Acta Universitatis Carolinae. Mathematica et Physica

A. Jancarik; Tomas Kepka; Milan Vitek
Multiplication groups of quasigroups and loops IV.
Acta Universitatis Carolinae. Mathematica et Physica, Vol. 46 (2005), No. 1, 77--100

Persistent URL: http://dml.cz/dmlcz/142746

Terms of use:

© Univerzita Karlova v Praze, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/142746
http://project.dml.cz

2005 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 46, NO. 1
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Quasigroups with prime number of inner permutations are studied.
Studuji se kvazigrupy s prvoliselnym poétem vnitinich permutaci.

1. Auxiliary results (A)

1.1. Throughout this section, let G be a group such that G = AB = {ab;a€ 4,
b € B} where A and B are (possible non-abelian) subgroups of G. Notice, that then
we also have G = BA (if xe G and x™! = ab, ac A, be B, then x = b~ 'a"'e
€ BA).

We put C = A n B and we denote by S (resp. T) the set of left (right) cosets
modulo C in A (resp. B); that is § = {aC;a€ A} and T = {Cb; b € B}. The coset
aC will be denoted by a.

The following two lemmas are obvious:

1.2 Lemma. The following conditions are equivalent:
(i) A (B) is a left transversal to B (A) in G.

(ii) A (B)is a right transversal to B (A) in G.

(iii) A (B) is a two-sided transversal to B (A) in G.

(iv) A (B) is stable transversal to B (A) in G.

(v) C =1

1.3 Lemma. A is a selfconnected transversal to Bin G iff C = 1 and A is abelian.
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14. Let ae A and be B. Then ba = a,b, for some a,€ A, b, e B and, if
ba = a,b,, then a,C = a,C € S. Furthermore, if a; = ac, ¢ € C, then ba; = a,b,c,
b,c € B. Now, we see that the element b determines a transformation g, of the set
S given by g4(a) = a,, since a; 'ba € B for all a, € a;.

1.5 Lemma. (i) q, is a permutation of S for every be B and q, = ids iff be
e L ¢(B).
(”) leqbz = lebzfor all bl’ b2 € B

Proof. (i) First, let q(@;) = q(a3), 9 = q»- Then ba, = asb;, ba, = asb,, ba,by* =
= ay = bayby ', a;'a; = by'b, € C and @; = @, and a; € q(a). Then q is a permu-
tation of S. For the rest note that L ;(B) = {b; a~'ba € B for every a € A}.

(i) We have b,a = abs, a, € 4,,(a), b,a, = abs, a, € g5, (@7) = 45,95,(a). Now,
bib,a = bia;b; = aybb; and a, € gp,5,(a). A

1.6 Corollary. The mapping ¢ : B — S!, ¢ (b) = qs, is a homomorphism of the
group B into the symmetric group S! of permutations of S and Ker((p) = ILG(B).

1.7 Corollary. (i) If k = [A: C] is finite, then [B: L¢(B)] < k!
(ii) If A is finite and B infinite, then L ;(B) # 1.

1.8 Corollary. If m = card (A) and n = card(B) are finite and if k = card (C)
and L= card (L ¢(B)), then | > n/(m/k)..

1.9. For a € A, let I, denote the permutation of S defined by [, (@;) = @a, = aa,C.

Now, let a,b, = asb;. Then 1,,q,,(3) = G, bra = asby, 1,95, (3) = Tas, bya =
= asbs, a,asbs = a,b,a = asbsa = asasbs and aa; = Gas. Thus we can define
a mapping @ : G — S! by ®(ab) = l,g;.

1.10 Proposition. (i) ® is a homomorphism of G into S! and Ker (®) = CL ;(B).
(ii) @ I A is injective and ® (a) = |, for every a € A.
(iii) ® | B = ¢ (1.6) and ®(b) = g, for every be B.

Proof. (i) Let bja, = asb; and a,ba,b, = asbs. Now, a = ®(ab,)®(ah,) =
= l4,qb,laqbp 01320 = asbsa and gqy,l,, = l.,q,,. Hence a = 1, 1,.q5,9b, = lo,0,9bsb,-
On the other hand, f = ®(a,b,a;b,) = 1,,gs, and a,b,a,b; = a,a;b,b,. Now, we
can choose a, = a,a;, b, = b;b, and we see a = f.

If ®(ab) = ids, then [,g)(1) =1 and consequently a =1, aeC, I, = id;,
g, = idg and b € L¢(B)

(ii) and (iii) Easy. A

1.11 Corollary. If m = card(A) and n = card (B) are finite and if k = card (C)
and t = card(CLg(B)), then t > nf((m — k)/k!). In particular, if C =1, then
t = card(Lg(B)) and t > n/(m — 1)! (cf. 1.8.).

1.12 Remark. (i) Proceeding as in 1.4, we define a permutation p, of T, a € 4,
by bab; ! € B for every by € Cb, = p,(Cb), ba = a\b,. Now, y: A —» T!, Y (a) =
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= p,, is a homomorphism into the opposite group (T!)” (then a — p,—: is
a homomorphism of A into T!) and Ker () = Lg(A).

(ii) Proceeding similarly as in 1.9, we get a homomorphism ¥ : G — (T!)* such
that Ker (¥) = CLg(A).

1.13 Lemma. Let H be a subgroup of G such that An H = 1. Then
card (H) < card (B). Moreover, if C = 1 and G = AH, then card (H) = card (B).

Proof. Suppose, on the contrary, that card (B) < card (H). There are mappings
f:H > Aand g: H - B such that x = f(x)g(x) for every x € H. Clearly, g is
not injective, and so g(x) = g(y) for some x, yH, x # y. Now, xy~' =
=f(x)f(y)"'€eAn H =1and x = y, a contradiction. A

1.14 Lemma. Suppose that A is abelian. Then:
(i) C < Lg(B).

(ii) If L(B) = 1, then C = 1 and Z (G) < A.

(iii) If Lg(A) = 1 = Lg(B), then Z(G) = 1.

Proof. (i) Obvious.
(i) Let zeZ(G), z = ab. Then, for every a,€ A, aba, = za, = az =
= a,ab = aa,b and so, b = banditisclearthatbe L;(B) = 1.Thusz = a€ A.

(>iii) Use (ii)). A

1.15 Proposition. Suppose that A is abelian and let N be normal subgroup of
G such that N/Ls(B) = Z(G/L¢(B)). Then Ng(B) = NB.

Proof. We can assume that Lg(B) = 1. Then Z(G)nB =1, Z(G) = A and
C=1.

For every x € N(B), define a transformation ¢, of 4 by a* € t,(a) B for every
a € A. First, we show that t, € A!. To that purpose, let x = cd, ce 4, de B. If
t(a) = t.(ay), then (a5 'a,)* € B, a5 'a; = c"'ay'a,ce C = 1, a; = a,. Further, if
as € A, then da; = aqe, as€ A, e € B and we have af = af = (aee™")! = ae™'d,
and s0 1, (a,) = as.

Now, let x, ye Ng(B) and ae A. We have a* =t,(a)b,, b,eB, t,(a) =
= t,(t.(a))bs, where b; = b,b} € B. On the other hand, a* € t,,y(a) B, and hence
txy(a) =1, (tx (a))

We have proven that the mapping 7 : x — t,-: is a homomorphism of N(B) into
A!. Clearly, K = A n Ng(B) < Ker(z) and Ker(t)n B < Ls(B) = 1. On the
other hand, since B = N;(B), we have Ng(B) = KB. Thus K = Ker(t) and
both B and K are normal subgroups of Ng(B). Since K N B = 1, we have
Ng(B) = K x Band K < Cg(B). Of course, K = C;(A), and so K = Z(G). On
the other hand, Z(G) < A n Ng(B) = K trivially. A

1.16 Corollary. Suppose that A is abelian and L;(B) = 1. Then:
(i) C=1,Z(G) < A and Ns(B) = Z(G) x B.
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(ii) If Z(G) = 1, then Ng(B) = B.
(i) If Lg(A) = 1, then Z(G) = 1 and N4 (B) = B.

2. Auxilliary results (B)

2.1. In this section, let G be a group such that G = AB, where A nd B are abelian
subgroup of G.

2.2 Proposition. G is metabelian and G' = ([ A, B]) is abelian.

2.3 Proposition. (i) Ms(A4) = AG' and M (B) = BG'.

(ii) If A # B and at least one of the subgroups A, B is finite, then either
Mg(A) # G or Mg(B) # G.

Proof. See [2] A

2.4 Lemma. Let C be a subgroup of G such that A < C. Then:
(i) C = A(C n B).

(i) Z(C) = (Z(C) n 4)(Z(C) n B).

(iii) Z(C) n B < Z(G).

(iv) If Z(G)n B = 1,then Z(C) < A.

(v) If C= G, then Z(C)<= G and AG’' < C.

Proof. (i) and (v) are obvious and (iv) follows from (ii), (iii).

(ii) Let ae A and be B n C be such that abe Z(C). Then ab = ba and, for
every c€ B C, abc = cab = cba = bca. Thus ax = xa for every xe Bn C,
and so a € Z(C) by (i). Since ab € Z(C), we also have b e Z (C).

(iii) Z(C) N B = C;(4) n Ci(B) = Cs(A U B) = Z(G). A

2.5 Corollary. (i) AnB < Z(G)n Lg(A4) n Lg(B)

(ii) Z(G) = (Z(G) n A)(Z(G) n B).

(iii) If Z(G) " A = 1 (resp. Z(G) " B = 1), then Z (G) < B (resp. Z(G) < )

(iv) If Lg(A) =1 (resp. Lg(B) =1), then AnB =1 and Z(G) < B (res
Z(G) < A).

(v) If A~ B = 1and both A and B are torsionfree, then Z (G) is torsionfree.

2.6 Lemma. Put R = An G'. Then:
(i) Mg(4) = AG' = C¢(R)= G.
(ii) R = Z(Cs(R))= G.
(iii) If Z(G) " B = 1, then R = Z(C;(R)) < Lg(A4) <= A.
(iv) If R # 1, then either Z(G) n B # 1 or Lg(A) # L.

Proof. (i) Since R < G’ and G’ is abelian, we have G’ = C;(R) =2 G. Similar-
ly, A = C4(R).

(i) Since C4(R)=2 G, we have Z(Cg(R))== G and, since R is abelian,
R = Z(Cs(R)).

80



(iii) Combine (ii) and 2.4(iv).
(iv) If Z(G) n B = 1, then L4(A) # 1 by (iii). A

2.7 Corollary. Suppose that either AN G # 1 or BN G' # 1. Then either
Le(A) # 1 or Lg(B) # 1.

2.8 Proposition. Suppose that G # 1 and that at least one of the subgroups A,
B is finite, Then:

(i) Either Ls(A4) # 1 or Lg(B) # 1.

(i) If AnG =1=BnG, then Z(G) # 1.

Proof. (i) By 1.7(i) and 2.7, we can assume that n = card(G) is finite and
An G =1= Bn G'. Now, we shall proceed by induction on n.

If A= B, then L;(4) = A = G # 1. Hence, let A # B and, by 33, let M =
= Mg(4) # G. By 24(i), M = AC, where C = M n B # B. By induction,
there is a normal subgroup N == M such that N # 1 and either N = 4or N < D.
Wehave NN M c NNnG c(AnG)u(BnG)=1.ThusNnM = 1and
consequently N = Z(M) and Z(M) # 1. If Z(G) n B # 1, then Lg(B) # 1. If
Z(G) n B = 1, then Z(M) < A by 2.4(iv). However, M = G.

(ii) According to (i), let L = Lg(A4) # 1. Then Ln G < AnG =1 and
L Z(G) A

2.9 Lemma. (i) Ls(A)(A A G) < Z(AG) and Ly (B)(B n G) < Z(BG).

(ii) C5(A) = AZ(G) and C;(B) = BZ(G).

(iii) Ng(A) = AZ, and N;(B) = BZ,, where Z,/L;(A) = Z(G/Ls(A)) and
Zy/L(B) = Z(G/Ls(B))

(iv) No(A4)/Co(4) = Z,/Z(G) and N (B)/Cs (B) = Z,/Z (G).

Proof. (i) The inclusion A N G’ = Z(AG') follows from the fact that both
A and G’ are abelian. Further, if a € Lg(A4), then ae (4% x€G, and hence
ae Z(Mq(A)). But Mg(4) = AG' by 2.3(i).

(ii) We have Cg;(A4) = AB,, where B, = B n C;(A4) = Z(G). The rest is clear.

(iii) and (iv). Use 1.15. A

2.10 Proposition. Suppose that Mg (A) = G = Mg(B). Then:
(i) AG' = G = BG'.
(ii) If A # B, then both A and B are infinite.
(iii) If Z(G) = 1, then AnG' =1 =Bn G and Ls(A) = 1 = Lg(B).
(iv) Z(G) = 1 if and only if Ls(4) = 1 = Ls(B).

Proof. Combine 2.3, 2.5, 2.7 and 2.9. A

2.11 Lemma. Suppose that Z(G) N B = 1 (e.g., if L(B) = 1). Then:
(i) AnB=1and Z(G) < Ls(4) < 4.

(ii) Co(A) = A and Z(AG) = Lg(A).

(iii) ANG' < Lg(d)and AN G = G.
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Proof. (i) See 2.5(i), (ii).

(i) A< C(G) = AC,C =C4;(A)nB < Z(G)n B = 1, and so Cg(4) = 4,
and Z(AG') < A. On the other hand, Z(AG')= G implies Z(AG') < L4(A).
Now, Z(AG) = L(d) by 2.9.

(iii) We have A NG’ = L(A) N G, and so A N G’ = G. The rest is clear
from (ii) and 2.9 (see also 2.6(iii)). A

2.12 Proposition. Suppose that Z (G) = 1. Then:
(i) AnB = 1.

(ii) Cs(A) = A and C4(B) = B.

(iii) Lg(A) = Z(AG') and Ls(B) = Z(BG)).

(v) An G < Lg(A) and BN G' < Lg(B)

v AnG=2Gand BN G =2 G.

Proof. See 2.11. A

2.13 Lemma. Put L= L;(A) and C = Cg(L). Then:
(i) A< C=a Gand C = AB,, where B, = Bn C.
(i) L= Z(C)=G.
(iii) If Lo(By) = 1, then Z(C) = L.
(iv) If Lg(B) =1, then L¢(By) = 1.
(v) If lLC(B) =1, A= C and if B, is characteristic in LB,, then A = C and
A=G.

Proof. (i) and (ii). Obvious.

(iii) We have Z(C) = (Z(C) n A) (Z(C) n By))and Z(C) n B, < L¢(B,) = 1.
Thus Z(C) < L.

(iv) If be L¢(By), then b°e B for every ae A, beLs(B) = 1 and b = 1.

(v) First, A== C implies C' < A. But then C =2 G implies C' <2 G and C' <
€ Lc IB, < C. Consequently, IB;< C and B, = C. But L¢(B,) = 1 implies
Bi=1landC = 4. A

2.14 Proposition. Assume that B is finite, Lg(B) = 1 and if p is a prime such
that p | card (B), then L (A) does not contain any element of order p. Then A 2 G.

Proof. We proceed by induction on card (B) Assume, on the contrary, that
A #G. It follows from 2.13(v) that A 4C (we have LB, = L x B,). Now, by
induction, B; = B,C = Gand L = Z(G).

Put N = Ng(B). By 1.15, N = BZ(G) = B x L. Further, L5(N) = L x B,,
B, = N n B. Of course, B, is characteristic in Ls(N), and hence B, = G and
B, = 1. Thus Lg(N) = L. Finally, G = G/L = (4/L)(N/L) = A-B, LgA) =
=1 = Lg(B) and G = 1 by 2.8(i). This means that L = G and A = G, a contra-
diction. A

2.15 Remark. Assume that 4 <4 G, the primary 2-component of the torsion part
of A is cyclic (or quasicyclic) and that B is a finite 2-group, with L (B) = 1. By
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214, L =g (A) contains some elements of order 2. However, the 2-socle S of Lis
cyclic, card(S) = 2, and S< G. On the other hand, every normal 2-element
subgroup is in the center. Thus S = Z(G) and Z(G) # 1.

2.16 Proposition. Assume that B is a finite p-group for a prime p and that
Ls(B) = 1. Then either A< G or Z(G) # 1.

Proof. Assume A #1G. Let L = Lg(A). B 2.14, the p-socle P of L is non-trivial
and, of course, P <0 G. Now, take e€ P, ¢ # 1, and put E = {¢; b e B). Then
E is a finitely generated p-elementary abelian group and consequently, E is finite.
Clearly, E<2 G and we put K = EB. Then K is finite p-group, and K # B.
Consequently, K is nilpotent and N = Ng(B) # B. But N = Ng(B) = BZ(G).
Thus Z(G) # 1. A

3. Auxiliary results (C)

3.1. Throughout this section, let G be a group such that G = AH, where A is
an abelian subgroup of G and H is a finite cyclic subgroup with Ls(H) = 1 and
card(H) = n > 2.

Now, A nH =1, L =L¢(A4) # 1 (by 2.8(31)) and Z(G) < L.

In the sequel, fix a generator w € H. Then there are mappings ¢: A - A and
6:4-{0,1, ..., n— 1} such that wa = g(a)w"" for every ae A. We put
A= {aeA;0(A) =i}forevery0 <i<n-— 1.

3.2 Lemma. (i) g is a permutation of order n of A.

(ii) Ay = O and A is the disjoint union of the sets A, ..., A,_,.
(iii) Ay = Lg(A), e(4)) = A,, and @l A, is an automorphism of A,.
(iv) AnG < A,

(v) Z(G) = {ae 4; ¢(a) = a} = A.

(vi) If An G’ =1, then Z(G) = A, and g¢(a) = a for every a€ A,.
(vii) A2 G if and only if 6(a) = 1 for every a€ A.

Proof. (i) We have ¢ = q,, where g, is the permutation defined in 1.4 and
1.53).

(ii) Since A " H = 1, we have A, = 0 and the rest is clear.

(iii) and (iv) First, AN G < L = Lg(A4) by 2.11Gii). If a €L, then
o(@w@=' = waw='e 4, and so w'ednH=1,0(a)=1 and a€ A4,.
Conversely, if ae A, then wa = g(a)w, and hence ¢g(a)a=' = waw™'a"'€
€ANG L c A, and g(a)e A,. Thus ¢(A,) S A, and, since g is a permu-
tation of finite order, it follows that g¢(A4,) = A4, (the fact that g | 4, is in
automorphism of A, is obvious). Finally, if 1 <i, then waw ' =
=w"lo(@)w' ™" = w2*(@)w* ' = ... = ¢'(a) € A,. This means that 4, < L,
and so A; = L.
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(v) If ae Z(G), then it is clear that ¢(a) = a and g (a) = 1. Conversely, if
a€ A and ¢(a) = a, then a~'wa = a~'aw’® = w’®), ae Ng(H) = Z(G)H and
aeZ(G).

(iv) This is clear from (v) and the proof of (iii).

(vii) This is clear. A

3.3 Lemma. Let a, be A. Then:
(i) e(ab) = o(a)e* (b).
(ii) o(ab) = g ~'(b) + 0" ~%(b) + ... + co(b) + o (b) (mod n).
(iii) g(a)™' = r¥(a).
(iv) If o(a) = o(b), then ab™' € A, and g(ab™') = ¢(a)e(b)~' € 4,.

Proof. (i) and (ii). We have wab = g(a)w'b =g(a)w~'-o(b)=... =
=g(a)e(b)W, i = 5"~ (b) + ... + a(b).

(iii) This follows from (i) for b = a~'.

(1v) By (i) and (iii), ¢(ab~") = ¢(a)e'(b™*) = e(a)e(b)~", i = a(a). Further,
wab™' = g(ab™")W, where j = a(ab l) On the other hand, wab = g(a)wh~,
and so ¢ (b)~'W = wb~', wb = o(b) w' = wb,w = w,j = 1. Thus g (ab~') = 1
andab '€ 4,. A

3.4 Lemma. Let 1 < in — 1 be such that A; # 0. Then:
(i) A; = Ab for every be A,

(ii) ¢~ '(a) = aand w'~'a = aw'~! for every a € A,.

(iii) ¢(A;) = A;for some 1 <j<n— 1.

Proof. (i) If a€ A,, then a(ab) = o(b) =i by 3.3(ii), and hence ab € A,
Consequently, if c € A, then cb~' € A, by 3.3(iv).

(ii) If be A, then Q(b)g( ) = g(ba) = Q(ab) = o(a)e(b) = e(b)e(a) by
1.3(i). Consequently, a = ¢'~'(a) and w'~'a = @' Y(@)w'~! = aw' =L

(iii) Let a, be A, Then g(ab~!) = g(a)e(b)~' € 4, by 1.3(iv), and so ¢(a),
o(b) € 4; for suitable j (see 1.4(1)). We have ¢(4,) S 4; and, since the index
[A:A4,] <n— 1is finite, in fact o(4) = 4;. A

35 1<i;<i;<.. <i,<n—1 be all the indices with A4; # @. Then
iy = 1 and, by 1.4(i), A;, = A}, A, ..., A,, are just all blocks(cosets) modulo A, in

i

A, A/Al = {Ail’ ceey ,m} and [A Al] = m
Let r, denote the smallest number such that 1 < r; < nand ¢ (a) = a for every
ae€ A,. Further, put r, = ged(n, i, — 1, i — 1, ..., i, — 1), r, =nif m = 1 and

Hj = <er>, G] = AH],j = 1, 2.

3.6 Lemma. (i) ry|r, and r|n.

(ii) G, and G, are normal subgroups of G.
(iii) G < G, < G, = G.

(iv) Hy = H, and Lg,( ,-) =1,j=1,2
(V) Z( ) Al’} = 1,
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Proof. (i) Use 3.2(i) and 3.4(ii).

(i) and (ii). Put r=r, 1<j<2 If acAd, then wa=g (a)w
k=00 ""a)+ .. +oo(a) +a(a) =(s0" (@) — 1) + ... +(cefa)—1)+
+ (o(a) — 1) + r. Clearly, r divides k, and so w* € H,. Consequently, H;A = AH,
and H/A = AH; = G; is a subgroup of G. Further, a~'wa = a~'¢"(a)w, so that
a~'wae G, We see that x 'Hx < G; for every x € G. Similarly, waw™' =
= g(a)w*®~" € G; (since r divides o (a) — 1) and, again, x"'Ax = G;. Now, it is
clear that G;< G and G’ < G;,.

(iv) Since A = G, we have L, (H) = Lo(H ) =1

(v) By 2.4(iv), Z ( ) € A, so that Z(G)) < Lg(A) = A;. On the other hand, if
a€ A,, then wa = ¢'(a)w = aw’, which shows that a € Z(G)). A

3.7. Put G; = AG'. Then G, = AH;, Hy= Gyn H, H; = {W?*), where
l<ry<nandrs|n

3.8 Lemma. (i) r,|r;.

(li) G < G3 = 62 and H3 e Hz.

(iii) Z(G,) = A,.

Proof. Easy. A

3.9 Lemma. The following conditions are equivalent:
(i) G, = G.
(ii) Hy = H.
(iii) ry = 1.
(iv) o(a) = a for every a€ A,.
(v) Z(G) = A,
Proof. Easy. A

3.10 Lemma. The following conditions are equivalent:

(i) G, = A
(ii) Hy = 1.
(iii) 1y = n.

(iv) G' < A.
(v) A, = A.
(vi) A= G.

Proof. Easy. A

3.11. Since A, < Ls(A4,H), we have Lg(4,Ho) for Ho=HnL (AIH) =
= {W°), 1 <ry <n, ro|n. Further, G, = AH, is a subgroup of G (since
GO A-A H()) and A4 Ho < ILG(G()) Clearly, u_Go(Ho) = 1.

3.12 Lemma. The following conditions are equivalent for k > 1:

(i) ro| k.

(i) ¢*(a)a~' € A, for every a€ A.
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Proof. If k = Iro, then w* € H, and a™'w*a € A,H,. However, w*a = ¢* (a)u for
some u € H, and so a'¢"(a) € 4,. Conversely, if (ii) is true, then a~'w*a e 4,H
and so w* € A Hy, w*e Hyand ry | k. A

3.13 Lemma. The following conditions are equivalent:
(i) A\ H= G.
(ii) G’ = A,H.
(iii) ro = 1.
(iv) Hy = H.
(v) o(a)a~"' € A, for every a€ A.
(vi) 0(A) = A foreveryl <i<n— 1.

Proof. Easy (use 3.12). A

3.14. Denote by ¢ the natural projection of G onto G = G/A,H,. Then
G=A-H where A = ¢(A) = AHy/AHy = A/A, A = o(H) = A,H/A,H, =
~ H/H,, Ls(H) = 1 and H is a cyclic group of order r,.

(i) Assume that ry > 2. Again, there are a permutation ¢ of A and a mapping
6:4 - > {1,2, ..., ry — 1} such that ¢ (wa) = ¢ (w) ¢ (a) = d¢(a) @ (W) =
= 9¢(a) - ¢ (W) for every ae A. Of course, ¢(wa) = go(a) ¢ (w"), and
therefore g (a) = @g(a) and r, divides o (a) — 6o (a).

Now, put B = {ae 4; ry|(o(a) — 1)} and C = ¢~ '(4,) = ¢~ (Ls(A)). Then
A; = ¢(C), B=Cn A is a subgroup of A and C = BH, = L(G,). Clearly,
A, < B and C = G. Moreover, since A, # 1, we have B # 4 and C # A,H,.
Finnaly, B <4 G, (otherwise B = A,) and H, # 1. It follows that r, < n — 1.

(i) If ry = 1, then we put B= A and C = G.

3.15 Lemma. ry, < n — 1 and Hy, # 1.
Proof. See 3.14. A

3.16 Lemma. The following conditions are equivalent:
(i) B = A.
(ii) ro| 1y (resp., G, = Gy or H, = H,).
(iii) ro|rs (resp. Gs < Gy or Hy € Hyor G' < Gy).
(iv) Go= G.
(v) AiH; = G for at least one j, 1 < j < 3.
(vi) A\H; =2 G for every j, 2 < j < 3.
(vii) ¢ ~'(b)b~" € A, for all a, b€ A.
(viii) @"W~Y(A) = A, forevery 1 <i<n— 1
(ix) 0(A) = A foreveryl <i<n— 1.
(x) ¢”(A) = A foreveryl <i<n— 1.

Proof. First, (i) is equivalent to (ii) by 3.14.; (ii) implies (iii), since r, | r3; (iii)
is equivalent to (iv), since Go =2 G iff G' = Gy; (i) and (v) are equivalent by 3.12.
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Further, if Go,<2 G, then C = BH, = L(Go) = Gy, and so B = A (see 3.14).
Now, it is clear that the conditions (i), (ii), (iii), (iv) and (vii) are equivalent.

Assume that A\H;<2 G for some 1 <j <3 and put r =r;. For ac€ A4,
a~'wae A,H; However, a~'wa = a~'¢’(a)u, ue H, and so a~'¢"(a) € A,. Now
ro | r by 3.12, and hence r, | r;. We have shown that (v) implies (iii).

Let 2 < j < 3 be such that r, divides r = r;. Then, for every ae 4, a~'wa =
=a'¢(a)ue AH;n A\ H = A\H; (use 3.12), and so a 'Ha < AH; and
a'AHa < A,H,.

The rest is clear. A

317. Put G =G/A, A= AJ/A, and H = HA,/H, = H. Then G = AH,
Ls(A) = 1 and, by 3.4, g indces a permutation § of 4 and ¢ induces an injective
mapping 6: A — {1,2, ..., n — 1} such that Y (w) ¥ (a) = ¥ (wa) = Y (a)(w¥) =
= gy (a) - Y (W)™ for all a € 4; here, Y : G > G is the natural projection. Further,
by 3.3, we have g (¥ (a)y (b)) = 6 (a) - @™*“(Y(b)) for all a, be 4, 7(1) = 1 and
m = card(A) = card (6 (A4)). According to 3.12, the order of g s just ry; notice that
ro <n— 1. By 3.11, Lg(A) = Hy = AHy/A, = H,. Since A NG < A,, we
have 4 n (G) = L.

Now, consider the following three conditions:

(R1) ¢ is an automorphism of 4;

R2) ¢ =idg

(R3) & is a homomorphism of 4 into Z* (the multiplicative group of invertible
elements of the ring Z = Z/Zn).

3.18 Lemma. (RI) is true if and only if the equivalent conditions of 3.16 are
satisfied.

Proof. If (R1) is true and if ae A and b€ A, then ¢(a)b = ¢(ag~'(b)) (mod
Ay). On the other hand, g(ag~'(h)) = ¢(a)¢"®~"(b) by 1.3. This implies that
0"“~'be A; and "' (b)b~" € 4,

The rest is clear. A

3.19 Lemma. (R2) is true if and only if the equivalent conditions of 3.13 are
satisfied.

Proof. Obvious. A

3.20 Lemma. (R3) is true if and only if 6 (ab) = o (a)o (b) (mod n) for all a,b e A
(ie, 0: A — Z¥is a homomorphism).

Proof. Obvious. A
3.21 Lemma. (R2) implies (R1) and (R3).

Proof. If (R2) is true and a, b € 4, then 0g*(b) = o(b) for every k > 1, and
hence ¢ (ab) = o(a)a(b) (mod n) by 3.3. A
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3.22 Lemma. If (R2) is true, then either A<= G or Z(G) # 1.

Proof. Put &(a, i) = ¢'(a)a™' € A (see 3.3(iv)) for all ae 4 and i > 0. Then
&(a, 0) =1, &(a, 1) =g(a)a™' = b and, by induction on i, we check that
&(a, i) = bo(b)... @'~'(b) for every i > 1. Indeed, &(a, i + 1) = ¢'*!(a)a™" =
=¢'""(a)e(a)”'b = e(e'(a)a™")b = ¢¢(a,i)b = ¢(be(b)... '~ ' (b)) b =
= 0(b)@*(b) ... ¢'(b)b (use 3.3(iv) and the fact that ¢ | A, is an automorphism of
A)).

Now, ¢£(a, r) = o(be(t)... '~ () = (D). " 6) = o(8)... &~ (b =
= &(a, 1), since b € A4, and "( ) = b. By 3.2(v), ¢(a, r,) € Z(G). In pamcular if
Z(G) =1, then ¢"(a)a"' = &(a, r;) =1 and ¢"(a) = a for every ae A. This
implies that r;, = n and m = 1 (otherwise r; would divide r, — 1 and then r, = 1
and Z(G) = A;))and A= G. A

3.23 Lemma. G’ is generated by the elements ¢*(a)a~'W', | = o (a) + oo(a) +
+ ..+ @) —k1<k<n-—1laeA

Proof. We have G' = {[4,H]). A

3.24 Lemma. Assume that n = p is a prime number and that A<B8G (or
m > 2). Then:
(i) p=3,m|p — 1and A/A, is cyclic.
(ii) ro=r1r,=r, = 1.
(iii) Z(G) = A, and ¢(a) = a for every a€ A,.
(iv) The condition (R2) is satisfied.
(v) G = AH = Z(G)H = Ng(H).

Proof. Since r, divides both i, — 1 and n, we have r, = 1 and consequently also

= 1. Further, ry, = 1, since ry | p and r, < p — 1 by 3.14, and so the conditions
(R2) and (R2) are satisfied by 3.19 and 3.2.1. In particlar, ¢ is a homomorphism
of Ainto Z¥=>~ Z, ,(+), and therefore m|p — 1. A

3.25 Lemma. Assume that n = p* for a prime p. Then at least one of the

following three cases takes place:
(i) ry=r,=1and Z(G) = A,

(ii) ro = 1 and (R2) is satisfied.

(iii) A= G.

Proof. Assume A4Gandr, # 1. Thenm > 2,r, = p and p divides i; — 1 for
every ]l <j<m(see3.5).Thusl <i;=1-p+1<p’— landm < p.On the
other hand, ¢ is a permutation of A, card (4) = m, (1) = 1 and the order of g is
ro. Now, 7 = ¢ I I, I = A\ {1},is a permutation of I, card([) =m — 1 < p — 1
the order of 7 is ry and ry | p. From this, r, = 1. A

3.26 Lemma. (i) If m = [A : Al] is a prime number, then the condition (R1)
is satisfied.
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(ii) If m < 2 then, the condition (R2) is satisfied.

Proof. (i) Since m is prime, 4, is a maximal subgroup of A. But A, € N < 4
and A; # B (see 3.16). Thus B = A4 and (R1) is true (3.18, 3.16).
(ii) ¢ is a permutation of 4 and card (4) < 2. Consequqntly ¢ = id. A

4. Auxiliary results (D)

4.1. This section is a continuation of the preceding one. Moreover, we will
asume here that the condition (R2) is satisfied (see 3.17, 3.19, 3.21, 3.22) and that
A<4G.Thenm > 2,¢(A;) = A;forevery 1 <i<n—1,G < A;H and o may
be viewed as a homomorphism of A into Z* We have Ker (0) = 4,, and so
m = [A: A,] divides ¢ (n), @ being the Euler function.

For ae A and i > 0, put £(a, i) = ¢'(a)a™" (cf. the proof of 3.22). Then
E(a, )e Ay, E(a, 0) =1, A(a) = &a, 1) = ¢(a)a™ = b and &(a, i) = be(b)...

'=1(b) for every i > 1. Finally, k(a) = &(a, r) € Z(G), r = r,.

42 Lemma. (i) 1 <r<n-—1,r|nand 2 < n/r.

(i) k(a) = A(a)eA(a)... "~ 'A(a) € Z(G) for every a€ A.

(iii) Z(G) # 1.

(iv) &(a, kr) = k(a)* for allae A and k > 0.

(v) k(a) = k(b)foralll <i<n—landa beA,

(vi) If1<i,j<n—1,aeA andbe A, then (o, j — 1) = E(b, i — 1).

Proof. (i), (ii) and (iii). See 4.1 and 4.22.

(iv) This is clear from 4.2 and the fact that ¢" | 4, = id.

(v) Since g(4;) = A;, we have ¢"(ab™") = ¢ (a) " (b)~' by 3. 3(1v) On the other
= ¢'(a)a”

handi c)zb'1 € A,, and so ¢"(ab™') = ab~'. Now, «(a) =¢(b)b! =
=«(b

Vi) &(a, j)e(e 1)~ = o/a)e(a)™! = e(d~ () ) = g¢(a, j—1) and
£(b, )&(b, 1)- "= e (b, 1—1) by 3.3(iv). On the other hand, g(a)&(b, i)b =
—Q() () ¢(ab) = o(ba) = ¢(b)d(a) = () (a, j)a. Thusé(a])f(a, 1)t =
—f( )( )landweseethaté(a]—l) E(b, i — 1)

4.3 Lemma. (i) A¢(a) = gA(a) for every a€ A.

(ii) A(ab) = A(a)A(b) for all ae A, be A and A | A, is an endomorphism of

A,

(iii) A(ab~") = A(a) A(b)~ 1foralll<l<n—landa be A,

(iv) Z(G) = {a€ 4; A(a) =

(v) xg(a) = gk (a) = K(a)for every a € A.

(vi) Kk (a)®=" = k(b)@=I" for all a, b e A.

(vii) A(ab) = A(a)A(b) k(b)Y = A(a)A(b) k (a) =" for all a, b € A.
(viii) k(a)” = 1 for every a€ A.
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(ix) k(a) = 1 for every a€ A,.
(x) If 1 < k < (n — r)/r, then k(a)* # 1 for at least one a € A.
(xi) k(ab) = k(a)x (b} = (a) - k(b) for all a, b € A.

Proof. (i) Ag(a) = ¢ (a) (@)~' = e(e(a)a™") = @A(a) by 1.3(iv).
(i) A(ab) = e(ab)a'b~"' = g(a)a™' ( )b‘ a) A(b).
(iii) A(ab~") = g(ab™")ba~" = g(a)a~" (b~ ")b = A(a)A(b~") by 1.3(iv)
@iv) See 1.2(v).
(v) Since k(a) € Z(G), we have gk (a) = k(a). Further, since og(a) = o (a), we
also have xg(a) = (a).
(vi) k(a)e® =" = ¢(a,a(b) — 1) = £(b, a(a) — 1) = x(b)@~ V" by 2.3(iv),

(vi).

(vii) A(ab) = g(ab)a='b~' = g(a)a™' - ¢"W(b)b~' = A(a)é(b, a(a) =
= H@AB)0E6. o(a) — 1) = A@AB(<(BIP ) = ()3 (be By
(use the fact that ¢¢ (b, o'(a) — 1) = ¢ ("~ (b)b~") = ¢ (b)e (b))~ = ¢ (b) b~

“o(b)b = (b, o(a) )
(viii) k(a)’" = &(a, )" = E(a, n) = @"(@)a™"' = 1.
(ix) This is obvious.
(x) We have ¢™ # id,, and therefore «(a)* = &(a, rk) = ¢™*(a)a"' # 1 for
at least one a € A4.
(xi) By (vii), oA(ab) = oA(a)@A(b)k (b))="",  o%A(ab) = 0% (a)o*4(b)
K (b)=1r ... Now, k(ab) = A(ab)oA(ab) ... ¢"~'A(ab) = k(a)k(b)x(b)~' =
K (a) x (b) (use 4.2(ii)). A
4.4 Lemma. (i) A(a™") = i(a) 'k(a™")' = Ala) 'k (a) for all ac A and
=(1—=oa(@)r.j=(1-oa(a)r
(i) AMab~") = Aa)A(b)~" (x(a)x(b)~ ") for all a, be A and k = (a(b™") — 1)/r.
Proof. (i) By 4.3(vii), 1 = A(aa™") = A(a)A(a ")k (a"")"and 1 = A(aa”") =
= Aaa™") = i(a)l(a‘ )K(a) =,
(i) By 4.3(vii), A(ab~") = A(a)A(6~")x(a). But, by(i), A(b~") = A(b) "'k (b))~ A
4.5 Lemma. Let a,be A. Then A(a) = A(b) if and only if A(ab~") = 1 and also
if and only if ab=' € Z (G). In that case, o (a) = o (b), and Kk (a) = x(b).

Proof. First, let A(a) = A(b). Then k(a) = k(b) by 4.2(ii), and so A(ab~!) = 1
by 4.4(ii). Conversely, if A(ab~") = 1, then ab™" = g(ab~') and ab~' € Z(G) (see
4.3(iv)). Finally, if ab~'€ Z(G) < A,, then ¢ (a) = o(b) and 1(a) = A(b). A

4.6 Lemma. (i) A’ is a homomorphism of A into A,.

(ii) Z(G) < Ker (4) = {a€ 4; A(a) e Z(G)} = {a€ 4; ¢*(a)e(a)%a = 1}.

(iii) A*(a) = @*(a)e(a)~? for every a€ A.

Proof. Let a, be A. Then, by 4.3(vii), ¢4(ab) = o4(a)oA(b)x (b)~Y, and
hence A*(ab) = A (ab)A(ab)™' = gA(a)A(a)~'eA(b)A(b)~' = A?(a)A*(b). Further,
A*(a) = gA(a)Ala)™" = ¢(e(a)a~")e(a) 'a = ¢*(a)o(a) a. The rest is clear. A
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4.7 Lemma. Z(G) contains at least one element of order n/r (and so
card (Z (G)) > n/r).

Proof. For every i, 1 <i < (n — r)/r, choose an element a;€ A such that
k(a) # 1 (see 4.3(x)) and denote by K the subgroup of Z(G) generated by all a;.
Then K is finite and a”" = 1 for every a € K. Moreover, it is easy to see that
K contains at least one element of order n/r. A

4.8 Remark. (i) With regard to 4.3(vii), 4 induces a homomorphism of A into
Ai/Z (G). The kernel of this homomorphism is just {a€ A4; ¢*(a)e(a) %a = 1} =
= Ker(4?) (see (4.6)).

(ii) « induces a mapping v: A/A, - Z(G), v(a4,) = x(a).

(iii) o induces an injective homomorphism u: A/A, = Z}%

(iv) v(xy = v y)ﬂ(X) = v yl(y) v( ) v(y)(u(y) )r — v(y)(“(") Ur and v( )n/r =
= 1 for all x, yEA/Al

(v) By 4.5, 1 induces an injective mapping v of 4/Z (G) into A,, v(aZ(G)) =
= A(a). In particular, card (a/Z (G)) < card (4,) and m < card (Z (G)).

4.9 Remark. (i) Put 9(a) = ag(a)... ¢"~'(a) for evey a€ A,. Then 9: 4, —
— Z(G) is a homomorphism, 3(a) = a" for every ae Z(G) and $(b) # 1 for at
least one b € A;.

(i) k = 94, A(a)"" e Ker (9) for every ae A. If be A and A(b) e Z(G) (i.e., if
b € Ker (1%)), then A(b)" = 1.

4.10 Lemma. G' < A,H.,.
Proof. We have G' € A\HN AH, = A\H,. A

4.11 Lemma. Suppose that r = 1. Then:
(i) A(a) = k(a) = &(a, 1) = g(a)a~' € Z(G) = A, for every a€ A.

(ii) é(a, b) = A(a) forall ae A and k > 0.
(iii) A(ab) = A(a)A(b)™® = A(b)A(a)® for all a, be A.
(iv) A(a)' = 1 for every a€ A.

(v) Z (G) A, contains at least one element of order n.
(vi) 4(a) = 4(b) if o (a) = o (b).
Proof. Obvious. A

4.12 Lemma. Suppose that n = p is a prime number (see 3.24). Then:
(i) m|p — 1, A/A, is cyclic, Z(G) = Ay, r = 1.
(ii) p:A/A, > Z¥(= Z,_\(+)) is an injective homomorphism.
(iii) A = k.
(iv) v is an injective mapping of A/A, into A, v(xy) = v(x)v(y}*) = v(xp)-
v(y) and v(xP = 1 for all x, y € A/A,.

Proof. See 3.24, 4.8 and 4.11. A
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4.13 Lemma. Let = p be a prime, a € A/A, a generator of A/A, (see 4.12)
and let k = p(a) > 2. For 1 < i, let y(i) be such that 0 < y(i) < p — 1 and
(@) =1+ k+... +Kk~")(modp), y(0) = 0. Then:

(i) v() = v ()" for every i > 0.

(ii) The order of v(a) in A, is just p.

(iii) The numbers 0, 1, y(2), ..., y(m — 1) are pair-wise different.

(iv) The order of k in Z} is just m.

(v) k' — 1 = (k — 1)y (i) (mod p) for every i > 0.

Proof. (i) The equality is clear for i = 0 and we can further proceed by
induction; v (a'*") = v(a) v (&) = v (o) (v () = v (e +* ! = v ()i *!) (see 4.12).
(ii) This follows from (i) and 4.3(x).
(iii) We have A/A, = {1, a, ..., «""'} and so v(A/4,) = {1, v(a), v(J'®, ...,
v(«)"™~1}. Now, take into account that v is injective.
iv) k = v(oz) is of the same order as a.
(v) This is clear from the definition of y(i). A

5. Some special cases (A)

5.1. Let G be a group such that G = AH, where A4 is an abelian subgroup of
G,A#G,[A:A] =2, A, = Lg(A), H is a finite cyclic subgroup of order n > 2
and L (H) = 1. Further, let w € H be generator of H and assume that waw € A for
at least one ae A. Then m =2, A, #0, A=A, UA,_,,n>3 0(4)= {1,
n— 1} and the condition (R2) is satisfied. Moreover, r = r; divides both n and
n — 2. Consequently, either r = 1 or r = 2 and n > 4 is even.

5.1.1 Lemma. Let r = 1. Then:
(i) Ala) = x(a) = ¢(a)a™' € Z(G) = A, and A(a)" = 1 for every a€ A.
(ii) A(A._1) = {e}is a one-element set end e is an element of order n in A,.
(iii) o(a) = a for every ae A, and ¢(b) = be for every be A,_, = A\ A,.
(iv) G' = {ew' %) is a cyclic group of order n.
(v) GnA=1=G nHifnis odd.
(vi) G' N A = (&) is a two-element group and G' ~n H = 1 if n is even.
(vii) card (G'H) = n”.
Proof. First, (i) and the equality A(A,_, = {e} follow from 4.11. Further,
0(b) = A(b)b = eb and ¢'(b) = e'b for all i > 0 and b € A, _,. The order of ¢ is
n, and hence the same is true for e. The rest is clear from 1.2. A

5.1.2 Lemma. Let r = 1. Then:
(i) If n > 3 is odd, then AG' = G # HG'.
(ii) If n > 4 is even, then AG' # G # HG'.

Proof. Use 5.1.1. A
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In the remaining part of 5.1, we will assume that r = 2; then n > 4 is even.

5.1.3 Lemma. (i) k(a) = &(a, 2) = ¢*(a)a™" for every a€ A.
(ii) k(A;) = 1 and ¢*(a) = a for every a€ A,.
(iii) k(A,_,) = {e}, where e € Z(G) and the order of e is n/2.

Proof. See 4.1, 4.2 (ii), (v), 4.3(viii), (X). A

5.14 Lemma. (i) Ifa, b€ A and either a€ A, or b € A,, then A(ab) = A(a) A(b).
(ii) A | A, is an endomorphism of A,.

(iii) If a,be A,_; = A\ A,, then A(ab) = A(a)A(b)e™".

(iv) A*(a)A(a)’ = e for every ac A,_,.

Proof. (1), (ii) and (iii). See 4.3(ii), (vii) and 5.1.3.
(iv) We have ¢?(a) = a. But ¢*(a) = ¢(A(a)a) = ¢
Thus A*(a)A(a)® = 1.
(v) By (111) A(@®) = A(afe ' and e = A(af A(a?)~".
Further, a’ € A,, and so A(a®)™' = A(a?) and e
= Ale(@a™") = ele(@)a")e(@)'a = ¢

4(a)e(a) = 2*(a) 4(af (a).

But1 = g(aa™') = g(a)e (@ "), ela™") = 07" (@ ") e(@a?) = e(@a)e (@) =
=g(a ") e(a)"" and A*(a) = ¢(a"")e(a)'a> = ¢(aY)a* = A(a™?). A
515 Lemma. Letue A, _,v = A(w),z = A(u™ ") v = AW and 2 = A(u~")u’. Then
(i) A(v) = 112( ) =AW ) =AW =A)" = A(u" e = %!
(i) A(z) = 2w ") = A(u?) = 2w )" = A()e™! = vie!
(iii) A(z) = Av)e and v* = A(2)e.
(iv) vz =e=g(u)o(u™).

(v) z = A(v)o = ¢(v) and v = A(z)z = o(2).
i) v = v,z =zu % v, 2 € Z(G) and A(V') = A(Z) = 1.
(vii) vz = vz =e.
(viii) ¢(a) = A(u)a and g(au) = A(a)avu = A(a)av'u™" = g(a)vu = g(ap'u™!
for every a€ A,.

Proof. (i) A(v) = 2*(u) = A(u=?)' by 5.1.4 and its proof. Further, by 5.1.4(ii),
/1( —2) — 1( —1)2 -1 _ zZe—l.
(ii) We can proceed similarly as in (i) (we replace u by u™").
(iii) Combine (i) and (ii).
(iv) By 5.1.4(ii), 1 = A(uu™") = A(u)A(u"")e™" = vze™", and so vz = e. Fur-
ter, 0(6) = 0(u) = 2(ut(u)u ! = 4 2(u) =
(v) By (iii) and (iv), 2> = A(v)e = A(v)vz = ¢(v) 2, and so z = ¢(v). Quite
similarly, v = A(z)z = ¢(z )
(vi) Obviously, v' = vu’ and z' = zu~2 Further, v, u> € A,, and hence 4(v') =
= 2(0)A () = A ) A(u ) A(u™*w?) = 1. Similarly, 1(z') = 1.
(vii) By (vi) and (iv), vz’ = vu’zu™? = vz = e.
(viii) ¢(au) = ¢(a)e(u), and the rest is clear. A
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5.1.6 Lemma. Consider the situation from 5.1.5 and moreover, assume that
u* = 1. Then:
(i)v="1,z=2 and v, ze Z(G).
(ii) V¥ = e = 2%
(iii) If n/2 is even, then the order of both v and z is n.
(iv) If n/2 is odd, then the order of both v and z is n/2.

Proof. (i) See 5.1.5.
(ii) By (i) and 5.1.5(iii), A(v) = A(z) = l and v* = 22 = e.
(iii) and (iv). This is clear from (ii) and the fact thhat the order of e is n/2. A

5.1.7 Remark. If 4, is finite and of odd order, then n/2 is odd and there exists
at least one u€ A,_, with > = 1.

5.1.8 Lemma. Let uc A,_, (see 5.1.5). Then:
(i) @'(u) = €'~V vu' = &= g(u) = e~V vu for every i > 1 odd.
(ii) ¢'(u) = € u for every i > 2 even.

Proof. First, o(u) =vu = A(u)u = vu™' and @°(u) = o(vu) = ¢(v)e(u) =

= ¢(v)vu = zou = eu by 5.1.5(iv), (v). Now, we will proceed by induction on i.
Ifi > 1is odd, then ¢'*'(u) = (e =12 vu) = €'~V g(vu) = €l+V2- 4,
If i > 2 is even, then ¢'*'(u) = g(e”" - u) = €% g(u) = €” - vu. A

5.1.9 Remark. (i) A(a) # 1 for every ae 4, , (if 1(a) = 1, then ¢(a) = a
and ae Z(G) < A)).
(i) a”'waw™! = a~'g(a)ww™! = (a) for every a € A4,.
(i) a~'waw ! = a"'g(a)w™'w™! = Ma)w * for every a€ 4,_,.
(iv) A(a)™' = A(a")e ! = A(a"")e" =P for every a€ 4, _,.
W) (€A(aw)™! = e"wA(a™") = e7'g" T Ma")w ) = e~ Ag T (a7 ) w
forallae4,0<i<(n—2)2,0<j<n-—1
i) (fA(@w) ' =e"-w T Ma)=e " Ao a ) w forallae 4, _,,
0<i<(n—2,0<j<n-1
(vii) e'A(a)wt-&A(b)w' =€t A(a)g*A(b) W' = €'t A(a) A(a) Ao (b)) W ! =
= e* - A(ag*(b)w*t! foralla, be A4, 0<ij<(n—2)/2,0<kl<n-—1
(viil) €A(a)w - eA(b)w = €t - A(agi(b))w**' and e/A(b)w - €d(a)W =
=é* - A(o'(a)b)w ™! for all ae A, beAd, ;, 0<i j<(n—2)2 0<k,
l<n-—1
(ix) €A(a)w'- dA(b)w = e*/*- A(ag“(b))w**! for all a, be A, ,, 0 <,
j<(h—2/2,0<kl<n-—1

5.1.10 Lemma. G' = {'1(a)w™* ae 4, 0<i< (n— 2)2}u {fA(@w 4%
aEAn—la 0 < i < (n — 2)/2}

1

Proof. Denote by F the set on the right side of the above equality. It follows
from 5.1.9 that F is a subgroup of G. Further, b='¢'A(a)w™* b = e'A(a)w™*
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(we have @*(b) =b), c'éi(aw ¥ c=él(awh, wldi(aw ¥ -w =
=elg(a)w™, b7 led(Jw ¥ "2-b=€A(@w ¥ 2 dlel(c)wH?d =
=e "1 A(c)w't2and wled(c)w 42w = edg(a)w ¥ forall a, b e 4, c,
de A,_,. Now, we see that F <0 G and, by 5.1.9(ii), (iii), we have [aF, wF] = 1
in G/F for every a € A. Since G/F = {aF,wF), we conclude that G/F is abelian,
ie, G & F.

Conversely, A(4,) = G' and A(a)w™?€ G’ for every ae€A,_,. Further,
(Al@w) ' =e'A(a)w*eG and (e-'Ala™)W?)? = e 'A(a )W e G'. Since
a*eA, we have A(a™)eG and e 'w'eG. on the other hand,
ew - A(aw? = eA(a)w *~2 for a€ A,_, and ew™*- 1(a) = €'A(a)w™* for
ac A,. Now, itis clear that F = G'. A

5.1.11 Lemma. (i) Ifn = 4k, k > 1, then G' n A = A(A,) U €A(4,) # 1.

(ii) If n=4k + 2,k > 1, then G' " A = A(A}) N A(A4,_)) # 1.

(iii) H; = Hy = Hy = {W) (see 3.5, 3.6, 3.7) and G, = G, = G; = AG' =
= A{W) # G (see 3.7).

Proof. Use 5.1.10. A

5.2 Construction. (cf.5.1.1 and 5.1.2) Let A;be a non-trivial subgroup of index
2 in an abelian group A (denoted multiplicatively) and let ¢ € A, be an element of
order n > 3. Define a permutation g of 4 by ¢(a) = aand ¢(b) = beforall a € A4,
and b € A\ A;; the order of g is just n.

Now, put ¥ = (L, ¢; ae Ay = A! (here, L,(x)=ax, a, x€ A). Then
G =of - H, where of = {L,; ac A}~ A and # = {g) is a cyclic group of
order n; we have oL, = L0 and gL, = Ly0~' = Ly,e" " for all ae 4, and
be A\ A,. Clearly, Ly(#) = 1, Ly(&) = Z(¥%) = o, = {L; ae A} = A, and
G = (L,""?) is a cyclic group of order n.

5.3 Remark. Let A, be a non-trivial subgroup of index 2 in an abelian group
A and E = A\ A,. Let ¢ be an endomorphism of A, such that ¢* = id. Put
A(a) = ¢(a)a™"! for every a € A;; then A*(a) = A(a)™>

(i) Let ue A and ve A4, be such that A(v) = A(u~?). Put z = A(v)v. Then

Az) = 22(v) A(v) = A(v™Y)A(v) = A(v™") = A(¥?) and A(z)z = v. Further, A(vz)

/l( JA(z) = A ?)A(W) =1 and vz = A(v)v*- A(z)z2 If v = vu® and Z'
u=? then v = vu=2 z = z’u% u, z € Ker(4) and vz = A(v)v* = i(z)2?

(O 2= = (43 (3) (= )

(i) Let e, v’ € Ker (4), u € E, be such that (v')* = eu*1(u?). Then, for v = v'u?,

we have A(v) = A(u™?). v' = v’ and e = A(v)v%

(iii) Take u€ E (see (i) and (ii)), v' = vu™?, then A(v) = A(u™?). If u? = |,
ve A, and ¢(v) = v, then A(v) = A(u?)(= 1).

(iv) Assume that A4, is of finite odd order. Then there exists € E with u?> = 1.
Finnaly, if ¢(a) # a~' for some a€ A4, and v = ¢(a)a, then v #* 1, ¢(v) = v and
v’ # 1
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5.4 Construction. (cf. 5.1.3, ..., 5.1.11). Let 4, be a non-trivial subgroup of
index 2 in an abelian group A. Put E = A\ 4, and consider an authomorphism
0 of A, such that ¢ = id # . Let u € E and v € 4, be such that ¢ (vu?) = vu? and
the order of e = vg(v) is n/2 for n > 4 even (see 5.3).

Extend ¢ to a permutation of A by ¢(au) = ¢(a)vu(= ¢(av™')eu) for every
a€ A;. Then ¢ becomes a permutation of order n of A, ¢(4,) = A,, ¢(E) = E,
oL, = Ly,0 and gL, = L(p)o"~ ' for all a€ 4,, be E.

Let 9 = (L, 0,ac Ay < A. Then ¥ = o - #, where o = {[,;ae A} =
H = {g)is acyclic group of order n, Ly(#) = 1, Ly(/) = o, = {L;ae A,}
~ A, 2(%) = {L; ae Ay; ¢(a) = a} (we have m =r, =2 and o/, , = {
acE # 0}.

5.5 Example. Let A = Zs(+), A, = 24, ¢(a) = 3a for every ae A, (4, is
a cyclic group of order 8), u = 1€ E = A\A,, v = 6 A;. Then ¢(v + 2u) =
=0@)=8=v+2u,e=v+9()=8n=4
Further, A(a) = 2a, ae A, and ¢(1) =7, ¢(3) =1
(9) = 15, o(11) = 5, o(13) = 11, ¢(15) = 1, o(1) = 6, A(3
(7) = 2 /1(9) = 6, /1(11) = 10, )(13) 14, /1(15) Q(2) = 6,
(6) ( ) = §, Q(IO) 14, Q(IZ) = 4, Q(14) = 10, /1(2) = )
(6) = 12 l( ) =0, 2(10) = 4, A(12) = 8, A(14) = 12. Consequent ¥, A(4) =
{0,4, 8, 12}, A(E) = {2,6, 10, 14} and Ker () = {0, 8}.
Now, consider the corresponding group ¥4 = & - 5 (see 5.4). Then & =~ A =
=Zis(+), # =) = Zy(+), ¥ = Uduo®) = {Li; ac A(4)} U {Lo’ be A(E)}
is a cyclic group of order 8, ' N # = 1, Z(9) = {Lo, Ly} = Z,(+), Ny(5#) =
=Z(9)H = Zy(+) x Zs(+), Ng(#)2Y, Ny() = A (@) =9 oA #
*YG GH = oA K #9.

5.6 Example. Let A = Z3(+), A, = 24, ¢(a) = 4a for every ae A, (A4, is
a cyclic group of order 15), u = 1€ E = A\ A}, v = 8€ A,. Then ¢(v + u) =
= 0(10) = 10, e = v + ¢(v) = 10, n = 6. Further, 1(a) = 3a for every a€ 4,
and 9(1) =9, 0(3) = 17, ¢(5) = 25, ¢(7) = 3, ¢(9) = 11, Q(ll) =19, 0(13) =

A
(L

LR R
N
—

=27, o(15) = 5, o(17) = 13, o(19) = 21, ¢(21) = 29, ¢(23) = 7, ¢(23) = 7,
0(25) = 15,0(27) = 23, 0(29) = 1, (1) = 8, A(3) = 14, A(5) = 20, A(7) = 26,
A(9) = 2,A(11) = 8, A(13) = 14, 4(15) = 20, A(17) = 26, A(19) = 2, A(21) = 8,
A(23) = 14,4(25) = 20, 2(27) = 26, 2(29) = 2,¢2(2) = 8, 0(4) = 16, 0(6) = 24,
0(8) = 2, 0(10) = 10, o(12) = 18, o (14) = 26, o(16) = 4, o(18) = 12, g(zo) =
=20, 0(22) = 28, ¢(24) = 6, 0(26) = 14, 0(28) = 22, A(2) = 6, A(4) = 12,
A(6) = 18, A(8) = 24, A(10) = 0, A(12) = 6, A(14) = 12, A(16) = 18, ,1(18) =

= 24, 1(20) = 0, A(22) = 6, A(24) = 12, 1(26) = 18, A(28) = 24. Consequently,
A(4,) = {0,6, 12, 18, 24}, A(E) = {2,8, 14, 20, 26} and Ker (1) = {0, 10, 20}.

Now, consider the corresponding group ¥ = &/ - # (see 5.4). Then
o = A=2Zy(+), # =)= Zs(+), 9 = {L*) is a cyclic group of order
15,9 n# =1,Z(%) = {Ly, Lo, Lo} = Z5(+).
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6. Some special cases (B)

6.1. Let G be a group such that G = AH, where A4 is an abelian subgroup of
G, AAG and H is a (finite cyclic) group of order p, p > 2 being a prime, such
that Ls(H) = 1. Now, by 3.24 and 4.12, we have p > 3, Z(G) = A, = L4(A),
mlp—1m= [A: A,]. Further, by 4.7 (see also 4.13), Z (G) contains at least one
element of order p. Let P and R denote the p-primary component of A and the
p-socle of A, resp. Clearly, R = P < Z(G).

6.1.1 Lemma. G < RH =R x H=2 G, G' &€ A, G' is a p-elementary abe-
lian group and G = AG'.

Proof. By 3.24(v), G' < Z(G) = Z(G) x H. Thus Z(G)H = G and, since
RH = R x H is characteristic in Z(G) H, we also have RH = G. Finally, since
G ¢ A, [G:A] =p is a prime and A = AG' = G, we conclude easily that
AG = G. A

6.1.2 Lemma. [w, a] = [a, w™'] = [a, w] ' forall ac A and we H.
Proof. We may assume that w % 1. Then (see 3.1) we have [a, w™'] =
=a 'waw™' = a~'g(a)w " a"'o(a) = ¢(a)a~' € A, = Z(G) (3.13 and 3.14),

wla, w'] =a"'e(@w™® =a"'wa and [a, w~'] = w 'a"'wa = [w, a]. Simi-

larly, [a, w] =a"'w™'aw = w=g(a)"'aw = g(a)'aw=®*! and [a, w]™' =
=a'g(a)w ' =[a,w']. A

6.1.3 Lemma. w(w, a] = [w, a]wforallac A and we H.

Proof. Use 6.1.2. A

6.1.4 Lemma. [w, a]” = (a~'g(a))™ - wX@=Y for all ae A and w e H.
Proof. We have [w, a] = a~'g(a)w’@ " and a~'¢(a) e Z(G). A

6.1.5 Lemma. a~'[w, a]a = [w, a]"® forallae A ad we H.

(@) -2

Proof. We have [w, da]a=a'g(@w ' a= a“g(a) w2 wg =
— a—lgﬁa)wa(a)—Z . Q(a)wa(a) — (a—lg(a))Z . Wa(a)—Z . awa(a) — (a Q(a)) d(a) 3.
_Wa,waa)___ga—-lg a 2,Wa(a)—-3,g(a)w20'(a)=(a ]Q a))?- wola =3 2¢7(a)_ -
— (a—IQ (a))o(a . awa(a)(a(a)—l) = q- (a—lo_ (a))a(a) a(a)(a(a) 1) — a- [W a]a(a) (USC
6.1.4). A

6.1.6 Proposition. Let ae A be such that the finite cyclic group A/A, (see
1.24(i)) iss generated by the block aA,. The G' = {[w, a]) for every we H,
w # 1. In particular, G' is a p-element group, An G' = 1 and G = AG'. More-
over, M = {a)H is a normal metacyclic subgroup of G and G ~ M x A/{a).

Proof. Put K = {[w, a]). Then K = G/, and so K is a cyclic p-group. If
K =1, then ae Ng(H) = A,H (3.24(v), ae A, and 4, = A, a contradiction with
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A<AG. Thus k # 1 and consequently, K is a p-element group. Clearly,
A, = Z(G) = Ng(K)and its follows from 6.1.5 that a € Ng (K). Thus 4 = Ng(K)
and, in fact Ng(K) = G, since w € Ng(K) by 6.1.4. We have proven that K < G.
If K < A, then w'lawe A and it follows easily that we Ng(4) and A = G,
a contradiction. Consequently, K & A, AN K =14 # AK and AK = G. From
this, G/K is abelian, and therefore G’ ¢ K. Thus K = G'. A

6.1.7 Lemma. RNnG' =1and RH=R x H=R x (G

Proof. By 6.16, AnG' =1 and G’ is a p-element group. Thus G’ ¢ R and
RH=RG =R xG. A

6.1.8 Lemma. Let K be a p-element subgroup of RH such that K £ R and
K # G.Then AnK =1, L¢(K) = 1 and G = AK.

Proof. We have RH = RK and AK = ARK = ARH = AH=G. A

6.1.9 Lemma. Let | > 0 be such that Z(G) = A and HZ{G)2G. Then
Z,(G) # Z,,,(G) < A.

Proof. We have G/Z,(G)=G = A-H, where A= A/Z,(G) and H =
= HZ/(G)/Z(G) (= H). Now, Asa6G and H £ G. Thus 1 # Z(G) = A (3.24 and
4.12). A

6.1.10 Lemma. There exists k > 1 such that Z,(G) < A, Ls(HZ,(G)) = Z,(G)
for every 0 < | <k and HZ,(G)= G.

Proof. We have Z,(G) = Z(G) < A and L (HZ\(G)) = Ls(H) = 1 = Z,(G).
Further, if L (HZ,(G)) # Z,(G) for some r > 1, then HZ,(G)= G, and hence
HZ,(G)= G for every s > r. The result is now clear from 6.1.9 and the fact that
G/Z(G) is finite. A

6.1.11 Lemma. Let k > 1 be as in 6.1.10. Then Z,(G) < A and HZ,(G) =
= G'Z,(G)= G for every t > k.

Proof. Assume that Z,(G) = 4 and HZ,(G) < G for some t > k (see 6.1.10).
Then G/Z,(G) = G = A- H, where A = A/Z,(G), A#2G and H = HZ,(G)/Z,(G)=
=< G, H ~ H.Clearly, H = G’, and so HZ,(G) = G'Z,(G). Further, since A 4G,
we have H ¢ Z(G), and so HNZ(G) =1 and Z(G) = 4 by 2.5(ii). Thus
Z,,,(G) < A. A

6.1.12 Corollary. Z,(G) < A for every | > 0.

6.1.13 Lemma. Let v be the smallest non-negative integer such that
7,(G)=2Z,,,(G). Then v>=1, 7,(G)= A, HZ/(G)=GZ,(G)=G and
[G:Z,(G)]Ip(p — 1)

Proof. Easy. A
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6.2 Proposition. Let G be a group such that G = AH, where A is an abelian
subgroup of G and H is a (finite cyclic) subgroup of prime order p > 2. Then
exactly one of the following five cases takes places:

(1) H<= A = G and G is abelian;

(2) AnH =1,A< G,and G = A x H is abelian;

(3) AnH =1, A=< G, [LG(H) =1,G < A, G # AG' and G is not abelian;

(4) AnH=1,A4G,G = H(=2 G),G = AG', p > 3 and G is not abelian;

(5) AnH =1, AsG, Ls(H) =1+ Z(G), H # G, G’ is a subgroup of
order p, G = AG', p > 3 and G is not abelian.

Proof. See 6.1. A

6.3 Corollary. Let G be a group such that G = AH, where A is an abelian
subgroup and H is a subgroup of a prime order p. If A AG, then p > 3, G' is
a subgroup of order p and G = AG'. If, moreover, Z(G) = 1, then H = G, A is
a finite cyclic group, card(A)|p — 1 and card(G) | p(p — 1).

6.4 Corollary. Let G be a group such that G = AH where A is a cyclic
subgroup of G and H is a subgroup of prime order. Then G is metacyclic.

6.5 Remark. Let G be a group such that G = AH, where A is abelian, 4 €4 G,
H is p-element for a prime p >2 and H== G. Then AnH =1, p > 3 and
H = G’ (see 6.2(4)). Further, the mapping ¢ : A — Aut (H), (¢(a))(x) = axa™', is
a homomorphism and Ker(¢) = Z(G) = Lg(4) = A,. The group Aut(H) is
a cyclic group of order p — 1, and hence A/A, is a non-trivial cyclic group whose
order divides p — 1. Clearly, R < A,, where R is a the p-socle of A. Now, there
exists a subgroup H, of G such that card(H,) = p, Ls(H,) = 1 and G = AH, if
and only if R # 1. In that case, RH;, = RG'.

(i) If G = AH, for a subgroup H, such that card(H,) = p and L¢(H,) = 1,
then R x H = RH, = RG' = R x G/, and hence R = 1.

(ii) If H, is a subgroup of G such that H, < RG’ and card(H,) = p, then
H = Gifand only if HL < Ror H, = G'.

(iii) If H, is a subgroup of RG' such that H, ¢ R, H, # G’ and card(H,) = p
(such a subgroup exists if and only only if R # 1), then Ls(H,) = 1, RH, = RG’
and G = AH,.

Quasigroups whose inner permutation groups
are finite of prime order

7.1 Theorem. Let Q be a quasigroup such that card(I(Q)) = p for a prime
p = 2. Then Q is either medial or stably nilpotent of class 2. Moreover, in the
latter case, the following are true:

i p =3
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(ii) Qs is a (non-trivial) cyclic group whose order divides p — 1.
(iii) If Z is the block of s, such that ee Z e being the unique idempotent
element of Q), then Z is an abelian group containing at least one element of order

p.
(iv) If Q is finite, then p divides card (Q).

Proof. Use 6.1, 6.2 and [1, Part 3]. A

7.2 Construction. Let G = AH be a group as in 6.1. For every v € H, there
exist a permutation @, of A and a mapping 6,: A — {0, 1, ..., p — 1} such that
va = g,(a)v"" for every a € A.

Now, choose u, v e H such that H = {u,v) and define an operation x on A ny
axb=yg,(a)o,(b) for all a, be A. Then Q(x) becomes a quasigroup,
M(Q(x) = G and 1(Q(*)) = H(= Z,(+)). Clearly, Q(*) is not medial (see 7.1).
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