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Congruences I. 
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Praha 

Received 24. August 2004 

Simple objects in the class of semimodules over a semigroup are studied. 

Simple objects in the classes of chains, semilattices and, more generally, 
commutative semigroups with a given automorphism group were studied in 
[1] - [7]. The aim of the present paper is to study commutative semigroups that are 
congruence-simple over an endomorphism semigroup. 

1. Semigroups - preliminaries 

Let S be a semigroup. We denote by (*//(S), Sr(S))S(S) the set of (left, right) 
ideals of S and we put (S?(S) = Jt(S) u {0}, J°r(S) = Jr(S) u {0})S°(S) = 
= y(S)u{0}. 

A semigroup S will be called 

• ideal-free if I = S for every I e J (S); 
• ideal-simple if I = S for every I eJ(S) such that |/| > 2; 
• left (right) uniform if Sa n Sb ?- 0 (aS n bS 7- 0) for all a, b e S; 
• uniform if S is both left and right uniform; 
• hereditarily left (right) uniform (or hl(hr)-uniform for short) if every subsemig-

roup of S is left (right) uniform; 
• hereditarily uniform (h-uniform) if S is both hi- and hr-uniform. 
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The following observations and examples are easy to check: 

Lemma 1.1. S is hl-uniform if and only if A n B ^ 0 whenever A, B are 
subsemigroups od S such that AB _= B and BA c= A. 

Lemma 1.2. Suppose that S is right cancellative. Then: 
(i) S is hl-uniform if and only if no subsemigroup ofS is a free semigroup of rank 

(at least) 2. 
(ii) S is hl-uniform, provided that S contains no infinite subset P such that an ^ bm 

for all a, b e P, a ^ b, and m, n > 1. 

Corollary 1.3. Suppose that S is cancellative. Then the following conditions are 
equivalent: 

(i) S is hl-uniform. 
(ii) S is hr-uniform. 

(iii) S is h-uniform. 
(iv) No subsemigroup of S is a free semigroup of rank 2. 
(v) No subsemigroup of S is a free semigroup of rank at least 2. 

(vi) No subsemigroup of S is a free semigroup of rank K0. 

Example 1.4. (i) All commutative semigroups are h-uniform. 
(ii) All periodic groups are h-uniform. 

(iii) All locally nilpotent groups (and their subsemigroups) are h-uniform. 
(iv) There exist metabelian groups which are not h-uniform. 

A semigroup S will be called 
• left (right) subcommutative if aS c Sa (Sa c; aS) for every ae S; 
• subcommutative if Sa = aS for every ae S. 

Lemma 1.5. (i) Every left (right) subcommutative semigroup is left (right) uniform. 
(ii) Every subcommutative semigroup is uniform. 

Proof, (i) We have abeaS nSb ^San Sb. 
(ii) The assertion follows immediately from (i). • 

Lemma 1.6. If S is a left subcommutative, then Jx (S) = J (S). 
Proof. Obvious. • 

Corollary 1.7. If S is subcommutative, then Ji(S) = J(S) = Jr(S). 

Let R be a subsemigroup of a semigroup S. Put ccs (R) = {a e S \ R n Ra ^ 0} 
and ps(R) = {aeS \RnaR ^ 0}. We say that R is a left (right) dense in S if 
ocs (R) = S (ps (R) = S). The following two assertions are clear: 

Lemma 1.8. If S is left uniform, then ccs(R) is a subsemigroup of S and 
(xs((Xs(R)) = ccs(R). 

Lemma 1.9. If S is cancellative and R is uniform, then R is left dense in S if 
and only if R is right dense is S. 
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Now, denote by J\R, S)(Jr(R, S)) the set of non-empty subsets A of S such 
that RA c A(AR cA) and put J°(R, S) = J\R, S) u {0} (J°r(R, S) = Jr(R, 
S) u {0}). 

Lemma 1.10. (i) {R, S} c ^ ( R , S) n Jr(R, S). 
(ii) 27ie sets J°(R, S) and J>°(R, S) are closed under arbitrary intersections 

and unions. 
(iii) If Ae J°(R, S) and Z is any subset of S, then AZ e J°(R, S). 

Proof. Obvious. • 

Put Jt(R, S) = {AeJt(R, S)\Aa <= R for at least one a e S}, J°(R, S) = 
= J{(R, S) u {0}, Jr(R, S) = {AeJr(R, S) \ a A c R for at least one a e S} and 
f°(R,S) = Jr(R, S)u{0}. 

Lemma 1.11. (i) J°(R, S) c J(R, S). 
(ii) (A : a\ = {beS\bae A}eJ°(R, S)for allaeS and A e J°(R, S). 

(iii) *$° (R, S) is closed under arbitrary intersections. 

Proof. Easy. • 

Put At(R, S)={J St(R, S) and Ar(R, S) = [JSr(R, S). 

Lemma 1.12. (i) A((R, S) = {a e S\R n aS # 0} = {ae S\Ra u {a}e 
eJt(R9S)}. 

(ii) If ls e R, then At(R, S)= {aeS\Rae J^R, S)} 
(iii) R c At(R, S) and At(R, S) e Jt(R, S). 
(iv) IfS # i4,(.R, S), t/ien S\ >!/(/?, S) w a ngAt î fea/ of S. 
(v) S \ i l ( R ) S ) e ^ ( R , S ) . 

Proof Easy. • 

2. Semimodules - introduction 

Let S be a semigroup. By a (left) S-semimodule M we mean a commutative 
semigroup M( + ) equipped with a scalar multiplication S x M -• M such that 
a(x + y) = ax + ay and a(bx) = (ab)x for all a, b e S and x, y e M. If l s e S 
and lsx = x for every xeM, then the semimodule M is said to be unitary. 

A semimodule M is called 
• an ip-semimodule (or idempotent) if x + x = x for every xeM; 
• a up-semimodule (or unipotent) if x + x = y + y for all x, y e M; 
• a zp-semimodule (or zeropotent) if x + x = x + x + y for all x, y e M; 
• a zs-semimodule if M is zeropotent and M -I- M = M; 
• a za-semimodule if x + y = x + z for x, y, z e M; 
• a qza-semimodule if x + y = x + z for all x, y, z e M, y ^ x ?- z; 
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• a cn-semimodule (or cancellative) if x + y ^ x + z for all x, y, z e M, y 7-= z; 
• a module if M( + ) is an (abelian) group; 
• faithful if for all a, b e S, a ^ b, there exists xe M with ax 7-= fox. 

An element w of a semimodule M is said to be neutral (absorbing, resp.) if 
w + x = x (w + x = w) for every xe M. If such an such an element exists in 
M, it will be denoted by 0 (o, rep.) 

For a semimodule M, Ann(M) = {ae S\ \aM\ = 1 } . 

Lemma 2.1. If Ann (M) 9-= 0, ten it is an ideal of the semigroup S. That is, 
Ann(M)eJ?°(S). 

Proof. Easy. • 

Proposition 2.2. Suppose that S is a non-trivial ideal-simple semigroup. Let 
M be a semimodule and A = Ann(M). Then just one of the following three cases 
takes place: 

1. A = 0; 
2. A = {q},where q is an absorbing erlement of S; 
3. A = S. 

Proof. Use 2.1. • 

Lemma 2.3. Suppose that S is right subcommutative and let M be a semimodule 
with A = Ann (M) 7-= 0. Then there exists an element we M such that w = w + w 
and AM = {w} = Sw (in particular, {w}is a subsemimodule of M). 

Proof. Easy. • 

Lemma 2.4. Let N be a semimodule. 
(i) If M is a up-semimodule and w = 2x, x e M, then Sw = {w} and {w} is 

a subsemimodule of M. 
(ii) If M is a za-semimodule, then o = x + y, x, y e M, S - o = {o}and {o}is 

a subsemimodule of M. 
(iii) If M is a module, then S • 0 = {0} and {0} is a submodule of M. 

Proof. Easy. • 

Lemma 2.5. Let M be a qza-semimodule. Then just one of the following two 
cases takes place: 

1. M( + ) is a two element group; 
2. o e M and x + y = o for all x, y e M, x 7-= y. 

Proof Easy. • 

Lemma 2.6. Let M be a zs-semimodule. Then o e M and So = {o}. If M is 
non-trivial, then M is infinite. 
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Proof. Easy. • 

Lemma 2.7. Let M be a semimodule. Define a relation QM on S by (a, b) e QM 

is and only if ax = bx for every xeM. Then QM is a congruence of S and 
M becomes a faithful S/QM-semimodule. 

Proof Easy. D 

3. Two-element semimodules 

3.1. Denote by &[ the set of (left S -) semimodules whose (underlying) additive 
semigroup is the following two-element za-semigroup TJ: 

т, 0 1 

0 0 0 

1 0 0 

I f M e « f „ then IM = {aeS\a\ = o}e J°(S). Conversely, if I e J°(S\ then 
Mj e 3\9 where a scalar multiplication is defined on Tx by ao = o = b\ and 
c\ = UaeS,beI,ceS\I. 

The semimodules from &[ are pair-wise non-isomorphic and there is a biunique 
correspondence between the sets 2TX and J°(S) given by M -• IM and I -> M ;. 
Notice that \^\ > 2 and \^\ = 2 if and only if S is ideal-free. If l s e S, then M7 is 
unitary if and only if I ^ S. 

3.2. Denote by ^ the set of semimodules whose additive semigroup is the 
following two-element semilattice T2: 

ъ 0 0 

0 0 0 

0 0 0 

Let s/ (S) be te set of ordered triples (A, JS, C), where A, B, C are pair-wise 
disjoint subsets of S such that A u B u C = S, A e J°r(S\ B e J°r(S), CA c A, 
CB ^ B and either C = 0 or C is subsemigroup of S. 

\i Me2T2, then (AM, BM, CM) e stf (S), where 4 M = {ae S \ aM = o}9 BM = 
= {be S | bM = 0} and CM = {ce S | co = o, cO = 0}. Conversely, if (4, B, 
C)e si (S), then M^A C) e 2T2, where aM = o, co = o, feM = 0, cO = 0, a e v4, 
/3eB,ceC. 
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The semimodules from ^ are pair-wise non-isomorphic and there is a biunique 
correspondence between the sets 2T2 and si (5) given by M -> (AM, BM, CM) and 
(A, S, C) -* M(AtB%q. Notice that | ^ | > 3 and, if l s 6 S, then M ( y 4 A c ) is unitary if 
ad only if C ^ 0 (equivalently, l s e C ) . 

3.3. Denote by ST3 the set of (semi)modules whose additive (semi)group is the 
following two-element group T3: 

ъ 0 1 

0 0 1 

1 1 0 

If Me2T3, then I{M) = {aeS\aM = {0}}eJ°(S). Conversely, if IeJ°(S), 
then M(7) e 3~3, where ax = 0 and bx = x, a e 7, be S\I, xe T3. The modules 
from ^~3 are pair-wise non-isomorphic and there is a biunique correspondence 
between the sets 3~3 and J>°(S) given by M -> 7(M) and I -> M(/). Notice that 
|^1 > 2 and | ^ | = 2 if and only if S is ideal-free. If l s e S, then M^ is unitary if 
and only if I 7-= S. 

Remark 3.4. Tb T2 and T3 are (up to isomorphism) the only commutative 
two-elements semigroups. 

Proposition 3.5. The pair-wise non-isomorphic two-element semimodules Mh 

M(7), I e J° (S), M(AiBtq, (A, B, C) e si (5), are up to isomorphism the only 
two-element semimodules. 

Proof. Combine 3.1, 3.2, 3.3, and 3.4. D 

Corollary 3.6. There exist at least seven non-isomorphic two-element semimo­
dules. If lse S, then four of them are not unitary. 

4. Ideal-simple semimodules 

A subset V of a semimodule M is said to be an ideal of M if V is 
a subsemimodule such that V + M c V (i.e., V is both a subsemimodule of 
M and an ideal of M( + )). 

A semimodule M is called ideal-free (ideal-simple) if M is non-trivial and 
V = M whenever V is an ideal of M (with |V| > 2). 

Proposition 4.1. Let M be a non-trivial semimodule (with or without absorbing 
element). Then M is ideal-simple if and only if at least one (and then just one) of 
the following conditions takes place: 
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1. Sx + M = M for every XE M; 
2. OE M, SM = 0 and M \ {0} is a subgroup of M( + ); 
3. OE M, So = 0 and Sx + M = M f0r every x E M, X ^ 0; 
4. 0 e M, SM = 0 = M + M and |M| = 2; 
5. O G M , So = o = M - r M and M \ {0} = Sx f0r every x e M, x 9- 0. 

Pr00f For every x e M, the set J^ = Sx + M is an ideal of M. The rest of the 
proof is divided into three parts. 

(i) Assume that M is ideal-simple. Then, for every x e M , either \VX\ = 1 or 
Vx = M. If M has no one-element ideal, then (1) is true. On the other hand, if 
Vw = {v}is a one-element set for some w e M, then v = 0 is an absorbing elemen 
of M( + ) and S0 = 0. In such a case, put W = {XE M \ Vx = o}. Clearly, OEW 
and VVis an ideal of M. Thus either W = o or W = M. 

Assume, firstly, that W = o. Then Vy = Sy + M = M for every y e M j ^ - O , 
and (3) takes place. 

Next, assume that W = M, i.e., Sx + M = 0 for every XE M, SM + M = 0. 
Put Z = {xe M I Sx = 0}. Then OE Z and Z is an ideal of M. 

If Z = M, then SM = 0 and M is ideal-simple if and only if the additive 
semigroup M ( + ) is so. Thus if and only if (2) or (4) is true. 

If Z = 0, then Sx 7-= 0 for every x e M, x ^ 0. But Sx u {0} is an ideal of 
M and it follows that Sx u {0} = M. That is, (5) is true. 

(ii) Assume that at least one of the conditions (1) - (5) is true. Let U be an ideal 
of M with \U\>2. Take w E U, W 7- 0. Then Vw _= 17, and so U = M, provided 
that (1) is satisfied. If (2) is true, then w + M = M and, again, U = M. Similarly, 
if (3) is true. If (4) is satisfied, then M is ideal-simple, since it contains only 
2 elements. Finally, if (5) is satisfied, then M [ = S w u { o } c U. 

(iii) The fact that any of the conditions (1), ..., (5) excludes the remaining ones 
is easily seen. • 

Proposition 4.2. Suppose that S is right subcommutative. If M is an ideal-simple 
semimodule with A = Ann (M) 7-= 0, then at least one of the following two cases 
takes place: 

1. 0 e M and AM = 0 = S • 0; 
2. OE M and AM = 0 = S • 0. 

Proof By 2,3, there is w e M such that AM = w = Sw. Now, the set w + M 
is an ideal of M, and hence either \w + M\ = 1 or w + M = M. In the first case, 
w + M = w (2.3), and w = 0. Then (2) is true. In the latter case, since {w} is 
a subsemimodule, we have w = 0 and (1) is true. • 

Lemma 4.3. Suppose that S is left subcommutative. If M is ann ideal-simple 
semimodule with 0 e M So = 0 and ifaES and XE N are such that ax = 0 7-- x, 
then a e Ann(M) and aM = 0. 
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Proof. The set V= {ye M \ ay = o] is an ideal of M and o, xeV. Thus 
V= M. • 

Remark 4.4. Every two-element semimodule is ideal-simple. 

5. Congruence-simple semimodules - introduction 

A semimodule possessing just two congruence relations is called (congruence-) 
simple. 

Theorem 5.1. Let M be a simple semimodule. Then just one of the following 
four cases takes place: 

1. M is a za-semimodule; 
2. M is a zs-semimodule; 
3. M is an ip-semimodule; 
4. M is a en-semimodule. 

Proof It is essentially the same as that of [1, 2.1]. Whatwever, for benefit of 
a reader, an outline is given here. 

Firstly, if M is neither unipotent nor idempotent, then x —> 2x is an injective 
endomorphism of M and r = M x M, where r is defined on M by (x, y) e r iff 
2lx = y + u and 2ly = x + v for some i > 0 and u,veM\j {0}.Now, it is easy 
to check that M is cancellative. 

Similarly, if M is unipotent but not zeropotent, then x -> 3x in injective and 
M is cancellative, too. 

Finally, if M is zeropotent and N = M + M §=M, then N is a proper ideal of 
M, (IV x IV) u idM is a congruence of M, IV = {o}and M is a za-semimodule. • 

Proposition 5.2. (i) Every two-element semimodule (see 3.5) is simple, 
(ii) Every simple semimodule is ideal-simple. 

Proof Easy. • 

Proposition 5.3. Assume that l s e S , Then every simple non-unitary semimodule 
containing at least three elements is a (finite) p-element module, where SM = 0 
and p is a prime number, p > 3. 

Proof. Let M be a non-unitary simple semimodule with \M\ > 3. Define a relation 
r on M by (u, v)er iff au = av for every a e S. Then r is a congruence of M and 
we have (x, lsx) e r for every x e M. Since M is not unitary, r ^ idM and 
consequently r = M x M. Now, every congruence of M ( + ) is a congruence of 
M and it follows that M ( + ) is congruence-simple. Since \M\ > 3, M ( + ) is 
a p-elment group for a prime p > 3. Thus M is a module and, of course, S • 0 = 0. 
Since r = M x M we conclude SM = 0. • 
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Proposition 5.4. Let M be a simple semimodule with OeM. Then just one of 
the following two cases takes place: 

1. M is a module; 
2. M is an ip-semimodule. 

Moreover, if S is left subcommutative and (2) is true, then \M\ = 2 (see 3.2). 

Proof, (i) According to 5.1, M is either idempotent or cancellative. Assume the 
latter to be true. If a e 5, then 0 + aO = a (0 + 0) = a0 + a0, and so a0 = 0; 
thus S • 0 = 0. Further, IV = {x | 0 G M + x} is a submodule of M and r is 
a congruence of M, where (u, v)er iff u + IV = v + IV. Of course, if 
r = M x M, then IV = M and M is a module. On the other hand, if r = idM, 
then IV = 0 (since IV is a submodule) and s is a congruence of M, where (x, y) e s 
iff {ae S | ax = 0} = {ae S \ ay = 0}. Moreover, (x, 2x) e s for every xe M. 
Consequently, s 7-= idM, s = M x M, {ae S \ ax = 0} = {ae S \ aO = 0} = 0 
and SM = 0. Now, it is clear that M is a p-element module, p > 2 being a prime 
number. 

(ii) Assume that 5 is left subcommutative and M idempotent. Let ae S and 
x G M be such that ax = 0 7-- x. Then 0 = ax = a (x + 0) = ax + aO = aO and 
(x, 0) G t, where t is the congruence of M defined by (u, v)et iff au = av (use the 
left subcommutativity of S). Consequently, t = M x M and aM = 0. Using this 
observation, we conclude that (P x P) u idM is a congruence of M, where 
P = M \ {0}and, since M is simple, we get \M\ = 2 as desired. • 

Lemma 5.5. Let M be a simple semimodule such that o e M (Oe M, resp.) and 
S • o 7-= o (S • 0 7*- 0). Then M is idempotent. 

Proof. Combine 5.1 and 5.4. • 

Lemma 5.6. Suppose that A is left subcommutative. If Mis a simple semimodule 
and ae S\ Ann(M), then the mapping x -» ax, xe M, is injective. 

Proof. The relation r defined by (x, y)er iff ax = ay is a congruence of M. 

• 
Proposition 5.7. Let M be a simple semimodule such that A = Ann (M) 7-- 0. 
(i) If A = S, then either \M\ = 2 or M is a (finite) p-element module with 

SM = 0, p > 2 being a prime number. 
(ii) If S is left subcommutative and A ^ S, then R = S\A is a subsemigroup 

of S and M is simple as an R-semimodule. Moreover, AnnR (M) = 0 and the 
mapping x -• ax, xe M, is an injective endomorphism of M ( + ) for every ae R. 

(Hi) If S is subcommutative and \M\ > 3, then either M is a module and 
AM = 0 = S0oroeM and Am = o = S • o. 

Proof, (i) The transformations x -> ax, x e M, are constant, and hence M (+) 
is congruence-simple. 
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(ii) Use 5.6. 
(iii) Use 4.2 and 5.4. • 

Lemma 5.8. Let M be a simple semimodule such that \M\ > 3 and M is not 
a p-element module with SM = 0 for any prime p > 3. Then, for all w, ve M, 
u T-= v, there is as S with au 7-= civ. 

Proof Define a relation r on M by (x, y) e r iff ax = ay for every ae S. Then 
r is a congruence of M and the rest is clear. • 

Lemma 5.9. Let M be a simple semimodule such that M is not idempotent. 
Then the semigroup M( + ) is archimedean (i.e., for all x, y e M there are positive 
integers m, n such that myeM + x and nxe M + y). 

Proof. Define a relation r on M by (x, y) e r iff my e M + x and nxe M + y 
for some positive integers m, n. Then r is a congruence of M and (x, 2x) e r for 
every x e M. Since M is not idempotent, r = M x M. • 

Remark 5.10. Put S{ = S u {e}, where S is a subsemigroup of Sx and w = lS]. 
If M is an S-semimodule, then M becomes a unitary Srsemimodule. Clearly, SM is 
simple if and only if SlM is simple. 

Simple semimodules with absorbing element - introduction 

Let M be a semimodule with oe M. Define a relation ox(= oMl) on M by 
(x, y) e ox iff {(a, u}e S x M | ax + u = 0} = {(a, u) e S x M | ay + u = o}. 
Further, define o2( oMa) by (x, y) e o2 iff {ae S \ ax = 0} = {ae S \ ay = 0} and 
^3(^,3) by (x, y) e o3 iff {we M | x + u = 0} = {ue M\y + u = o}. 

Proposition 6.1. The relations oh ox n cr2, ox n <r3 and ox n o2n o3 are 
congruences of M. 

Proof. Easy to check. • 

Proposition 6.2. Assume that M is ideal-simple, S • o = o and M + M 7-= o ^ 
7̂  SM) (see -.-.II Fhe/i M/ox is a simple semimodule, ox _= o2 n cr3 am/ 
{XG M I (x, o) G Ox} = {o}. 

Proof In view of 4.1, M is of the type 4.1(3), and hence (x, o) $ ox for every 
x G M, x 7-= 0. Consequently, JV = Mjox is a non-trivial semimodule, and so it is 
ideal-simple, too. 

Let r be a congruence of M such that ox <= r and r^ 7-= r. Then there are x, y, 
ue M and ae S such that (x, y )e r and o = ax + u ^ ay + u = z. Clearly, (z, 
o)er and we have | V\ > 2, V = {v \ (v, o)er}. Now, K is an ideal of M, V = M 
and r = M x M. We have thus proved that ox is a maximal congruence of M, 
i.e., IV is a simple semimodule. 
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Finally, if (x, y) e cr, and ax = 0, then (0, ay) e ox and ay = o (see the first part 
of the proof). Similarly, if x + u = 0, then (0, y + u)eax and y + u = 0. Thus 
ox <= (72 n <r3. • 

Proposition 6.3. Suppose that \M\ > 3 and S • 0 = 0 # M + M. Ten M w 
simple if and only if the following two conditions are satisfied: 

(a) For all x, y e M, x 7-= 0 7-= y, t/iere exist a e S and zeM such that 
ax + z = y; 

(b) For all x, y e M, o ^ x ^ y ¥" o, there exist ae S and z e M swc/i t/iaf 
ax + z 7* 0y + Z and either ax + z = o or ay + z = o. 

Proof. If M is simple, then M is ideal-simple and (a) follows from 4.1. Further, 
cx = idM and (b) is clear. 

Conversely, if both (a) and (b) are true and r is a non-identical congruence of 
M, then V = {x | (x, 0) e r} contains at least two elements by (b). Now, V is an 
ideal of M and V = M by (a). Thus r = M x M and M is simple. • 

Lemma 6.4. Suppose that M is simple and \M\ > 3. Then for every xe M, 
x T»- o, there is ae S with 0 7-= ax ^ ao. 

Proof. By 5.8, ax ^ ao for some ae S. If ax = 0, then a0 = a(x + 0) = 
= ax + a0 = 0 + ao = ax, a contradiction. Thus ax # 0. • 

7. Simple za-semimodules 

Proposition 7.1. If M is a za-semimodule, then o e M and S • 0 = 
= 0 = M + M. 

Pr00f Easy. • 

Proposition 7.2. Let M be a za-semimodule such that \M\ > 3. 77ie,n M w 
simple if and only if the following two conditions are satisfied: 

(a) F0r all x, y e M, x 7-= 0 7-= y, t/iere is ae S with ax = y; 
(b) F0r a// x, y e M, 0 7-- x 7-= y # 0, t/*£r£ is ae S with ax 7-= fly and 0 e (ax, 

ay}. 

Proof. Similar to that of 6.3. • 

Lemma 7.3. Let M be a simple za-semimodule. Then either \M\ = 2 or 
Sx = M for every x e M, x ^ 0. 

Pr00f Assume that \M\ > 3. Now, with regard to 7.2(a), it remains to show that 
0 e Sx, x e M, x 7-= 0. Let, on the contrary, \V\ > 2, where V = {x \ o $ Sx} u {0}. 
Clearly, V is an ideal of M, and hence V = M. It follows that SN 1= IV and 
r = (N x N)KJ idM is a congruence of M, where N = M\ {0}.Then r = idM and 
\M\ = 2, a contradiction. • 
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Corollary 7.4. If M is a simple za-semimodule, then \M\ < max(2, |S|). 

Proposition 7.5. If S is left subcommutative, then \M\ = 2 for eery simple 
za-semimodule M. 

Proof. Let x, y e M and a e S be such that x ^ o 7-= y and ax = o ^ ay 
(7.2(b)). By 7.2(a), y = bx, b e S, and we have 0 7-= ay = abx = cax = co = o, 
a contradiction. • 

Example 7.6. Let M( + ) be a non-trivial za-semigroup (i.e., M + M = o). If 
S = £nd(M( + )), then M becomes a simple S-za-semimodule. Notice that if 
\M\ = n > 2 is finite, then |S| = nn~\ 

8. Simple zs-semimodules 

Proposition 8.1. Let M be a non-trivial zs-semimodule. Then M is simple if and 
only if the following two conditions are satisfied: 

(a) If x, ye M, x / o 7- y, 1herc ax + z = y for some aeS and z e M; 
(b) If x, y e M, o 7-= x # y 7-= 0, tAe« ax + z 7-= «y + z arid 0 G {ax + z, 

ay + z}f<?r some aeS and zeM. 
Proof. Combine 2.6 and 6.3. • 

Theorem 8.2. There exist no simple zs-semimodules in each of the following two 
cases: 

1. The semigroup S is hr-uniform; 
2. S is finite. 

Proof. Let M be a simple zs-semimodule and let x, y, z e M be such that 
x = y + z 7-- o. Put A = {aeS \y eM + ax} and B = { b e S | z e M + bx}.By 
8.1(a), we have A 7-= 0 ¥" B and it is easy to check that A A u AB ^ A and 
BB u BA ^ B. Now, by the dual of 1.1, we have AnB^Q.ttceAnB, then 
y = ex + u and z = ex + v, u, ve M, and we get o 7-= x = y + z = 
= cx + cx + u + v = o + u + v = o, a contradiction. Thus A n B = 0 and 
S is not hr-uniform. 

Further, take w e M, w 7-= 0, and define a relation q on the set Sw by (aw, few) e g 
iff either aw = bw or aw e M + bw. Clearly, q is both reflexive and transitive and 
if aw = bw + x and bw = aw + y, then aw = aw + x + y = aw + x + y + 
+ x + y = 0, and similarly, bw = 0. It follows that q is an order on Sw. Now, 
by 8.1(a), x = bw + u, y = cw + v and (aw, bw) e q, (aw, cw) e q. If aw = bw 
and aw = cw, then aw = aw + u + aw + v = 0, a contradiction. Thus either 
aw 7-= bw or aw 7-= cw and it follows that aw is not maximal in (Sw, q). We have 
shown that the ordered set Sw has no maximal elements. In particular, Sw is not 
finite and S is not finite either. • 
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Example 8.3. Let R be a subsemigroup of a left cancellative semigroup S such 
that aS n bR is nonempty for all aeS and b e R (e.g., S a group), Define an 
addition on J = Jr(R, S) by A + B = A u B if A n B = 0 and A + B = S if 
A n B ^ 0. Then . / ( + ) is a commutatve zp-semigroup, where o = S, and g is 
a congruence of J( + \ where (A, JB) G Q iff {Ce, / | A n C = 0} = 
= {Ce J \B n C = 0}. Now, we denote by 2£( + ) the factorsemigroup ./( + )/e 
and by 7c the natural projection of J onto 2£. 

Lemma 8.3.1. (i) (aS, S)e Q for every aeS. 
(ii) If (A, B) e Q, then (a A, aB) e Q for every aeS. 

(Hi) If A, Be J and aeS, then (a(A + B), a A + aB) e Q. 

Proof, (i) We have aS n bR ?- 0 for every b e R. 
(ii) If C e J in such that aAnC±§, then A n D ^ 0, D = {de S \ ad e 

e C] e J, and so B n D ^ 0 and aB n C ^ 0. 
(hi) Use (i). • 

Now, due to the preceding lemma, we can define a scalar multiplication on 2t by 
an (A) = n (a A) for all aeS and Ae J. In this way, 2£ becomes an 
S-zp-semimodule. 

Lemma 8.3.2. Let r\ be a congruence of the semimodule Z such that (n (R), 
n(S))erj. Then r\ = 2£ x 2t. 

Proof. Put a = n~l(rj). Then a is a congruence of J( + ) and, since (R, S) e a, 
we have (aR, S)e a for every ae S. Consequently, if ae Ae J, (aR, A) e a, then 
(A, S) e a. On the other hand, if (aR, A) $ a, Be J is maximal with respect 
to B ^ A and B n aR = 0, then (A, Bu aR)e a, (B u aR, S) = (B + aR, 
B + S)ea and, finally, (A, S)ea. • 

Lemma 8.3.3. If (R, S) e Q, then \2t\ = 1, R is right uniform and R is right 
dense is S. 

Proof. Easy. • 

In the remaining part of this example, assume that R is not right uniform. Then 
n (R) 7-= n (S) and there exists a congruence T of 2t maximal with respect to (n (R), 
n(S))$T. Put^V = Six. 

Proposition 8.3.4. if is a simple zs-semimodule. 

Proof. By 8.3.2 and the maximality of T, if is a simple semimodule. By 5.1, 
iV is either a za-semimodule or a zs-semimodule. Further, since R is not right 
uniform, there are right ideals A and B of R such that B is maximal with respect 
to A n B = 0. Then A + B = A u B, (A n B, R) e Q, n(A) + n(B) = n(R), and 
so (n (A) + n (B), n (S)) 4 T. Thus if is not a za-semimodule and if is a simple 
zs-semimodule. • 
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Remark 8.4. Combining 1.3, 8.2 and 8.3, we et an equivalence of the following 
three conditions for a group S: 

(i) No subsemigroup of S is free of rank (at least) 2; 
(ii) S is h-uniform; 

(iii) There exist no simple S-zs-semimodules. 

9. Simple qza-semimodules 

Proposition 9.1. Let M be a simple qza-semimodule. Then just one of the 
following three cases takes place: 

1. M is a za-semimodule; 
2. M is an ip-semimodule; 
3. M is a two-element module. 

Proof Combine 5.1 and 2.5. • 

An idempotent qza-semimodule will be called a qzaa-semimodule if S • o = o. 
In the remaining part of this section, let M be an idempotent qza-semimodule 

with \M\ > 3. Put A = {ae S \ ao = o}, Ax = {ae S \ aM = o] c Ax and B = 
= S\A. 

Lemma 9.2. (i) Either A = 0 or A is a subsemigroup of S. 
(ii) Either Ax = 0 or Ax is a right ideal of S. 

(iii) Either B = 0 or B is a right ideal of S. 
(iv) Axn B = 0 and Axu B = Ann(M). 
(v) AAX c A and BAX c B. 

Proof. Easy. • 

Corollary 9.3. Assume that S is right uniform. Then either M is 
a qzaa-semimodule or Ann(M) = B ^ 0. 

Proposition 9.4. Assume that S is right subcommutative (then it is right 
uniform). If M is ideal-simple, then M is a qzaa-semimodule (i.e., A = S). 

Proof. Assume, on the contrary, that B # 0. By 9.3, B = Ann(M) and it 
follows from 4.2 that 0 e M.Then x = x + 0 = o for every x e M, x ^ 0, and 
\M\ = 2, a contradiction. • 

Proposition 9.5. The following conditions are equivalennt: 
(i) M is a simple semimodule; 

(ii) A 7̂  0 and M is a simple A-qzaa-semimodule. 

Proof (i) implies (ii). If A = 0, then \M\ = 2, a contradiction. Thus A ^ 0 and 
the rest is clear, since the map x -> ax, x e M, is constant for every a e B. • 
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Proposition 9.6. M is simple if and only if M \{o} c Ax for every x e M, 
x ^ o. 

Proof Im view of 9.5, we can assume that A = S. 
Firstly, let M be simple and IV = {xe M | Sx = o}. If IV 7*- 0, then IV is an 

ideal of M and we have IV = {o}.Thus IV c {0} anyway and, if x e M, x ^ 0, 
the set V = Sx u {o}is again an ideal of M, \V\ > 2 and V = M. 

Conversely, let r ^ idM be a congruence of M and U = {xe M \ (x, 0) e M}. 
Then U is an ideal and, if (u, v)er, u ^ v ^ 0, ten (w, 0) = (u + u, M + 1?) e r. 
Then 11/| > 2 and U = M, M being ideal-simple. • 

Corollary 9.7. IfM is simple, then \M\ < \S\ + 1. 

Remark 9.8. Suppose that M is a simple semimodule. Using 9.6, one can show 
that at least one of the following two conditions is true: 

(a) Sx = M for every x e M, x ^ 0; 
(b) 0 7̂  Sx = M \ {0} for every x e M, x 7* 0. 

Lemma 9.9. Assume that S is right subcommutative. If B 7-= 0, t/*£w Ax = 0, 
B = ylnn (M) w aw Wea/ 0f S anrf rA r̂̂  w w e M such that w ^ o and 
BM = w = Sw. 

Pr00f Easy. • 

Proposition 9.10. Suppose that S is right subcommutative and M is simple. 
Then: 

(i) M is qzaa-semimodule (A = S). 
(ii) S\A{ = C T* 0 and C is a subsemigroup of S. 

(iii) aM = M for every aeC. 
(iv) C operates transitively on M\ {0}. 

Pr00f Firstly, B = 0 by 9.8(a) and 9.9. Further, C # 0, since |M| > 3. If 
a e C, then aM is an ideal of M, |aM| > 2 and aM = M. • 

Proposition 9.11. Suppose that S is subcommutative and M is simple. Then the 
mapping x -• ax w a permutation of M for every aeC. 

Proof See 9.10 and 5.6. • 

Remark 9.12. Suppose that S is right subcommutative (see 9.10). Then M is 
a simple S-semimodule if and only if M is a simple C-semimodule. 

Now, let M be simple and define a relation /i on S by (a, b) e \i iff ax = bx for 
every xe M. Then ju is a congruence of S and the subset Ax is contained in a block 
of /i. Moreover, if S is subcommtative, then C//i is isomorphic to a subsemigroup 
of the automorphism group of M( + ). Finally, if S is commutative, then C/\i is an 
abelian group. 
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