapping av: A -> {0, 1, ..., p — 1} such that 
va = Qv(a)va^ for every ae A. 

Now, choose u, v e H such that H = <u, v) and define an operation * on Any 
& * b = Qu(a)Qv(b) for all a, be A. Then Q(*) becomes a quasigroup, 
M(Q(*)) ^ G and l(Q(*)) = H(^ Zp( + )). Clearly, Q(*) is not medial (see 7.1). 
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