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Quasigroups Which Are Unions of Three Proper Subquasigroups

T. KEPKA and D. ROSENDORF
Praha

Received 27. September 2003

Quasigroups that are unions of three proper subquasigroups are characterized.'

1. Quasigroups

A groupoid is a non-empty set equipped with a binary operation (usually denoted
multiplicatively). A groupoid Q is said to be a quasigroup if for all a, b € Q there
exist uniquely determined elements u, v € Q such that au = b = va.

Proposition 1.1 Let Ay, ..., A,,n > 2, be proper subquasigroups of a quasi-
group Q. If Q = A, U ... U A, then Q is not one-generated.

Proof. Let, on the contrary, Q be generated by a single element, say a. Then
a€ A, for at least one i, 1 < i < n, and hence 4; = Q, a contradiction. O

Proposition 1.2 Let Q be a non-trivial finitely generated quasigroup. Then:
(i) Every proper subquasigroup of Q is contained in (at least one) (proper)
maximal subquasigroup of Q.
(ii) Q has no maximal subquasigroups if and only if Q has no proper subquasi-
groups at all.

Proof. The set of proper subquasigroups is upwards inductive and the rest is
clear. O

Department of Mathematics, Charles University in Prague, Sokolovské4 83, 186 00 Praha 8, Czech
Republic

! This research was supported by the grant GAUK 269/2001 and by the institutional grant
MSM 113200007

55



Remark 1.3 Clearly, if Q is a quasigroup possessing no proper subquasigroups,
then Q is generated by any of its elements and, in particular, Q is countable. On
the other hand by [1, Corollary 7], if P is a countable quasigroup containing at
least three elements, then P is isotopic to a quasigroup Q such that Q has no
proper subquasigroups.

Proposition 1.4 (cf. 1.2) Let Q be any non-trivial finitely generated quasigroup
such that Q has only finitely many maximal subquasigroups, say A, ..., A,,n > 0.
The following conditions are equivalent:

(i) Q is not one-generated.
(ii) n 23and Q = A;u ... UA,
(iii) n >1and Q = A; U ... U A,.

Proof. (i) implies (ii). Since Q is not one-generated, every element generates
a proper subquasigroup, and hence every element is contained in a maximal
subquasigroup (1.2(i)). Consequently, n = 0 and Q = A, U ... U A,. Then,
clearly, n > 2 and the inequality n > 3 is also easily seen (2.1).

(i1) implies (iii). Trivial.

(iii) implies (i). Every element of Q is contained in at least one of the proper
subquasigroups A, ..., 4,. O

Proposition 1.5 (c¢f. 1.2 and 1.4) Assume that there exist finitely many proper
subquasigroups A, ..., A,n >0, of a quasigroup Q such that every proper
subquasigroup of Q is contained in at least one of A, ..., A,. Then Q is a finitely
generated quasigroup and Q has only finitely many maximal subquasigroups.

Proof. If n = 0, then Q has no proper subquasigroups and the assertion is clear.
Ifn>14€Q\Aand S = {g;1 <i < n}, then Q is generated by S. O

Example 1.6 Consider the following three-element quasigroup I1:

o By
ala y B
Bly B «
VIB oy

Then {o},{B} and {y} are maximal subquasigroups of Tl and TI = {a}uU {B}uU
v {7}.

Example 1.7 We may also consider the four-element 2-elementary abelian
group G(+) = Zz(+)(2) (Zy+) = {0,1} is the two-element additive group of
integers modulo 2). Then G=AUBUC and 0= AN BnC, where
A = {(0,0), (0, 1)}, B = {(0,0), (1, 0)} and C = {(0,0), (1, 1)} are proper subgroups
of G(+) (notice that 0, A, B, C and G are the only subgroups of G(+)).
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2. The case of two subquasigroups

Proposition 2.1 Let A and B be subquasigroups of a quasigroup Q such that
Q = A U B. Then either A = Q or B = Q.

Proof. Assume that A & B. If ae A\B and b e B, then ab ¢ B, and hence
abe A and be A. Thus B = A and consequently, A = Q. O

3. The case of three subquasigroups (a)

Throughout this section, let A, B and C be proper subquasigroups of a quasi-
group Q such that Q = A u Bu C.

Lemma 3.1 (i) A+ B+ C + A.
(ii) 0+ AuB,Q+ AuCand Q + BuC.
(iii) AEBUC,BZ£ AuCand C ¢ AU B.
(iv) Q\(AuB) = C,Q\(AuC) = Band Q\(Bu ¢) <= A.

Proof. Easy (use 2.1). O
Lemma32 AnB=A4AnC=BnC=AnBnC.

Proof. If ae (A n B)\C and c € C, then ac ¢ C, and so either ace A and c€ A
or ace B and ce B. Thus C = A U B, a contradiction with 3.1(iii). We have
shown that A N B < C and the remaining inclusions are similar. O

Lemma 3.3 (i) (A\ B) (B\ A) U (B\ 4) (A\ B) = C\(4 u B).
(i) (ANC)(C\A) U (C\A4)(A\C) = B\(A U C).
(iii) (C\ B)(B\C) u (B\C)(C\B) = 4A\(C U B).

Proof. If ae A\Band b € B\ A4, then ab ¢ A U B, and hence abe Q\(4 U B) =
C\(A U B). The rest is similar. O

Proposition 3.4 Assume that A B n C = (. Then:
(i) ¢ = (A% A) U (B x B) U (C x C) is a congruence of Q and Qo = TI (see 1.6.).
(ii) A, B and C are normal maximal subquasigroups of Q.

Proof. (i) By 3.2, the subquasigroups 4, B and C are pairwise disjoint, and
hence g is an equivalence (defined on Q). Further, by 3.3, ABuU BA < C,
AC U CA < B and BC U CB < A. Consequently, ¢ is a (groupoid) con-
gruence of Q and Q/o =~ II.

(i1) This follows immediately from (i). O

In the remaining part of this section, let D = A n B n C (then either D = () or
D % @ is a subquasigroup of Q) and A* = A\ D, B* = B\D and C* = C\D.
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Lemma 3.5 (i) AnB=AnC=BnC=0D.
(ii) A*B* U B¥*4* = C*, A*C* U C*A* <= B* and B¥*C* U C*B* < A*.

Proof. See 3.2 and 3.3. 4

Lemma 3.6 (i) For all ae A* and c € C* there exist uniquely determined
by, b, € B* such that ab; = ¢ = b,a.
(ii) For all b e B* and c € C* there exist uniquely determined a,, a, € A* such that
ab = ¢ = ba,.

Proof. There exasts a uniquely determined x € Q such that ax = c. Since ¢ ¢ D
and a ¢ D, we have x ¢ A U C. Thufs x € B*. The rest is clear. O

Lemma 3.7 (i) For all ae A* and b€ B* there exist uniquely determined
¢y, ¢, € C* such that ac, = b = c,a.
(ii) For all c € C* and b € B* there exist uniquely determined a,, a, € A* such that
a,c = b = ca,.

Proof. Similar to that of 3.6. O

Lemma 3.8 (i) For all be B* and a€ A* there exist uniquely determined
¢y, ¢, € C* such that bc, = a = c,b.
(ii) Forall c € C* and a € A* there exist uniquely determined by, b, € B* such that
bic = a = cb,.

Proof. Similar to that of 3.6. O

Corollary 3.9 |4*| = |B*| = |C*| and |A| = |B| = |C|. If at least one of A, B
or C is finite then so is Q.

Corollary 3.10 If Q is finite, then |Q| = 3m + n = 3k — 2n, m = |A%*|,
n=|Dland k = m + n = |A|.

Proposition 3.11 Each of the subquasigroups A, B, C is a maximal subquasi-
group of Q.

Proof. Let E be a subquasigroup of Q such that A < E and A #+ E. Then either
EnB* +(or En C* = () and, since A* < E,we get ENnB* + 0 + En C*
by 3.5(ii). Now, if e€ B n B*, then xee A* for some xe Q and we have
xe E n C*. If be B*, then xbe A* < E and it follows that be E. Thus B < E
and, quite similarly, C < E. a

Proposition 3.12 If D # ( then the following conditions are equivalent:
(i) A is normal in Q.

(ii) B*B* u C*C* < D.

(iii) D is normal in both B and C and B/D = Z,(+) = C/D.

(iv) A is normal in Q and Q/A = Z,(+).
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Proof. (i) implies (ii). Let, on the contrary, xv € B* for some x, ve B*.If d € D,
then v = yd and zd = x- yd for some y,ze Q. Clearly, y,ze B* and,
choosing a € A*, we have za = x - yw. Now, w € A, since 4 is normal in Q.
On the other hand, za € C*, and hence yw € A* and w € C*, a contradiction.

(ii) is equivalent to (iii). Easy to see.
(ii) implies (iv). The relation ¢ = (4 x 4) U ((Q\ 4) x (Q\ A)) is a congruence of
Q and Q/g = Z,(+). O

Proposition 3.13 If D + 0, then the following conditions are equivalent:
(i) At least two of the subquasigroups A, B, C, D are normal in Q.
(ii) All four of the subquasigroups A, B, C, D are normal in Q.
(iii) A*A* U B*B* U C*C* < D.
(iv) D is normal in Q and Q/D = Z,(+)?.
(v) D is normal in Q and Q/D is hamiltonian.
(vi) D is normal in all three of the subquasigroups A, B, C and A/D =~ B/D =~
C/D = Zy(+).
Moreover if these equivalent conditions are satisfied, then Q/A =~ Q/B =~ Q/C =
A/D = B/D = C/D = Z)(+).

Proof. (i) implies (ii) and (iv). If any two of the subquasigroups, 4, B, C are
normal in Q, then D = AN B= BN C =Cn A is normal in Q. Now, let us
assume that 4, D are normal in Q. By 3.9 and 3.12, we have |4/D| = |B/D| =
|C/D| = 2, and hence |Q/D| = 4 (3.10). We have Q/D = A/D u B/D u C/D and
the three subquasigroups are two element groups. Thus Q/D is a loop and it is easy
to see that Q/D = Z,(+)?.

The remaining implications are clear (use 3.12). O

Corollary 3.14 If at least one of the subquasigroups A, B, C is normal in Q and
ID| = 1, then Q =~ Z,(+)?.

Proposition 3.15 Assume that Q is finite and that k = |A| (= |B| = |C|) divides
|Q| (e.g., at least one of A, B, C is normal in Q).
(i) All of the three subquasigroups A, B, C are normal in Q.
(ii) If D # 0, then D is normal in Q and Q/D = Z,(+)?.
(i) If D = O, then |Q| = 3k.
(iv) If D + O and n = |D|, then k = 2n and |Q| = 4n.

Proof. In view of 3.4, we may assume that D + (. Now, k = 2n by 3.10, and
hence (i) is true. The rest is clear from 3.13. O

Corollary 3.16 If Q is finite and |A| (= |B| = |C)) divides |Q), then either 3 or
4 divides |Q).

3.17 Choose bijections o* : 4* — B* and 1* : A* — C* (see 3.9) and define six
binary operations on the set A* by a,0a, =1* '(a,0%a)), a,®a, =
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™ (0%a) @), a1 < a4y = 0* (a,7%(a), a4y >a, = o* (1¥(a)) ay), a*a, =
0*(a;) 7(a,) and a, * a, = 1*(a;) o*(a,) for all a,, a, € A*.

Lemma 3.17.1 All the six groupoids A*(O), AX(®), A*(<), A*(c=), A*(x), A*(%)
are quasigroups.

Proof. This can be checked easily. |

Lemma 3.172 ab = t*(a O ¢* (b)), ba = t*(c* '(b)® a), ac = o*(a< ™ '(¢)),
ca = o*(t*'(c) >a), bc = o* '(b) * *'(c) and cb = 1* () * o* " '(b) for all
ac A*, be B* and c e C*.

Proof. Obvious.

a

Let ¢ = 0* U idp, T = t* U id), and define three binary operations a,  and y
on A by ajaa, = a,a,, a;pa, = 67 '(o(a,) o(a,)) and ayya, = 7 '(1(ay) 1(ay)).

Lemma 3.17.3 A(x), A(f), and A(y) are quasigroups and the bijections
idy: A(a) > A, o : A(B) > B, and ©: A(y) > C are quasigroup isomorphisms.

Proof Obvious. O

Remark 3.18 Assume that D + 0, put Q* = A* UB* U C* = Q\D, W =
{(, ¥ x, y € Q*, {x,y} & A*, {x,y} & B*,{x,y} & C*} and choose (arbitrarily)
quasigroup operations o, B and y defined on A*, B* and C*, resp. Now, define an
operation O on Q* in the following way:

1. A*(o, B¥(B) and C*(y) are subgroupoids of Q*(0);

2. x Oy = xy for every (x, y) e W.

Then Q*(O) is a quasigroup that is the disjoint union of the three subquasigroups
A*(0), B¥(0) and C*(O). Moreover, Q = Q* U D and xy = x Oy for every pair
(x,y)e W.

4. The case of three subquasigroups (b)

Construction 4.1 Let R be a non-empty set supplied with nine binary quasig-
roup operations denoted by the symbols «, B, y, O, ® <1, t, *, and %, resp. Put
0 =Rx{1,2, 3} and define a multiplication on Q by means of the following
rules:

uav, 1) for all u,ve R;
(u }:3 2) for all u,veR;
(u y 3) for all u, v e R;
(u©v,3) forall u,veR;
(
=
=

uOU 3) for all u,v e R;
u<v,2) for all u,veR;
u o0, 2) for all u,v e R;

= Y
A/—\A?AA

W = NI = W N =
A’\A?A/—\A
T NN S TS N S N
N S s’ “— “— “—— “——
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8. (u,2)(v,3) = (u*v,1) forall u,veR;

9. (,3)(1,2) = (ux )forallu veR

Put A = Rx{1},B= R x{2},C = Rx {3},6(u, 1) = (4,2) and (s, 1) = (4, 3),
ueR.

= t¥(ofu, 1) (v, 1),
1) = ol 1) oo, 1

Lemma 4.1.1 (u0v,1) =14 1)a(v,1), (u®v1)

w<v1)=0""u1)1v,1)), (v =>0v) = 6 (c(u, 1), (v, 1)), (u

and (u % v, 1) = 1(u, 1) o(v, 1) for all u,v € R.
Proof. Obvious from the definitions of the operations. O

Lemma 4.1.2 A is a subquasigroup of Q and the mapping u (u, 1) is an
isomorphism of R(x) onto A.

Proof. Easy. O

Lemma 4.1.3 B is a subquasigroup of Q and the mapping u+ (u,2) is an
isomorphism of R(p) onto B.

Proof. Easy. O

Lemma 4.1.4 C is a subquasigroup of Q and the mapping u+ (u,3) is an
isomorphism of R(y) onto C.

Proof. Easy. d

Proposition 4.1.5 Q is a quasigroup, A, B and C are proper subquasigroups of
Q,AuBUC=Qand AnBnC =0.

Proof. Easy (use 4.1.1, ..., 4.1.4). O

Theorem 4.2 Let Q be a quasigroup. The following conditions are equivalent:
(i) There exist proper subquasigroups A, B, C of Q such that Ao BuC = Q
and AnBn C=0.
(ii) The three-element quasigroup Il (see 1.6) is a homomorphic image of Q.
(iii) Q (or an isomorphic copy of Q) is constructed in the way described in
4.1

Proof. (i) implies (ii). See 3.4.

(ii) implies (i). Let w: Q — II be a homomorphism of Q onto II. For the
completion of the proof it suffices to put 4 = n~'(a), B = n~Y(p) and
C=rn"'(y)

(i) is equivalent to (iii). Combine 3.17 and 4.1. O

Example 4.3 (¢f. 3.4) In 4.1, let us choose three pair-wise non-isomorphic
quasigroups R(a), R(B) and R(y). Then Q = A U B U C, where A, B and C are
pair-wise non-isomorphic and AN Bn C = 0.
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5. The case of three subquasigroups (c)

Construction 5.1 Let R be a non-empty set supplied with three binary
quasigroup operations denoted by the symbols «,  and y, resp., and let S be
a proper non-empty subset of R such that S is a subquasigroup of all the three
quasigroups and xay = xfy = xyy for all x,y€S. Further, let T = R\ S (we
have T # @) and let O, ® <, =, *, and % be six quasigroup operations defined
on T. Put Q = (T x {1,2,3})u S (we assume (T x {1,2,3})n S = 0) and define
a multiplication on Q by means of the following rules:

1. xy = xay (= xBy = xyy) for all x, y € S;
X, 1) and (u, 1) x = (uax, 1) for all xe S and ue T;

2. = (xo
3. (u, 1) (v, 1) = uow for all u, v € T such that uaw € S;
4. (u,1) (v, 1) = (uaw, 1) for all u, v e T such that uxv e T;
5. x(u, 2) = (xBu, 2) and (4, 2) x = (upx,2) forall xe Sand u e T;
6. (u,2) (v, 2) = upPv for all u, v e T such that upv € S;
7. (4,2) (v, 2) = (uPv, 1) for all u, v e T such that ufv e T;
8. x(u, 3) = (xyu, 3) and (u, 3) x = (upx, 3) for all xe Sand ue T;
9. (u, 3) (v, 3) = uyv for all u,ve T such that uyv € S;
10. (4, 3) (v, 3) = (uyv, 1) for all u, v e T such that uyv e T;
11. (v, 1) (v, 2) = (uO v,3) for all u,ve T;
12. (u,2)(v,1) = (u®v,3) for all u,ve T;
13. (u,1)(v,3) = (u< v,2) forall u,ve T;
14. (u,3)(v,1) = (u =>v,2) for all u,ve T;
15. (4,2)(v,3) = (uxv, 1) forall u,ve T,
16. (u,3)(v,2) = (ukv, 1) forall u,ve T.

Put A* = Tx {1}, B* = Tx {2}, C* = Tx {3}, A= A*US, B=B*US,
C=C*uUS, o*u,1) =(u,2), t*u, 1) = (4, 3) for all ueT, ¢ =0*u ids,
t=1*uvidgand D = S.

Lemma 5.1.71l (wov) = t*_l((u, 1) 6%(v, 1)), (L_tl. v, 1) = ‘r*_l(a*(u, 1) (v, 1)),
w<v1)=0*"(u1)t*v,1), v 1)=0c* (t¥u1)(v1), (u=*v1)=
o*(u, 1) t(v, 1) and (u % v, 1) = t™(u, 1) 6*(v, 1) for all u,ve T.

Proof. Obvious from the definitions of the operations. O

Lemma 5.1.2 A is a subquasigroup of Q and the mapping x +— x, u+ (u, 1),
x €S, ue T, is an isomorphism of R(x) onto A.

Proof. Easy. O

Lemma 5.1.3 B is a subquasigroup of Q and the mapping x — x, u+> (u, 2),
x €S, ueT, is an isomorphism of R(B) onto B.

Proof. Easy. O
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Lemma 5.1.4 C is a subquasigroup of Q and the mapping x — x, u— (u, 3),
x €S, ue T, is an isomorphism of R(y) onto C.

Proof. Easy. " O

Lemma 5.1.5 D is a subquasigroup of Q and the mapping x— x, x € S, is an
isomorphism of S(a) (= S(B) = S(y)) onto D.

Proof. Obvious. 0O

Proposition 5.1.6 Q is a quasigroup, A, B and C are proper subquasigroups of
0, 0=AuBuCand D=AnBnC.

Proof. Easy (use 5.1.1, ..., 5.1.5). O

Lemma 5.1.7 A is normal in Q if and only if S(B) is normal in R(f), S(y) in R(y)
and IR(BS(B) = 2 = IRG)S(y)
Proof. Combine 5.1.6 and 3.12. O

Lemma 5.1.8 All three of the subquasigroups A, B, C are normal in Q if and
only if S(0) is normal in R(8) and |R(9)/S(8)l = 2 for every d € {a, B, y}.

Proof. Use 5.1.7. O

Theorem 5.2 Let Q be a quasigroup. Then there exist proper subquasi-
groups A, B and C of Q such that AUBUC =Qand AnBAnC=D 0 if
and only if Q (or an isomorphic copy of Q) is constructed in the way described
in 5.1.

Proof. Combine 3.17 and 5.1. O

Theorem 5.3 Let Q be a quasigroup. The following conditions are equivalent:
(i) There exist proper normal subquasigroups A, B, C of Q such that A v B U
C=Qand AnBnC =+ 0.
(ii) The four-element 2-elementary group Z,(+ ) is a homomorphic image of Q.
(iii) Q (or an isomorphic copy of Q) is constructed in the way described in 5.1
where S(9) is normal in R(6) and |R(8)/S(8)| = 2 for every 6 € {o, B, 7}.

Proof. Combine 5.1.5.2 and 3.13. O

Corollary 5.4 Let Q be a quasigroup. The following conditions are equivalent:
(i) There exist proper normal subquasigroups A,B,C of Q such that
AuBuUC=0Q.
(ii) Either the three element quasigroup T1 or the four-element group Z(+)? is
a homomorphic image of Q.
Example 5.5 In 5.1, choose R(B) = R(y) = Z(+) (the additive group of
integers), S = 72 and T(0) = T(®) = T(<) = T(>) = T(x) = T(%) any com-
mutative quasigroup defined on T = Z\ {0}. Further choose a commutative loop
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operation o defined on Z such that axb = a + b for all a, b € Z2 and consider the
corresponc?ing commutative loop Q (see 5.1 again).
(i) A, B, C are proper subloops of Q, A UBUC =Qand AnBnNC=122is
an infinite cyclic group.
(ii) A is normal in Q.
(iii) B (or C) is normalin Q if and only if D = 72 is normal in Z(a) and Z()/D =
Zy(+).

Notice that we may define « on Z in such a way that Z(&) becomes an infinite
cyclic group and |Z(¢)/D| = 3.Then A~ B =~ C = Z(+), A is normal in Q, D is
normal in A, B, C and D, B, C are not normal in Q. Moreover, A/D = Z(+) and
B/D = Z,(+) = C/D.

Example 5.6 In 5.1, choose R(x) = R(B) = R(y) = Z(+) (the additive group
of integers), S = {0} and T(0) = T(®) = T(<w) = T(x>) = T(+) = T(*) any
commutative quasigroup defined on T = Z\ {0}

Then Q becomes a commutative loop, Q = A U Bu C, where A, B,C are
subloops isomorphic to Z(+) and A N B n C is the unit subloop of Q. Notice that
neither A nor B nor C is a normal subloop of Q.

Example 5.7 Consider the following loop L:

L1a1a2b1b2C1 Cy

1|1 aya,b b,c
ala;a, 1 ¢; ¢c; by b,
ala, 1 a, ¢; ¢, by by
bi|b; ¢ ¢; b, 1 a; a,
b,|b, ¢; ¢; 1 by a, a,
ciley by byayay ¢y 1
clea by byaya; 1 ¢

Then Q is a simple commutative loop, Q = A U B U C, where A = {l,al, az},
B = {1,b;,b,},C = {1,c,, c;} are subloops of Q and An B C = 1.

Example 5.8 In 5.1, choose three pair-wise non-isomorphic loops R( ), (ﬁ)
and R(y) possesing the same neutral element 1 and put S = {1}. The quasigroups
defined on T = R\ {1} may be chosen arbitgrarily. Then we get a loop Q such that
Q = AU By C, where A, B and C are pair-wise non-isomorhic proper subloops
and AnBnC=1.

Remark 5.9 (cf. 3.18) Let Q*(O) be a quasigroup that is the disjoint union of
three proper subquasigroups, say A*(O), B*(0), C*(0) (see 4.2) and let D(®) be
a quasigroup such that D n Q* = (. Now, put A = A* UD,B=B*uD,C =
C* U D and choose some quasigroup operations a,  and y defined on A, B and
C, resp., in such a way that D(®) is a subquasigroup of all the three quasigroups.
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Finally put Q = Q* U D and define a multipication on Q as follows:

1. A(a), B(p) and Cl(y) are subquasigroups of Q;

2. xy = xOy forall x,y€Q such that {x,y} ¢ A, {x,y} & B, {x,y} & C.
Then Q is a quasigroup, A, B, C and D are its subquasigroups, A w B u C = Q
andANnB=BnC=CnA=0D.

6. The case of three subgroups

Proposition 6.1 ([2]) Let A, B, C be proper subgroups of a group G such that
AUBUC=Gand AnBn C =1 Then G = Zy(+)? (see 1.7).

Proof. By 3.2, AnB=ANnC=BnC=1.1If aec A*, be B* and c € C¥*,
then abe C*, bc e A* and hence abce Am C = 1, a = ¢ 'b~'. It follows that
|A*| = |B*| = |C*| = 1, and so |4A| = |B| = |C| = 2 and |G| = 4. Finally, since
G = AuUBuU C, we have x*> = 1 for every x € G and the rest is clear. O

Proposition 6.2 ([2]) Let A, B, C be proper subgroups of a group G such that
G =AuUBuUC. Then each of A, B, C is a normal maximal subgroup of G,
G/A =~ G/B =~ G/C = Zy(+), D = A B~ C is a normal subgroup of G and
G/D = Z(+)2.

Proof. If ae A*, be B* and ce C*, then abce D and ae D¢ 'b~! < A. Now
it is clear that [A:D] =2, and hence D is a normal subgroup of A and
A = Ng(D) (the normalizer). Quite similarly, B U C = N4(D) and consequently,
Ng(D) = G and D is normal in G. Then G/D = G, = A, U B, u C,, 4, = A/D,
B, = B/D, C, = C/D, A, n By n C; = 1 and the result follows from 6.1. O

Theorem 6.3 ([2]) The following conditions are equivalent for a group G:
(i) There exist proper subgroups A, B and C of G such that Au Bu C = G.
(ii) The group Z,(+)? is a homomorphic image of G.
(iii) If H denotes the subgroup of G generated by the set {xz; XE€E G}, then the
factor-group G/H is not cyclic (clearly, H is normal in G).

Proof. (i) implies (ii). See 6.2.
(ii) implies (iii). If K is a normal subgroup of G with G/K = Z,(+)®?, then
H < K, and so G/H is not cyclic.
(iii) implies (ii). G/H is a direct sum of at least two copies of Zz(+).
(ii) implies (i). Use 1.7. |

Example 6.4 Let G = S; (the symmetric group on three letters). Then G con-
tains just four non-trivial proper subgroups, say A, B, C and D, where A is the
alternating group, |A| = 3, and |B| = |C| = |D| = 2. Clearly, all the subgroups
are maximal, A is normal in G, B, C and D are not normal in G, G = A U Bu
CuDand AnB=AnNnC=AnD=BnC=BnD=CnD=1.
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