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Local Return Rates in Substitutive Subshifts

PETR KURKA
Praha

Received 6. March 2003

Local lower and upper return rates express the asymptotic growth of the Poincaré return
time of cylinders around a given point of a dynamical system. We show that in
substitutive subshifts the lower (upper) local return time assumes almost everywhere its
minimum (maximum) value and give an algorithm which computes these two values.

1. Introduction

In a topologically transitive dynamical system (X , F), for every neighbourhood
U of a point x € X there exists k > 0 such that F{U) n U # §. The least k with
this property is the Poincaré return time t(U) = min {k > 0: F{U) n U =% 0} of
U. As U shrinks, 7(U) grows (except when x is a periodic point). This dependence
is expressed by the local return rates introduced by Hirata et al [4]. The lower and
upper local return rates are function R, R;:X — [0, c0] defined for a given
dynamical system (X, F) and a measurable partition ¢ of X. If £ < AN is
a subshift, and ¢ = {[a]: ae A} is the canonical clopen partition, then

R(y) = lim inf (i), ., R(y) = limsup {Dronl) k)]).
k—c0 k k—c0 k
Here y € Z and [y[o, 1] = {z€ Z: z[o.x) = Y[o,} is the cylinder of the prefix of y of
length k.
Hirata et al. [4] show that both R and R are subinvariant, i.e., R(o(y)) < R(y)
and R(c(y)) < R(y). Moreover if y is an invariant measure and (£, o, p) is ergodic,
then both R and R are p-almost everywhere constant, so there exist constants
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0 <1, <r < o0, such that R(y) = r, a.e. and R(y) = r, a.e. Saussol et al. [9]
show that if (X, 0, u) is ergodic with positive entropy, then R(y) > 1 almost
everywhere. This does not hold in systems with zero entropy. Cassaigne et al. show
that ry = 3;2& < 1 holds for the Fibonacci subshift, which is the Sturmian subshift
of the golden angle rotation. Afraimovich et al. [1] construct examples of irrational
rotations with unbounded continued fractions where r, = 0. These results are
generalized in Kupsa [5] who treats the general case of irrational rotations and their
corresponding Sturmian subshifts.

In the present paper we present another generalization of Cassaigne et al. [2].
We show that in substitutive subshifts, r, is the minimum of the range R(Z) while
r, is the maximum of the range R(X). Moreover we describe an algorithm which
for a given substitution computes r, and r;.

2. Subshifts

For an alphabet A denote by A* the set of finite words and by A™ the space of
one-sided infinite words with the product topology. Denote by |u| the length of
a word u € A* and by |u|, the number of occurrences of a letter a in u. The empty
word is denoted by 4 and A* = A*\{A}is the set of nonempty words. We write
v uif v =up; = u... u_,is a subword of u for some 0 < i < j < |ul.

The shift map ¢ : AN — AN is defined by o(x), = x;,;. A subshift is any subset
2 < A" which is closed and o-invariant, i.e., 6(X) S Z. A subshift is determined
by its language &(X) = {ue A*:3xe X, uC x}. The cylinder set of a word
ue L(Z)is [u] = {xe T:xp) = u}.

Assume that a subshift £ = A" does not have isolated points. Given y € T we
define the sequence of free positions s = (s)izo in y by induction. Set s, = 0 and if
S,—1 has been already defined, then s, > s,_ is the largest integer, such that for all n,

St <1 < s =[] = Dl
If we set 7, = 1([V[o,sy])» then for 5,_; < n < s, we have ([ yo,,]) = 74 and

R(y) = lim inf 00D _ e B gt sup %

n—oo n k—soo Sk k—soo Ty
R(y) = lim sup dLyonl) = lim sup Sk _ 1/lim inf Sk
n— o0 n ks Skp—1 k=  Tr4q

3. Substitutive subshifts

A subshift is substitutive, if it is the orbit closure of an aperiodic fixed point of
a primitive substitution (see e.g., Durand et al [3] or Kirka [6]). Recall that
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a substitution over an alphabet A is a map $: 4 - A™. It extends to a monoid
morphism $: A* - A* and to a map 3: AY — AN by concatenation. A substitution
is primitive, if its matrix M, = |.9(a)|,, is primitive. The matrix M has then spectral
radius « > 1 and corresponding left and right positive eigenvectors u, v which are
normalized to satisfy

uM =oau,  Mv = av, Yu, =1, Y pave = 1.

acA aeA
By the Perron-Frobenius theorem we have

m |'9k(a)|b _

lim —7= = v,
k— 00 O(k e k-0 O

limi(a)| =

k a*

If $is a primitive substitution, then there exists a J-periodic point x € AN and we
assume that x is not g-periodic. By passing to a power of 3, we can assume that x
is a fixed point, 9(x) = x and moreover, the lower norm | 9| = min {|9(a)| : a € A}
is at least 2. The corresponding subshift is the orbit closure

Xy = W = {ye AN :Vn, 3k, Yo = x[k,k+n)}

and does not depend on the choice of the fixed point x. The subshift X, is minimal
and uniquely ergodic. In particular, for every y € g,
lim #{i<n:y, =a}/n=p,.

We use the same symbol pu for the measure ,u(W) of a Borel set W < Xg. The
complexity function P(n) = #%"(Zg) = # {ue L(Zy): [u| = n}is sublinear, ie.,
there exist 0 < a < b such that an < P(n) < bn for each n. The return times of
cylinders are sublinear too. If u € #"(Zy), then an < t([u]) < bn. We show now
that is substitutive subshifts r, < r;.

__ Proposition 1. If X is a substitutive subshift, then there exists y € X such that
R(y) > R(y).
Proof. Let 0 < a < b be constants which satisfy an < P(n) < bn and an <

1([u]) < bn for each u e £"(Z,). Fix a real number 0 < ¢ < 1 and assume that
for all y € X and for all k, 5,,; < (¢ + 1) s;. Then s, < (c + 1)*~' and

28 < P(sy) < bsy < b(c + 1)

and this is a contradiction. Thus there exists a y € X and an increasing sequence
k; <k, < ..., such that s,,,; — s, > csy,. It follows

T+l Th+1 > Tiy+1 " C " Sk, > ac

_ Sk; Skl SkSki+1
so R(y) — R(y) = ac. O

We shall use frequently the following “decoding” theorem.
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Theorem 2 (Mossé [8]). Let 3 be a primitive substitution with an aperiodic
fixed point x. Define a function h: N — N by h(n) = |\9(x[0,,,))l. Then there exists
a context length m > 0 such that for every u € 2’(29) of length at least 2m there
existi,je N with0 < i < m,|ul —m < j < |u| and a unique word v € #(Z) such
that ug; ;) = (v). Moreover, if X(, .+ = u for some n, then there exist i, such
that n + i = h(i'), n + j = h(j"), and x5 = v.

As an auxiliary construction we consider also the two-sided subshift @, = A%
with the same language £(0;) = £(Z,) = £(x). The cylinder of a word u € £(x)
positioned at ne Z is the set [u], = {y€ Oy: Y[, n+im) = u}. The cylinder of the

empty word is the full space [41] = [1], = ©;. We extend the substitution to
amap 9: A% —> A% by

oo u_gu_y - uguy ) = .o H(u_y) Hu—y) - Huo) (uy)...

where the dot is placed immediately before the zero coordinate. As a consequence
of Theorem 2 we have

Proposition 3.

1. 9(6y) < 0.

2. §:0y - Oy is one-to-one and open.

3. Ifue L(Zy), then ([u]o) = [9(w)]o in ©,.

4. For every y € @y the exists a unique z € ©y and unique i < |9(2o)\, such that
y = ¢'(9(2)).
Definition 4. For a clopen (closed and open) set W = @y, we set

(W) = max {I<0:Vye W,Vze A% (z,0) = Vj0) = 2€ W)}
p(W) = min {n < 0:Vy,z€ W, y,0) = Z[n0)}
g(W) = max {n < 0:Vy,ze W, yjo.n = Z[o,n}
W) =min {{>0:Vye W,Vze 4% (z_w,) = Y(cwy = 2€ W)}
Denote by |\W| = r(W) — (W) the length of W and by c(W)e AN)~H") the
common central part of W, such that for all y € W, y[yw) qm) = c(W).
Then I(W) < p(W) < q(W) < r(W)and Wis a union of cylinders of length |W|

positioned at I(W). All these cylinders coincide at [p(W), g(W)). For the full set
W = [A] we have (W) = p(W) = g(W) = r(W) = 0.

(W) p(W) 0 g(W)r(w)
b | oo
<

W)
Figure 1. A clopen set
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If W< @y is a clopen set, then (W) is a clopen set too. We investigate the
properties of the iterates 9(W).

Proposition 5. There exists an algorithm which, given a clopen set W, computes

the limit
#(W) = lim g(${(W))- a~*.

k=00

Proof. Let f: A — A be a finite dynamical system given by f(a) = 9(a), and
set Ay = {ae A:[a] "W % 0}. If for all k> 0 f*A4,) contains at least two
elements, then g(3(W)) = 0 and y(W) = 0. Assume that for some j > 0, f/(4,)
is a singleton, so g($/(W)) > 0. Let v, = (W )0, osxwy)» 0 4(9(W)) = |v]. Since
|9 = 2, lvgs1] = 2|ve| and |v,| tend to infinity. Set

m = lrlgg;ll-‘, m, = [ﬁ-—l-" q; = q('gj(M)’

where m is the context length from Theorem 2. Let j, > 0 be the first integer for
which g;, = my. For j > jj, set

Vi = Dlg-mgsmy: ¥ € (W)}
By Theorem 2, for every y € /(W) we have ¢;,1 < |9(V[o,q))l + m and therefore
|3(Y[o,q,-+m2))| — gj+1 = I‘9(Y[qj,qj+m2))l —mz=my: |‘9| —mz=m,.
Thus 3(V)q, ., ;—my,q;1+ms) iS @ subword of H(Vig,—my.q;+my) and ¥, is determined
by V. Since V; are finite (and bounded), there exist j, < j < j + r such that
Viersi = V4 for all i > 0. There exist b, c € 3():,9) such that
y ESJ(W) = V[o,q) = b

ye I (W) = ypog,,) = 9b)c

Y SHI) = Yoy = (B 9Ve)... 90)c.
It follows that
19"(b) 8“-V7c)... 9(c) ]

X(W) = lim e = o~/ z Vp, + (OC_J_r + a7 4 ) Z Ve,
I-0 o/ i<|b| i<|c|
. o~/
= a—J Z vbn + r Z vci D
i<|b| & — 1i<|cl

Proposition 6. There exists an algorithm which, given a clopen set W, computes

the limit
W) = lim «($4W)) -« > 0.

k— o0

Proof. Set b = r(W) — [(W). Let U be the set of all words u € #(x) such that
[wonlimy E W,  [Uaarn]m S W
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for some a > 0 (Figure 2). Let a, = a be the least integer with this property, so
lul = a, + b. Assume that k > 0 and let we W) n o= W)IYW)). There
exist z, v € W such that w = 9%(z), 6" ")(w) = 9(v). By Theorem 2 there exists
a > 0 with z = ¢*v). Then u = zpw)w)+ars € U and a, = a, so 1($W)) =
|9(u[o0,a,))|- For every u € U there exists a limit

t, = l}im |, ag)l - a ™ = Y vy

i<ay,

Since U is a finite set, we get o(W) = min {t,:ue U} > 0. O
0 b a, a,+b
1 Lo 1
W w
! T T !
(w) (W) (W) (W)

Figure 2. Return time

Definition 7. We say that a clopen set W = @y is decodable, if for some i€ Z,
o7 (W) < 9(®y). If i = 0 is the least integer with this property, we write, by an
abuse of notation,

I (W) = 97 (o7i(W)) = {ze Oy : d{(I(2)) e W}

We say that a clopen set W < @, is short, if both p(W)— (W) and r(W) — q(W)
are less than (m + 1) |3|/(19] — 1), where m is the context length from Theorem 2.

If W is decodable, then clearly 3($~'(W)) = a~/(W).

Proposition 8. If W is a clopen set with |c(W)| = g(W) — p(W) = 2m, where
m is the context length, then W is decodable, and

(W) —q(W) + m

n97' (W) — q(97'(W)) < X +1
48~ (W)) — p9-'(W)) < M%W) i1
P w) — i w)) <=L Ry

If W is also short, then so is 3~ (W).

Proof. By Theorem 2 there exist i, j such that p(W) < i < p(W)+m, g(W)—m <
j < q(W) and unique v such that for each y € W, yj;) = 9(v). Moreover, there exists
z € Oy with 9(z) = ¢'(y) and z € [v]o, so W is decodable. We have
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(91 9) - atgwy < =Ty L= )

Similarly we obtain the inequality for p($~'(W)) — I[($~'(W)), while the inequality
for g(9~1(W)) — p(9~'(W)) is obvious. If W is short, then

+ 1.

(m+1) 9|
-1 -1 19| — 1 (m+ 1)]9|
97109 — o) < HI=T Ty < e D
so 97Y(W) is short too. 0

Definition 9. Let V = W < ©, be clopen sets. We say that V is a maximal
clopen subset of W, if x(V) > x(W) and there is no clopen set U with V < U ¢ W
and y(U) > x(W).

Lemma 1. Let U,V be maximal clopen subsets of W. If U NV % 0, then
U=V.

Proof. Assume that we U NV and set ¢ = min {y(U),x(V)} > x(W). For
¢, = min {g(¥(U)), g($4(V))} we have lim_,, c,a=* = c. If u,v € U U V, then

Huho,cy = FWo.c = F(V)o0.c)>

s0 g(IU U V)) = ¢ and y(U U V) = g(W). Since U V are maximal, we get
U=UuV=VT. O

We construct now a finite graph associated to a substitution. Denote by #” the
set of all clopen sets W < ®, which are short and not decodable. By Proposition
8, ¥ is finite. We say that a pair e = (Wg, W) is an edge, if Wy #  and W is
a maximal clopen subset of W;,. Denote by & the set of edges. We have the source
and target maps s,t:& — W defined as follows. If e = (W, W) € & is an edge,
then s(e) = W,. Its target is t(e) = W; = 9_L(e)(W), where L(e) > 0 is the least
integer such that W, is not decodable. Proposition 8 implies that W] is short, so
W, € #. The offset of an edge e = (W, W) is x(e) = x(W) — x(Wo) > 0 and its
probability is P(e) = u(W)/u(W). Let %, = (#5, &y, s, t) be the subgraph of
G = (W, & s,t) of those vertices which are reachable from the initial vertex
[A] = ©y. Given a vertex W € #; the outgoing edges determine a clopen partition
of W and the sum of their probabilities is 1.

Lemma 2. For every measurable set W = ©, we have

Mwm=zf%@T

Proof. For y € @ and n > 0 set k, = |9(yjo,n)l- If u € £(Oy), then $(u) occurs
in 9(t4, x,—m) only at positions |H(yo,)l, such that yp;;, ) = u. If follows
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#{i < kn: IW)poss) = 9()}

W(3([]y) = lim

n—oo kn
g i< = 0 all)
n—o n kn ZaeA #0“9(0)‘

Proposition 10. For every y € X, there exists a path (e, : W = Wiyi)iso in %
from the initial vertex Wy = [A] and integers (I)xo such that I, — I, = L(ey),
and W, = 9~[y10,5,.])- Conversely any infinite path in 9, with starts in W, yields
a unique point y € Ly with this property. Moreover,

#yro.s0]) = Pleo) -+ Plew-1)-

Proof. For a fixed k set U, = 97"(y[o,5) € #> where 0 < n < |, and [, > 0 is
the first integer for which U, is not decodable. Then ¢(U,) < 2m and by induction
we get that U,_is short. Thus W, = U, € #. Set Vi = 97 %(y[q,,., ,)- Since [Y{o.s. 1]
is a maximal clopen subset of [y ], ¢ = (Wi Vi) is an edge and for W, = t(e)
(target) we get that yo,,,,) = 9%+ (Wi,1). We have u([ypo.s)]) = u([A]) = 1 and

D)) _ #8"V) _ M) _ P(ey)

WDvpsol) — WKW (W)
Proposition 11. For an edge e = (Wo, W) : Wy = W, consider a linear function
e(Wo) z + (e)
Q(I/Vl) aL(e)

Given y € Ly, let |, be the sequence from Proposition 10 and let k; be the sequence
of times whose transitions pass through e, i.e., Wi, = W, and W,y = W,. Then

O

flz) =az +b, =

The coefficents a, and b, satisfy a, < 1 and b, > 0. Moreover, the product of
slopes a, along a cycle of the graph is strictly smaller than 1.

Proof. Since 7, = ©([¥[o,5)]) = 7($"(W%)), and

. Skl — Sk, ) (W) — q(9"(W,
tim St % g AE) Z AP ) ) = 0,
we get
S’(,‘+1 _ &
Thi+1 fe<fk.->
_ St = Sy @k +&< w __e(W) )_ 1e)
olki - o) T+t Tk \Thg+1 Q(Wl) ok Q(VVl) o)
M) | Sug__xe) _
~ (W) o * T, 0 (W) ok 0.
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Since W < W,

(90 _ (7))
ak < ak ak+L(e)
s0 o(W) < o(W) o). If e = ey, ..., ey : Wy = Wy > ... = W, = W, is a cycle
in 4, then a, = a,, ... a,,_, = a~Heo)——Lle—1) < 1, O

For the sequence s;/7,,; we consider the graph %, whose vertices are &, and
whose edges are & = {(d,e) € £*:t(d) = s(e)}. The source and target maps and
probabilities are s(d,e) = d, 1(d, ¢) = e, P(d, e) = P(e). The paths in %, are in
one-to-one correspondence with those paths in % whose initial vertex ee€ &
satisfies s(¢) = A in %,

Proposition 12. For a pair of edges Wy > W, > W, consider a linear function

_ W)z + y(d)a~"
gde(z) - Q(VVZ) aL(e)

Given y € Ly, let I, be the sequence from Proposition 10 and let k; be the sequence
of times whose transitions pass through d,e, ie., W, = Wy, W,,.1 = W, and

Wi+2 = Wa. Then
o Skt Sk,
lim — Ga = 0.
isoo Th42 Thki+1

Proof. We have

Ski+1 Sk,
— Yae
Thy+2 Thi+1

_ ket — S %M sy <Tk.-+1 __em) ) ___xd
ok + o LAd)+Lie) Thr2  Tho+t \Tkt2 Q(VVz) oL@ Q(VV;) L)+ LE)
xd) Sk x(d) B
- o(W) o0+ 1 " Thi+1 0~ o(Wy) oL@+ 0. O

Theorem 13. Let 3: A — A* be a primitive substitution with an aperiodic fixed
point x € AN, Set _
g = min B(Z.g) ’ r, = max R(Z‘g) .

Then 0 < ry <1, < ©, R(y) = 19 a.e., and R(y) = r, a.e.

Proof. Say that C = ¥} is a final irreducible component of %, if for every
We Cand W' e #, we have W' € C iff there exists a path from W to W’. Denote
by Cj,..., C, the final irreducible components of %, The set Y¥; = X, of those
y which ultimately attain C; is open, has positive measure, and Y = YU ... U Y,
has measure 1. Say that a path e =e,..., ¢_y,¢;,..., ¢_; in C; is simple, if
€, ..., €i_1 is a cycle, i.e., t(e;_;) = s(ey), e, ..., ¢_; are pairwise distinct, and
€ ..., €. are pairwise distinct. The composition f, _, ... f,, has a unique fixed

37



point z and we set z, = f,,_, ... f,(2). The set of simple paths is finite. Denote by
¢; > 0 the minimum of all 1/z, over all simple paths in C;. Then for almost all
yey, g( ) = ¢;. Consider now two different final irreducible components C;, C;.
Since Y, Y; are open and (X4 0) is minimal, there exists k > 0 such that
Y; = Y, n 67X(Y)) is nonempty and has positive measure. For almost all y € Y;; we
have R(y) = ¢; and ¢; > R(6"(y)) = ¢;. Thus all ¢; are equal ¢; = ... = ¢, =1, >0
and for allmost all y € £, we have R(y) = r,. If y € Z,\Y, then for some k > 0,
a¥(y) € Y, so R(y) = R(6*(y)) > r,, and r, = min R(Zy).

Similarly denote by Dy, ..., D, all final irreducible components of %, ¥, = X,
the set of those points Wthh ultlmately attain D If e = e, ..., ¢;_y, €, .. ek 1 is
a simple path in %, then the composition g,,_, ... g., has a single fixed point z and
we set z, = g, _, ... gej(z). Since all coefficients of all functions g, are positive,
we have z, > 0. Denote by d; < co the maximum of all 1/z, over all simple paths
in D, Then for almost all ye Y, R(y) = d.. Consider now two different final
irreducible components D, D;. Since Y, Y; are open and (29, a) is minimal, there
exists k > 0 such that ¥; = ¥, n ¢~XY)) is nonempty and has positive measure.
The set ¢*(Y;) = Y, has a positive measure too, so for allmost all y e o*(Y;),

Rly)=d.Ify = a( ) with z € Y;;, then d; = R(y) < R(z) < d.. So all d, are equal,

dy=..=d,=r, and R(y) = r, for allmost all ye Y. If y e Z,\Y, then there
exists k > 0 and z € Ywith y = 64z), so R(y) < R(z) < r,. Thus r; = max R(Zy).
By Proposition 1, ry < r;. O

Corollary 14. There exists an algorithm with computes the values r, and r, of
a given substitution.

4. The Feigenbaum subshift

The Feigenbaum subshift is generated by the substitution

0 - 11
‘9={1-+10

with fixed point x = 9°°(1) = 1011 1010 1011 1011 1011 1010 1011 1010... The
context length is m = 2, the spectral radius is o« = 2, and the normalized
eigenvectors are pt = (3,3), v = (L, 1). We show that we get the graph with vertices
W = [4], Wi = [1]o, W, = [11],. By Proposition 6 we get o(W;) = o(W5) = 1.
Denote by C,, the common prefix of 9%0) and 9%1), so 94W;) = [Ci]o. We have
Ci=1, C, =101, C; = 1011101,... and |G = 2 — L. If ue Z(X,), then

o(9[u]o) = 94u) Cy, so q(F([u]o)) = (lul + 1)2* — 1 and

Al = tim PLFDZZL gy
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In the graph there are two edges leading from the initial vertex W, = [1]:e =
(W, [1]0) : Wo — W; with L(e) = 0 and f = (W, [0]o). Since [0], = [01], and
t7'([01],) = [1]o, we get f : Wy » W, with L(f) = 1. Continuing in this way we
get edges (Figure 3)

a ca c
&) :
(d K%\ ab bc
WO:f3W1@W2 aaCa———)b bd
d db
da d

Figure 3. The graphs of the Feigenbaum subshift

e=([[1):  Wo-w
/= (2} [01]): W~ W,
a = ([1],[101]): W, > W,
b=(101): WMo
c = ([11],[1101]): Wo> W,
d = ([11],[11101]): W5 > W,
5l fo
| fa
l : fa
! fe
1 =—_ . Z
1 2 3 ;1 2

Figure 4. The functions of the Feigenbaum subshift

For any z € R we have lim,_,, f+(z) = 2, and 2 is the fixed point of f,. The
maximum of iteratuins if functions f,, f, f. and f; is attained by f;(2) = 3. The
minimum is attained by the iterations of the function f,(z) = f.(/i(z)) = (z + 3)/4
whose fixed point is 1. Thus we get

1

.0 S . S
lshmmf—"shmsup—ks?:, rp=—-.
k—»oo Ty k—oo Ty 3
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By Proposition 12 we get

z4+1
dad2z) = 5

2z + 1 1 4z + 3 4z + 3
gca(Z) = 2 N gcb(Z) =z + 5, gda(z) = 8 , gdb(z) — 4 .

z+1 z+1
4 s gbd(z)= 4 s

gab(z) =z + 1, gbc(z) =

The maximum of iterations of these functions is attained from the fixed point 1
of guu by ga(1) = 2. The minimum is attained at the fixed point of the function

23 a. o 1

9erd2) = 9bdges(2)) = % which is z = 3, so
| I ) s
= <liminf = < limsup —— <2, 1, =2.
2 k—oo  Tk41 k=0 Tk41

Corollary 15.

1

- 1 -
3< R)) <1, -<R())<2, R(y= 3 @€ R(y) =2 ac.

N =

5. The Fibonacci subshift

The Fibonacci subshift is generated by the substitution

0-1
‘9‘{1_>1o

with fixed point x = 9*(1) = 10110 101 10110 10110101 1011010110110... The
context length is m = 1. The spectral radius o = 3@ satisfies > = o + 1. The
normalized eigenvectors are

_(3—\/5 \/§—1> v_<\/§+1 3+\/§>
# 2 2 ) 25 25
The Fibonacci numbers F, = (&+' — (—o)™*Y)/5 are F, = F, = 1, F, = 2,

F, = 3,F, = 5,... We have |9%0)| = F,, |9(1)| = Fy;. We show that the vertices
of the graph are W, = [4] and W] = [1] (Figure 5).

(e

[+
Wo S W,
© O
b

Figure 5. The graph of the Fibonacci subshift
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Set C, = $¥7'(1)... 9(1) 1,80 C; = 1, C, = 101, C5 = 101101 .... Then
(W) = [Ci]er  9(W) = [94(1) Culo = [Cicxr]o-
aJ ———— fa { Ga
| ! @ =T
| | fb | |
T T | |
a — ] | | gb
| |
| |
1 é ______ _1
1
T . o 1 a
Figure 6. The functions of the Fibonacci subshift
We have edges
=10 W W L =0,
- [ [01):  W- W L@ =1, )
= ([1], [101]): W, - W, L)=1, xa) = oc3/\/§, fa(Z) =4
= (. [101]): W > ws L(p) =2, (b)) = '1f5 fil) =5 +
Indeed o(W)) = v, = fo/\/g and
k 3
X(a) |9 (01)| — lim Fk+2 0‘__
k—»go ot k— 0 OC \/5
k 4
#(b) = tim IOV _ (l,fn)l lim 22 - %
k— oo o k— o0 a \/5
The bounds are fixed points f(o?) = o, f,(®) = o, so
2
oc=a2a_1$i—isail=a2, ro = o2
For s/ty+1 = si/F,,, we get functions
z+1 z+1
gaa(Z) = gba( ) = ga( ) o ’ gab(z) = gbb(z) = gb(z) = az
with fixed points g,(¢) = o, g,(2) = %, so
1 1 Sk 1
- = <—=< =aq, r=a

a o =171, a—1
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Corollary 16.
1

255(")3 Sl—(-(x)ga

R+

o
with R(x) = a~2 R(x) = a almost everywhere.
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