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ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 44, NO. 2 

Local Return Rates in Substitutive Subshifts 

PETR KŮRKA 

Praha 

Received 6. March 2003 

Local lower and upper return rates express the asymptotic growth of the Poincare return 
time of cylinders around a given point of a dynamical system. We show that in 
substitutive subshifts the lower (upper) local return time assumes almost everywhere its 
minimum (maximum) value and give an algorithm which computes these two values. 

1. Introduction 

In a topologically transitive dynamical system (X, F), for every neighbourhood 
U of a point xeX there exists k > 0 such that Fk(U) n U 4= 0. The least k with 
this property is the Poincare return time T(17) = min {k > 0 : Fk(U) n U 4= 0} of 
U. As U shrinks, T([/) grows (except when x is a periodic point). This dependence 
is expressed by the local return rates introduced by Hirata et al [4]. The lower and 
upper local return rates are function R^ R$: X -> [0, oo] defined for a given 
dynamical system (X, F) and a measurable partition £ of X. If £ .= AN is 
a subshift, and t; = {[a]: a e A} is the canonical clopen partition, then 

R{y) _. lim inf ilErf, R{y) _. lim sup I(EZ[M]) . 
fc-oo k k^oo k 

Here y e S and \_y^0} kJ = {z e S : z^k) = y[0,fe)} is the cylinder of the prefix of y of 
length k. 

Hirata et al. [4] show that both R and R are subinvariant, i.e., R((t(y)) < R(y) 
and R(v(y)) < R(y). Moreover if \i is an invariant measure and (£, a, fi) is ergodic, 
then both R and R are /^-almost everywhere constant, so there exist constants 
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0 < r0 < r! < oo, such that R(y) = r0 a.e. and R(y) = rx a.e. Saussol et al. [9] 
show that if (S, cr, /z) is ergodic with positive entropy, then R(y) > 1 almost 
everywhere. This does not hold in systems with zero entropy. Cassaigne et al. show 
that r0 = -^-- < 1 holds for the Fibonacci subshift, which is the Sturmian subshift 
of the golden angle rotation. Afraimovich et al. [1] construct examples of irrational 
rotations with unbounded continued fractions where r0 = 0. These results are 
generalized in Kupsa [5] who treats the general case of irrational rotations and their 
corresponding Sturmian subshifts. 

In the present paper we present another generalization of Cassaigne et al. [2]. 
We show that in substitutive subshifts, r0 is the minimum of the range R(ll) while 
rx is the maximum of the range #(--). Moreover we describe an algorithm which 
for a given substitution computes r0 and r^ 

2. Subshifts 

For an alphabet A denote by A* the set of finite words and by A^ the space of 
one-sided infinite words with the product topology. Denote by \u\ the length of 
a word ue A* and by \u\a the number of occurrences of a letter a in u. The empty 
word is denoted by A and A+ = A*\{X}is the set of nonempty words. We write 
v C u, if v = w[l>y) = Uir... Uj_i is a subword of u for some 0 < i < j < \u\. 

The shift map G : AN -> AN is defined by G(X\ = xi+1. A subshift is any subset 
_. _= AN which is closed and cr-invariant, i.e., G(H) _= 2. A subshift is determined 
by its language ^ (2 ) = { « e i * : 3 x e Z , M C . x } . The cylinder set of a word 
u e -£?(-_) is [u] = {xeX: x[0,|M|) = u}. 

Assume that a subshift E _= AN does not have isolated points. Given y G S we 
define the sequence of free positions s = (sk)k^0 in y by induction. Set s0 = 0 and if 
8fc_! has been already defined, then sk > sfc_! is the largest integer, such that for all n, 

8*_i < n < sk => [y [ M] = [y[0,s,)]. 

If we set Tk = T([y[0>s/c)]), then for sk_! < n < sk we have T([y[M]) = Tk and 

R(y) = lim inf ^ - M _ ) = l i m i n f __ = 1 / l i m s u p
 s__ 

n->oc n fe->oo Sk fc->co Tk 

R{y) = lim sup - ^ - 1 = lim sup -^- = 1/lim inf -^-
n->oo n fc->oo Sk_i k-»oo Tk+\ 

3. Substitutive subshifts 

A subshift is substitutive, if it is the orbit closure of an aperiodic fixed point of 
a primitive substitution (see e.g., Durand et al [3] or Kurka [6]). Recall that 

30 



a substitution over an alphabet A is a map $: A -» A+. It extends to a monoid 
morphism *9: A* -• _4* and to a map *9: .4N -> AN by concatenation. A substitution 
is primitive, if its matrix Mab = \S(a)\b is primitive. The matrix M has then spectral 
radius a > 1 and corresponding left and right positive eigenvectors \i, v which are 
normalized to satisfy 

\iM = u\i, Mv = av, £ ^ = 1, Z/Va = l . 
aeA aeA 

By the Perron-Frobenius theorem we have 

r l%)l> r l%)l 
hm — y - = vajxb, hm — y - = va. 
k^oo or fc-oo or 

If 5 is a primitive substitution, then there exists a Aperiodic point x e AN and we 
assume that x is not cr-periodic. By passing to a power of S, we can assume that x 
is a fixed point, S(x) = x and moreover, the lower norm I 9\ = min {\S(a)\ :ae A} 
is at least 2. The corresponding subshift is the orbit closure 

and does not depend on the choice of the fixed point x. The subshift H9 is minimal 
and uniquely ergodic. In particular, for every y e Z5, 

lim #{i < n: yt = a}/n = \ia. 
n->oo 

We use the same symbol /a for the measure n(W) of a Borel set FV c 2^. The 
complexity function P(n) = #J5f"(25) = #{ue <&(?!$): \u\ = n} is sublinear, i.e., 
there exist 0 < a < b such that an < P(n) < bn for each n. The return times of 
cylinders are sublinear too. If u e J5f n(25), then an < T([W]) < bn. We show now 
that is substitutive subshifts r0 < r^ 

Proposition 1. If 2 is a substitutive subshift, then there exists y e 2 such that 

R{y) > Ely)-
Proof. Let 0 < a < b be constants which satisfy an < P(n) < bn and an < 

T([W]) < bn for each u e J5f "(25). Fix a real number 0 < c < 1 and assume that 
for all y e 2 and for all k, sk+1 < (c + 1) sk. Then sk < (c + l)* -1 and 

2k < P(sk) < bsk < b(c + 1)* 

and this is a contradiction. Thus there exists a y e 2 and an increasing sequence 
k\ < k2 < ..., such that ski+i — ski > csk.. It follows 

^K + l xkt + l . xki+l ' c ' ski . 
—! ! — > — • > ac 

__ skt
 skt+l skiSkt + l 

so R(y) - R(y) > ac. • 
We shall use frequently the following "decoding" theorem. 
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Theorem 2 (Mosse [8]). Let 9 be a primitive substitution with an aperiodic 
fixed point x. Define a function h:N ^ N by h(n) = |#(xp).n))|. Then there exists 
a context length m > 0 such that for every u e <Sf(Zs) of length at least 2m there 
exist ij e N with 0 < i < m, \u\ — m < j < \u\ and a unique word v e -^(-S) such 
that U[Uj) = S(v). Moreover, if x^n+M) = ufor some n, then there exist i',f such 
that n + i = h(i'\ n + j = h(f), and X[rj') = v. 

As an auxiliary construction we consider also the two-sided subshift 0 5 _= Az 

with the same language i?(®9) = J_f(Z5) = 5£(x). The cylinder of a word u e J£?(x) 
positioned at n e Z is the set [u]n = [ye ®$: y[„,n+|„u = u). The cylinder of the 
empty word is the full space \_X] = \_X]0 = ®3. We extend the substitution to 
a m a p 5 : i z - ^ Az by 

5(... w_2w_! • u0Ui...) = ... i9(u_2) 5(w_i) * i9(w0) 5(ui)... 

where the dot is placed immediately before the zero coordinate. As a consequence 
of Theorem 2 we have 

Proposition 3. 
1. 3(®s) <= 0, . 
2. 5 : 0,9 -> 0,51 is one-to-one and open. 
3. Ifue JSf(.s/), then I9([II]0) = [5(M)]O in ©^ 
4. For every y e®9 the exists a unique z e ®s and unique i < |5(z0)|, such that 

y = c?(S(z)). 

Definition 4. For a clopen (closed and open) set W _ ®9, we set 

l(W) = max {/ < 0: Vy e W, Vz e Az, (zu<x) = yVM => z e W)} 
p(W) = min {n < 0 : Vy, z e W, y[n,0) = z[n,0)} 
q(W) = max {n<0:Vy,zeW,y^n) = z[0,„)} 
r(W) = min {/ > 0 : Vy e W, Vz e Az, (zl_00.tf = y(-oo.o => ZGW)} 

Denote by \W\ = r(W) - l(W) the length of W and by c(W) e ^ W - P W tne 

common central part of W, such that for all y e W, y[p(w),q(\i)) = c(W). 

Then l(W) < p(W) < q(W) < r(W) and TV is a union of cylinders of length |1V| 
positioned at l(W). All these cylinders coincide at [p(W), q(W)). For the full set 
W = [X] we have l(W) = p(W) = q(W) = r(W) = 0. 

l(W) p(W) 0 q(W) r(W) 

1 1 1 1 1 

c(W) 

Figure 1. A clopen set 
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If W <= &s is a clopen set, then i9(JV) is a clopen set too. We investigate the 
properties of the iterates 9k( W). 

Proposition 5. There exists an algorithm which, given a clopen set W, computes 
the limit 

X(W) = limq(3k(W))-a-k. 
k-+ao 

Proof. Let / : A -> A be a finite dynamical system given by f(a) = S(a)0 and 
set A0 = {aeA: [a] n W =# 0}. If for all fc > 0 fk(A0) contains at least two 
elements, then q(9k(W)) = 0 and x(W) = 0. Assume that for some j > 0, fj(A0) 
is a singleton, so q(Sj(W)) > 0. Let vk = Sk(W\0tq{9k{w))y so q(Sk(W)) = \vk\. Since 
\S\ > 2, |i;fc+1| > 2\vk\ and |v>fc| tend to infinity. Set 

W- = 
2m 

m2 = 
m 

qj = q(ЗЩ), 
\9\-l 

where m is the context length from Theorem 2. Let j 0 > 0 be the first integer for 
which qjo > mx. For j > j 0 set 

vJ = {)i^mi,qj+m2):y^nw)}. 

By Theorem 2, for every y e 9j(W) we have qj+1 < \9(y[0,qj))\ + m and therefore 

l«%o,„+m2))l - 1J+i > l%[«,,«,+m2))l -m>m2-\9\-m>m2. 

Thus 9(y)[qj+1-mi,qj+1+m2) is a subword of 9(y[qj-mi,qj+m2)\ and I^+1 is determined 
by Vj. Since Vj are finite (and bounded), there exist j 0 <j<j + r such that 
Vj+r+t = Vj+i for all i > 0. There exist b,ce i?(£5) such that 

ye$(W) => yLo,qj) = b 
ye9>+'(W) => y[0,qj+r) = 9'(b)c 
ye9>+"(W) => y[0,qj+lr) = 9lr(b)d^r(c)... 9%c)c. 

It follows that 

m = lim \mn-mci _.., j. v„+<.. , . ,+ . . . ,+ . . . , z 
' - " x > ^ i < W ><|c| 

= «~7' I v„, + -^— X VCf • 
i<|tb| a -1 i<|c| 

Proposition 6. F/zer£ ex/sts an algorithm which, given a clopen set W, computes 
the limit 

y(W) = lim T(S\W)) • a~k > 0. 
fc—>co 

Proof. Set b = r(W) - l(W). Let U be the set of all words u e J£?(x) such that 

[W0,*XW) - W> [U[a,a + b)](W) = W 
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for some a > 0 (Figure 2). Let au = a be the least integer with this property, so 

\u\ = au + b. Assume that k > 0 and let w e 9k(W) n a - ^ W \ S k ( W ) ) . There 

exist z,veW such that w = Sk(z\ o<sk^w\w) = 9\v). By Theorem 2 there exists 

a > 0 with z = oa(v). Then u = z M v r ) ^ ) + a + f c ) e U and au = a, so x(Sk(W)) = 

l^(w[o,a«))l- For every ueU there exists a limit 

tu = lim |3 f c (u [ 0 , a J • a~k = X vU|. 
fc-°° i<au 

Since U is a finite set, we get Q(W) = min {tu: u e U} > 0. • 

0 

1 
b 

1 u 

au 

\ 

au + Ъ 

1 
w w 

t 
1{W) 

t 
r(W) 

t 
1{W) 

t 
r{W) 

Figure 2. Return time 

Definition 7. We say that a clopen set W <= &3 is decodable, if for some i e Z, 
G~1(W) <= 9(®$). If i > 0 is the least integer with this property, we write, by an 
abuse of notation, 

$-\W) = S-1(G-\W)) = {ze@s: &(S(z)) e W) 

We say that a clopen set W = &s is short, if both p(W) - l(W) and r(W) - q(W) 
are less than (m + l) |i9|/(|i9| — 1), where m is the context length from Theorem 2. 

If W is decodable, then clearly 9(9-\W)) = c-\W). 

Proposition 8. IfW is a clopen set with \c(W)\ = q(W) — p(W) > 2m, where 
m is the context length, then W is decodable, and 

A»-\n - 4»-(n * ̂ - ^ ^ +1 

4s-\w)) - ̂ -(w)) s ^ y 0 + i 

tf-W-Ks-(w)) tm-lX] + m + ' 
If W is also short, then so is S~\W). 

Proof. By Theorem 2 there exist ij such that p(W) <i <p(W) + m,q(W) — m< 
j < q(W) and unique v such that for each yeW, y^Uj) = S(v). Moreover, there exists 
ze@3 with 9(z) = <Jl(y) and z e [v]0, so W is decodable. We have 
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«-m - #-\n - ̂  +1* ̂ - , y ) + m + 1 -
Similarly we obtain the inequality forp(i9_1(W)) — /(«9-1(W)). while the inequality 
for <ft&-\W)) - p{9~\W)) is obvious. If FT is short, then 

(™ + 1 ) l * l + m 

^ W) - q{3-\W)) _ J f L ^ + 1 _ fc+Jjfl, 
so i9_1(KV) is short too. • 

Definition 9. Let V a W ~\ Qs be clopen sets. We say that V is a maximal 
clopen subset of W> ifx[V) > x(W) and there is no clopen set U with V' cz U cz W 
and x(U) > x(W). 

Lemma 1. Let U, V be maximal clopen subsets of W. If U n V 4= 0, then 
U = V. 

Proof. Assume that weU nV and set c = min {x(U),x(V)} > x(W)- For 
ck = min {q^U)), q(9h(V))} we have l im^^ ckoc~k = c. If u, v e U u V, then 

0*(MW) = #k(w)[o,Ck) = 9k{v\o,ck), 

so q(9k(U u V)) > ck and %([/ u V) > #(JV). Since U V are maximal, we get 
[ / = [ / u F = K n 

We construct now a finite graph associated to a substitution. Denote by if the 
set of all clopen sets W = && which are short and not decodable. By Proposition 
8, if is finite. We say that a pair e = (W0, W) is an edge, if W0e if and KV is 
a maximal clopen subset of W0. Denote by $ the set of edges. We have the source 
and target maps s,t:S -* if defined as follows. If e = (W0, W) e $ is an edge, 
then s(e) = W0. Its target is t(e) = Wx = 9~L{e\W), where L(e) > 0 is the least 
integer such that Wx is not decodable. Proposition 8 implies that Wx is short, so 
JVi G if. The offset of an edge e = (W0, W) is x(e) = x(W) - x(W0) > 0 and its 
probability is P(e) = fi(W)/fi(W0). Let ^ 0 = (if0, S0, s, t) be the subgraph of 
^ = {if^ S, s, t) of those vertices which are reachable from the initial vertex 
[A] = 0,9. Given a vertex We if0 the outgoing edges determine a clopen partition 
of IV and the sum of their probabilities is 1. 

Lemma 2. For every measurable set W = ®$we have 

^w))' zSkf 
Proof. For yeQ9 and n > 0 set kn = |5(y[0n))|. If u e JSf(@5), then 9(u) occurs 

in 5(wm>fcn_w)) only at positions |5(y[0J))|, such that y[jj+\u\) = u. If follows 
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,<_.__ _ _ *{'<«- = «bW-*(»)} 
n->oo /Cn 

- lim # ^ < " : yr°'") = " } - " - ^ " . . o ) D 
« fc» Efl.i* ,«o|5(a)r И-ЮO 

Proposition 10. For every yeZ_ there exists a path (ek:Wk^> Wk+l)k^0 in % 
from the initial vertex W0 = [X] and integers (lk)k^0 such that lk+l — lk = L(ek), 
and Wk = #_/*([y[o.sJ)- Conversely any infinite path in % with starts in W0 yields 
a unique point y e l ^ with this property. Moreover, 

Kb[o,s^) = P(eo)..-P(ek-1). 

Proof. For a fixed k set U„ = 5-"(>_,«))e ^ w n e r e 0 < n < /_ and /„ > 0 is 
the first integer for which Uik is not decodable. Then c(Ulk) < 2m and by induction 
we get that Ulk is short. Thus Wk = Ulkeif. Set Vk = S~lk(y[%Sk+1^. Since [>_,s„+1)] 
is a maximal clopen subset of [y[o,s„)], e = (Wk, Vk) is an edge and for Wk+l = t(e) 
(target) we get that y[0,Sk+l) = 9tk+1(Wk+1). We have /<[>_,so)]) = n([_) = 1 and 

_____________! = iM = p f e l n 

!t([y[o„)]) ~ / ^ ' « iW (k)' 

Proposition 11. For an edge e = (W0, W): W0 -> F_ consider a linear junction 

r(\ _u e(Wp)z + X(e) 
fe(z) = aez + be- e{m)aL{e) . 

Given y e _£$, let lk be the sequence from Proposition 10 and let kt be the sequence 
of times whose transitions pass through e, i.e., Wk. = W0 and Wk.+i = Wx. Then 

lim^-f/VUo. 
-oo T k . + i \Tfc.y 

The coefficents ae and be satisfy ae<\ and be > 0. Moreover, the product of 
slopes ae along a cycle of the graph is strictly smaller than 1. 

Proof. Since xki = r(|>[a5fci)]) = T(^(W_)) , and 

_ s_^_ _ lim 4»m - «W9) _ m _ m . _,.,, 

we get 
sfc)+l _ f (_l 

Чt+\ \Ч 

~Vи __«_, . __!____. + _̂ £ (___ _ я(wo) \ _ Áe) 
a'"'-aL(e> V . tД%i e(Ж)«L(ŕV (?(Wî)o^*) 

x(g) , s^.n x(e) __n 
т(W_)aLM т_,. т(W_)aL<<> 
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Since W <= W0 

l&W) ^ r(^(W)) ___^______.g^A 
0Ck <Xk (xk+L(e) 

so Q(W0) < Q(W_) aL^. If e = e0,..., ek__: W0 -+ Wx -> ... -> Wk = W0 is a cycle 
in % then ae = aeo... aek_1 = a--*o)-...-L(**-i) < 1 --

For the sequence sk/rk+_ we consider the graph ^2 whose vertices are (f0 and 
whose edges are S2 = {(d,e) e S1: t(d) = s(e)}. The source and target maps and 
probabilities are s(d, e) = d, t(d, e) = e, P(d, e) = P(e). The paths in % are in 
one-to-one correspondence with those paths in ^2 whose initial vertex e e S0 

satisfies s(e) = X in %. 

Proposition 12. For a pair of edges W0^WX^W2 consider a linear function 

_ e(w1)z + x(d)cc-^ 
gde[Z,~ Q(W2)^ 

Given y e 2.5, let lk be the sequence from Proposition 10 and let kt be the sequence 
of times whose transitions pass through d,e, i.e., Wk. = W0, Wki+X = W_ and 
Wki+2 = W2. Then 

__'----aJ-?--) = 0. 

Proof. We have 

**-•-9 J--

i - ° ° T/c, + 2 \Tki 

_ ski+í - ski cclk*+2 skj^ fzki+l Q(WX) \ x(d) 
_*. _щ+щ ч + 2 - T f c + i ^ + 2 в { щ ) aąe)j Q { Щ ) ЛЩ+Щ 

ádL + _ ^ . 0 __ = o п 
^ U /тгЛ 1ÁA+TÍA — V- l_| Q(W2) a

L^+LW " xki+l Q(W2) a
L^+LW 

Theorem 13. Let 3: A -> A+ be a primitive substitution with an aperiodic fixed 
point xe AN. Set 

r0 = min R(^_), rx = max R(L_) • 

Then 0 < r0 < rx < oo, R(y) = r0 a.e., and R(y) = rY a.e. 

Proof. Say that C __ iV0 is a final irreducible component of %, if for every 
W e C and W' e iT0 we have W' eC iff there exists a path from W to W'. Denote 
by Ci,..., Cp the final irreducible components of %. The set 1̂  __ 2,s of those 
j which ultimately attain Ct is open, has positive measure, and Y = Yx u ... u 7 p 

has measure 1. Say that a path e = e ,..., ej_i,ep..., ek_i in C, is simple, if 
e0,..., £,_! is a cycle, i.e., t(e,-__) = s(e0)> ô? •••> £/-_ are pairwise distinct, and 
e,,..., efc_i are pairwise distinct. The composition fej_l... feo has a unique fixed 
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point z and we set ze = f e f c l . . . fej(z). The set of simple paths is finite. Denote by 
c, > 0 the minimum of all l/ze over all simple paths in C,. Then for almost all 
yeYt, R(y) = c,. Consider now two different final irreducible components C„ C;. 
Since Yb YJ are open and (D9, o) is minimal, there exists k > 0 such that 
Ytj = Yt n o~k(Yj) is nonempty and has positive measure. For almost all y e Ytj we 
have R(y) = ct and c, > ^(^(y)) > Cj. Thus all c, are equal c{ = ... = cp = r0 > 0 
and for allmost all y e H9 we have R(y) = r0. If y e H9\ Y, then for some k > 0, 
ok(y) e y, so R(y) > R(ok(y)) > r0, and r0 = min R(_l3). 

Similarly denote by Dl9..., Dp all final irreducible components of &2, Yt _l H9 

the set of those points which ultimately attain Dt. If e = e0,..., ej_x, ej9..., ek_1 is 
a simple path in &2, then the composition gejl... geo has a single fixed point z and 
we set ze = gek_1... ge(z). Since all coefficients of all functions ge. are positive, 
we have ze > 0. Denote by dt < oo the maximum of all \/ze over all simple paths 
in Dt. Then for almost all yeYt, R(y) = dt. Consider now two different final 
irreducible components Dh D}. Since Yt, Yj are open and (_]& o) is minimal, there 
exists k > 0 such that Yi}• = Ytn o~k(Yj) is nonempty and has positive measure. 
The set ok(YtJ) _l Yj has a positive measure too, so for allmost all yEok(YtJ), 
R(y) = dt. If y = ok(z) with z e Ytj, then dj = R(y) < R(z) < dt. So all dt are equal, 
d! = ... = dp = ru and R(y) = rj for allmost all yeY. If ye H9\ Y, then there 
exists k > 0 and z e Ywith y = ok(z), so R(y) < R(z) < rx. Thus r t = max R(ZS). 
By Proposition 1, r0 < rj. • 

Corollary 14. There exists an algorithm with computes the values r0 and rx of 
a given substitution. 

4. The Feigenbaum subshift 

The Feigenbaum subshift is generated by the substitution 

0 ^ 11 
1 -> 10 

with fixed point x = 5°°(1) = 1011 1010 1011 1011 1011 1010 1011 1010... The 
context length is m = 2, the spectral radius is a = 2, and the normalized 
eigenvectors are \i = (f, |), v = (1,1). We show that we get the graph with vertices 
W0 = [X], TV! = [1]0, W2 = [11]0. By Proposition 6 we get Q(WX) = Q{W2) = 1. 
Denote by Ck, the common prefix of 3k(0) and Sk(l), so Sk(W0) = [Ck]0. We have 
d = 1, C2 = 101, C3 = 1011101,... and \Ck\ = 2k - 1. If ue_?(_]9), then 
<$k{W]o)) = $\u) Ck, so q(9k([u]0)) = (\u\ + l)2fc - 1 and 

x(M,)-. i .m
( M + ' » 2 ' - 1 = M + l. 
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In the graph there are two edges leading from the initial vertex W0 = [A] : e = 
(W0, [1] 0) : W0 -> Wx with L(e) = 0 and / = (W0, [0]0). Since [0 ] 0 = [01] 0 and 
T _ 1 ( [ 0 1 ] 0 ) = [1]0 , we get / : W0 -> Wx with L(f) = 1. Continuing in this way we 
get edges (Figure 3) 

WoZ >W2 

Figure 3. The graphs of the Feigenbaum subshift 

e = ([X],[í]): W0 

f=([4[01]): W0 

a = ([l],[101]): W, 
l> = ( [ l ] , [ l l ] ) : W, 
c= ([11], [1101]): W2 

Wh L(e) = 0, X(e)=l 
Wu L(f)=\, X(f)=2 
Wy L(a) = 2, x(a) = 2, fa(z) = 

W2, L(b) = 0, X(b) = 1, fb(z) = z+í 
Wu L(c) = 2, X(c) = 2, f(z) = ^ 

Z + 2 

d = ([11], [11101]): ГҪ-Wţ, L(d) = 2, X(d) = Ъ, fd(z) = 

9db 

4 
z + 3 

4 

9bc = 9ьd 

1 2 3 \ 1 2 

Figure 4. The functions of the Feigenbaum subshift 

For any z e U we have lim n_ 0 0 /*(z) = 2, and 2 is the fixed point of / . The 
maximum of iteratuins if functions / , / , / and fd is attained by fb(2) = 3. The 
minimum is attained by the iterations of the function fbc(z) = / ( / ( z ) ) = (z + 3)/4 
whose fixed point is 1. Thus we get 

1 < lim inf — < lim sup — < 3 , r 0 = - . 
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By Proposition 12 we get 

M 2 ) = ——— > 9ab{z) = z + 1, gbc(z) = —^—, aM(z) = — — , 

M 2z + 1 . 1 . 4z + 3 4z + 3 
M-) = — 4 — ' 9cb{z) = z + 2> 9da{z) = — g — , gdb{z) = — - j — • 

The maximum of iterations of these functions is attained from the fixed point 1 
of Qaa by <ju(l) = 2. The minimum is attained at the fixed point of the function 

9cbc(z) = 9bc(gcb{z)) = n r w h i c h i s z = i s o 

- < lim inf < lim sup < 2, rx = 2. 
Z fe-»oo tfc+1 fc—>oo ~k+\ 

Corollary 15. 

- < R{У) -- 1» " K W " 2 ' - ^ = a в - ^ = 2 a c 

5. The Fibonacci subshift 

The Fibonacci subshift is generated by the substitution 

9 - \ l -> 10 

with fixed point x = 5°°(1) = 10110 101 10110 10110101 1011010110110... The 
context length is m = 1. The spectral radius a = ^ - satisfies a2 = a + 1. The 
normalized eigenvectors are 

/3_-V5 V5-l\ A/5 + 1 3 + N/5 
M V 2 * 2 j ' V ~ V 2 V 5 ' 2 V 5 

The Fibonacci numbers Fk = (ak+1 — ( — oc)~k~l)/y/5 are F0 = F! = 1, F2 = 2, 
F3 = 3, F4 = 5,... We have \Sk(0)\ = Fh \$k(l)\ = Fk+l. We show that the vertices 
of the graph are W0 = [2] and Wx = [1] (Figure 5). 

í> 
Figure 5. The graph of the Fibonacci subshift 
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Set Ck = x9t"1(l)... .9(1) 1, so d = 1, C2 = 101, C3 = 101101.... Then 

- W = [Q]0, ^(w,) = [^(1) Q] 0 = [C t + 1]0. 

a 
1 
1 
1 s 
1 ^/ 

y/y \ 
' / i 
/ I 

1 
a 

sЛ / 
s' ^ / ^ ̂  i 

i 

1 . 
a ä 

9a 

9b 

a 
Figure 6. The functions of the Fibonacci subshift 

We have edges 

* = (M> C 1 ] ) : ^o -> Wf, L(c) = 0, 
d = ( [ 4 [ 0 1 ] ) : KVo-Wi, L(d) = l, 

a = ([l],[101]): K V ^ ^ , L ( a ) = l , X(a) = a3/Jl fa(z) = \ + 1 

6 = ([1], [1101]): WI-WL L(b) = 2, X(b) = ay 5, fb(z) = f2 + 1 

Indeed (̂Wi) = Vi = a2/^/5 and 

aJ 

X(a) = lim Щ?Й = , i m % = 
fc^oo a* fc-»oo cc 

m. ш ffl101^ r Fk+з a 
fc = hm — г - — 

fc-*oo cŕ fc-^oo a " V5 
The bounds are fixed points ffl(a2) = a2, f,(a) = a, so 

~2 

a = ct — 1 Tk a — 1 

For sfc/Tfc+1 = Sfc/F/fc+1 we get functions 

9aa(z) = gba(z) = ga(z) = , 

with fixed points ga(cc) = a, gb£) = \, so 

/ 5 ^ ^ 2 - 2 
< — < г = a2, r0 = a 2 

z + 1 
gaъ(z) = gъь(z) = 9ь{z) = — — 

a cr 

1 S* 1 

< < = a, 1 тk+1 a - 1 
Гi = a 
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Corollary 16. 

-- < R(x) < - < R(x) < a 
cr ~v ' a v 7 

with R(x) = a-2, R(x) = a almost everywhere. 
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