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2004 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 45, NO. 1 

Quasigroups Which Are Unions of Three Proper Subquasigroups 

T. KEPKA and D. ROSENDORF 

Praha 

Received 27. September 2003 

Quasigroups that are unions of three proper subquasigroups are characterized.1 

1. Quasigroups 

A groupoid is a non-empty set equipped with a binary operation (usually denoted 
multiplicatively). A groupoid Q is said to be a quasigroup if for all a,b eQ there 
exist uniquely determined elements u,veQ such that au = b = va. 

Proposition 1.1 Let Au..., An,n > 2, be proper subquasigroups of a quasi­
group Q. If Q = Ax u ... yj A„ then Q is not one-generated. 

Proof. Let, on the contrary, Q be generated by a single element, say a. Then 
a e Ai for at least one i, 1 < i < n, and hence Ax = Q, a contradiction. • 

Proposition 1.2 Let Q be a non-trivial finitely generated quasigroup. Then: 
(i) Every proper subquasigroup of Q is contained in (at least one) (proper) 

maximal subquasigroup of Q. 
(ii) Q has no maximal subquasigroups if and only if Q has no proper subquasi­

groups at all. 

Proof. The set of proper subquasigroups is upwards inductive and the rest is 
clear. • 
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Remark 1.3 Clearly, if Q is a quasigroup possessing no proper subquasigroups, 
then Q is generated by any of its elements and, in particular, Q is countable. On 
the other hand by [1, Corollary 7], if P is a countable quasigroup containing at 
least three elements, then P is isotopic to a quasigroup Q such that Q has no 
proper subquasigroups. 

Proposition 1.4 (cf 1.2) Let Q be any non-trivial finitely generated quasigroup 
such that Q has only finitely many maximal subquasigroups, say Ax,..., An, n > 0. 
The following conditions are equivalent: 

(i) Q is not one-generated. 
(ii) n > 3 and Q = Ax u ... u An. 

(Hi) n > 1 and Q = AXKJ ... u An. 

Proof, (i) implies (ii). Since Q is not one-generated, every element generates 
a proper subquasigroup, and hence every element is contained in a maximal 
subquasigroup (1.2(i)). Consequently, n =t= 0 and Q = A{ u ... u An. Then, 
clearly, n > 2 and the inequality n > 3 is also easily seen (2.1). 

(ii) implies (Hi). Trivial. 
(iii) implies (i). Every element of Q is contained in at least one of the proper 

subquasigroups Au ..., An. • 

Proposition 1.5 (cf. 1.2 and 1.4) Assume that there exist finitely many proper 

subquasigroups Au...9 An,n > 0, of a quasigroup Q such that every proper 

subquasigroup of Q is contained in at least one of Ax,..., An. Then Q is a finitely 

generated quasigroup and Q has only finitely many maximal subquasigroups. 

Proof. If n = 0, then Q has no proper subquasigroups and the assertion is clear. 
If n > 1, at e Q\ At and 5 = {a,; 1 < i < n), then Q is generated by S. • 

Example 1.6 Consider the following three-element quasigroup II: 

п CL ß У 

a 

ß 
7 

a. y ß 
y ß 0. 
ß a ľ 

Then {a},{/?} and {y} are maximal subquasigroups of II and II = {a}u {j?}u 
u{y}. 

Example 1.7 We may also consider the four-element 2-elementary abelian 
group G( + ) = Z2( + )(2) (Z2( + ) = {0,1} is the two-element additive group of 
integers modulo 2). Then G = A u B u C and 0 = A n B n C, where 
A = {(0,0), (0, \)},B = {(0,0), (1,0)} and C = {(0,0),(1, 1)} are proper subgroups 
of G( + ) (notice that 0, A, B, C and G are the only subgroups of G( +)). 
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2. The case of two subquasigroups 

Proposition 2.1 Let A and B be subquasigroups of a quasigroup Q such that 
Q = AKJ B. Then either A = Q or B = Q. 

Proof. Assume that A <£ B. \f aeA\B and beB, then ab$B, and heince 
abe A and be A. Thus B ^ A and consequently, A = Q. • 

3. The case of three subquasigroups (a) 

Throughout this section, let A, B and C be proper subquasigroups of a quasi­
group Q such that Q = A u B u C. 

Lemma 3.1 (i) A -# B * C * A 
(77) Q + AuB, e + iuCanrfQ + BuC. 

(7*7) A £ B u C , B £ A . u C a . n d C £ , 4 u B . 
(iv) Q\(A u B) <= C, Q\(A u C) <= B and Q\(B u c) c A 

Proof. Easy (use 2.1). • 

Lemma 3.2 AnB = AnC = BnC = AnBnC. 

Proof. If a e (A n B)\ C and c eC, then ac £ C, and so either ac 6 A and c e A 
or a c e B and c e B . Thus C ^ AKJ B, a contradiction with 3.1(iii). We have 
shown that A n B ^ C and the remaining inclusions are similar. • 

Lemma 3.3 (i) (A\B) (B\ A) u (B\ A) (A\B)^ C\(A u B). 
(ii) (A\ C) (C\ A) u (C\ A) (A\ C) c B\(A u C). 

(Hi) (C\ B) (B\ C) u (B\ C) (C\ B) c= A\ (C u B). 

Proof. If a e A\ B and be B\A, then ab$A\jB, and hence ab e Q\ (A u B) = 
C\( .4u B). The rest is similar. • 

Proposition 3.4 Assume that A n B n C = 0. Then: 
(i) !j = ( > l x . 4 ) u ( B x B ) u ( C x C ) is a congruence ofQ and Q/Q £ II (see 1.6.). 
(ii) A, B and C are normal maximal subquasigroups of Q. 

Proof, (i) By 3.2, the subquasigroups A, B and C are pairwise disjoint, and 
hence Q is an equivalence (defined on Q). Further, by 3.3, AB u BA ^ C, 
AC u CA c B and BC u CB ^ A. Consequently, Q is a (groupoid) con­
gruence of Q and Q/Q ^ II. 

(ii) This follows immediately from (i). • 

In the remaining part of this section, let D = A n B n C (then either D = 0 or 
D 4= 0 is a subquasigroup of Q) and A* = A\D, B* = B\D and C* = C\D. 
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Lemma 3.5 (i) A n B = A n C = B n C = D. 
(ii) A*B* u B*A* = C*, A*C* u C*4* = B* and B*C* u C*B* = A*. 

Proof. See 3.2 and 3.3. • 

Lemma 3.6 (i) For all ae A* and ceC* there exist uniquely determined 
bu b2 e B* such that abx = c = b2a. 

(ii) For all b e B* and ceC* there exist uniquely determined ah a2 e A* such that 
a{b = c = ba2. 

Proof. There exasts a uniquely determined xeQ such that ax = c. Since c$D 
and a $ D, we have x$ A v C. Thufs x e B*. The rest is clear. • 

Lemma 3.7 (i) For all ae A* and b e B* there exist uniquely determined 
cb c2 e C* such that acx = b = c2a. 

(ii) For all ceC* and b e B* there exist uniquely determined au a2e A* such that 
axc = b = ca2. 

Proof. Similar to that of 3.6. • 

Lemma 3.8 (i) For all be B* and ae A* there exist uniquely determined 
cu c2 e C* such that bc{ = a = c2b. 

(ii) For all ceC* and ae A* there exist uniquely determined bu b2 e B* such that 
b{c = a = cb2. 

Proof. Similar to that of 3.6. • 

Corollary 3.9 |,4*| = |B*| = \C*\ and \A\ = \B\ = |C|. If at least one of A, B 
or C is finite then so is Q. 

Corollary 3.10 If Q is finite, then \Q\ = 3m + n = 3fc — 2n, m = \A% 
n = \D\ and k = m + n = \A\. 

Proposition 3.11 Each of the subquasigroups A, B, C is a maximal subquasi-
group of Q. 

Proof. Let £ be a subquasigroup of Q such that A = E and A =|= E. Then either 
E n B* =\= 0 or E n C* = 0 and, since A* = F, we get E n B* =# 0 =# E n C* 
by 3.5(H). Now, if e e B n B*, then xe e A* for some xeQ and we have 
x e E n C*. If b e £*, then xbeA* = E and it follows that b e E. Thus B = E 
and, quite similarly, C ^ E. • 

Proposition 3.12 If D =t= 0 then the following conditions are equivalent: 
(i) A is normal in Q. 

(ii) B*B* u C*C* _= D. 
(Hi) D is normal in both B and C and B/D ^ Z2( + ) ^ C/D. 
(iv) A is normal in Q and Q/A = Z2( 4-). 
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Proof, (i) implies (ii). Let, on the contrary, xv ~ B* for some x, v e B*. If d e D, 
then v = yd and zd = x- yd for some y,zeQ. Clearly, y,zeB* and, 
choosing a e A*, we have za = x- yw. Now, w e A, since A is normal in Q. 
On the other hand, za E C*, and hence yw e A* and w G C*, a contradiction. 

(ii) is equivalent to (iii). Easy to see. 
(ii) implies (iv). The relation Q = (A x A)u ((Q\A) x (Q\A)) is a congruence of 

Q and Q/Q =^ Z2( + ). • 

Proposition 3.13 If D =t= 0, then the following conditions are equivalent: 
(i) At least two of the subquasigroups A, B, C, D are normal in Q. 

(ii) All four of the subquasigroups A, B, C, D are normal in Q. 
(iii) A*A* u B*B* u C*C* = D. 
(iv) D is normal in Q and Q/D £ Z2( + )(2). 
(v) D is normal in Q and Q/D is hamiltonian. 

(vi) D is normal in all three of the subquasigroups A, B, C and A/D ^ B/D = 
C/D =. Z2( + ). 

Moreover if these equivalent conditions are satisfied, then Q/A = Q/B = Q/C = 
A/D ^ B/D s C/D £ Z2( + ). 

Proof, (i) implies (ii) and (iv). If any two of the subquasigroups, A, B, C are 
normal in Q, then D = AnB = BnC = CnA is normal in Q. Now, let us 
assume that A, D are normal in Q. By 3.9 and 3.12, we have \A/D\ = \B/D\ = 
\C/D\ = 2, and hence \Q/D\ = 4 (3.10). We have Q/D = A/D u B/D u C/D and 
the three subquasigroups are two element groups. Thus Q/D is a loop and it is easy 
to see that Q/D ^ Z2( + )(2). 

The remaining implications are clear (use 3.12). • 

Corollary 3.14 If at least one of the subquasigroups A, B, C is normal in Q and 
\D\ = 1, then Q s Z2( + )^. 

Proposition 3.15 Assume that Q is finite and that k = \A\ (= \B\ = \C\) divides 
\Q\ (e.g., at least one of A, B, C is normal in Q). 

(i) All of the three subquasigroups A, B, C are normal in Q. 
(ii) IfD 4= 0, then D is normal in Q and Q/D ^ Z2( + )<2>. 

(iii) IfD = 0, then \Q\ = 3k. 
(iv) IfD*Qandn = \D\, then k = 2n and \Q\ = 4n. 

Proof. In view of 3.4, we may assume that D + 0. Now, k = 2n by 3.10, and 
hence (i) is true. The rest is clear from 3.13. • 

Corollary 3.16 If Q is finite and \A\ (= \B\ = \C\) divides \Q\, then either 3 or 
4 divides \Q\. 

3.17 Choose bijections a* : A* -• B* and T* : A* -• C* (see 3.9) and define six 
binary operations on the set A* by a^O a2 = T*~l(ala*(a2)\ ai*a2 = 
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T* \o*(a{) a2), a{<3 a2 = o* l(fliT*(a2)), a{ t>a2 = o* \T*(a{) a2), ax*a2 = 
o*(a{) T*(a2) and a- * a2 = T*(a{) o*(a2) for all ah a2 e A*. 

Lemma 3.17.1 All the six groupoids A*(o), A*^), A*{o), A*(o), A*(*), A*(+) 
are quasigroups. 

Proof. This can be checked easily. D 
Lemma 3.172 ob = T*(a O o*~\b)), ba = T*(o*~\b)* a), ac = o*(a^ T*~\C)), 

ca = O*(T*~\C) t>a), bc = o*~\b)* T*~\C) and cb = T*~\C) + o*~\b) for all 
a e A*, be B* and c e C*. 

Proof. Obvious. D 
Let o = o* u idD, T = T* U idD, and define three binary operations a, /? and y 

on A by axoca2 = a{a2, ax$a2 = o~\o(ax) o(a2)) and axy_a2 = T~\T(ax) r(a2)). 

Lemma 3.17.3 -4(a), A((l), and A(y) are quasigroups and the bisections 
idA : A(a) -> A, o : A(ft) —> B, and T : A(y) -> C ar^ quasigroup isomorphisms. 

Proof Obvious. D 
Remark 3.18 Assume that D + 0, put Q* = A* u B* u C* = Q\D, W = 

{(x,y); x, y e Q*, {x,y} <fi A*, {x,y} <£ B*, {x,y} (£ C*} and choose (arbitrarily) 
quasigroup operations a, /} and y defined on A*, B* and C*, resp. Now, define an 
operation O on Q* in the following way: 

1. A*(OL, B*(§) and C*(y) are subgroupoids of Q*(o); 
2. x O y = xy for every (x, y) e W. 

Then Q*(o) is a quasigroup that is the disjoint union of the three subquasigroups 
A*(o), B*(o) and C*(o). Moreover, Q = Q* u D and xy = x O y for every pair 
(x,y)eW. 

4. The case of t h r ee subquas ig roups (b) 

Construction 4.1 Let R be a non-empty set supplied with nine binary quasig­
roup operations denoted by the symbols a, /?, y, o, • <i, i>, *, and *, resp. Put 
Q = R x {1,2, 3} and define a multiplication on Q by means of the following 
rules: 

(uocv, 1) for all u,ve R; 
(ufiv, 2) for all u,veR; 
(uyv, 3) for all u,veR; 
(u o v, 3) for all u,veR; 
(u • v, 3) for all u, v e R; 
(u <] v, 2) for all u,veR; 
(u >y, 2) for all u,v e R; 

1. (- 1)1 [». 1) = ( 
2. (" -)( v, 2) = (i 
3. (u 3)1 v, 3) = (i 
4. ("> 1)( t\2) = (i 
5. (u, -)( v, 1) = (l 
6. (u, -)( v, 3) = (i 
7. (u. 3)1 v, 1) = (l 
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8. (M, 2) (v, 3) = (M * v, 1) for all u, v e R; 
9. (u, 3) (v, 2) = (M * v, 1) for all u,ve R. 

Put A = R x {1},B = R x {2},C = K x {3},<T(M, 1) = (M, 2) and T(M, 1) = (M, 3), 

ueR. 

Lemma 4.1.1 (M O V, 1) = T_1((M, 1) a(v, 1)), (M *V,1) = X~\G(U, 1) (z;, 1)), 
(M <I v, 1) = ^ ( ( M , 1) T(I>, 1)), (v i> v) = <7_1(T(M, 1), (t;, 1)), (M * v, 1) = <T(M, 1) x(v, 1) 
and (M * v, 1) = T(M, 1) o(v, I) for all u,v e R. 

Proof. Obvious from the definitions of the operations. • 

Lemma 4.1.2 A is a subquasigroup of Q and the mapping u i—• (M, 1) is an 
isomorphism of R(<x) onto A. 

Proof. Easy. • 

Lemma 4.1.3 B is a subquasigroup of Q and the mapping u i—• (u, 2) is an 
isomorphism of R(0) onto B. 

Proof. Easy. • 

Lemma 4.1.4 C is a subquasigroup of Q and the mapping u i—• (u, 3) is an 
isomorphism of R(y) onto C. 

Proof. Easy. • 

Proposition 4.1.5 Q is a quasigroup, A, B and C are proper subquasigroups of 
Q,AuBuC = QandAnBnC = 0. 

Proof. Easy (use 4.1.1, ..., 4.1.4). • 

Theorem 4.2 Let Q be a quasigroup. The following conditions are equivalent: 
(i) There exist proper subquasigroups A, B, C of Q such that A u B u C = Q 

and A n B n C = 0. 
(ii) The three-element quasigroup II (see 1.6) is a homomorphic image of Q. 

(Hi) Q (or an isomorphic copy of Q) is constructed in the way described in 
4.1. 

Proof, (i) implies (ii). See 3.4. 
(ii) implies (i). Let n.Q-+Tl be a homomorphism of Q onto EL For the 

completion of the proof it suffices to put A = 7t_1(a), B = n~l(fi) and 
C = n~l(y). 

(i) is equivalent to (iii). Combine 3.17 and 4.1. • 

Example 4.3 (cf 3.4) In 4.1, let us choose three pair-wise non-isomorphic 
quasigroups R(<x), R(fi) and R(y). Then Q = A u B u C, where A, B and C are 
pair-wise non-isomorphic and A n B n C = 0. 
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5. The case of t h r e e s u b q u a s i g r o u p s (c) 

Construction 5.1 Let R be a non-empty set supplied with three binary 
quasigroup operations denoted by the symbols a, /? and y, resp., and let S be 
a proper non-empty subset of R such that S is a subquasigroup of all the three 
quasigroups and xay = xpy = xyy for all x,yeS. Further, let T = R\S (we 
have T =t= 0) and let O, •, <i, o , *, and * be six quasigroup operations defined 
on T. Put Q = (T x {1,2, 3}) u S (we assume (T x {1,2, 3}) n S = 0) and define 
a multiplication on Q by means of the following rules: 

1. xy = xocy (= x/ty = xyy) for all x,yeS\ 
2. x(u, 1) = (xaw, 1) and (w, 1) x = (wax, 1) for all x e S and w e T; 
3. (w, 1) (v, 1) = wav for all w, v e T such that wav e S; 

4. (w, 1) (v, 1) = (wav, 1) for all u,veT such that wav e T\ 

5. x(u, 2) = (x/?w, 2) and (w, 2) x = (w/Jx, 2) for all x e S and w G T; 
6. (w, 2) (v, 2) = w/?v for all u,veT such that w/Jv G S; 
7. (w, 2) (v, 2) = (w/?v, 1) for all w, v G T such that w/Jv e T\ 
8. x(w, 3) = (xyu, 3) and (w, 3) x = (wyx, 3) for all x E S and w G T; 
9. (w, 3) (v, 3) = wyv for all u,veT such that wyv G S; 

10. (w, 3) (v, 3) = (wyv, 1) for all u,veT such that wyv G T; 
11. (w, 1) (v, 2) = (w"o v, 3) for all u,veT\ 
12. (w, 2) (v, 1) = (w • v, 3) for all w, v G T; 
13. (w, 1) (v, 3) = (w <i v, 2) for all u,veT\ 

14. (w, 3) (v, 1) = (w o v, 2) for all u,v e T\ 
15. (w, 2) (v, 3) = (w * v, 1) for all w, v G T; 
16. (w, 3) (v, 2) = (w * v, 1) for all w, v G T. 

Put A* = T x {1}, B* = T x {2}, C* = T x {3}, ^ = A* u S, B = B* v S, 
C = C* u S, cr*(w, 1) = (w, 2), T*(W, 1) = (w, 3) for all w e T, a = <r* u ids, 
T = T* u ids and D = S. 

Lemma 5.1.1 (w o v) = T*"1((W, 1) <r*(v, 1)), (w •v,l) = T*-1(<T*(W, 1) (v, 1)), 

(w -a v, 1) = a* - !((w, 1) T*(v, 1)), (w D> t U ) = <r* " V ( w > 1) ("> !))' (" * M ) = 
cr*(w, 1) T*(v, 1) and (u * v, 1) = T*(W, 1) <r*(v, \)for all u,veT. 

Proof. Obvious from the definitions of the operations. 

Lemma 5.1.2 A is a subquasigroup of Q and the mapping x i 
x e S, u G T, is an isomorphism of R(ct) onto A. 

Proof. Easy. 

Lemma 5.1.3 B is a subquasigroup of Q and the mapping x i 
x e S, u e T, is an isomorphism of R(0) onto B. 

Proof. Easy. • 
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Lemma 5.1.4 C is a subquasigroup of Q and the mapping x i—• x, u i—> (u, 3), 
x e S, u e T, is an isomorphism of R(y) onto C. 

Proof. Easy. • 

Lemma 5.1.5 D is a subquasigroup of Q and the mapping x i—> x, x e S, is an 
isomorphism of S(cc) (= S(/J) = S(y)) onto D. 

Proof. Obvious. • 

Proposition 5.1.6 Q is a quasigroup, A, B and C are proper subquasigroups of 
Q, Q = AuBuCandD = AnBnC. 

Proof. Easy (use 5.1.1,..., 5.1.5). • 

Lemma 5.1.7 A is normal in Q if and only ifS(fi) is normal in R([l), S(y) in R(y) 
and \R(§)/S(§)\ = 2 = \R(j)/S(y)\. 

Proof. Combine 5.1.6 and 3.12. • 

Lemma 5.1.8 All three of the subquasigroups A, B, C are normal in Q if and 
only ifS(S) is normal in R(d) and \R(d)/S(5)\ = 2 for every d e {a, §, y}. 

Proof. Use 5.1.7. • 

Theorem 5.2 Let Q be a quasigroup. Then there exist proper subquasi­
groups A, B and C of Q such that A u B u C = Q and AnBnC = D + 0if 
and only if Q (or an isomorphic copy of Q) is constructed in the way described 
in 5.1. 

Proof. Combine 3.17 and 5.1. • 

Theorem 5.3 Let Q be a quasigroup. The following conditions are equivalent: 
(i) There exist proper normal subquasigroups A, B,C of Q such that A u B u 

C = Qand AnBnC + 0. 
(ii) The four-element 2-elementary group Z2( + )^ is a homomorphic image of Q. 

(Hi) Q (or an isomorphic copy of Q) is constructed in the way described in 5.1 
where S(5) is normal in R(5) and \R(5)/S(5)\ = 2 for every <5 E {a, /?, y}. 

Proof. Combine 5.L5.2 and 3.13. • 

Corollary 5.4 Let Q be a quasigroup. The following conditions are equivalent: 
(i) There exist proper normal subquasigroups A, B,C of Q such that 

AKJBKJC = Q. 

(ii) Either the three element quasigroup II or the four-element group Z2( + )^ is 
a homomorphic image of Q. 

Example 5.5 In 5.1, choose R(ft) = R(y) = Z( + ) (the additive group of 
integers), S = Z2 and T(o) = T(#) = T(<j) = T(o) = T(*) = T(*) any com­
mutative quasigroup defined on T = Z\ {0}. Further choose a commutative loop 
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operation a defined on Z such that accb = a + bfor all a,beZ2 and consider the 
corresponding commutative loop Q (see 5.1 again), 

(i) A, B, C are proper subloops ofQ,AuBuC = Q and A n B n C = Z2 is 
an infinite cyclic group, 

(ii) A is normal in Q. 
(Hi) B (or C) is normal in Q if and only ifD = 12 is normal in Z(a) and Z(a)/D = 

Z2( + ). 
Notice that we may define a on Z in such a way that Z(a) becomes an infinite 

cyclic group and \Z(oc)/D\ = 3. Then A =" B =" C = Z( + ), A is normal in Q, D is 
normal in A, B, C and D, B, C are not normal in Q. Moreover, A/D =" ̂ -s( + ) and 
B/D _= Z2( + ) ^ C/D. 

Example 5.6 In 5.1, choose R(oc) = R(P) = R(y) = Z( + ) (the additive group 
of integers), S = {0} and T(o) = T(#) = T{<J= F(o) = T(*) = T(*) any 
commutative quasigroup defined on T = Z\ {0}. 

Then Q becomes a commutative loop, Q = A u B u C, where A, B, C are 
subloops isomorphic to Z( + ) and A n B n C is the unit subloop of Q. Notice that 
neither A nor B nor C is a normal subloop of Q. 

Example 5.7 Consider the following loop L: 

L 1 ax a2 b\ b2 cx c2 

1 1 ax a2 bx b2 C\ c2 

ax 
ax a2 1 c{ c2 b! b2 

a2 a2 1 ax c2 c{ b2 b{ 

b\ b\ C\ c2 b2 1 ax a2 

ь2 
b2 c2 C\ 1 b\ a2 ax 

ci C\ b\ b2 a\ a2 c2 1 

c2 
c
2
 b2 b\ a2 ax 1 C\ 

Then Q is a simple commutative loop, Q = A u B u C, where A = { l ,a b a2}, 

B = {l,bi, b2), C = { l ,c b c2} are subloops of Q and A n B n C = 1. 

Example 5.8 In 5.1, choose three pair-wise non-isomorphic loops R((x), R(P) 
and R(y) possesing the same neutral element 1 and put S = {l}. The quasigroups 
defined on T = R\ [l}may be chosen arbitgrarily. Then we get a loop Q such that 
Q = A u B u C, where A, B and C are pair-wise non-isomorhic proper subloops 
and A n B n C = 1. 

Remark 5.9 (cf 3.18) Let Q*(o) be a quasigroup that is the disjoint union of 
three proper subquasigroups, say A*(o), B*(o), C*(o) (see 4.2) and let !>(•) be 
a quasigroup such that D n Q* = 0. Now, put A = A* u D, B = B* u D, C = 
C* u D and choose some quasigroup operations a, /J and y defined on A, B and 
C, resp., in such a way that /)(•) is a subquasigroup of all the three quasigroups. 
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Finally put Q = Q* u D and define a multipication on Q as follows: 
1. A(QL), B(ji) and C(y) are subquasigroups of Q; 
2. xy = x O y for all x.yeQ such that {x,y} <$. A, {x,y} £ B, {x,y} £ C. 

Then Q is a quasigroup, A, B, C and D are its subquasigroups, A u B u C = Q 
andAnB = BnC = CnA = D. 

6. The case of three subgroups 

Proposition 6.1 ([2]) Let A, B, C be proper subgroups of a group G such that 
AuBuC = GandAnBnC= 1. Then G =• Z2( + )(2) (see 1.7). 

Proof. By 3.2, AnB = AnC = BnC = 1. If a e A*, b e B* and c e C*, 
then ab e C*, be e A* and hence abc e A n C = 1, a = c~{b~l. It follows that 
| ,1* | = \B*\ = \C*\ = 1, and so \A\ = \B\ = |C| = 2 and \G\ = 4. Finally, since 
G = A u B u C, we have x2 = 1 for every x e G and the rest is clear. • 

Proposition 6.2 ([2]) Let A, S, C foe proper subgroups of a group G such that 
G = A u B u C. Therz each of A, B, C w a normal maximal subgroup of G, 
G/A = G/B =• G/C = Z2( + ) ,D = y 4 n . B n C « f l normal subgroup of G and 
G/D * Z2( + )<2'. 

Proof. If a e A*, be B* and c e C*, then abc e D and a e Dc~{b~l _= A. Now 
it is clear that \_A : D] = 2, and hence Z) is a normal subgroup of A and 
A 91 NG(D) (the normalizer). Quite similarly, B u C ~l NG(D) and consequently, 
NG(D) = G and D is normal in G. Then G/D = G{ = AX\J B{u Cb A{ = A/D, 
Bx = B/D, C! = C/D, AxnBxnCx = \ and the result follows from 6.1. • 

Theorem 6.3 ([2]) The following conditions are equivalent for a group G: 
(i) There exist proper subgroups A, B and C of G such that A u B u C = G. 

(ii) The group Z2( + ) ^ is a homomorphic image of G. 
(Hi) If H denotes the subgroup of G generated by the set {x1; x e G}, then the 

factor-group G/H is not cyclic (clearly, H is normal in G). 

Proof, (i) implies (ii). See 6.2. 
(ii) implies (iii). If K is a normal subgroup of G with G/K ^ Z2( + )(2), then 

H ~\ K, and so G/H is not cyclic, 
(iii) implies (ii). G/H is a direct sum of at least two copies of Z2(-|-). 
(ii) implies (i). Use 1.7. • 

Example 6.4 Let G = S3 (the symmetric group on three letters). Then G con­
tains just four non-trivial proper subgroups, say A, B, C and D, where A is the 
alternating group, \A\ = 3, and \B\ = \C\ = \D\ = 2. Clearly, all the subgroups 
are maximal, A is normal in G, B, C and D are not normal in G, G = A u B u 
CvDandAnB = AnC = AnD = BnC = BnD = CnD = 1. 
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