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In this paper, the essentials of the algebraic theory of (generally non-idempotent) left
distributive groupoids are presented.

0. Introduction

The (left and right) equations (or identities, laws, etc.) of selfdistributivity for
a binary operation (say multiplication) are expressed as

x(yz) = (xy) (xz) and  (zy)x = (2x)(yx).

Inasmuch, for instance, the operation of arithmetic mean satisfies both of them,
they were implicitly present from ancient times. On the other hand, the first
explicit allusion to selfdistributivity seems to appear in [Pei, 1880]. Looking at the
pages 33 and 34 of that article, we can read the following comment on self-
distributivity:

“These are other cases of the distributive principle. ... These formulae, which
have hitherto escaped notice, are not without interest.”

Another early work which is worth mentioning is [Sch, 1887]. We can already see
there (p. 249) a particular example of a non-associative distributive groupoid G:
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Of course, G is idempotent and commutative and, in fact, it is the smallest non-
trivial Kirkman-Steiner triple system.

The first article fully devoted to selfdistributivity is (perhaps) [BurM, 29]. The
paper deals with (two-sided) distributive quasigroups and a portion of the results
may be found in (now rarely seen) book [Sus, 37] (pp. 154 —157).

One-sided selfdistributive structures (namely left distributive quasigroups) ap-
peared a bit later in [Tak, 43]. Two-sided (generally non-idempotent) distributive
groupoids were studied in [Rue, 66] and, finally, non-idempotent left distributive
groupoids in [Kep, 81].

Idempotent (either one-sided or two-sided) selfdistributive groupoids are known
to appear in many algebraic, geometrical, topological and combinatorial contexts
and the theory of (two-sided) distributive groupoids is easily transferred to the
idempotent case.

On the other hand, the theory of non-idempotent left distributive groupoids (even
of those possessing no idempotent elements) has its own flavour and some of these
groupoids are of special interest because of their connections to more popular and
fashionable objects like opulent cardinal numbers and braid groups. The role of
selfdistributivity in the Set Theory was more or less known for a long time (first
results in this direction are due to P. Dehornoy) and the most important theorems
were proved by R. Laver. The relations to the braid groups were studied mainly
by P. Dehornoy. Anyway, all this goes beyond the scope of the present treatment
which is fully devoted to the essentials of the algebraic theory of (generally non-
idempotent) left distributive groupoids. As concerns the applications mentioned
above (and more), the kind reader is referred to the excellent monograph [Deh, 2000].

I. Groupoids

I.1 Groupoids — first concepts

1.1 Let G be a groupoid. For every a € G, we define transformations L, ; and
R, of Gby L,(x) = ax and R, 5(x) = xa for every x € G. The transformation
L, ¢ (R, ), often denoted only by L, (R,), is called the left (right) translation by a.

The transformation semigroup .#,(G) (.#,(G)) generated by all L, (R,) is called
the left (right) multiplication semigroup of G. The transformation semigroup .#(G)
generated by all L,, R, is called the multiplication semigroup of G. Moreover, we
define #}(G) = #/(G) U {idg}, #}(G) = M,(G) L {ids}, #'(G) = M(G) L {ids}
(the left, right, two-sided multiplication monoids of G).
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1.2 Let G be a groupoid. We denote by End(G) the endomorphism semigroup
(in fact, monoid) of G and by Aut(G) the automorphism group of G.

A subset A of G is said to be characteristic (fully characteristic) if f(A) = A
for every f € Aut(G) (f € End(G)).

1.3 Let G be a groupoid. For every n > 1, define transformations o, ;s and
Onr.c Of Gby 0, 6(X) = x = 0y, ¢(X) and 0,,1,,6 = X0, ;,6(X), Onr.6(X) = 0nr 6(x) x.
We put also 0g = 04,6, I'¢ = 03,6 and s = 03,6 (05(X) = xx = X, rg(x) =
X XX, Sg(X) = XX * x).

The grupoid G is said to be uniquely 2-divisible if o; is a permutation of G. The
inverse permutation is og' and we shall also write o5 '(x) = x* (06(x) = 2x and
0 '(x) = x/2 if the operation is denoted additively).

1.4 If A, B are subsets of a groupoid G then AB = {ab|a€ 4, be B} = G.
Further, (A4); will denote the subgroupoid generated by A.

If the intersection of all subgroupoids of G is non-empty, denote it by S, then S
is the smallest subgroupoid of G and we put {@); = S.

1.5 Let G be a groupoid. Then o(G) means the smallest cardinal number
card(M) for a generator set M of G.

The groupoid G is said to be cyclic if 6(G) < 1. The groupoid G is said to be
pseudocyclic if either ¢(G) < 1 or G is idempotent and ¢(G) = 2.

It is easy to see that o(G) = 0 iff G contains no proper subgroupoid; o(G) = 1 iff
there is an element a € G such that a is contained in no proper subgroupoid but
G contains at least one proper subgroupoid. Finally, G is pseudocyclic and o{G) = 2
iff G is idempotent, non-trivial and every proper subgroupoid of G is one-element.

1.6 If G is a groupoid then Id(G) = {ae G|a = aa} = {ae G|oga) = a} de-
notes the set of idempotent elements.

1.7 Let G be a groupoid. An element e € G is said to be left (right) neutral if
ex = x (xe = x) for every x € G, i.e., if L, = idg (R, = idg). An element e is said
to be neutral if it is both left and right neutral.

Clearly, G possesses at most one neutral element, usually denoted by 1 or 15 (0
or Q) if the operation is denoted multiplicatively (additively).

An element e € G is said to be left (right) constant if L, (R,) is a constant
transformation, i.e., if ex = ey (xe = ye) for all x, y € G. An element e € G is said
to be constant if it is both left and right constant.

An element e € G is said to be (left, right) absorbing (or annihilating, domi-
nating) if it is (left, right) constant and e = ee.

Clearly, G possesses at most one absorbing element, usually denoted by 0 or Og
if the operation is denoted multiplicatively.

1.8 Let G be a groupoid and e ¢ G. We shall define four groupoids G[e], G[e},
G{e] and G{e}as follows: In all the four cases, the underlying set is G U {e}and G
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is a subgroupoid; e is absorbing in G[e]; e is left (right) absorbing and right (left)
neutral in G[e} (G{e]); e is neutral in G{e}.

1.9 Let G be a groupoid. An element a € G is said to be left (right) cancellable
if L, (R,) is injective. We denote by %(G) (%,(G)) the set of all left (right)
cancellable elements of G and we put 4(G) = %(G) N %/(G). The elements from
%(G) are called cancellable.

The groupoid G is said to be (left, right) cancellative if 4(G) = G (¢/(G) = G,
%.(G) = G).

1.10 Let G be a groupoid. An element a € G is said to be left (right) divisible
if L, (R,) is projective. We denote by Z(G) (Z,(G)) the set of all left (right)
divisible elements of G and we put 2(G) = Z(G) N Z,(G). The elements from
2(G) are called divisible.

The groupoid G is said to be (left, right) divisible if 2(G) = G (2(G) = G,
2(G) = G).

1.11 Let G be a groupoid. We put Z(G) = %(G) n Z(G), Z(G) = %,(G) n 2,(G)
and 2(9) = €(%) N 2(%9) (= #(G) n 2.(G)).

The groupoid G is said to be a (left, right) quasigroup if Z(G) = G (#(G) = G,
2(6) = G).

1.12 Lemma. (i) The class of (left, right) cancellative groupoids is closed

under isomorphic images, subgroupoids and cartesian products.

(ii) The class of (left, right) divisible groupoids is closed under homomorphic
images and cartesian products.

(iii) The class of (left, right) quasigroups is closed under isomorphic images and
cartesian product.

(iv) A finite groupoid is (left, right) cancellative iff it is (left, right) divisible; if
this is so then it is a (left, right) quasigroup.

(v) A non-trivial left cancellative (or divisible) groupoid contains no left constant
element.

Proof. Easy. []

1.13 Let G be a left (right) quasigroup. Them #}G), (4}(G)) denotes the
permutation group generated by all the left (right) translations L,g a€ G
(R,.c,a € G). If G is a quasigroup then .#*(G) is the permutation group generated
by all L, R, a€G.

I.2 Stable relations and congruences

2.1 Let G be groupoid. A (binary) relation r defined on G is said to be
— left stable if x, a, b e G and (a, b) € r implies (xa, xb) e r;
— right stable if x, a, b € G and (a, b) € r implies (ax, bx) € r;
— stable if it is both left and right stable;
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— compatible if (a, b) e r, (c, d) e r implies (ac, bd) e r;

— left cancellative if x, a, b € G and (xa, xb) € r implies (a, b) € r;
— right cancellative if x, a, b € G and (ax, bx) € r implies (a, b) € r;
— cancellative if is both left and right cancellative;

— a congruence if it is a stable equivalence.

2.2 Lemma. Let G be a groupoid. Then:
(i) Every reflexive and compatible relation is stable.
(ii) Every transitive and stable relation is compatible.
(iii) A quasiordering is stable iff it is compatible.
(iv) If r is a stable quasiordering then ker(r) is a congruence.
(v) If G is a finite left quasigroup then a relation is left stable iff it is left
cancellative.
(vi) If G is a finite (left, right) quasigroup then every congruence is (left, right)
cancellative.
(vii) A congruence r is (left, right) cancellative iff the factorgroupoid G/r is (left,
right) cancellative.

Proof. Easy. []

2.3 Lemma. Let r be a relation defined on a groupoid G and let s (t) be the
smallest symmetric (transitive) relation containing r. Further, let u be the greatest
symmetric relation contained in r and let v = r U idg.

() If r is (left, right) stable then s, t, u and v are so.
(i) If r is compatible then u is so.
(iii) If r is (left, right) cancellative then s and u are so.
(iv) If G is (left, right) cancellative (or divisible) and if r is (left, right) cancellative
then v (t) is so.

Proof. Easy. []

2.4 Lemma. Let r be a relation defined on a groupoid G and let s be the
smallest equivalence containing r.
(1) If r is stable then s is a congruence.
(ii) If G is (left, right) divisible and r is reflexive, stable and (left, right) cancellative
then s is a (left, right) cancellative congruence.
(iii) If G is a (left, right) quasigroup and r is stable and (left, right) cancellative
then s is a (left, right) cancellative congruence.

Proof. Let v = r U idg and let u be the smallest symmetric relation containing v.
Then s is just the smallest transitive relation containing u and the rest follows from
23. 0O '

2.5 Lemma. Let G be an idempotent groupoid and let r be a non-empty stable
and left cancellative relation defined on G. Furthermore, let r satisfy the following
condition:



Ifa,b,ce G and (a,c)er, (a,bc)er then (a,b)er.
Then r is a congruence of G.

Proof. Since r # @, (a, b) e r for some a, b € G. Then (a, ab) e r (we have a = aa),
and hence (a, a) € r by our condition. For every x € G, (ax, ax)er and (x, x) €r,
since r is right stable and left cancellative. We have proved that r is reflexive.

Now, let a, b, c € G and (a, b), (a, ¢) € r. Then (ab, b), (a, ac) e r and (ab, ac - b) e r
as follows from the stability of r. Using our condition, we get (ab, ac) e r. But r is
left cancellative, and henceforth (b, c) € r. Setting a = ¢, we get (b,a) er, ie., ris
symmetric. Finally, the transitivity easily follows. []

2.6 Lemma. Let G be a divisible groupoid and let r be a compatible and
cancellative relation defined on G. Then r is transitive. In particular, if r is
symmetric and reflexive then r is a cancellative congruence on G.

Proof. Let a,b,ce G and (a, b), (b, c)er. Then a = ad, b = ed and ¢ = ef for some
d,e, f € G and we have (a, e), (d, f), (ad, ef ) € r. This means that (a,c)er. [

2.7 Lemma. Let r,s be cancellative congruences of a divisible groupoid G.
Thenr Os = s O r is a cancellative congruence.

Proof. Let a,b,c € G and (a, b) er, (b, ¢) € 5. There are d, e, f € G with a = ad,
b = ed,c = ef and we have (ad, ed) € r, (ed, ef) € 5, and hence (a, e) e, (d, f) € s,
(ad, af)es, (af, ef ) er, (a,af) €s, (af, c) € r. We have proved thatr O s = s Or.
Quite similarly sOr = rOs, and so r O s = s Or is a congruence of G. On the
other hand, r O s is just the equivalence generated by r U s. By 2.4(ii), r O s is
a cancellative congruence. []

2.8 Lemma. Let r be a reflexive relation defined on a quasigroup Q and let s be
the union of all cancellative congruences contained in r. Then s is a cancellative
congruence and it is the greatest cancellative congruence contained in r.

Proof. Since id, is a cancellative congruence, we have s + 0 and it is easy to see
that s is reflexive, stable, cancellative and symmetric. It remains to show that s is
transitive. However, if u and v are cancellative congruences of Q and if (a, b) Eu
and (b, c) € v then (a, c) € u O v and u O v is a cancellative congruence by 2.7. []

2.9 Lemma. Let A, B be blocks of a cancellative congruence r of a groupoid G.
(i) (@ b)erifa,beGand aA nbA + 0 (Aan Ab + ().
(ii) If G is left divisible and a, b € G then (a, b) € r iff aA = bA.
(iii) If G is divisible then {xA| X € G} is the set of blocks of r (i.e., the set G/r).
(iv) If G is divisible then card(4) = card(B) and card(G) = card(A) - card(G/r).

Proof. Easy. []

2.10 Lemma. Let r be a congruence and s be a (left, right) cancellative
congruence of a divisible groupoid G.

8



(1) If A = B(B < A) for a block A of r and a block B of sthenr < 5 (s S r).
(ii) If r and s have a common block then r = s.

Proof. (i) First, let A < B and (a, b)er. If c € A then ¢ = ad for suitable d € G
and we have (ad,bd)er, bde A, (ad,bd)es and (a,b)es, since s is right
cancellative.

Now, let B = A and (a, b) € s. Again, if c€ B then a = cd, b = ed for some
d,ee G and we have (cd,ed)es, (c,e)€s, c,e€B, (c,e)er, (cd, ed)er and
(a,b)er.

(i) This follows immediately from (i). [

2.11 Lemma. Let r, s be congruences of a groupoid G such that r ns = idg
and r O s = G x G. Then G is isomorphic to the cartesian product G/r x G/s.

Proof. Put f(x) = (x/r, x/s) € G/r x G/s for every x € G. Since r N s = idg, f
is an injective homomorphism. Let a, b € G. Then (a, ¢) e r and (c, b) € s for some
c € G and we have f(c) = (a/r, b/s). Thus f is an isomorphism. []J

2.12 Let G be a groupoid. We denote by wg; the intersection of all non-identical
congruences of G for G non-trivial and we put w; = idg for G trivial. The
groupoid G is said to be subdirectly irreducible if ws # idg; then G is non-trivial
and wg is the smallest non-identical congruence of G.

The groupoid G is said to be simple if it is non-trivial and idg, G x G are the
only congruences of G (then G is subdirectly irreducible and w; = G x G).

2.13 Let G be a groupoid. If G is non-trivial then w, ¢ (¢, @ ) Will denote
the intersection of all non-identical (left, right) cancellative congruences of G
(G x G is always a cancellative congruence). If G is trivial then w.¢ = w; ¢ =
@, ¢ = 1dg.

The groupoid G is said to be subdirectly c-irreducible (Ic-irreducible, rc-ir-
reducible) if w. ¢ ¥ idg (W, . ¢ * idg, @, ¢ ¥ idg); then G is non-trivial and @, ¢
(0.6, 0,.¢) is the smallest (left, right) cancellative congruence of G.

The groupoid G is said to be c-simple (lc-simple, rc-simple) if it is non-trivial
and if it possesses no (left, right) cancellative congruence r such that r #+ id; and
r &= G x G (then G is subdirectly c-irreducible (Ic-irreducible, rc-irreducible) and
.6 =GxG(w,.6=G0G%xG,w,..c=GxG)).

2.14 Lemma. Let G be a groupoid.
(1) wg € W6 € W6 WG S Wy 6 S WG

(i) If G is subdirectly irreducible then it is subdirectly Ic-irreducible and rc-irre-
ducible.

(iii) If G is subdirectly Ic-irreducible (rc-irreducible) then it is subdirectly c-irre-
ducible.

(iv) If G is not (left, right) cancellative then it is subdirectly c-irreducible (Ic-irre-
ducible, rc-irreducible).



(v) If G is a finite (left, right) quasigroup then ws = W, ¢ (WG = W g VG =
wr,c, G)‘

Proof. Obvious. []

2.15 Let G be a groupoid and a,b € G, a % b. By Zorn’s lemma there exists at
least one congruence r of G such that r is maximal with respect to (a, b) ¢ r. Now,
the factorgroupoid G/r is subdirectly irreducible (wg/, is just the congruence of G/r
generated by the pair (a/r, b/r)).

Setting 7, = r, we get idg = ()rus (a,b) € G. Thus G (if non-trivial) is
a subdirect product of subdirectly irreducible groupoids.

2.16 Let G be a non-trivial groupoid and let a, b € G be such that (a, b) ¢ s for
a (left, right) cancellative congruence s of G (e.g., if G is (left, right) cancellative
and a + b). By Zom’s lemma there exists at least one (left, right) cancellative
congruence r of G such that r is maximal with respect to s < r and (a, b) ¢ r. Now,
the factorgroupoid G/r is subdirectly c-irreducible (Ic-irreducible, rc-irreducible).

2.17 Lemma. Let G be a left cancellative and right divisible groupoid and let
H be a subgroupoid of G such that every (cancellative) congruence of H can be
extended to a (cancellative) congruence of G. Suppose further that G is subdirectly
(c-)irreducible and that H is a block of a (cancellative) congruence of G. If H is
non-trivial then it is subdirectly (c-)irreducibe.

Proof. H is a block of a cancellative congruence r. Put s = wg N (H x H)
G =w.cN (H X H)). It suffices to show that s + idy.

There are elements a, b, c € G such that a + b, (a,b) € w¢ ((a,b) € @, ) and
cae H. We have wg < r (0. g < 1), (ca, cb) e r, cb € H and (ca, cb) € 5. Since G is
left cancellative, ca + ¢b. []

2.18 Lemma. Let G be a groupoid, e ¢ G and H = G[e]. Then H is subdirectly
irreducible iff either G is trivial (then H is simple and wy = H x H) or G is sub-
directly irreducible and contains no absorbing element (then wy = wg U {(e, e)} ).

Proof. Easy. [

2.19 Lemma. Let G be a groupoid, e ¢ G and H = G[e}. Then H is subdirectly
irreducible iff either G is trivial or G is subdirectly irreducible and contains no
left absorbing right neutral element (then wy = wg L {(e,e)}).

Proof. Easy. []

2.20 Lemma. Let G be a groupoid, e ¢ G and H = G{e}.Then H is subdirectly
irreducible iff either G is trivial or G is subdirectly irreducible and contains no
neutral element (then wy = w¢ U {(e,e)}).

Proof. Easy. []
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2.21 Let G be a groupoid. For every a€ G, let p, ¢ = ker(R,) and ¢, ¢ = ker(L,).
Further, let

P¢ = (VPac and 4o = ()dac-
aeG aeG
Thus (x, y) € pg iff L, = L, and (u, v) € g¢ iff R, = R,.
Finally, put t; = pg N qe-

2.22 Lemma. Let G be a groupoid. Then:
(i) pg is a right stable equivalence.
(ii) q¢ is a left stable equivalence.
(i) If r is an equivalence on G and if r < t; then r is a congruence of G.
(iv) tg is a congruence of G.
(v) If G is subdirectly irreducible and t; #+ idg then there are two elements
a,be G such that a # b and wg = tc = {(a,b), (b, a)} N idg.

Proof. Easy. []

2.23 A groupoid G is said to be left (right) faithful if p; = idg (qg = idg). G is
said to be semifaithful if t; = idg.

2.24 Lemma. A groupoid G is semifaithful provided at least one of the
following conditions is satisfied:
(1) 4(G) U %,(G) + 0.
(2) og is injective.
(3) G is idempotent.
(4) G is anticommutative (i.e., ab % ba for all a,be G, a + b).
(5) G is simple and contains at least three elements. -

Proof. Easy (see 2.21). [J

2.25 Lemma. Let G be a commutative idempotent groupoid. Then p; = q; =
tG = idG.

Proof. Easy. []

2.26 Lemma. Let r be a left stable equivalence on an idempotent groupoid G.
Then every block of r is a subgroupoid of G.

Proof. Obvious. []

1.3 Ideals

3.1 By a left (right) ideal of a groupoid G we mean a non-empty subset I of
G such that GI = I (IG < I). If I is both a left and right ideal then I is called
a (two-sided) ideal.

Clearly, every left (right) ideal of G is a subgroupoid and the sets G and GG are
ideals of G.
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We denote by Int(G) the intersection of all ideals of G; if Int(G) =+ @ then it is
the smallest ideal of G.

The groupoid G is said to be left-ideal-free (right-ideal-free, ideal-free) if G is
the only left (right, two-sided) ideal of G.

The groupoid G is said to be ideal-simple if card(I) = 1 for every ideal I of G,
I+ G.

3.2 Lemma. (i) The intersection of a non-empty set of (left, right) ideals of
a groupoid G is either empty or a (left, right) ideal of G.
(i) If I, J are ideals of G then IJ < I n J and I N J is an ideal.
(iii) The intersection of a finite non-empty set of ideals is an ideal.
(iv) The union of a non-empty set of (left, right) ideals is a (left, right) ideal.

Proof. Easy. []

3.3 A groupoid G is said to be left (right) uniform if I n J + () whenever I and
J are left (right) ideals of G. In this case, the intersection of a finite non-empty set
of left (right) ideals is again a left (right) ideal.

3.4 Lemma. A groupoid G is left uniform iff for all a,be G there exist
n,m>1landcy,..., cpd, ..., dy€ G such that c(...(c,a)) = dy(...(d ,b)).

Proof. Obvious. []

3.5 Lemma. Let I be an ideal of a groupoid G and =, = (I x I) U idg. Then:
(i) =, is a congruence of G.

(i) I is a block of =, and every other block is a one-element set.

(iii) G/I = G/ =, contains an absorbing element.

(iv) If 1d(G) < I then G/I contains just one idempotent element.

(v) Ifis an ideal of G then =, N =, = =,,,and =,0 =, = =,0 =, = =,

Proof. Easy. [

3.6 Lemma. (i) The class of (left, right-) ideal-free groupoids is closed under
homomorphic images.
(ii) Every left (right) divisible groupoid is right-ideal-free (left-ideal-free).
(iii) Every ideal-free groupoid is ideal-simple.
(iv) The class of ideal-simple groupoids is closed under homomorphic images.
(v) If e€ G then {e}is an ideal of G iff e is an absorbing element.
(vi) A groupoid G is ideal-simple iff either G is ideal-free or G contains an
absorbing element 0 and {0}, G are the only ideals of G.
(vii) If G is ideal-simple then either G = GG or card(GG) = 1 and card(G) = 2.
(viil) If G is ideal-fre then G = GG.
(ix) Every simple groupoid is ideal-simple.

Proof. Easy (use 3.5). [
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3.7 Lemma. Let G, H be (left, right-) ideal-free groupoids, G idempotent. Then
the cartesian product G x H is (left, right-) ideal-free.

Proof. Put K = Gx H and denote by g: K - G, h: K - H the natural
projections. Let I be a (left, right) ideal of G. Then g(I) and h(I) are (left, right)
ideals of G and H, resp., and so g(I) = G and h(I) = H. Now, let x € G. There is
a€ H with (x,a) e 1. Then J = {ye H;(x,y)e I} + @ and, forall ye J and z € H,
we have (x, yz) = (x, y)(x,z) €I and (x, zy) = (x, z) (x, y) € I. Thus J is a (left,
right) ideal of H,J = Hand I = K. []

3.8 Lemma. The cartesian product of finitely many (left, right-) ideal-free
idempotent groupoids is again (left, right-) ideal-free.

Proof. This follows immediately from 3.7. []

3.9 Lemma. Let r be a congruence of a groupoid G such that every block of
r is either a one-element set or an ideal-free subgroupoid of G. Then every ideal
of G is closed under r. Moreover, G is ideal-free iff G/r is so.

Proor. Let I be an ideal of G, a€l, be G and (a, b)er, a % b. Then there is
an ideal-free subgroupoid H of G such that a,be H. Butae Hn I and H N 1 is
an ideal of H. Consequently, H < I and b € I. The rest is clear. []

3.10 Lemma. Let I be an ideal of a subdirectly irreducible groupoid G such
that every congruence of I can be extended to a congruence of G. Then either
G contains an absorbing element 0 and 1 = {0} or 1 is a subdirectly irreducible
groupoid.

Proof. Let card(I) > 2. Then wg S =;, wgn (I xI) + id, and the rest is
clear. [J

3.11 Lemma. If G is a subdirectly irreducible groupoid then Int(G) + 0.

Proof. If G contains an absorbing element 0 then Int(G) = {0} Now, assume
that G contains no absorbing element and let a, b e G be such that a + b and
(a, b) € wg. If I is an ideal of G then wg; & =/, and hence a, b € I. This implies
a,bent(G). O

3.12 Let G be a groupoid. We shall define relations ug, vz and wg on G by
(a, b) € ug (vg, we) iff the elements a, b generate the same left (right, two-sided)
ideal of G. Clearly, these relations are equivalences.

3.13 Lemma. Let G be a groupoid and a,b € G. Then (a, b) € ug (vg, Wg) iff
either a = b or a = f(b), b = g(a) for some f, g € M(G) (M,(G), #(G)).

Proof. Easy. []
3.14 Lemma. Let G be a groupoid. Then:
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(i) Every left (right, two-sided) ideal is closed under ug (vg, wg).
(i) ug=Gx G (v =G x G, weg = G x G) iff G is left-ideal-free (right-ideal-free,
ideal-free).

3.15 Let G be a groupoid. Define a relation z, ; (z, ) on G by (a, b) € z, ¢ (z,.6)
iff a = f(b) for some f € M(G) (M,(G)). Further, put z/; = z,6 Uidg (zl¢ =
Z, ¢ U idg).

3.16 Lemma. Let G be a groupoid. Then:
() z,6 (2,,6) is transitive and z| (z} ) is a quasiordering.
(i) ug = ker(z} ) (v = ker(z; g)).
(ili) If 2, (2,.¢) is irreflexive then zi ¢ (z}¢) is an ordering.
Proof. Easy. []

3.17 Let G be a groupoid. Define a relation z; on G by (a, b) € z¢ iff a = f(b)
for some f € .#(G). Further, put z; = z U idg.

3.18 Lemma. Let G be a groupoid. Then:
() zg is transitive and z§; is a quasiordering.
(il) we = ker(zg).
(iii) If zg is irreflexive then zj; is an ordering.
Proof. Easy. []

3.19 Let G be a groupoid. An ideal I of G is said to be prime if I N {a,b} +
whenever a,be G and ab € I.

A left (right) ideal I of G is said to be left (right) strongly prime if bel
whenever a,be G and abe I (ba€l).

3.20 Lemma. Let G be a groupoid.
(i) An ideal I of G is prime iff either | = G or G — I is a subgroupoid of G.

(i) If I is a prime ideal of G then r = I? U (G — I)? is a congruence of G.
Moreover, G/r is a semilattice.

(iii) If e€ G then {e}is a prime ideal of G iff e is an absorbing element of G,
xy # eforall x,ye G, x + e + y; in this case, G = (G — {e})[e].

(iv) The union of a non-empty set of prime ideals of G is again a prime ideal.

(v) The intersection of a non-empty chain of prime ideals (i.e., a set of prime
ideals linearly ordered by inclusion) is either empty or a prime ideal.

(vi) If I is a prime ideal and M is a non-empty generator set of Gthen M N I + @
and 1 is just the ideal generated by M N 1.

Proof. The first five assertions are easy.
vi)Lt K=MnNnI, N=M—-Kand L=G—I.If L=0then I =G and
K =M # 0. If L + 0 then L is a subgroupoid of G, L + G, and hence M ¢ L
and K # (. Now, denote by J the ideal generated by K. Then J < I and we can
assume that N #+ 0.
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Let, on the contrary, ae I — J. If ae {N);, then N n I % 0, a contradiction.
Hence a ¢ (N )¢ and this implies a € J, again a contradiction. []

3.21 Lemma. Let G be a groupoid.
() If G is cyclic then G contains no proper prime ideal.
(ii) If G is finitely generated and o(G) > 1 then G contains at most 27 — 2
proper prime ideals.

Proof. Use 3.20(vi). [

3.22 Lemma. Let I be a proper prime ideal of a finitely generated groupoid G.
Then:
(i) o(G —I) < a(G) — 1.
(ii) If G is pseudocyclic then card(G — I) = 1.

Proof. (i) We have o(G) > 2 (see 3.21(i)). Let M be a generator set of G such

that card(M) = o(G). Then M & H = G — I and H is generated by M n H.

(ii) G is not cyclic, and hence G is idempotent and ¢(G) = 2. By (i), o(G — I) < 1,
and so G — [ is a one-element groupoid. []

3.23 Lemma. A subdirectly irreducible semilattice contains just two element.

Proof. Let G be a subdirectly irreducible semilattice, i.e., G is a commutative
idempotent semigroup and there are a,b e G such that a + b and (a, b) € wg.
Furthermore, we can assume that b is not an absorbing element of G. Then
card(Gb) > 2 and, since Gb is an ideal, we have a € Gb and a = ab. Similarly, if
card(Ga) > 2 then b € Ga and ba = b, a contradiction. Hence card(Ga) = 1 and
a is an absorbing element of G. On the other hand, a = ab #+ bb = b, and
therefore (a, b) ¢ p.. - But p, is a congruence of G, hence p, = id; and this implies
that b is a neutral element of G. Finally, if xe G, x + b then p, #+ idg,
a=xa=xb=x. [J

3.24 Lemma. A groupoid G contains no proper prime ideal iff no non-trivial
homomorphic image (i.e., no non-trivial factorgroupoid) of G is a semilattice.

Proof. If no non-trivial image of G is a semilattice then G possesses no proper
prime ideal by 3.20(ii). Conversely, if some non-trivial images of G are semi-
lattices then there is a congruence r of G such that G/r is a two-element semilattice
(this follows from 3.23). Now, G/r contains an absorbing element and the inverse
image of this element is a proper prime ideal of G. []

3.25 Let G be a groupoid. We shall define a relation ug (v5) on G by (a, b) € u§;
(vg) iff the elements a and b are contained in the same left (right) strongly prime
left (right) ideals, i.e., iff a and b generate the same left (right) strongly prime left
(right) ideal.

Clearly, both ug and v; are equivalences on G.
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3.26 Lemma. Let G be a groupoid.
(1) A left ideal I of G is left strongly prime iff either I = G or G — I is again

a left ideal (then G — I is also left strongly prime).

(i) If I is a left strongly prime left ideal of G then r = I? U (G — I)? is
a congruence of G. Moreover, G/r is an RZ-semigroup (see 6.1).

(iii) The union of a non-empty set of left strongly prime left ideals is again a left
strongly prime left ideal.

(iv) The intersection of a non-empty set of left strongly prime left ideals is either
empty or a left strongly prime left ideal.

Proof. Easy. []

3.27 Lemma. The following conditions are equivalent for a groupoid G:
(i) ug = G xG.
(ii) G pocesses no proper left strongly prime left ideal.
(iii) No non-trivial homomorphic image of G is an RZ-semigroup.

Proof. Easy (use 3.26). []

3.28 For a groupoid G, let 4(G) (4(G), #(G)) denote the set of left (right,
two-sided) ideals of G.

1.4 Closed subgroupoids

4.1 For a groupoid G and S < G, let ag(S) = {xe G|ax € S for some ae S},
95(S) = {x€ G|xa e S for some a € S} and @4(S) = ag(S) U Y4(S).

The subset S is said to be (left, right) closed in G if ¢(S) = S («(S) < S,
Y(S) = S). Clearly, S is closed iff it is both left and right closed.

The intersection of a non-empty set of (left, right) closed subsets is again (left,
right) closed. Hence, given a subset R of G, we denote by [R]s ([R]s, [R]5) the
smallest (left, right) closed subset containing R. Clearly, [R]6 U [R]; = [R]e.

4.2. Let S a subset of a groupoid G.
(i) Put Sy = Sand S;,; = @(S) U S («S) U S;, ¥(S;) U S) for every i > 0. Then
SocScS,c... =88y S... and {Jiz0S: = [S]e [S]6 [S]®-
(i) Put Ry =S, R, = «(R,_)) U R,_, for i > 1 odd and R; = y(R,_,) U R;_, for
i >2even. Again, RS R, SR, =... SR SR, <... and { Jizo R = [S]e

4.3 Lemma. Let H be a subgroupoid and S be a subset of a groupoid G. Then:
() H < ag(H) n ye(H) 0 @g(H). ‘
(i) ax(H) < ot '(H), y5(H) < 75 (H) and @(H) <= @& '(H) for every i > 1.
Gii) [Hs = Ursr o0o(H), [H]o = Use 1 76(H), [H]o = Us21 05(H).
(iv) @o(H) < agye(H) N ygog(H). _
(v) [H]G = Uiz1(ac)’c)l (H) = Uizl()’GO‘G)' (H)

(vi) If S is (left, right) closed in G then S n H is (left, right) closed in H.

16



(vil) If S < H, S is (left, right) closed in H and H is (left, right) closed in G then
S is (left, right) closed in G.
(viii) If S < H and S is (left, right) closed in G then S is (left, right) closed in H.
(ix) If S < H then [S]y = [S]s [S]k < [S]s and [S]x = [S]e-
(x) If f is a projective homomorphism of G onto a groupoid K and if H = f~\(L)
is the inverse image of a subgroupoid L of K then H is (left, right) closed
in G iff L is (left, right) closed in K.

Proof. Easy observations. []

4.4. Let G be a groupoid. The intersection of a non-empty set of (left, right)
closed subgroupoids is either empty or a (left, right) closed subgroupoid. Hence,
given a non-empty subset S of G, {5 ({(SY&, <SH¥) will denote the smallest (left,
right) closed subgroupoid containing S. Clearly, [S]s = (S)% ([S]6 = (SY6,
[STs = <SY9.

(i) Put So =S8, S; = {xy|x,yeS;_1}uS;_, for every odd i > 1 and S; = @¢(S;_,)
U S;_, for every odd i>1 and S, = @g(Si_) U Siii (@6(Si—1) U Si_1s
YaSis)U S;_)) foreveryeveni>2. Then S, = S, £ 5, S... €5 S Sy S ...
and )28 = {8 ({8, <5X).

(ii) If the intersection A of all (left, right) closed subgroupoids is non-empty then
A is the smallest (left, right) closed subgroupoid of G and we put {(§D§ = A4,
K0X% = A).

We denote by 6.(G) (6,(G), 0,{(G)) the smallest cardinal number card(M) for
a set M of c-generators (lc-generators, rc-generators) of G. Clearly, 0 < ¢(G) <
0.{G) < ¢(G) and 0 < 6,(G) < 0,(G) < 0(G).

4.5 A subset S of a groupoid G is said to be left (rigth) strongly dense in G if S
lc-generates (rc-generates) G, i.e., if G = (S)¢ (G = {8)¥) (see 4.4).

A subset S of G is said to be dense in G, if S c-generates G, i.e., if G = ()5
(see 4.4). Clearly, if S is left (right) strongly dense in G then S is dense in G.

A subset S of G is said to be strongly dense in G if it is both left and right
strongly dense in G.

4.6 Lemma. Let G be a groupoid and S a subset of G. Then:
(i) S is left (right) strongly dense in {S)S ({S)¢) (see 4.4(ii) if S = 0).
(ii) S is dense in {S); (see 4.4(ii) if S = 0).
(iii) If H is a (left, right) strongly dense subgroupoid of G, S < H and S + 0 is
(left, right) strongly dense in H then S is (left, right) strongly dense in G.
(iv) If H is a dense subgroupoid of G, S < H and S #+ ( is dense in H then S is
dense in G.

Proof. (i) Put K = {S)&. Then K is left closed in G. If L is a left closed sub-
groupoid of K with S = L then L is left closed in G by 4.3(vii) and L = K.
(i) Similar to (i).
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(iii) We have H = (S)§ = (S)< = K (by 4.3(vi)). But K is left closed in G and
H is left strongly dense in G. Consequently K = G.
(iv) Similar to (iii). [

4.7 Lemma. (i) Every (left, right) closed subgroupoid of a (left, right) divisible
groupoid is (left, right) divisible.
(ii) A subgroupoid H of a (left, right) quasigroup G is (left, right) closed iff H is
also a (left, right) quasigroup.
(iii) Let f, g be homomorphisms of a groupoid G into a (left, right) cancellative
groupoid K. Then the set {xe G| f(x) = g(x)} is either empty or a (left, right)
closed subgroupoid of G.

Proof. Easy. []

4.8 Lemma. Let H be a subgroupoid of a groupoid G and let f be a homo-
morphism of H into a groupoid K.
(1) If H is left (right) strongly dense in G and K is left (right) cancellative then
f can be extended to at most one homomorphism of G into K.
(i) If H is dense in G and K is cancellative then f can be extended to at most
one homomorphism of G into K.

Proof. This is an immediate consequence of 4.7(iii). []

4.9 Lemma. Let a subgroupoid H be a block of a (left, right) cancellative
congruence of a groupoid G. Then H is a (left, right) closed subgroupoid of G.

Proof. Easy. [J

4.10 Lemma. Let r,s be cancellative congruences of a divisible groupoid G
and let A and B be blocks of r and s, resp., such that A~ B + 0 and A is
a subgroupoid of G. Then (AU B) is a block of r O s (see 2.7).

Proof. By 2.7, t =r Os = s Or is a cancellative congruence of G. Let C be the
block of t such that A = C. Since An B+ 0,4 U B = Cand {4 U B); < C by
4.9 (clearly, C is a subgroupoid). Now, let c€ C and a€ A. Then (a,b)er and (b,c)es
for some b € G. We have b € A and db € B for an element d € G. Then (db, dc) € s
implies dc € B. Thus b, d, b, dc € (AU B)§, and hence ce (AU B);. [

4.11 Lemma. Let G be a left divisible groupoid, r a congruence of G and
H a subgroupoid of G such that H contains a block A of r. Then H is closed under
r, provided that at least one of the following two conditions is satisfied:

(1) H is right divisible and r is left cancellative.
(2) H is closed in G.

Proof. Let (x,y)er, x € H. If (1) is true then x = ba, y = bc for some a € 4,
be H, ceG, (ba,bc)er and (a, ¢) e r, since r is left cancellative. Then c € 4 and
y =bceH. If (2) is true then xae A for some a€ G, (xa, ya)er, ya€ A,
X, xa, ya € H, and hence y € H, since H is closed. []

18



4.12 Lemma. Let a subgroupoid H be a block of a congruence r of a left
divisible groupoid G. Put K = G/r. Then:
(i) 0(G) < o(H) + o(K), provided that 6 (H) > 1.

(i) 0(G) < 1 + o (K), provided that ¢ (H) = 0.

(iii) 0{G) < o(H) + oK) — 1 (¢(G) < (H) or 6(G) < o(K) or a(G) < 1),
provided that o(H)>1 and o(K)>1 (¢(H)>1 and oK) =0 or
o{H) =0 and 6(K) > 1 or o(H) = 0 = 6(K)) and that for all x,y€ G
there exists a projective endomorphism f of G such that f(x) = y and r is
invariant under f.

(iv) If both H and K are finitely c-generated then G is finitely c-generated.

>
0

Proof. Denote by g: G — K the natural projection. There are subsets 4 = H
and B < G such that H = (A, card(A) = max(l, ¢.(H)), K = <{g(B)) and
card(B) = 6(K). Put F = (AUB);. Then FNH+ 0, A< FnHand Fn H
is a closed subgroupoid of H. Hence F " H = H, H < F and F is closed under r
by 4.11(2). This implies easily that g(F) is closed in K. However, g(B) < ¢(F),
hence g(F) = K and F = G.

Now, suppose that B # @ (card(B) = max(1, ¢(K))) and there exists a projective
endomorphism f of G such that f(B) N H #+ @ and r is invariant under f. Then
f induces a projective endomorphism k of K such that gf = kg. Put E =
(AU (f(B) = {a})¥%, where a € f(B) n H is arbitrary. Again, H < E, E is closed
under r, f(B) < E, kg(B) = gf(B) < ¢(E), g(E) < L, where L = k~'g(E) is the
inverse image of g(E) under k, L is closed in K,L = K and g(E) = K. Con-
sequently E = G. [

4.13 Lemma. Let H be a dense (left strongly dense, right strongly dense)
subgroupoid of a groupoid G. Then ¢(G) < max(o(H), 1) (6,(G) < max(s,(H), 1),
0,{G) < max(o,(H), 1)).

Proof. Let A be a subset of H such that card(4) = max(c(H), 1) andH = {A)j.
Put K = (A);. Then K n H is closed in H, and so H < K. Since H is dense in
G, K = G and 6(G) < card(4). [

4.14. Lemma. Let A be a non-empty subset of a (left, right) cancellative
groupoid G and let « = max(X,, card(A4)). Then card({A)§) < a (card({A)E) < o
card({A)) < a).

Proof. The result is clear from 4.4. []

4.15 Lemma. Let H be a (left, right strongly) dense subgroupoid of a (left,
right) cancellative groupoid G. Then card(H) = card(G).

Proof. If H is infinite then the result follows easily from 4.14. If H is finite
then H is a (left, right) quasigroup, and consequently H is (left, right) closed in
G (see4.7(1)) and H = G. [
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4.16 Let H be a subgroupoid of a groupoid G. We denote by .#(G, H) the trans-
formation semigroup generated by all L, ¢, a € H in the left multiplication semigroup
of G. Thus .#(G, H) is a subsemigroup of .#(G). Similarly we define .#,(G, H) and
M(G, H), and we put #(G, H) = .#4,(G, H) U fidg}, #}(G, H) = 4(G, H) U {idg}

4.17 Let S be a subset of a groupoid G. Put f; o(S) = S (6o.4(S) = S). Further,
for n > 1, let B, (S) (6,4(S)) be the set of x e G such that a,(ay...(a,x)) € S
(xay) @5)...) @, € S) for some a,, ..., a,€S. Clearly, B, 4S) = ag(S) (6,.4(S) =
VG(S)) and BG(S) S [S]IG (56(5) S [S]'G), where ﬁG(S) = Uizoﬁi,c(s) (5G(S) =
Ui»00:6(S).

4.18 Lemma. Let H be a subgroupoid of a groupoid G. Then:

() Bo(H) = {xe G| f(x) € H for some f € 4(G, H)}.
i) H = fooH) < Pro(H) < ...  PioH) S BirrolH) < ... .
(iil) B;¢(H) < al(H) for every i > 0.

Proof. Easy. []

4.19 Let S be a subset of a groupoid G. Put y, 5(S) = S and, for n > 1, let ¥, 4(S)
be the set of xe€ G such that (T, ... ,T, (x)€ S for some ;T e {L,R} and g;€S.

Clearly, Y1, 6(S) = a6(S) U 76(S) = @(S) and Y(S) [S]6, where Y(S) = )iz ¥:o(S):
4.20 Lemma. Let H be a subgroupoid of a groupoid G. Then:

(i) Y¢(H) = {xe G| f(x) € H for some f € #(G, H)}.

(i) H = Yo ¢(H) S ¥16(H) = ... = ¥ielH) S YirrolH) S ... .

(iil) ¥, 6(H) = @G(H) for every i > 0.
Proof. Easy. []

4.21 Let G be a groupoid. For ae G and a subset S of G, let p,q(S) =
ueGlaue S} and v,4(S) = {ue GluaeS}. Clearly, a(S) = JaesHao(S) and
yG(S) = Uaesva,G(S)'

A subset S of G is said to be o-stable (y-stable) if S = ag(S) (S = 74(S)).
Clearly, S is a-stable (y-stable) iff for every b € S there exists a € S with abe §
(ba € S). If this is true then o4(S) (y4(S)) is also a-stable (y-stable).

I.5 Regular groupoids

5.1 A groupoid G is said to be left (right) regular if, for all a, b, c € G, ca = cb
(ac = bc) implies xa = xb (ax = bx) for every x € G. The groupoid G is said to
be regular if it is both left and right regular.

5.2 Lemma. (i) Every (left, right) cancellative groupoid is (left, right) regular.
(ii) The class of (left, right) regular groupoids is closed under isomorphic images,

subgroupoids and cartesian products.

Proof. Obvious. []
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5.3 Lemma. The following conditions are equivalent for a groupoid G:
(i) Every element of G is left (right) absorbing.
(ii) Every element of G is right (left) neutral.
(i) G satisfies the identity X =Xy (X =yXx), i.e, G is an LZ-semigroup
(RZ-semigroup).
(iv) Every non-empty subset of G is a right (left) ideal of G.
(v) G is idempotent, left (right) regular and contains at least one left (right)
absorbing element.
(vi) G is idempotent and q;c = G x G (pg = G x G).

Proof. Easy. []

5.4 Lemma. The following conditions are equivalent for a groupoid G:
(i) Every element of G is left (right) constant.
(i) R,=R, (L, =L forall x,y = G.
(iii) g6 = G x G (pg = G x G).
(iv) G satisfies the identity Xy = Xz (yX == zX), i.e., G is a left constant groupoid
(right constant groupoid) (see 6.1).
(v) G is left (right) regular and contains at least one left (right) constant element.

Proof. Easy. [

5.5 Lemma. The following conditions are equivalent for a groupoid G:
(1) G satisfies the identity Xy = zx.
(ii) G satisfies the identity Xy = yz.
(iii) G satisfies the identity Xy = wuv, i.e., G is an Z-semigroup.
(iv) G is both a left and right constant groupoid (see 6.1).
(v) G is (left, right) regular and contains an absorbing element.
i) tc = G xG.

Proof. Easy. []

5.6 Lemma. Let G be a groupoid.
(1) If q¢ (pg) is left (right) cancellative then G is left (right) regular.
(1) If G is left (right) regular then G is left (right) cancellative iff G is right (left)
faithful.
(iii) If G is regular then G is cancellative iff G is both left and right faithful.
(iv) If G contains a (left, right) neutral element then G is (left, right) regular iff it
is (left, right) cancellative.
v) If G is (left, right) regular, idempotent ankd every subgroupoid of G is (left,
right) closed in G then G is (left, right) cancellative.

Proof. Only (v) needs a proof. Let a, b,c € G and ab = ac. Then b = bb = bc,
and so b,bce H = (b);. But H is left closed in G and H = {b}. This implies
b=c O
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5.7 Lemma. Let G be a regular commutative groupoid. Then G is cancellative,
provided that at least one of the following three conditions is satisfied:
(1) G is idempotent.
(2) G is simple and contains at least three elements.
(3) G is subdirectly irreducible and G is a semimedial divisible groupoid.

Proof. (i) If ab = ac for some a,b,ce Gthen b = bb = bc = ¢b = cc = c.

(ii) Since card(G) > 3, t; = id; and this implies that G is cancellative.

(iii) It suffices to show that t; = idg. Assume, on the contrary, that t; + idg.
Since every equivalence contained in ¢ is a congruence of G, we have t; =
wg = {(a,b), (b, a)} U id; for some a,be G, a + b. Now, G is divisible and
not cancellative, and hence G is infinite. There exist elements x, y, u,v € G
with a = yx, b = ux, y ¢ {a,b} and yv ¢ {a,b}. We have yv- xx = yx-vx =
a-vx = b-vx = ux-vx = uv- xx, and so either uv = yv or {uv,yv} < {a,b}.
The latter possibility is excluded, so that uv = yv, (y, u) € tg and y = u. Then
a = yx = ux = b, a contradiction. []

5.8 Lemma. Let r be a congruence of a groupoid G such that the factor H = G/r
is regular. Then r is cancellative (or, equivalently, H is cancellative) provided that
at least one of the following three conditions is satisfied:

(1) Every block of r is a closed subgroupoid of G.

(2) H is a semifaithful idempotent divisible groupoid, both py and qy are
congruences of H, at least one of the blocks of r is left closed in G and at least
one is right closed in G.

(3) H is a faithful divisible groupoid, both py and qy are congruences of H and
at least one of the blocks of r is a closed subset of G.

Proof. Denote by f the natural projection of G onto H.

(i) If a, b, c € G and (ab, ac) € r then (xb, xc) € r for every x € G, since H is left
regular. In particular, (bb, bc) € r. On the other hand, H is idempotent, and so
(bb, b) € r and (b, bc) e r. Thus b - bc € A for a block A4 of r and ¢ € A4, since A
is left closed. This shows that (b, ¢) er, ie., r is left cancellative. Similarly,
r is right cancellative.

(ii) Let (x, y) € gy and let 4 be a block of r such that A is a left closed subgroupoid
of G.If ae A then xz = f(a) and yz = f(b) for some z € H and b € G. Since
qy is a congruence, we have (xz, yz) € gy and xz = xz* xz = xz - yz, f(a) =
xz = xz-yz = f(ab), (a,ab)er,a,abe A,be A and xz = f(a) = f(b) = yz.
Since H is regular, (X, y)€ py, and so (x,y)€py N gy = ty = idg. Thus
x =y, qy = idy and H is left cancellative. Similarly, H is right cancellative.

(iii) Let (x, y) € g, let A be a block of r such that A is a closed subset of G and let
ae A. Since H is divisible, xz = f(a), yz = f(b) and xz = f(c) - xz for some
ze H and b, ce G. Then f(a) = xz = f(c)* xz = f(ca), (a,ca)er, a,cac A
and c € A, since A is right closed. Further, qy is a congruence of H, hence
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(xz,yz)eqy and f(a) = f(c)' xz = f(c)* yz = f(cb), (a,cb)er, c,cbe A and
b € A, since A is left closed in G. Now, xz = f(a) = f(b) = yz and (x, y) € py,
since H is right regular. We have proved that gy < py, which implies that
gy = ty. But H is semifaithful, i.e., ty = idy. Since H is left regular and
qny = idy, H is left cancellative. Quite similarly, H is right cancellative. []

5.9 Lemma. Let r be a congruence of a groupoid G such that H = G/r is
a right regular divisible groupoid, qy is a congruence of H and a block A of r is
a closed subset of G. Then A is a subgroupoid of G and qy = ty.

Proof. We can proceed in the same way as in the proof of 5.8(iii) to show that
qy = ty. Now, let a,be A. Since H is left divisible, ace A for some c e G.
However, A is left closed, c € 4 and (¢, b) €r, (ac,ab)er,abe A. O

1.6 Some varieties of groupoids

6.1 A groupoid is said to be
— idempotent if it satisfies the identity x = xx;
— unipotent if it satisfies the identity xx = yy;
— zeropotent if it satisfies the identities XX - y =y - XX == XX;
— commutative if it satisfies the identity xy == yx;
— elastic if it satisfies the identity x - yx == Xy - X;
— left alternative if it satisfies the identity x - Xy == xx - y;
— right alternative if it satisfies the identity y - xx =y - xx;
— left symmetric if it satisfies the identity x - xy = y;
— right symmetric if it satisfies the identity yx - x =y;
— semisymmetric if it satisfies the identity x - yx =y;
— LZ-semigroup if it satisfies the identity x == Xxy;
— RZ-semigroup if it satisfies the identity x = yx;
— left constant if it satisfies the identity Xy = xz;
— right constant if it satisfies the identity yx = zx;
— Z-semigroup if it satisfies the identity xy = uv;
— associative (or semigroup) if it satisfies the identity X - yz = xy - z;
— left permutable if it satisfies the identity x - yz =y - xz;
— right permutable if it satisfies the identity Xy - z == xz - y;
— left modular if it satisfies the identity X - yz = z - yx;
— right modular if it satisfies the identity xy - z = zy - x;
— A-semigroup if it satisfies the identity X - yz = uv - w;
— left semimedial if it satisfies the identity xx - yz = xy - xz;
— right semimedial if it satisfies the identity yz - xx = yX - zx;
— middle semimedial if it satisfies the identity Xy - zx = Xz - yXx;
— left distributive if it satisfies the identity X - yz = xy - xz;
— right distributive if it satisfies the identity yz - x = yx - zx;
— medial if it satisfies the identity xy - uv == xu - yv;
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6.2 A groupoid is said to be
— alternative if it is both left and right alternative;
— strongly alternative if it is alternative and elastic;
— symmetric if it is both left and right symmetric;
— semimedial if it both left and right semimedial;
— strongly semimedial if it is semimedial and middle semimedial;
— distributive if it is both left and right distributive;
— semilattice if it is associative, commutative and idempotent.

6.3 A groupoid G is said to be
— monoassociative (diassociative) if every subgroupoid of G generated by at most
one (two) elements is associative;
— monomedial (dimedial, trimedial) if every subgroupoid of G generated by at
most one (two, three) elements is medial;
— strongly trimedial if {a,b,c,d); is a medial subgroupoid of G, whenever
a,b,c,de G and ab- cd = ac- bd.

6.4 Lemma. A groupoid G is semisymmetric iff it satisfies the identity
Xy - X =Y. In this case, G is a quasigroup.

Proof. Let G be semisymmetric. Then x = (yx) (x - yx) = yx - yforall x, y € G.
The rest is clear. []

6.5 Lemma. The following conditions are equivalent for a groupoid G:
(i) G is symmetric.
(ii) G is left (right) symmetric and semisymmetric.
(iii) G is left (right) symmetric and commutative.
(iv) G is commutative and semisymmetric.

Proof. (i) = (ii). For all x, y€ G, x = (x - xy) (xy) = y - xy.
(ii) = (iii). For all x, y € G, xy = x(x - yx) = yx.
The remaining implications are similar. []

6.6 Lemma. (i) Every medial groupoid is strongly trimedial.
(ii) Every strongly trimedial groupoid is trimedial.
(iii) Every trimedial groupoid is strongly semimedial.
(iv) Every commutative groupoid is middle semimedial.
(v) An idempotent groupoid is (left, right) semimedial iff it is (left, right) distributive.
(vi) Every left (right) modular groupoid is medial.
(vii) Every commutative semigroup is medial.

Proof. (ii) If G is a groupoid and a, b, c € G then ab - bc = ab - bc.
(vi) Let a,b,c,de G, where G is left modular. Then ab-cd = d(c- ab) =
db-ac) = ac-bd. O

6.7 A semigroup S is said to be nilpotent of class at most n > 1 if it contains
an absorbing element O and S” = O (ie., a;... a, = O for all a,, ..., a, € S).
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6.8 Lemma. (i) Z-semigroups are just semigroups nilpotent of class at most 2.
(i) A-semigroups are just semigroups nilpotent of class at most 3.

Proof. Easy. []

6.9 For every n = 1,2, ..., let us define a left (right) constant groupoid Cyc,(n)
(Cyc,(n)) by Cyci(n) = {0,1,..., n — 1} (Cyc(n) = {0,1,....,n — 1}),i*j=i+ 1
forisn—1land(n—1)*j=0(@*j=j+ lforj+n—landi*(n—1)=0).

Further, we shall define a left (right) constant groupoid Cyc;(o0) (Cyc,(0)) by
cyci(o0) = {0,1,2,...} (Cyc,(0) = {0,1,2,..})and i*j =i+ 1 (ixj=j+ 1).

6.10 Lemma. Let G be a simple left constant groupoid. Then just one of the
following three cases takes place:
(i) There is a prime p > 2 such that G = Cyc/(p).
(i) G is a two-element LZ-semigroup.
(iii) G is a two-element Z-semigroup.

Proof. Easy. []

6.11 Lemma. Let G be a left constant groupoid. Then every cyclic left constant
subgroupoid of G is isomorphic to G iff G = Cyc/(a) for some 1 < o < oco.

Proof. Easy. []

6.12 Lemma. Let G, H be left constant groupoids. Then they are isomorphic,
provided that G is cyclic, H is a homomorphic image of G and G is a homomorphic
image of H.

Proof. Easy. []

I1. General theory of left distributive groupoids

II.1 Basic properties of left distributive groupoids

1.1 Recall that a groupoid is said to be left (resp. right) distributive if it satisfies
the identity x-yz =Xy - xz (resp. zy - X = zX - yX). A groupoid is said to be
distributive if it is both left and right distributive. In the sequel, for short, left
distributive (right distributive, distributive) groupoids will be also called LD-gro-
upoids (RD-groupoids, D-groupoids). Similarly, idempotent left distributive grou-
poids will be called LDI-groupoids, etc.

1.2 Proposition. The following conditions are equivalent for a groupoid G:
(i) G is left distributive.
(ii) Every left translation is an endomorphism of G.
(iii) #(G) = End(G).

Proof. Obvious. []
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1.3 Lemma. Let G be an LD-groupoid.
() Ifae Id(G) then L,R, = R,L,.
(ii) If a€ G and R,, is injective then a € Id(G).

Proof. (i) a- xa = ax - aa = ax - a for every x € G.
(ii) The equality a - aa = aa - aa implies a = aa. []

1.4 Proposition. (i) Every LD-groupoid satisfies the identity X - XX == XX - XX
(i.e., rg = 0%).
(ii) Every LDI-groupoid satisfies the identity X - yX == Xy - X, i.e., the elasticity.

Proof. Obvious. []

1.5 Propeosition. Let G be an LD-groupoid. Then:
@) Id(G) is either empty or a left ideal of G.
(i) If G is right cancellative then G is idempotent.
(iii) If G is left-ideal-free then either G is idempotent or 1d(G) = 0.
(iv) If G is right divisible then either G is idempotent or Id(G) = 0.

Proof. (i) For ae Id(G) and xe G, xa* xa = x*aa = xa.
(ii) If follows immediately from 1.3(ii).
(iii) This is a consequence of (i).
(iv) Every right divisible groupoid is left-ideal-free. []

1.6 Proposition. The following conditions are equivalent for a groupoid G:
(1) G is left distributive and left semimedial.
(ii) G is left distributive and it satisfies the identity X - yZ == XX - yZ.
(iii) G is left semimedial and it satisfies the identity X - yz == XX - yZ.
Moreover, if G = GG then these conditions are equivalent to the following two
additional conditions:
(iv) G is left distributive and it satisfies the identity Xy = XX - y.
(v) G is left semimedial and it satisfies the identity Xy = XX - y.

Proof. Easy. []

1.7 Proposition. An idempotent groupoid is left distributive iff it is left semi-
medial.

Proof. Easy. []

1.8 Proposition. Let G be an LD-groupoid. Then:
(i) q¢ is a congruence of G.
(ii) If G is left cancellative then q; = id; is left cancellative.
(iii) If G is right cancellative then q¢ is right cancellative.
(iv) G/qq is an idempotent groupoid (i.e., (x, xx) € q for every x € G) iff GG < 1d(G).

Proof. (i) We have g; = ﬂ ker(Lx), x € G, and all L, are endomorphisms of G.
Hence ker(L,) are congruences and their intersection g is also a congruence.
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(i1) This is clear.

(iii) Let (ba, ca) € g for some a,b,c€ G. Then xb- xa = x-ba = x-ca = cx - xa,
and hence xb = xc for every x € G. _

(iv) Clearly, ax = a- aa for all a, x € G iff ax = ax - ax, ie., iff ax e Id(G). O

1.9 Lemma. Let G be an LD-groupoid.
(i) If ae G is such that L, is projective then (a, aa) € pg.
(ii) If a€ G is such that L,, is injective then (a, aa) € p¢ iff aa = aa - a.
(iii) If (x, xx) € pg for every x € G then G is left semimedial and the transformation
0¢ is an endomorphism of G.
@iv) If og is injective then og = Sg (i.e., xx = xx * x for every x € G).

Proof. (i) We have aa - ax = a - ax for every x € G and, since L, is projective,
aG = G.
(i) If (a, aa)e p¢ then obviously aa = aa - a. Conversely, if aa = aa- a then
aa- ax = (aa- a)(aa - x) = (aa) (aa - x), and so ax = aa - x for every x € G.
(iii) Forall x,ye G, xx-yz = x* yz = Xy * Xz.
(iv) First, 0g(xx) = xx * xx = (xx - x) (xx - X) = og(xx - x) for every x € G. Since
0¢ is injective, 0g(x) = xx = xx - x = s¢(x). O

1.10 Proposition. Let G be an LD-groupoid. Then pg is a congruence of G,
provided that at least one of the following six conditions is satisfied:
(1) G is left cancellative and xx = xx * x for every x € G (i.e., 0 = Sg).
(2) G is left cancellative and idempotent.
() G is right regular.
(4) G is left divisible.
(5) G is medial and G = GG.
(6) G is right distributive.

Proof. First, let (1) be satisfied and let q, b, x, y € G, (a, b)e pe- By 1.9(i),
xy =xx-y and we have (x-ax)(xa-y)=(xa- xx)(xa- y) =(xa)(xx"y)=xa-xy =
x-ay = x-by = xb-xy = (xb) (xx-y) = (xb- xx)(xb-y) = (xbx)(xb- y) =
(x - ax) (xb - v). Since G is left cancellative, xa -y = sb - y. We have proved that
(xa, xb) € pg.

The condition (2) implies (1). If (6) is satisfied then our assertion is just the dual
of 1.8(i). Now, assume that (3) or (4) is satisfied. Let a,b, x, y € G, (a, b) € pg.
Then xa- xy = x - ay = x - by = xb * xy. In both cases, we see that xa*-z = xb - z
for every z € G, i.e., that (xa, xb) € pe.

Finally, assume that (5) is true. If a,b,x, ye G, (a,b) € p; then xa- yz =
xy-az = xy-bz = xb- yz, and so (xa, xb) e pg. [

1.11 Proposition. Let G be an LD-groupoid. Then (x, xx) € pg for every x € G
(i.e., G satisfies the identity Xy == XX -y), provided that at least one of the
Jfollowing seven conditions is satisfied:
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(1) G is left cancellative and xx = xx - x for every x € G.
(2) G is idempotent.

(3) G is right regular.

(4) G is left divisible.

(5) G is left semimedial and G = GG.

(6) og is an injective endomorphism of G.

(7) og is a projective endomorphism of G.

Proof. If (1) (resp. (3), (4)) is satisfied then the result follows from 1.9(ii) (resp.
1.4(i), 1.9(1)). If (2) is satisfied then the result is trivial, and if (5) is true then
a-xy=ax-ay =aa-xyforall a x,yeG.

Finally, suppose that o; is an endomorphism of G. Then aog(x) = a- xx =
ax - ax = oglax) = og(a) og(x) = aa- x for all a, x € G and the result is clear for
o projective. If og is injective then og(ax) = og(a) og(x) = og(a)- xx =
o(a) x - 06(a) x = og(0¢(a) x) implies ax = og(a) x = aa-x. O

1.12 Theorem. Let G be an LD-groupoid satisfying at least one of the
conditions (1), (2), (3), (4), (5) from 1.10. Then:

(i) pg is a congruence of G and G/p¢ is an LDI-groupoid.
(ii) Every block of pg is a right constant subgroupoid of G.
(iii) Every one-generated subgroupoid of G is a right constant groupoid.
(iv) G is left semimedial.
(V) 0g = Sg and rg = 0% are endomorphisms of G.

Proof. (i) See 1.10 and 1.11.
(ii) Since G/p¢ is idempotent, every block of pg is a subgroupoid, and hence right
constant.
(iii) This is an immediate consequence of (ii).
(iv) We have xx - yz = x* yz = xy - xz.
(v) By 1.9(iii), og is an endomorphism, and hence r; = 0% is also an endomor-
phism. Further, xx = xx - x, and so 0 = sg. [
1.13 Propesition. Let G be a right divisible LD-groupoid such that pg is a congru-

ence of G and G/p; is idempotent (see 1.12). Then there exists o € {1, 2, ..., oo} such
that every one-generated subgroupoid of G is isomorphic to Cyc,(oc).

Proof. Let a,be G, A = {a); and B = {(b);. There are ¢,d € G with ca = b
and db = a. Then L.(A) = B and L,(B) = A. According to our assumptions, both
A and B are right constant and the rest is clear from [.6.11, 1.6.12. [

1.14 Proposition. Let G be an LD-groupoid.
(1) If G is left cancellative then pg is left cancellative.
(i) If G is right cancellative then pg = idg is right cancellative.

Proof. (i) Leta, b, ¢, x € G and (ca, cb)epg. Thenc ax = ca-cx =ch-cx =
¢ bx and ax = bx.
(ii) Obvious. []
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1.15 Lemma. Let G be an LD-groupoid. Then:
(i) 06(G) = Id(G) iff G satisfies the identity XX ==X - XX (Le., iff 0 = rg = 05).
(i) ro(G) = 1d(G) iff G satisfies the identity X - XX == X(X - Xx) (i.e., iff 05 = 03).
(iii) s¢(G) = Id(G) iff G satisfies the identity X - XX == XX - X (i.e., iff r¢ = 0§ = 55).

Proof. We have x - xx = xx - xx, x(x - xx) = x(xx - xx) = (x - xx) (x - xx) and
X xx = xx-xx = (xx-x)(xxx). O

1.16 Lemma. Let G be an LD-groupoid. Then:
(i) For all f, g € M/(G) there exists h € #,(G) such that fg = hf.
(i) (G) and M}(G) are left uniform.

Proof. (i) There are n > 1 and g, ..., a,€ G withg = L,, ... L, . Since f is an
endomorphism of G, we can put h = Ly(,)... Lyq,).
(ii) This follows immediately from (i). []

1.17 Lemma. Let G be an LD-groupoid. Define a relation r on G by (a, b) e r
iff f(a) = f(b) for some f e M(G). Then r is the smallest left cancellative
congruence of G. Moreover:

() If (u, uu) € r for some u € G then 1d(g) + 0.
(i) If (v, vv - v) € ¥ for some v € G then zz = zz - z for at least one z € G.

Proof. Clearly, r is reflexive, symmetric and left cancellative. Further, from
1.16(i) it follows easily that r is transitive and the inclusion .#(G) < End(G)
implies the fact that r is stable. Thus r is a left cancellative congruence of G.

Now, let s be a left cancellative and reflexive relation on G, let f € .#(G),
a,be G and f(a) = f(b). Wehave f = L,, ... L,, and so a(...(a,a)) = aj(...(a.b)),
which implies (a, b) € s. We have proved that r < s.

Finally, if (w,uu)er ((vv,ov-v)er) then f(u) = f(u)f(u) (f(v)f(v) =
(f(v) f(v) f(v)) for some f e .#4(G). O

1.18 Theorem. Let G be an LD-groupoid, A = {a€ G|aa = aa-a} and

B = G — A. Then:

i) G=AuBand An B = 0.

(i) A is either empty or a left ideal.

(iii) If G is left cancellative then B is either empty or a left ideal.

(iv) If G is left cancellative then s = (A x A) U (B x B) is a left cancellative
congruence of G and either s = G x G or G/s is a two-element RZ-semi-
group.

(v) Ifa,be G and ab = a then a € A.

(vi) If G is finite then A + 0.

(vil) If G is finite and left-ideal-free then A = G.

Proof. The assertions (i), (ii), (iii), (iv) are easy and (vii) follows from (vi).
(v) We have aa = a-ab = aa-ab = aa- a.
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(vi) Consider the left cancellative congruence r defined in 1.17 and put H = G/r.
Then H is a left cancellative finite groupoid, and hence it is a left quasigroup.
By 1.11, xx = xx - x for every x € H. This means that (vv, vv - v) € r for every
ve G and we can use 1.173i). O

1.19 Lemma. Let G be an L D-groupoid. Then:
() (a,b)e z, s iff a = f(b) for some f € M(G) (i.e., iff a = ay(...(a,b)) for some
n>1anda,,..,a,cG).
(ii) z, ¢ is transitive and left stable.
(iii) (a, b) ezl iff a = f(b) for some f € ML(G).
(iv) z} is a left stable quasiordering.
(V) If z¢ is irreflexive then z| ; is a left stable ordering.
(vi) If G is idempotent then z,; = z| ¢.

Proof. Obvious (see 1.3.16). [

1.20 Lemma. Let G be an LD-groupoid. Then:
(i) ug = ker(z] ) is a left stable equivalence.
(i) (a, b) € ug iff a = f(b) and b = g(a) for some f, g € M/(G).
(iil) If G is idempotent then (a,b) € ug iff a = f(b) and b = g(a) for some f, g € M(G).
(iv) If G is idempotent then every block of ug is a subgroupoid of G.

Proof. Obvious (see 1.19 and 1.2.26). [

1.21 Lemma. Let G be an LD-groupoid. Then:
(i) (a, b) e u iff f(a) = g(b) for some f, g € 4(G).
(i1) ug is a congruence of G, G/ug is an RZ-semigroup and every block of ug is
a left ideal.
(iii) ug < ug and ug is the smallest congruence of G such that the corresponding
factor is an RZ-semigroup.

Proof. (i) If f(a) = g(b) then (a, b) € ug follows easily from the definition of ug.
Now, let (a, b) € u§; and let I be the set of x € G such that h(a) = k(x) for some
h, k € #(G). Then a € I and, for every y € G, k(yx) = k(y) k(x) = k(y) h(a) =
I(a), | = Lyyh, and so yx € I and we have proved that [ is a left ideal. On the
other hand, if x = yz then h(a) = j(z), j = kL,, and we see that [ is left
strongly prime. Since (g, b) € uG and a € I, we must have b € I.
(ii) Clearly, ug is an equivalence and it follows easily from (i) and the left
distributivity, that ug is left stable.

Let a,be G. Then a- ab = aa - ab, I}(b) = L,,(ab), and therefore (ab, b) € ug.
This implies that (yx, zx) € ug; for all x, y, z € G, and hence ug is right stable, thus
being a congruence of G. The rest is clear.

(iii) It follows from 1.20(ii) that u; < ug and the rest is clear. []

1.22 Lemma. Let G be an LD-groupoid and a left quasigroup. Then:
(i) (a,b) e ug iff b = f(a) for some f € M¥G).
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(ii) If the order of L, in the permutation group M¥(G) is finite for every a€ G
(e.g., if G is finite), then uG = ug.

Proof. Easy (use 1.21). [

1.23 Lemma. Let G be an LD-groupoid. Then:
() (a,b) €z, ¢ iff a = f(b) for some f € M(G) (i.e., iff a = ((ba))...)a, for some
n>1landa,,.. a,cG.
(ii) z, ¢ is transitive and left stable.
(iii) (a, b) € z;.¢ iff a = f(b) for some f € M}(G).
(iv) z! ¢ is a left stable quasiordering.
(v) If z, ; is irreflexive then z) is a left stable ordering.
(vi) If G is idempotent then z, ; = z} ;.

Proof. Obvious. (see 1.3.16). [

1.24 Lemma. Let G be an LD-groupoid. Then:
1) vg = ker(z}' G) is a left stable equivalence.
(i) (a,b) € vg iff a = f(b) and b = g(a) for some f, g € M}(G).
(iii) If G is idempotent then (a,b)€ vs iff a = f(b) and b = g(a) for some
1, g € M|G).
(iv) If G is idempotent then every block of v is a subgroupoid of G.
Proof. Obvious. []

1.25 Lemma. Let G be an LD-groupoid and f € M(G). Then there are
g € M\(G) and h € M)(G) such that f = hg and either g € M(G) or h e M,(G).

Proof. We have a- xb = ax - ab for all a, b, x € G, and hence L,R, = R,L,.
The rest is clear. []

1.26 Lemma. Let G be an LD-groupoid. Then M(G) = M,(G) v 4,(G) U
M(G) M(G) and M'(G) = M(G) w M(G).

Proof. This follows immediately from 1.25. [J

1.27 Lemma. Let G be an LD-groupoid. Then:
(i) (a, b) € z6 iff a = hg(b), where h € M}(G), g € M(G) and either h € M,(G) or
g € M(G).
(ii) (a,b)ezg iff there are n >0, m >0, ay,..., a, by, ..., b, € G such that
n+m>1anda = ((af..(a.b)) b))...) b
(iii) zg is transitive and left stable.
(iv) (a, b) € zg iff a = hy(b) for some h e M}G) and g € M}(G).
(V) zg is a left stable quasiordering.
(vi) If zg is irreflexive then z§ is a left stable ordering.
(vii) If G is idempotent then z; = z.

Proof. Easy (see 1.25, 1.26 and 1.3.18). [
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1.28 Lemma. Let G be an LD-groupoid. Then:
(i) wg = ker(z) is a left stable equivalence.
(i) (a, b)ews iff a = hg\(b) and b = hygy(a) for some hy, h,e #}(G) and
g1 92 € M(G).
(iii) If G is idempotent then (a, b) € wg iff a = higy(B) and b = h,g,(a) for some
hy, h, € M,(G) and g,, g, € M/(G).
(iv) If G is idempotent then every block of wg is a subgroupoid.

Proof. Obvious. []

1.29 Proposition. Let G be an LD-groupoid.
(i) If G possesses a right neutral element then G is an idempotent groupoid
satisfying the identity Xy == Xy - X.
(ii) If G possesses a neutral element then G is an idempotent semigroup satisfying
the identity Xy = XyX.
Proof. (i) Let e € G be right neutral. Then x = xe = x - ee = xe - xe = xx and
xy=x-ye=xy-xe=xy- xforal x,yeG.
(ii) Let ee G be neutral. Then xy=x-ey=xe-xy=x-xyand x-yz=xy-:xz=
(xy x)(xy-z) = (xy)(xy-z) =xy-zforal x,y,ze G. [
1.30 Lemma. Every right permutable LD-groupoid is medial.

Proof. We have xa- by =(x-by)a=(xb-xy)a=((x"xy)b)a=((x-xy)a)b=
(xa-xy)b=(x-ay)b=xb-ayforalla,b,x,yeG. O

1.31 Example. Consider the following two-element groupoid G (= Cyc,(2)):

G|01
0(10
110

Then G is an LD-groupoid, G is not right distributive and Id(G) = 0.
1.32 Example. Consider the following two-element groupoid G:
G |01

0101
100

Then G is an LD-groupoid, p; = id; (and hence G/p; is not idempotent) and
Id(G) = {0}is an ideal of G.
1.33 Example. Consider the following three-element groupoid G:
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Then G is an LDI-groupoid and p; = idg L {(0,2),(2, 0)} is not a congruence
of G. On the other hand, G is idempotent and hence (x, xx) € p; for every x € G
and o; = id; is an automorphism of G. Furthermore, G is left and middle
semimedial but G is not right semimedial.

1.34 Example. Consider the following three-element groupoid G:

Then G is an LD-groupoid and p; = idg. On the other hand, G is not idempotent
and not left semimedial.

1.35 Example. Consider the following three-element groupoid G:

Then G is a medial LD-groupoid but pg is not a congruence of G and (0, 1) ¢ pg,
1 = 0-0. Moreover, og is an endomorphism of G.

1.36 Example. Consider the following three-element groupoid G:

Then G is an LD-groupoid and p; = id; is a congruence of G. On the other
hand, o; is not an endomorphism of G.

1.37 Lemma. Let G be an LD-groupoid.
(i) If a€ G is left constant then aa € 1d(G).
(ii) The set of right constant elements is either empty or a left ideal of G.
(iii) If a € G is constant then aa is right absorbing.

Proof. (i) We have aa-aa = a- aa = aa.
(ii) If ae G is right constant then y-xa = y-aa = ya-ya = aa-aa = a- aa
for all x, y € G, and hence xa = aa is also right constant.
(iii)) By (i) and (ii), aa € Id(G) and aa is right constant. Hence x - aa = aa- aa =

aa. [
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1.38 Lemma. Let G be an LD-groupoid and let a,be G be right constant
elements such that aa = bb. Then:
(i) ax = bx for every x € GG.
(ii) If G = GG then (a, b) € tg.

Proof. (i) We have a* uv = au- av =(au- a)(au - v) = (aa) (au- v) = (aa- au)(aa- v) =
(aa - a) (aa - u)) (aa - v) = ((aa) (aa - u)) (aa - v) = ((bb) (bb - u)) (bb - v) = b - uv
for all u,v e G.
(ii) By (i), (a, b) € ps. On the other hand, xa = aa = bb = xb for every x € G,
and so (a, b) € g¢. Thus (a,b) € pc N g6 = tg. [

I1.2 Ideals of left distributive groupoids

2.1 Lemma. Let I, J, K be left ideals of an LD-groupoid G. Then:
(i) 1J is a left ideal and 1J < J.

@ii) I-JK =1J - IK.

(i) I(J UK)=1JuUIKand (J UK)I =JI UKI

v) If J <€ K then 1J < IK and JI < KI.

Proof. (i) If ael,beJ and xe G then x-ab = xa-xbelJ.

(ii) If ael, beJ and ce K then a-bc = ab - ac, and hence I - JK < IJ - IK.
Conversely, if a,bel, ce J and d € K then ac - bd = (ac- b)(ac- d), ac-bel,
aceJ and ac-bdel- JK.

(iii) and (iv) This is obvious. []

2.2 Lemma. Let G be an LD-groupoid such that G = G
(i) If 1 is a right ideal and J is an ideal of G then 1J is a right ideal and 1J < I N J.
(i) If I, J are ideals of G then 1J is an ideal and IJ < I N J.

Proof. (i) If ael,beJ and x € G then x = yz for some y,ze Gand ab- x =
ab- yz = (ab- y)(ab - z). Of course, ab- yeI and ab- z € J.
(i) This follows from (i) and 2.1(31). [

2.3 Let G be a groupoid and let PB(G) denote the set of all subsets of G. Then
we have a binary operation defined on B(G), namely AB = {ab|a e A, b € B} for
all 4, Be PB(G). In this way, PB(G) becomes a groupoid. Clearly, @ is an absorbing
element of B(G) and {@}is a prime ideal of B(G). Further, we denote by %(G) the
subgroupoid of B(G) generated by G. Then %(G) is a trivial groupoid iff G> = G.

2.4 Let G an LD-groupoid. Then the set .%(G) of left ideals of G is a sub-
groupoid of B(G) and #(G) is again an LD-groupoid (see 2.1(i), (ii)). Since
G e J(G), #(G) is a subgroupoid of .#(G); in particular, #(G) is also an
LD-groupoid. If G is idempotent then both .#(G) and %#(G) are idempotent.

2.5 Let G be an LD-groupoid such that G = G°. By 2.2(ii), #(G) is a sub-
groupoid of #(G). Again, since G e #(G), we have #(G) = #(G). Further, if

34



IJ,K,Le #(G) and a€el, beJ, ceK, deL then ab-cd = (ab- c)(ab-d)e
IK:JL, and so IJ- KL < IK - JL. Similarly the converse and we have proved
that #(G) is a medial groupoid.

2.6 Let G be an LDI-groupoid. If I, J, K€ #(G) and ael, be J, ce K then
a-bc=ab-acelJ-K and ab-c = ab-cc = (ab-c)(ac-c)eI- JK. This shows
that #(G) is an idempotent semigroup. By 2.5, #(G) is medial, and so #(G) is
a D-groupoid. Moreover, for ael, beJ, ab = ab-ab = (ab- a)(ab- b) e JI.
Thus 1J = JI and #(G) is a semilattice.

2.7 Let G be a groupoid. Then we put G = G and G"*"> = G - G for every
n > 1. Let 2(G) = {G™|n > 1} = %(G).

2.8 Lemma. Let G be an LD-groupoid and A € #(G). Then:
(i) GA < A.

(i) If A+ Gand n > 1 then G- A = GA.

(iii) There exists m > 1 such that G™ < A.

Proof. (i) A is a left ideal (see 2.4).

(ii) Let F be an absolutely free groupoid with a one-element free basis {x}and let
f denote the uniquely determined homomorphism of F onto %(G) such that
f(x) = G. Since A + G, we have G + G* and A = f(r) for some re F, I(r) > 2
(I(r) means the length of r). Now, we shall proceed by induction on I(r) + n.

First, let I(r) = 2. Then 4 = G* and G® = G- G* = (GG)(GG) =
(GG) ((G™G) G) = G- G* = G,

Next, let r = sx, I(s) > 2, B= f(s). Then GA = G- BG = (G- B) (G- G) =
(G- B)(G™)- (G- B)G)= G- BG=G"*V- 4, and so GA=G"*V- A,
Similarly, if r = xs, Is)>2 then GA = G- GB = (G- G)(G™ - B) =
((G<n>. G) G<n>) «G<n> . G) B) c Gt 4.

Finally, let r = st, I(s) > 2, [(t) > 2, B = f(s), C = f(t). Then G™-4 =
(G™- B) (G- C) = GB- GC = G- BC = GA.

(ii) We can assume that A = BC and that G” < B n C for some n > 2. Then
G™ - G < A. However, by (ii), G™ - G™ = G"*Y, O

2.9 Let G be a groupoid and n > 1. Then we put G** = G and G<*"+P =
G™ - G for every m > 0.

2.10 Lemma. Let G be an LD-groupoid. Then G*™ - G = G+ for all
n>1,m>0and k > 2.

Proof. If G = G” then the result is clear. Hence, assume that G + G°. Now, for
m = 0, our equality follows from 2.8(ii).

Let k = 2. We shall proceed by induction on m. We have G = G»™ - G2 =
(G™™ - G) (G™™ - G) < G+~ G2 = G, and s0 GD = GV - G2,

Let k > 3. Again, we shall proceed by induction on m. We have G*+P =
G- GO = G - (G- GHD) = (G - G) (G - GE—D) = G+ . GO,

35



2.11 Lemma. Let G be an LD-groupoid, n > 1,m > 1. Then G - G*™ = G,

Proof. Again, we assume that G + G*. We shall proceed by induction on m.
Now, G- G™™ = (G- G™™~)- G If m>2 then G- G™™ 1 = G by induction
and G®-G*=G® by 210. If m=1 then G-G"" P = G"*D and
G- G = G» again by 2.10. [

2.12 Lemma. Let G be an LD-groupoid, n > 1,m > 0,k > 1and | > 1. Then
G<mmy - GERD = G<,

Proof. Let G += G If k = 1 = [ then the result follows from 2.10. If k > 2
and | = 1 then G . GO = (G<"’"‘> . G<k>) . (G<"‘"‘> . G) = GK+D. G<nm+ 1
G- G = G by 2.10, 2.8(ii) and 2.11.

Now, let | > 2. We shall proceed by induction on [. We have G™ - G*P =
(G<""">G<k"‘l>) (G<""">- G) = GPGmmL = G- G = G by  induction,
2.8(i1) and 2.11.

2.13. Proposition. Let G be an LD-groupoid. Then:

i) G- G, = GP foralln>1,m>1,k>11>1.
(i) G- GO = GX*IY foralln > 1, m> 0,k > 2.
(iii) G™ - GO = GmD foralln > 1, m > 0.

Proof. See 2.10 and 2.12. O

2.14 Corollary. Let G be an LD-groupoid. Then:
(i) #(G) = {G"™|n>1,m > 0}.
(i) If G #+ G’ then 9(G) — {G} = {G®’|k = 2} is a left ideal of #(G). O

2.15 Construction. Denote by D, the set of all ordered pairs (n, m), where n, m
are integers, n > 1, n + 2 and m > 0. We shall define a multiplication on D, as
follows: (n,m)(k,1)=(3,0) if 1> 1; (n,m)(k,0)=(k + 1,0) if k>3; (n,m)(1,0)=
(n,m + 1). Now, D, becomes a groupoid and it is easy to check that D, is an
LD-groupoid. Namely, for u = (n,m), v = (k, ) and z = (p, g) from D,, we have
uvz=w-uz=40ifg=>1L, uvz=uw uz=(p+20)if g=0, p>3,
and u vz = uv-uz = (3,0) if g = 0, p = 1. Proceeding similarly, we can show
that D, is medial and uv -z #+ uz - vz for all u, v, z € D,. In particular, D, is not
right distributive. Furthermore, Id(Do) = 0, pp, = idp,, Do/qp, is a right constant
groupoid and ((n, m), (k, I)) € qp, iff either (n,m) = (k,])orm > 1,1 > 1 (Do/qp, is
isomorphic to the right constant groupoid * defined on the set of positive integers
byi*xj=j+ 1l:(n,m) > 2if m > 1 and (n, 0) > n, and so Dy/q = Cyc,(0)).

Define a relation <, on D, by (n, m) <, (k, I) iff at least one of the following
four cases takes place: k <nom=L3<m<[3<nk=1k=10<I<m
It is easy to check that <, is a linear ordering of D, and that <, is stable (with
respect to the operation of the groupoid D).

Finally, notice that the groupoid D, is generated by the element (1, 0), and hence
D, is cyclic and o(Do) = 1.
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2.16 Theorem. Let G be an LD-groupoid. Define a mapping f : Dy — %#(G) by
f(n,m) = G™. Then:
(1) f is a projective homomorphism of the groupoid D, onto the groupoid
A(G).
(i) If (n, m), (k, |) € Dy and (n, m) <, (k, l) then f(n,m) = G"™ <= G*P = f(k, ).

Proof. (i) This follows from 2.13, the definition of the operation of D, and the
fact that f(1,0) = G.

(ii) First, let k < n,m = . We have G = G(...(G - G*))), where G appears
(n — k)-times, and hence G = G, since G’ is a left ideal. This also
implies G<*™ < G<*P,

Next, let 3 <nand 0 <m < . If m = 0 then G® = G» = G- G¢¢P = G,
If m>1 then G < G*'"™, and therefore G"™ = (G- G)...) G =
(GH=m-G)...) G = G*P.

Now, let 3 < n and k = 1. With respect to the preceding case, we can assume
that [ < m. Now G™ = ((G"~"-G)...) G = (GG)...) G = G*P. Finally, if
k = 1and 0 < | < m then we can proceed similarly. [J

2.17 Corollary. Let G be an LD-groupoid. Then #(G) is a medial LD-grou-
poid which is linearly ordered by inclusion (this ordering is stable). []

2.18 Example. Consider the following three-element groupoid G:

Then G is an LD-groupoid, it is right constant and #(G) = 4(G) = {G", G,
G}; we have G = {1,2}, G = {2}and G = G- G*? is not a right ideal.
Moreover, the groupoids G and %(G) are isomorphic.

2.19 Example. Consider the following four-element groupoid G:

Then G is an LD-groupoid, #(G) = {G**, G, G4, GE), G = {0, 1, 31,
G = {0,3}, G®® = {0}, every element of #(G) is an ideal, #(G) = #(G) =
£(G) = #(G) = #(G) U {A},where A = {0,1} is a left ideal but not a right ideal
(H(G) is not linearly ordered by inclusion).
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2.20 Example. Consider the following three-element groupoid G:

01000
11010
21000

Then G is an LD-groupoid and G is commutative (in fact, G is a semigroup),
A(G) = {G, G} + #(G) and J(G) is not linearly ordered by inclusion.

2.21 Lemma. Let G be an LD-groupoid and a € G. Then the set of all xe G
such that f(x) = g(a) for some f, g € M,(G) is just the left strongly prime left ideal
generated by a.

Proof. See the proof of 1.21(i). [

I1.3 Dense subgroupoids of left distributive groupoids

3.1 Lemma. Let H be a subgroupoid of an LD-groupoid G. Then:
() For all f, g€ MG, H) there exists h € M/(G, H) such that fh = hf.
(i) (G, H) and 4G, H) are left uniform.

Proof. We can proceed in the same way as in the proof of 1.16. []

3.2 Lemma. Let H be a subgroupoid of an LD-groupoid G. Then {HYS =
[H]s = Bs(H) = {xe G| f(x) € H for some f € M (G, H)} = | )iz os(H).

Proof. We have f(H) = [H]s = <H)§ (see 1.4.17 and 1.4.4). On the other hand,
if f(x),g(y)e H then fg(y)e H and fg = hf for some he .#4(G, H) (see 3.1).
Now, fg(xy) = fg(x) fa(y) = hf(x) fg(y) € H, i.e., Bs(H) is a subgroupoid of G.
Similarly, if f(x), g(xy) € H then hf(x) fa(y) = fg(x) fa(y) = fg(xy) € H, and so
k(y)e H, where k = L, fg € #(G, H). We have proved that S(H) is a left
closed subgroupoid of G. Consequently, (HYS = Bg(H). Finally, [H]; = | oi(H)
by 1.4.3(ii). O

3.3 Lemma. Let H be a subgroupoid of an LD-groupoid G. Then for all n > 1
and xi, ..., x, € CH) there exists f € M(G, H) with f(x,), ..., f(x,) € H.

Proof. By 3.2, (HY¢ = Bg(H), and hence fi(x,) € H for some f, € .#(G, H).
Since B(H) is a subgroupoid, we have fi(x,) € Bo(H), and so f; fi(x,) € H for an
fr € M(G, H). Clearly, f,fi(x;) € H and the rest is clear by induction. [

3.4 Theorem. Let H be a left strongly dense subgroupoid of an LD-groupoid
G. Then:
(i) For all n > 1 and x,,..., x,€ G there exists [ € #(G, H) with f(x)),...,
f(x,) € H.
(ii) Every left cancellative congruence r of H can be uniquely extended to a left
cancellative conguence s of G.
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(iii) If s is a left cancellative congruence of G and r = s N (H x H) then s is

a cancellative congruence of G iff r is cancellative congruence of H.

@iv) If G is left cancellative and H is cancellative then G is cancellative.
(v) If G is a left quasigroup and H is right divisible then G is right divisible.
(vi) If G is left cancellative then the groupoids H and G satisfy the same groupoid

identities (i.e., they generate the same groupoid variety).

Proof. (i) See 3.3.
(ii) Define s by (x, y)es iff (f(x), f(y)) er for some f e .#(G, H). Then s is

clearly symmetric, s is reflexive by (i) and the transitivity of s follows easily
from 3.1(i). Thus s is an equivalence on G. Moreover, s N (H X H) = r, since
r is left cancellative.

If (x,y)es, (f(x),f(y)er, fe#(G, H) and ze G then gf(x), gf(y),
gf(z) € H for some g € 4(G, H) (by (i)) and gf(zx) = gf(z) gf (), gf (zy) =
9f(2) 9/ (v), (9f(x), gf (¥) € 7, (91 (2x), g f (2y)) € r and (2x, zy) € 5. Quite simi-
larly (xz, yz) € s and we have proved that s is a congruence of G.

Now, let x,y,z€ G, f € M(G, H) and (f(zx), f(zy)) € r. Again, we have
9f(x). 9f(y), 9f(2) € H for some g e #(G, H), (9/(2) 9f(x). 9f(2) gf () e
and (gf(x), gf(v)) € r, since is left cancellative. Thus (x, y) € s and we have
proved that s is left cancellative. If r right cancellative then, proceeding
similarly, we can show that s is right cancellative.

Finally, let ¢ be a congruence of G such that t N (H x H) = r. If (x, y) e ¢t
and f e .#(G, H) is such that f(x), f(y)e H then (f(x), f(y)) et implies
(f(x), f(v)) e r and (x, y) € 5. Thus ¢ < s. Now, assume that ¢ is left cancellati-
ve, x, Y€ G, f e (G, H) and (f(x), f(y)) €r. Then (f(x), f(v)) €, and so
(x, y) € t due to the left cancellativity of t. Consequently, s < t, and so s = .

(iii) See the preceding part of the proof.
(iv) The identity relations idy and id; are left cancellative congruences of H and

(v

G, respectively, and idg extends idy. Since H is cancellative, idy is so, and
hence id;; is cancellative by (iii). However, this means that G is cancellative.
) Let x, y € G. Then f(x), f(y) € H for some f € .#(G, H) and, since H is right
divisible, there is a € H such that af(x) = f(y). Now, G is a left quasigroup,
hence f is a permutation and f(y) = af(x) = f(x), b = f~Y(a), y = bx.

(vi) Let u,ve W be such that u = v holds in H and let h: W — G be a homo-

G
qu

morphism. Then there is f € .#(G, H) such that fh(x) e H for each variable
x occurring in u and v. Further, there is a homomorphism k: W — H such
that k(x) = fh(x). Now, fh(u) = k(u) = k(v) = fh(v) and, since G is left
cancellative, h(u) = h(v). [

3.5 Proposition. Let H be a left strongly dense subgroupoid of an LD-groupoid

and let ¢ be a homomorphism of H into an LD-groupoid K such that K is a left
asigroup. Then ¢ can be extended in a unique way to a homomorphism of G

into K.
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Proof. Let 4 be a subgroupoid of G such that H = A, ¢ can be extended to
a homomorphism ¢ : A - K and A is maximal with respect to these properties.
We are going to show that A is left closed in G.

For, let a€ A and B = pg(A). Then B is a subgroupoid of G and 4 < B. Now,
if x € B then y(ax) = Y(a) &(x) for just one element &(x) e K and it is easy to
check that £: B — K is a homomorphism such that §|A = . Then B = A due
to the maximality of 4 and we have proved that A is left closed in G. Since H < A
and H is left strongly dense in G, we must have A = G and ¢ is extended to
¥ : G — K. The unicity of y follows from 1.4.8(). [

3.6 Lemma. Let H be a subgroupoid of an LD-groupoid G and let a € H and
K = p,6(H). Then K is a subgroupoid of G,H < K and ¢ = L, x is a homo-
morphism of K into H. This homomorphism is injective (projective), provided that
G is left cancellative (left divisible).

Proof. Obvious. []

3.7 Lemma. Let H be a subgroupoid of an LD-groupoid G, n > 0 and
m = 2" — 1. Then og(H) < B, o(H) < og(H).

Proof. By induction on n. The result is clear for n = 0. Now, let x € ag*'(H).
Then ax = b for some a, b € of(H) and there are a,, ..., Gy, by, ..., b, € H such that
¢ =ay..(ama) e H and by(...(b,b)) € H. From this we immeadiately obtain
by(-..(bn(c(ai(...(amx))))) € H. The rest is clear. [J

3.8 Let H be a left strongly dense subgroupoid of an LD-groupoid G and suppose
that o,(H) < N,. Then there is a countable non-empty subset S of H such that
H = {5)!. The subgroupoid A generated by S is also countable and H = {4)%.

Now, consider a bijective mapping f: A x N — N, N being the set of positive
integers, f (i) = (9(i), h(i)), g(i) € 4, h(i) e N. Put Ky = H and K; = p, o(Ki_1)
for each i > 1. Then Ky K, € K, ... € K, < K;,; €... and all K; are
subgroupoids of G. Hence K = ( J;»0 K is a subgroupoid of G and H <= K.

(i) By induction on n > 0 we show that 8, ; = K. This is clear for n = 0. Now,
letn > 1, a,.., a,€A, aeG, ay...(a,a)) € A. By the induction hypothesis,
a,a€ K, and so a,a € K,, for some m > 0. Clearly, there is i > m such that
g(i) = a,. Then a,a€ K,_,, and hence a e K; < K.

(i) By (i) and 3.2, {A)¢ = B4(A) = K. However, H = {A); and H is left
strongly dense in G. Consequently, (A) = K = G.

(iii) Put ¢; = Ly g, for each i > 1. Then g; is a homomorphism of K; into K;_j,
and so #; = @, ... 0;_0; is @ homomorphism of K; into H.

If G is left cancellative then all g; and #; are injective, and hence all K; are
isomorphic to subgroupoids of H.

If G is left divisible then ¢(K;) = K,_, and (K;) = H.

If G is a left quasigroup then all g; and #; are isomorphisms, and hence all K; are
isomorphic to H.
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3.9 Lemma. Let H be a subgroupoid of an LD-groupoid G. Then:
() #(G, H) = #(G, H) v 4,(G, H) v 4,G, H) 4(G, H).

(i) #'(G,H) = #}(G, H) #4(G, H).

(iii) If H is left divisible then

M(G, H) = #(G, H) L M,(G, H) U M(G, H) #,(G, H)
and M\(G, H) = #}(G, H) 4G, H).

Proof. We have L,R, = R, L, for all a,be H. If H is left divisible then
a = bc for some ce H and R,.L, = L,R.. [

3.10 Lemma. Let H be a subgroupoid of an LD-groupoid G. Then Yy4(H) <
Bde(H). Moreover, if H is left divisible then yo(H) < d6B6(H).

Proof. See 1.4.19, 1.4.20 and the preceding lemma. []

I1.4 Cancellable and divisible elements of left distributive groupoids

4.1 Proposition. Let G be an LD-groupoid. Then:
(i) %(G) is either empty or a left closed subgroupoid of G.
(i) 2(G) is either empty or a subgroupoid of G.
(iii) 2(G) is either empty or a left closed subgroupoid of G.
(iv) 9(G) 2,(G) < %(G) and #(G) 2.(G) < 2(G).
(v) If both %,(G) and Z(G) are non-empty then 2(G) is an idempotent groupoid.
If, moreover, 2(G) * O then G is idempotent.
(vi) If P(G) + O then G is idempotent.

Proof. First, L,L, = L,,L, = L, ,L,, for all x,ye G and (i), (ii), (iii) are
easily seen. Further, L,R, = R, L, and (iv) is clear. Now, let a € %(G) and
b e %,(G). Then b = ac for some c € G and we have ab = a* ac = aa- ac = aa- b,
which implies a = aa. If, moreover, 2(G) # § then 1d(G) = G, since Z(G) < 1d(G)
and Id(G) is a left ideal. [J

4.2 Proposition. Let G be an LD-groupoid. Put 6*(G) = {a € 4(G)|aa = aa- a}.
Then:
(i) 4*(G) is either empty or a left closed subgroupoid of G.
(i) If €*(G) # O then €*(G) is a left strongly prime left ideal of the groupoid %(G).
i 2(6) < 4(G)
(iv) (a, aa) € pg for every a € 6*(G).

Proof. Put A = {ae G|aa = aa-a} (see 1.18). If ae %(G) and abe A then
a(bb - b) = (ab - ab) (ab) = (ab) (ab) = a - bb implies be A. Now (i) and (ii) are
clear from 4.1(i) and 1.18(ii), (iii). Finally, (iii) and (iv) follow from 1.9(1), (ii). 0O

4.3 Proposition. Let G be an LD-groupoid and a € 4*(G). Then there exists an
LD-groupoid K and an element b € K with the following properties:
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() G is a left strongly dense subgroupoid of K, be %*(K) and a = bb = ab,
) (a, b) € px.
(i) K = 14,4(G) = i o(G).
(ili) G = aK = bK and the translation L, x = L, x is an isomorphism of K onto G.
() G(K) = 1. (4(G)). %(G) ~ a%(K) < G(K),
() G¥(K) = 1, x(6*(G). 6%(C) = at*(K) < 4¥(K).
(vi) If O is an absorbing element of G then 0 is also absorbing in K.

Proof. Put H = aG and ¢ = L,;. Then ¢ is an isomorphism of G onto H and
@(a) = aa. Now, it is clear that there exists an LD-groupoid K such that G is
a subgroupoid of K,G = bK for an element be $*K) and ¥ = L, is an
isomorphism of K onto G, ¥ |G = ¢. We have y(b) = bb = a, (a, b) € px (by
4.2(iv)) and G = aK = bK. The rest is obvious. []

4.4 Proposition. Let G be a LD-groupoid and a e %*(G). Then there exists an
LD-groupoid K with the following properties:

(i) G is a left strongly dense subgroupoid of K and a € Z(K).

(ii)) K is the union of a chain K= K, < K, <... <K, € K;,;, ... of
subgroupoids such that Ky = G, K; = aK, ., for each i > 0 (thus all K are
isomorphic to G).

(iii) For every x € K there is n > 0 with L, ¢(x) = a(... (ax)) € G (thus K = (G)).

(iv) %(G) < 4(K) and G*(G) < 6*(K).

(v) K is (left, right) cancellative (regular) iff G is so.

(vi) K is (left, right) divisible, provided that G is so.

(vii) wg S wg,; K is subdirectly irreducible, provided that G is so.
(viii) K is simple, provided that G is so.

(ix) px = idg, provided that p; = idg.

(x) K contains an absorbing element iff G does; in the positive case, the
absorbing elements coincide.

(xi) The groupoids G and K satisfy the same groupoid identities.

Proof. The chain K, = G < K| < K, < ... is constructed by means of 4.3,
K, =aK;,;, and K = U,Zo K. The assertions of the proposition are easy con-
sequences of 4.3 and the fact that all the links of the chain... € K, € K;,, < ...
are isomorphic to G. For instance, if G is subdirectly irreducible, r % idg is
a congruence of K and (u,v)er, u + v then Liyu), Li(v)e G for some n > 0,
Li(u) + Liv), and so r n (G x G) # idg and wg = r. O

4.5 Theorem. Let G be an LD-groupoid. Then there exists an LD-groupoid
Q with the following properties:
(i) G is a left strongly dense subgroupoid of Q and card(Q) = card(G).
(i) 6(G) = 6(0) and 4*(G) = 67(0) = #(0)
(iii) If x € Q then there existn > 1 and a,, ..., a, € 4*(G) such that ay(...(a,x)) € G.
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(iv) Q is (left, right) cancellative (divisible, regular), provided that G is so.
(V) wg S wy; Q is subdirectly irreducible, provided that G is so.
(vi) Q is simple, provided that G is so.
(vii) pg = idy, provided that p; = idg.
(viii) Q contains an absorbing element iff G does; in the positive case, the absorbing
elements coincide.
(ix) The groupoids Q and G satisfy the same groupoid identities.

Proof. We can assume that € = %*(G) # 0. The rest of the proof is divided into
several parts:

(i) Let o > 1 be an ordinal number such that ¥ = {a;|1 < f < a}. Now, we shall
construct a chain G4, 0 < B < a, of groupoids as follows: G, = G;if 1 < <«
and f is not limit then Gy is (by 4.3) such that a;G; = Gg_;if 1 < f < a and
B is limit then Gy is such that asG; = | Jo<,<p G, (again, by 4.3). Put K =
| Jo<p<« G- By transfinite induction we can show that K satisfies the properties
(i), (iii), ..., (ix) and that €(G) <= %(K), 6*(G) = %*(K). Moreover, for every
ac€4*G), G < aK.

(i1)) Define a chain Q, € Q;, < Q, < ... of groupoids in such a way that Q, = G
and, for i > 0, Q,, is constructed by means of (i) (starting from Q,). Put Q =
(Jiz0 Q. If x € 6*(Q), y € Q then x € 4(Q)), y € Q; for some i > 0, and hence
y = xz for some z € Q. Thus %*(Q) — #(Q) (use 4.2(iii)). In the rest, we can
use (i) and proceed similarly as in the proof of 4.4 (to prove (iii), put H =
{xeQ|f(x)eG for some f e .#(Q, %)} and show that H is left closed in
Q. O

4.6 Lemma. Let G be an LD-groupoid such that € = 6*(G) + 0. Then the
transformation semigroups M(G, €) and 4G, €) are cancellative.

Proof. Every transformation from .#(G, %) is injective, and this implies that
the semigroup is left cancellative. Now, let f,g,he #(G, %) be such that
fh = gh. There are n > 1 and a,,...,a,€% such that h =L, ... L, and we
shall proceed by induction on n. Put k = L, ... L, _, (k =idg if n = 1) and
a =a, We have f[k(ax)= gk(ax) for every xeG. Consequently, b =
fk(aa) = gk(aa) and bfk(x) = fk(aa- x) = fk(ax) = gk(ax) = gklaa - x) =
bgk(x). But be %, and hence fk(x) = gk(x) and fk = gk. Then f= g by the
induction hypothesis. []

4.7 Remark. Let G be an LD-groupoid and a € %(G). Put ¢ = L,. Then ¢ is
a projective homomorphism of G onto G, (a, ¢(a)) € p; and there is b € G such that
¢(b) = ab = a. Moreover, ker(¢) = g, and if r is a left cancellative congruence
of G such that r < ker(¢) then r = idg and G is a left quasigroup (if (x, y) € r then
x=auy=ay (uv)er < ker(p) and x = au = av = y).

4.8 Example. Consider the following three-elem,ent groupoid G:
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Then G is an LD-groupoid, %(G) = %(G) = #(G) = {1} is a left closed
subgroupoid which is not right closed and %/(G) = Z,(G) = #(G) = {2} is not
a subgroupoid of G. Moreover, G is not idempotent.

4.9 Proposition. Let G be a subdirectly irreducible LD-groupoid. Then either
4¢ * idg or €(G) * 0.

Proof. Suppose that %(G) # 0. Then, for every x € G, L, is not injective, g, ¢ =
ker(L,) + id; is a congruence of G and wg < ¢, If (a,b)€wg, a + b then
xa = xb, and so (g, b)eqs. O

I1.5 Left cancellative left distributive groupoinds — first observations

5.1 Proposition. Let G be a left cancellative LD-groupoid. Then:
(i) € = ¢*(G) = {ae G|aa = aa- a} is either empty or a left strongly prime
left ideal of G.

(i) € = {ae G|(a, aa) € pg}.
(iii) pg is a left cancellative and right stable equivalence.
(iv) #(G) and M}(G) are left cancellative left uniform semigroups.

(V) If € + 0 then MG, €) and M}(G, ) are cancellative left uniform semigroups.
(vi) Either 1d(G) = 0 or 1d(G) is a left strongly prime left ideal of G.

Proof. See 1.18, 1.9(ii), 1.14(i), 1.16 and 4.6 (if ab € Id(G) then ab = ab - ab =
a-bb,and so b = bb). [

5.2 Proposition. Ler G be a left cancellative LD-groupoid. Then G = 4*(G)
(i.e., G satisfies the identity XX == XX - X) iff (X, xx) € pg for every x€ G (i.e., iff
G satisfies the identity Xy == XX - y). Moreover, if these equivalent conditions are
satisfied then:

(i) pg is a congruence of G and G/pg is a left cancellative LDI-groupoid.
(i) G is left semimedial and og is an endomorphism of G.
(ili) #(G) and M/ (G) are cancellative left uniform semigroups.

Proof. See 5.1 and 1.12. []

5.3 Theorem. The following conditions are equivalent for a left cancellative
LD-groupoid G:

(i) G satisfies the identity XX == XX - X.

(ii) G satisfies the identity Xy = XX - y.
(iii) G satisfies the identity X - yZ == XX - yZ.
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(iv) G satisfies the identity XX - yZ = Xy - Xz (i.e., G is left semimedial).

(v) G satisfies the identity XX - yy = Xy - Xy (i.e., 0 is an endomorphism of G).
(vi) G satisfies the identity X - yy = XX - yy.
(vii) G can be embedded into a left distributive left quasigroup.

Proof. (i) implies (ii) by 5.2, (ii) implies (iii) trivially, (iii) implies (iv) by the left
distributivity, (iv) implies (v) trivially and (v) implies (vi) by the left distributivity.

Let (vi) be satisfied and let x € G. Then x(xx - x) = (xx * xx) (xx) = xx * xx =
x * xx, and hence xx - x = xx, i.e., (1) is satisfied.

The condition (vii) implies (i) by 1.11(4). Now, let (i) be satisfied and consider
the LD-groupoid Q constructed in 4.5. Then G is a subgroupoid of Q, Q is left
cancellative, Q satisfies xx == xx - x and Q = %*(Q) = #(Q). Thus Q is a left
quasigroup. []

5.4 A left cancellative LD-groupoid satisfying the equivalent conditions of 5.3
will be called pseudoidempotent (clearly, every left cancellative LDI-groupoid is
pseudoidempotent).

5.5 Remark. Let G be a pseudoidempotent left cancellative LD-groupoid. We
shall exhibit here two alternative proofs of the fact that G can be embedded into
a left distributive left quasigroup.

(1) We can assume without loss of generality that G is infinite. Let S be a set such
that G < S and card(S) > card(G). Denote by M the set of pseudoidempotent
left cancellative LD-groupoids K such that G is a left strongly dense subgroupoid
of K and the underlying set of K is a subset of S. The set I is non-empty
(we have G € M) and it is ordered by K < L if K is a subgroupoid of L (then
K is left strongly dense in L). By Zorn’s lemma, let Q be a maximal element
of M. We are going to show that Q is a left quasigroup. For, let a, b € Q. By
1.4.15, card(Q) = card(G) < card(S), and hence there exists a groupoid P € M
such that Q < P and Q = aP (use 4.3). Since Q is maximal, we must have
Q = P, and so b = ac for some c € Q.

(ii) First, let G be finitely generated, G = {A); for a non-empty finite set 4 < G.
Let f: A x N — N be a bijection (see 3.8). Put Q, = G and, for i > 1, let
Q, be such that Q, , is a subgroupoid of Q; and Q,_, = ¢(i) Q; (by 4.3),
£ 7Y (i) = (g(i), h(i)). We are going to show that Q = ( J;»,Q; is a left quasigroup.
It is easy to see that A = 2 = Z(Q). Since 2 is a subgroupoid of Q, we also
have G < . However, 2 is a left closed subgroupoid (see 4.1(iii)) and G is
left strongly dense in Q. Consequently, Z = Q.

In the general case, G can be embedded into a filtered product of its finitely
generated subgroupoids. Every such subgroupoid can be embedded (by the
first part of this proof) into a left distributive left quasigroup, and then G can
be embedded into the corresponding filtered product of these left quasigroups
which is again a left distributive left quasigroup.
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(iii) By 5.2(iii), .#(G) is a cancellative left uniform semigroup. Then .#(G) is
a subsemigroup of its group A" of left fractions. Define an operation * on
A by u*v = uvu"'. Then A(*) is an LDI-groupoid and a left quasigroup.
The mapping ¢ :a — L,€ .4 is a homomorphism of G into A4'(x) and
ker(¢) = pg. Thus G/p; can be embedded into A(x).

5.6 Example. Let .&/ be the set of non-projective injective transformations of
an infinite set 4. Define an operation * on &/ by (f*g)(f(a) = fg(a) and
(f*g)(b)="b for all f,ge o, acA and be A — f(A). Then /() is a left
cancellative LD-groupoid and %*((x)) = 0. In particular, /(%) is not pseudo-
idempotent, and hence it cannot be embedded into a left distributive left quasigroup.

5.7 Theorem. Let H be a left strongly dense subgroupoid of an LD-groupoid

G such that H = %(G). Then:

(i) G = %(G) is left cancellative, card(G) = card(H) and for every x € G there
exist n > 1 and ay, ..., a, € H such that ay(...(a,x)) € H.

(i) If K is a finitely generated subgroupoid of G then K is isomorphic to
a subgroupoid of H.

(iii) The groupoids G and H satisfy the same groupoid identities.

(iv) wyg € wg, G is subdirectly irreducible, provided that H is so.

(V) 0o = .|H; G is subdirectly lc-irreducible iff H is so.

(vi) G is lc-simple iff H is so.

(vil) G is cancellative iff H is so.

(viii) py = pg|H.

Proof. (i) By 4.1(i), %/(G) is left closed in G, and hence G = %(G). The other
assertions follow from [.4.15 and 3.2.

(i) Let A be a non-empty finite set such that K = {A4). By 3.4(1), f(4) = H
for some f e .#(G, H). Then f(K) < H and the groupoids H, f(K) are
isomorphic, since f is an injective endomorphism of G.

(ii1) Use (ii) or 3.4(vi).

(iv) Let r # id; be a congruence of G, s =r|H, ve G, u % v, (u,v)er. Then
f(u), f(v) £ H for some f e .#4(G,H), (f(u),f(v))es, f(u) + f(v) and
s * idy. Consequently, wy S s < r, and hence wy S wg.

(v) and (vi). See 3.4(ii), (iii).

(vii) See 3.4(iv).

(viii) Let (a, b)epH and x€ G. There are n > 1 and ay,..., a,€ H such that
ay(...(a,x))e H. Now, aa; =ba; =c;, ci..(c,"ax)) = aay...(a.x))) =
b(ay(...(anx))) = ci(...(c. - bx)), ax = bx and (a,b) e ps. O

5.8 Let G be a left strongly dense subgroupoid of a left distributive left

quasigroup Q. Then we shall say that Q is a left quasigroup-envelope of G and we

shall write Q = Q,(G).

With respect to 5.3, an LD-groupoid G possesses a left quasigroup-envelope iff

G is left cancellative and pseudoidempotent.
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5.9 Theorem. Let G be a pseudoidempotent left cancellative LD-groupoid.
() If Q and P are left quasigroup-envelopes of G then there exists just one
isomorphism f : Q — P such that f |G = id; (i.e., a G-isomorphism).
(i) If g: G —» H is a homomorphism, where H is a pseudoidempotent left
cancellative LD-groupoid, and if Q and P are left quasigroup-envelopes of
G and H, respectively, then there exists just one homomorphism f:Q — P
such that f |G = g. Moreover, f is injective (projective), provided that g is so.
(iii) If G is a subgroupoid of a left distributive left quasigroup P then {G)§ is
a left quasigroup-envelope of G.

Proof. Clearly, (i) follows from (ii) and (iii) is evident. Now, we shall prove (i).
By 3.5, g can be extended in a unique way to a homomorphism f:Q — P.If g is
injective then ker(g) = id;. However, ker( f) extends ker(g), and so ker(f) = idy
by 3.4(i). If g(G) = H then H = f(Q) = P. But, f(Q) is a left quasigroup, and
hence it is left closed in P. On the other hand, H is left strongly dense in P, and
therefore f(Q) = P. [

5.10. Theorem. Let G be a pseudoidempotent left cancellative LD-groupoid
and Q = Q,(G). Then:
(i) card(Q) = card(G) and Q, G satisfy the same groupoid identities.
(ii) Q is right cancellative (regular) iff G is so.
(iii) Q is right divisible, provided that G is so.
(iv) wg S wg; Q is subdirectly irreducible, provided that G is so.
(V) Wc6 = Wy | G; Q is subdirectly lc-irreducible iff G is so.
(vi) Q is simple, provided that G is so.
(vil) Q is lc-simple iff G is so.
(vii)) pe = po|G and ps = id, iff ps = ide.

Proof. (i) is proved in 5.7(i), (iii); (ii) and (iii) follow from 3.4(iv) and (v),
respectively; (iv), (v) and (vii) are proved in 5.7(iv), (v) and (vi), respectively.
(vi) This follows from 4.5(vi), however we shall present a direct proof here.

Let K be a subgroupoid of Q maximal with respect to the properties that
G < K and K is simple. We show that K is left closed in Q (then K = Q).
Indeed, if a e Kand L = p, o(K) then K = L and aL = K (since Q is a left

quasigroup). Hence K and L are isomorphic, L is simple and L = K.
(viii) By 5.7(viii), pg = pg | G, and so py = id, implies p; = idg. If pg = idg and
(u, v) € po then f(u), f(v) € G for some f € 4(Q, G), (f(u), f(v) € ps (since

Po is a congruence), f(u) = f(v)and u = v. [

5.11 Remark. Let G be a pseudoidempotent left cancellative LD-groupoid
such that G is infinite countable and G is not a left quasigroup. Put Q = Q/(G).
Then there exists a chain G, € G, = G, < ... € G, = G, <... of subgroupoids
of Q and elements g; € G such that G, = G, UizO G, = Q and G; + G;_, = aG;
for each i > 1 (all the subgroupoids G; are isomorphic to G). The existence of such
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a chain follows from 3.8 (see also the first part of 5.5(ii), where we could take
A to be also infinite countable).

5.12 Remark. Let G be an LD-groupoid. If a € %(G) then there exists an
LD-groupoid K such that G is a subgroupoid of K, %(G) = %/(K) and G = bK,
a = bb for some b € €(K) (to show this, we proceed similarly as in 4.3):

If G is left cancellative then G is a left strongly dense subgroupoid of a left
cancellative LD-groupoid P such that op(P) = P and G, P satisfy the same
groupoid identities.

5.13 Remark. Let G be a right cancellative LD-groupoid. Then G is idem-
potent (see 1.5(ii)) and p; = id;. Consequently, pg is a congruence and G/pg is
idempotent.

I1.6 Left divisible left distributive groupoids —first observations

6.1 Proposition. Let G be a left divisible LD-groupoid. Then:
(1) pg is a congruence of G and G/pg is idempotent.
(ii) The semigroups M\(G) and #,'(G) are right cancellative.
(i) A(G) = M(G) v M(G) U M(G).M(G) = M(G) U M(G) U M(G)M(G)
and A\(G) = M}(G).4\G) = M}G)A}(G).
(iv) 2/(G) is either empty or a left ideal of G.
) If Z(G) # 0 and G is left-ideal-free then G is divisible.
(vi) If 6(G) * O then G is idempotent.

Proof. See 1.12, 3.9, 4.1(Giv), (v). O

6.2 Proposition. Let G be an LD-groupoid and a left quasigroup and let £(G)

denote the subgroup in M;*(G) generated by all L.L,", x, y € G. Then:

() £(G) is a normal subgroup of #*(G) and the corresponding factorgroup is

cyclic.

(i) If a, b€ G and (a, b) € u; then L,, L, are conjugate in M*(G).
(iii) G is medial iff L,L;'L, = L.L.'L, for all x, y, z € G and iff #(G) is abelian.
(iv) 2(G) is either empty or a left ideal of G.

) If 2(G) * 0 and G is lefi-ideal-free then G is a quasigroup.

Proof. (i) We have L.L L;'L;'=L,LL;'L;' =L,L;'L,.L;" € #(G) for
all x, y, z € G. The rest is clear.

(ii) Let (a, b) € ui. Then b = f(a) for some f € #*(G) (see 1.22(i)) and we have
L, = fL,f !, since f is an automorphism of G.

(iii) G is medial iff L,,L, = L,.L, forall x,y,ze G. But L,, = LXLYL;', L, =
L.L.L;', and so G is medial iff L, L;'L, = L.L;'L, = L,L;'L,. If this is so
then L, L7'L.L;' = LL;'L,L;" = L,L;'L,L;" for all x,y,z,ueG, and
hence #(G) is abelian. Conversely, if #(G) is abelian then L, L7'L.L." =
L.L;'L,L; and L,L;'L, = L.L;'L,.
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(iv) See 4.1(iv).
(v) This follows immediately from (iv). []

6.3. Example. Let G be a non-trivial group such that all non-unit elements of
G are conjugate. Define a binary operation x on H = G — {1}by x x y = xyz~ "
Then H(x) is a divisible LDI-groupoid and a left quasigroup. Moreover, py.) =
idy = gu(,) and H(*) is not right regular.

6.4 Example. Let G(+) = Z,. and define a multiplication on G by xy = —x + 2y.
Then G becomes a divisible IM-groupoid (hence a DI-groupoid) and a right
quasigroup. If ae G is such that a +0 and 2a =0 then L,#+ L, and
LoLy = LoL, in .#(G). Consequently, .#(G) is not left cancellative.

6.5 Example. Let G(+) = Z,~,a€G,a+0,2a =0and xy =2x —y + a
for all x, y € G. Then G is a divisible medial LD-groupoid and a left quasigroup.
Moreover, Id(G) = @ and G is not right distributive. Since every right cancellative
LD-groupoid is idempotent, G is not a homomorphic image of an LD-groupoid
which is also a right quasigroup. If x € G then {x); = Cyc,(2).

6.6 Remark. Let G be a right divisible LD-groupoid. Then either Id(G) =@ or G
is idempotent (see 1.5(iv)). Similarly, either G satisfies xx == xXx - X or xx + xx - X
for every x € G (see 1.18). If p; is a congruence of G and G/p is idempotent then

there exists 1 < o« < oo such that every cyclic subgroupoid of G is isomorphic to
Cyc,(«) (see 1.13).

6.7 Example. Let G(+) = Z,- and let H = G U G?. Define an operation *
on Hby axx=a+2x, ax(x,y)=(—a+2x, —a+2y), (ab)xx=—a—2b+4x
and (a,b)* (x,y) = (—a — 2b + 4x, —a — 2b + 4y) for all a,b,x,y€G. It is
not difficult to check that H(x) is a left divisible LD-groupoid.

Now, let ee G be an element such that 4¢ = 0 + 2e. Then (0,0) % (¢, 0) =
(0,0) % (0, 0) and 0 * (e, 0) = (2e, 0) + (0,0) = 0 (0, 0). This shows that H(x) is
not left regular. Further, py(., = idy U {((a,b), (¢, d))|a + 2b = ¢ + 2d}, and we
have ((2e, 0). (0, 0)) ¢ py.). This also shows that the left divisible LDI-groupoid
H(*)/ps) is not left regular.

I1.7 Simple left distributive groupoids —first observations

7.1 Lemma. Let G be a simple LD-groupoid. Put A = {a € G |ax = aa for each
x € G} (i.e., A is the set of left constant elements of G), B = {be A|bb € (G)}
and C = {ce A|cc € A}. Then:

@) G = AU %(G)and A ~%(G) + 0.
(ii) For each a€ A there exists an idempotent e(a) € Id(G) such that aa = e(a) = ax
for every x € G; if a € C then e(a) € C and e(a) is a left absorbing element of G.

(iii) A=BuCand BN C = 0.
(iv) C is either empty or a right ideal of G.
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(v) 4(G) A = A, 4(G) B < B and %(G) C < C.
(vi) If G contains at least three elements then either %(G) =GorC=Gor
card(%(G)) = card(B) = card(C) = 1.

Proof. (i) Letae G. Thenr = g, = ker(L,,) is a congruence of G, and hence
either r = G x G and a€ 4 or r = id; and a € 4(G). Thus G = A U %(G).
On the other hand, A N %(G) = 0, since G is non-trivial.

(i) Forae A, aa-aa = a- aa = aa = e(a) and the rest is clear.

(iii) This follows from (i).

(iv) If ae C and x € G then ax = aa = e(a) € C.

(v) Let ae%(G), beB, ce C and xeG. Then ab-ax = a- bx = ae(b), and
hence L, is not injective, ab ¢ %(G) and ab € A. But ab - ab = ae(b) € 4(G),
since %(G) is a subgroupoid of G (see 4.1(i)), and so ab € B. Similarly, ac € A,
ac- ac = ae(c) and ae(c) - ax = a- e(c) x = ae(c), so that ac € C.

(vi) Put r = (4(G) x 4(G)) U (B x B) U (C x C). Then r is an equivalence and
we are going to show that r is a congruence of G.

For, let a,b,ce G, (a,b)er. If ce %(G) then (ca,cb)er by (v). If ¢ ¢ %(G) then c€ 4,
ca = cb and again (ca, cb) e r. We have proved that r is left stable. Further, if a,b, c € (G)
then ac, bc € (G) and (ac, bc)er. If a,b € B then ac = e{a), bc = ¢b), e{a), eb) € (G) and
again (ac,bc)er. If a,be C then ac,bc e C by (iv) and we have (ac,bc)er. Finally, if
a,be%(G) and ce B (tesp. c € C) then ac,bc € B (tesp. ac,bc € C) and (ac, be)er.

We have proved that r is a congruence of G. If r = G x G then either 4(G) = G
or B = G or C = G. However, if B = G then %(G) = 0 and this is not possible.
Finally, if r +# G x G then r = id; and all the three sets are one-element. []

7.2 It is easy to check that every two-element LD-groupoid is isomorphic to one
of the following six pair-wise non-isomorphic two-element LD-groupoids:

D)o 1 DE)o 1 p(3)|0 1
0100 0101 0100
1101 1101 111
D)0 1 D(5)[0 1 D(6)|0 1
00 0 (01 010
1 /00 1 (00 110
7.3 Consider the following three-element groupoid D(30) (see V.6.1):

Then D(30) is a simple LD-groupoid and 03, is not an endomorphism of D(30).

50



7.4 Theorem. Let G be a simple LD-groupoid. Then exactly one of the
following three cases takes place:
(i) G is a two-element groupoid (and then G is isomorphic to one of the
groupoids D(1), ..., D(6) from 7.2).
(ii) G is isomorphic to the LD-groupoid D(30) from 7.3.
(iii) G contains at least three elements and G is left cancellative.

Proof. Suppose that G contains at least three elements and that G is not left
cancellative. Then %(G) + G.

First, let C = G, where C is from 7.1. There is a mapping e: G — Id(G) such
that xy = ¢(x) and e(e(x)) = e(x) for all x, y € G. Since ker(e) is a congruence of
G, either ker(e) = G x G or ker(e) = id. If ker(e) = G x G then G is a Z-semi-
group, and then G contains just two elements (every equivalence is a congruence),
a contradiction. If ker(e) = idg then x = ¢(x) for every x € G, G is an LZ-semi-
group and, again, G is a two-element groupoid.

We have proved that C # G. By 7.1(vi), each of the sets %(G), B, C contains
only one element, say %(G) = {a}, B = {b}, C = {c}. Now, aa = a, ab = b,
ac =c¢, ba =bb =bc = a, ca=cb =cc =c (see 7.1), and hence G is iso-
morphic to D(30) (a > 1,b > 2,¢ - 0). O

7.5 Theorem. (i) The groupoids D(1),..., D(6), D(30) and Cyc(p), p > 3
a prime number, are pair-wise non-isomorphic finite simple LD-groupoids.
(i) If G is a finite simple LD-groupoid then either G is isomorphic to
one of the groupoids from (i) or G is an idempotent left quasigroup with
P = idg.

Proof. (i) See 7.2, 7.3 and 1.6.9.

(ii) In view of 7.4, we can assume that G is left cancellative. Then G is a left
quasigroup, and hence p; is a congruence of G and G/pg is idempotent (see
1.12). If p; = idg then G is idempotent. If p; = G x G then G is a right
constant groupoid (see 1.6.10). [

7.6 Theorem. Let G be a simple left cancellative LD-groupoid. Then:
(i) Either G is pseudoidempotent or xx £ xx - x for every x € G.
(1) If G is pseudoidempotent then either G is isomorphic to D(2) or to Cyc,(p) for
a prime p > 2 or G is idempotent and p; = idg.
(iii) If G is idempotent and p; = idg then there exists a simple LDI-groupoid
Q such that Q is a left quasigroup, py = idg and G is a left strongly dense
subgroupoid of Q and card(Q) = card(G).

Proof. (i) This follows easily from 1.18(iv).
(i) This follows from the fact that p; is a congruence of G and G/p; is
idempotent (see 5.2, 5.3 and 5.4).
(iii) We can put Q = Q,(G) (see 5.10). [
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7.7 Proposition. Let G be a simple LD-groupoid such that og is an endo-
morphism of G (i.e., G satisfies the identity X - yy = xx - yy). Then either G is
isomorphic to one of the groupoids D(1), ..., D(6), Cyc(p), p > 3 being a prime
number, or G is left cancellative, idempotent and contains at least three elements.

Proof. Put r = ker(og). If r = G x G then G is unipotent and xx = xx - xx =
x - xx for every x € G, and hence G is not left cancellative and we can use 7.4 to
show that G is isomorphic to one of D(4), D(5).

Now, assume r = ids. With respect to 7.4, either G is isomorphic to one of D(1),
D(2), D(3), D(6) or G is a left cancellative groupoid containing at least three
elements. By 5.3, G is pseudoidempotent and the rest is clear. [

II.8 Comments and open problems

This chapter is based essentially on [Kep,81] and [Kep,94b] (see also [KepP,91],
..., [KepP,95b] and [BashJK,?]). The ideal theory of left distributive groupoids
(see I1.2) was initiated by [Bir,86] and the important example 5.6 is taken from
[Deh,89b].

The following problems remain open:

Do there exist non-pseudoidempotent simple left cancelative LD-groupoids?

Is ps a congruence of G for every right divisible LD-groupoid G?

Is every (right) divisible LD-groupoid left regular?

Is every left divisible LD-groupoid a homomorphic image of an LD-groupoid
which is also a left quasigroup?

Which LD-groupoids can be embedded into (left, right) divisible LD-groupoids?

ITI. Subdirect decompositions of some non-idempotent
left distributive groupoids

II1.1 Introduction

1.1 Let G be an LD-groupoid. We shall say that G is
— delightful if satisfies the identity xx -y = x - yy;
— strongly delightful if it is delightful and satisfies the identity (xx - y) z = xy - z;
— an LDA-groupoid if is delightful and satisfies the identity x - xx =y - yy.

1.2 Lemma. Let G be an LD-groupoid. Then:
(i) x-yz = (xy-x)(xy-z)forall x,y,z€G.
(i) If G is elastic then x - yx = xy - x = (xy) (x - xx) € Id(G) for all x,y € G.
Proof. (i) x - yz = xy-xz = (xy - x)(xy - z).
(i) xy x=x-yx=xy-xx=(xy-x)(xy-x)=(xyx)(xyx) =x(yx-yx) =
x(y - xx) = (xy) (x-xx). O
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1.3 Theorem. Let G be a delightful LD-groupoid. Then:

(i) G satisfies the identity X - XX = XX - X (i.e., rg = Sg).

(ii) 1d(G) is an ideal of G and x - xx € 1d(G) for every x € G.

(iii) r¢ is an endomorphism of G, ri(G) = 1d(G) and r|1d(G) is the identity mapping.
(iv) H = G/1d(G) is an LD A-groupoid.

) ker(rg)n =ygy= idg.

(vi) G is the subdirect product of 1d(G) and H.
(vii) Every block of ker(rg) is a subgroupoid and an LD A-groupoid.

Proof. (i) Obvious.

@ii) First, (x-xx)(x - xx) = x(xx - xx) = xx* xx = x* xx, x-xx€ld(G) and
1d(G) is a left ideal by 1.5(). Moreover, if a€ld(G) and ye G then
ay-ay=a-yy = aa*y = ay and we see that 1d(G) is an ideal.

(i) (x-xx) (v yy) = (ex-xx) (v~ yy) = (xx) (v yy)’ = (xx) (- yy) = x(y- yy)* =
x(y - yy) = (xy) (xy - xy) by (ii) and the rest is clear.

(iv) This follows from (ii).

(v) and (vi). If (a, b) e ker(rg) and a, b € Id(G) then a = a- aa = b- bb = b.

(vii) This is obvious. []

1.4 Proposition. Let G be an LDA-groupoid. Then G contains just one
idempotent element 0. Moreover, 0 is an absorbing element of G and x - xx = 0 =
xx - x for every x € G.

Proof. By 1.3(ii), Id(G) is an ideal, and hence Id(G) = {0} is a one-element set. []

1.5 Remark. Let G be a delightful LD-groupoid and x, y, z € G. Then:
x-xy =xx-xy=(xx"x)(xxy) = (xxx)(x yy) = x(xx - yy) = x(x(yy " yy)) =
x(x(y - yy)) € 1d(G),
XXy =x-yy=xy-xy=(xy-x)(xy-y
(xx- y)(xx-y) = xx-yy = x(yy - yy) = x(y yy) = (xx - xx) y = (x - xx) y € 1d(G),
X yx =xy-xx = (xy-xy)x = (x-yy)x = (xx-y)x,
(- 3) (-3 = x(3 0 = x{3-3) = (x- 99) () = (9  29) () = (x3) e 8) =
(xy) (x - xx) e Id(G),
(xy-x)(xy-x) = xy-xx = x-yx,
xx+yz = (xx-y)(xx-z) = (x-yy)(x- zz) = x(yy - zz) = x(y(zz - z2)) = x()(z - zz)) €
1d(G),
xx+yz = x(yz- yz) = x(y - zz),
xy-zz=(xy xy)z=(x"yy)z=(xx-y)z

Moreover, if G is an LD A-groupoid then x - xy = (x - yx)(x - yx) = (xx- y) (xx y) =
xx - yz = 0.

1.6 Proposition. Let G be an elastic delightful LD-groupoid. Then:

() x - yzeld(G) for all x,y,z€G.

(i) (xy-z)(xy-z) = (x"yy)z = (xx'y)z€ld(G) for all x, y,z€G.
(iil) G is left semimedial.
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Proof. (i) By 1.2(ii), x - yx = xy - x € Id(G) for all x, y € G. However, 1d(G) is
an ideal by 1.3(ii), and so x - yz € Id(G) by 1.2(i).
(i) (xy-z)(xy-z) = (x- yy)z = (xx - y) z€1d(G) by (i) (since x - yy € Id(G)).
(iii) The assertion is clear if G is idempotent, and hence, with respect to 1.3(vi),
we can assume that G is an LD A-groupoid. Then x - yz = xy - xz = 0 by (i)
and xx - yz = x(yz - yz) = 0 also by (i). [

1.7 Proposition. (i) A delightful LD-groupoid G is strongly delightful iff
G/Id(G) is a semigroup. If this is so, then G is elastic and G/1d(G) is an
A-semigroup.

(i) A groupoid G is strongly delightful LD A-groupoid iff G is an A-semigroup.

Proof. Put H = G/Id(G). First, let G be strongly delightful. Then xy-x =
(xx-y)x = (x-yy)x = (xy-xy)x = xy- xx = x* yx, G is elastic, x - yz € Id(G)
by 1.6(1) and (xy - z)(xy-z) = xy-zz = (xy-xy)z = (x-yy)z = (xx"y)z = xy " z,
so that xy - z € Id(G) as well. This implies that H is a semigroup.

Conversely, if H is a semigroup then both H and Id(G) are strongly delightful,
and hence G is so by 1.2(vi). [

1.8 Proposition. If G is a strongly delightful LD-groupoid then every block of
ker(rg) is an A-semigroup. Moreover, G is a D-groupoid iff 1d(G) is so.

Proof. Use 1.3(vii) and 1.7(ii). [

1.9 Theorem. Let G be a D-groupoid. Then G is strongly delightful, elastic and
semimedial.

Proof. First, xx -y = xy- xy = x - yy by the left and right distributivity and we
have proved that G is delightful. Now, by 1.3(vi), G is the subdirect product of Id(G)
and H = G/Id(G), where 1d(G) is idempotent (and hence strongly delightful) and
H is an LD A-groupoid. Now, it suffices to show that H is strongly delightful. But
H is a delightful D-groupoid, H contains an absorbing element 0 and, for u, u, w € H,
uv-w=uw-ow = (uw- v) (uw- w) = (uw- v) (uw - ww) = (uw - v) ((u- ww) (w- ww)) =0,
since w - ww = Q.

We have proved that G is strongly delightful. By 1.7(i), G is elastic and, by
1.6(iii), G is left semimedial. Since G is right distributive, G is right semimedial
by the left-right symmetry. []

1.10 Example. Consider the following three-element groupoid G:

54



Then G is an elastic LD-groupoid and Id(G) = {0,1} is not an ideal. Conse-
quently, G is not delightful. Furthermore, p; is a congruence of G, G/p; is
idempotent and o is an endomorphism of G.

1.11 Example. Consider the following five-element groupoid G.
G|01234

H O WwWwOo

010
110
210
310

0

[=NeNeNo Nl

00
00
00
00
00

4 0

It is easy to check that G is an elastic LD A-groupoid and that G is not strongly
delightful (in this case, it means that G is not a semigroup).

1.12 (i) Let G, H be delightful LD-groupoids, I = Id(G), J = Id(H), A = G/I
and B= H/J. Let f:G - H be a homomorphism. Then f(I) < J, and so
g = f|I is a homomorphism of I into J. If f is injective then, trivially, g is
injective. If f is projective and ueJ then u = f(x) for some xel and
f(x"xx) = u-uu = u, x - xx € I, consequently, g is projective. Further, f induces
a homomorphism h: A — B, h(x/I) = f(x)/J. Again, h is injective (projective),
provided that f is so.

(ii) Let G; be a non-empty family of delightful LDI-groupoids and G = [[G..
Then 1d(G) = []1d(G)) and | | G;/Id(G)) is isomorphic to a subgroupoid of G/Id(G).
Moreover, if all the LD A-groupoids G,/1d(G,) are unipotent (or Z-semigroups) then
G/1d(G) is unipotent (or a Z-semigroup).

ITI.2 Construction of strongly delightful left distributive groupoids

2.1 (i) Let G be a strongly delightful LD-groupoid, I = Id(G), r = r¢ and, for
every i€ I, let A(i) be the block of r such that i € A(i). Then I is an ideal of G, I is
an LDI-groupoid, A(i) is an A-semigroup and i = 0; is an absorbing element of
A(i) (see 1.3 and 1.8). Further, G = ( J;c; A(i) is the disjoint union.

Let i,j € I. If a € A(i), b € A(j) then r(ab) = r(a) r(b) = ij € I and ab € A(ij). We
get a mapping g;; : A(i) x A(j) > A(ij), g (a, b) = ab.

Let iel, A(i,2) = A(i) A() = {xy|x, y€ A(i)} and A(i, 1) = A(i) — A(i, 2). If
jel, ae A(i, 2) and b € A(j) then ab € I n A(ij) = {ij},ab = ij. Similarly, ba = ji
and the following condition is satisfied:

(1) 9. AA(i, 2) x A())) = {0} = gi(A(}) x A(j,2)) for all i,jel,i=+j.

For iel, let B(i) = {xe A(i)|xA(i) = 0, = A(i) x}. Clearly, A(i,2) < B(i). If
jel, ae A(i, 1) and b € A(j, 1) then ab € B(ij). Hence:

(2) giAA(i, 1) x A(j, 1) = B(ij) for all i,jel,i =+ j.
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Finally, for i,j eI, let C(i,j) = g;(A(i, 1) x A(j, 1)) — {0;}. If keI, ae C(i,})
and be A(k), then ab = 0;., and ba = 0,.; Now, we can formulate our last
condition:

(3) If i,jel,i +j,C(i,j) + 0 and if keI, k + ij then
9. C(i- j) x A(K)) = {0;..} and g, {A(K) x C(i.j)) = {Oc. 4}

(i) Now, conversely, let I be an LDI-groupoid and A(i), i € I, be a family of
pairwise disjoint 4-semigroups (their absorbing elements being denoted by 0;). For
all i,jel, i < j, let there be given mappings g;; : A(i) x A(j) — A(ij) such that the
conditions (1), (2) and (3) from (i) are satisfied (the sets A(i, 1), A(i, 2), B(i) and
C(i, j) are defined in the same way as in (i)).

Put G = | J;c; A(i) and define an operation * on g by x * y = xy if x, y € A(i)
for some i€l and x * y = g, (x, y) if x € A(i), y € A(j) and i * j. It requires just
a tedious checking to show that G(x) is a strongly delightful LD-groupoid,
Id(G(*)) = {Q|ieI} = I and A(i), i€, are just the blocks of ker(rg). Clearly,
G(*) is a D-groupoid iff I is so.

2.2 Theorem. Every strongly delightful LD-groupoid is constructed from an
LDI-groupoid and a family of disjoint A-semigroups in the way described in 2.1.

Proof. See 2.1. [

2.3 Example. Let I be an LDI-groupoid and A be an 4-semigroup such that
A N1 = {. Further, let g be a mapping of B = 4 — {0} (0 being the absorbing
element of A) into I such that g(xy) = g(x) g(y) whenever x, y € B and xy =% 0.
Put G = B U I and define an operation * on G as follows: x *x y = xy if x, x€ B
and xy + 0;x xy = g(x) g(y)if x, ye B,xy = 0;x*y = xg(y) and y x x = g(y) x
forall xel, yeB; xxy = xy forall x, ye L.

Clearly, I = I1d(G(x)) is an ideal of the groupoid G(*) and G(*)/I =~ A. Moreover,
row|B = g is a homomorphism of G(x) onto I and G(x) is the subdirect product
of I and A. Consequently, G(*) is a strongly delightful LD-groupoid and G(x) is
distributive iff I is so.

2.4 Example. Let I be an LDI-groupoid and A be an A-semigroup such that
I n A = {0}, where 0 is the absorbing element of 4. Put G = I U A4 and define
an operation * on G as follows: x*y = xy if either x,yel pr x,ye€ 4;
x*y=x0and y*x = Ox if xeI and y € A. Then G(x) is a strongly delighful
LD-groupoid, I = Id(G(x)) and G(x)/I = A.

2.5 Proposition. The following conditions are equivalent for a delightul
LD-groupoid G (and then G is strongly delightful):
6y} (x, xx) € pg for every x € G (i.e., G satisfies Xy == XX -y),
(i1) The factorgroupoid G/qg is idempotent.
(iii) GG < 1d(G).
(iv) G/1d(G) is a Z-semigroup.

56



Proof. (i) implies (ii). We have xy = xx-y = x - yy for all x, y € G, and hence
(v yy) € ¢, which means that G/q; is idempotent.
Proceeding conversely, we can show that (ii) implies (i) and the rest is clear. []

2.6 Proposition. Let G be an LD-groupoid. Then the factorgroupoid G/t; is
idempotent iff G is delightful and G/1d(G) is a Z-semigroup.

Proof. If G/t; is idempotent then xx -y = xy = x-yyforall x,ye G. [

II1.3 Splitting strongly delightful left distributive groupoids

3.1 Let G be a strongly delightful LD-groupoid. For every i€ Id(G), let Ag(i)
(or only A(i)) be the block of ker(rs) containing i. Then A(i) is an 4A-semigroup and
i is an absorbing element of A(i).

We shall say that G is balanced if all A(i), i € Id(G), are isomorphic.

We shall say that G is splitting if G is isomorphic to the cartesian product I x 4
for an LDI-groupoid I and an A-semigroup A; then Id(G) = I, A4(i) = A for every
i €1d(G) and G is balanced.

3.2 Lemma. Let G be a strongly delightful LD-groupoid. Then G is splitting
iff there exist an A-semigroup A and isomorphisms g;: Ag(i) > A, i € 1d(G), such
that g{x) g{(y) = g(xy) for all i, j € I1d(G), x € Ag(i) and y € Ad(j)-

Proof. The direct implication is clear and, as concerns the converse one, the
mapping x — (rg(X), g,5x) € 1d(G) X A is an isomorphism of G onto Id(G) x A. [

3.3 Proposition. Let G be a strongly delightful LD-groupoid. The following
conditions are equivalent:
() G is splitting and A(i) is a Z-semigroup for every i € 1d(G).
(ii) G is splitting and G satisfies the equivalent conditions of 2.5.
(iii) G is balanced and G/1d(G) is a Z-semigroup.

Proof. It suffices to show that (iii) implies (i). Coose u € Id(G) and, for each
i € Id(G), let g; be an isomorphism of A(i) onto A(u). Then g(x) g(y) = gi(xy) = u
for all i, j € Id(G), x € A(i), y € A(j) and we can use 3.2. [J

3.4 Proposition. Let G be a strongly delightful LD-groupoid such that G/1d(G)
is a Z-semigroup and card(Aq(i)) = card(Ag(j)) for all i,jeId(G). Then G is
splitting.

Proof. This follows from 3.3, since two Z-semigroups are isomorphic iff they
have the same cardinality. [J

3.5 Proposition. Let G be a strongly delightful LD-groupoid such that 1d(G)
is a quasitrivial groupoid and card(Ag(i)) = 2 for every i€ld(G). Then G is
splitting.
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Proof. With respect to 3.4, it is enough to show that G/Id(G) is a Z-semigroup.
Suppose, on the contrary, that ab ¢ 1d(G) for some a, b € G. Then a € A(i), b € A(j),
i,je1d(G), i # j, abe A(ij), an * ij and a # i, b * j. Since 1d(G) is quasitrivial,
we can assume that ij = i (the other case, ij = j, being similar). Then a, ab €
A(i) — {i},a = ab, a = ab- b € 1d(G) and this is a contradiction with the fact that
G is strongly delightful (see 1.7(i)). [

3.6 Theorem. Let I be an LD-groupoid and A an A-semigroup. Then every
balanced strongly delightful LD-groupoid G with 1d(G) =~ I and Agi) =~ A
(i € 1d(G)) is splitting iff at least one of the following three cases takes place:

(a) I is trivial.

(b) A is trivial.

(¢) I is quasitrivial and card(A) = 2 (then A is a Z-semigroup).

Proof. If I is trivial then G is an A-semigroup. If A is trivial then G is
idempotent. If (c) is true then G is splitting by 3.5. The rest of the proof is divided
into three parts:

(i) Let I be non-trivial and let A be not a Z-semigroup. Consider a family A(i),
i € I, of pair-wise disjoint A-semigroups isomorphic to 4 and denote by 0; the
absorbing element of A(i). Further, put G = ( J;c; A(i) and g,(x, y) = 0; for
all i,jel, i + j, xe A(i), ye A(j). It is easy to check that the conditions (1),
(2) and (3) from 2.1 are satisfied and we obtain a strongly delightful LD-groupoid
G(x) such that Id(G(x)) = I and Ag.(i) = A(i) = A. In particular, G(+) is
balanced and G()/Id(G(x)) is not a Z-semigroup. Furthermore, x * y € Id(G(x)),
whenever x, y € G and rg(.(x) # rg(y). Now, suppose that G is splitting and
that ¢ : K = I x A — G(x) is an isomorphism. Since A is not a Z-semigroup,
there are a,be A such that ab + 0. Let i,jel, i j, u = (i,a), v = (j, b),
uv e I x A. Then ri(u) + rg(v) and uv ¢ Id(K), and hence rg.(@(u)) * re. (@(v)
and ¢(u) ¢(v) ¢ 1d(G(*)), a contradiction.

(ii) Suppose that I is not quasitrivial and that card(4) = 2. Consider a family A(i)
of pair-wise disjoint two-element Z-semigroups with the absorbing elements
0, and put G = | J;c; A(i). There are k, € I such that k + kI + I, and hence
also k # I. Let A(k) = {0,, a}, A(]) = {0, b} and A(kl) = {0, c}. The elements
a, b, ¢ are pair-wise different. Now, define mappings g, ;: A(i) x A(j) — A(ij)
for all i,jel, i + j, by g,/x,y) = 0; in all cases except for the one when
i=k,j=1Ix=a,y=>b.Then g,(a, b) = c. Obviously, the conditions (1),
(2), (3) from 2.1 are satisfied and we get a strongly delightful LD-groupoid
G(*) such that 1d(G(*)) = I and card(As.) = 2. Further, a * b = ¢ ¢ Id(G(x)),
G()/1d(G()) is not a Z-semigroup and G(x) is not splitting by 3.3.

(iii) Let I be non-trivial and let 4 be a Z-semigroup containing at least three
elements. Again, consider a family A(i), i € I, of pair-wise disjoint A-semigroups
isomorphic to 4 and with the absorbing elements 0, and put G = ( J;c; 4(i).
There are k, [ e I, k + [, and a € A(k) — {Q},b e A(l) = {0}, c € A(kl) — {Qy}
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such that the elements a, b, ¢ are pair-wise different. Now, we can proceed
similarly as in the foregoing part. []

3.7 Example. Let I be a non-trivial LDI-groupoid and A be a non-trivial
A-semigroup such that 4 n I = {0}, where 0 is the absorbing element of A. Put
G =1u A and define x by x*y = xy forall x,yeL,uxv = uvforall u,ve A
and x *u = Ox, u * x = x0 for all xe I, ue A (see 2.4). Then G(*) is a strongly
delightful LD-groupoid, Id(G(x)) = I, G(*)/1d(G(x)) = A and G() is not splitting.

3.8 Proposition. Let G be a regular delightful LD-groupoid. Then G is
isomorphic to the cartesian product of a regular LDI-groupoid and a Z-semigroup.
Hence G is strongly delightful and balanced.

Proof. Easy. [

III.4 Varieties of strongly delightful left distributive
groupoids —first observations

4.1 Throughout this section, let .# denote the variety of LDI-groupoids and .o/
that of A-semigroups. Further, let .o/, denote the variety of trivial groupoids, .o, the
variety of Z-semigroups, 2, the variety of commutative A-semigroups satisfying
the identity xx == yy ((i.e., the variety of unipotent commutative A-semigroups),
&/, the variety of commutative A-semigroups, 2, the variety of unipotent
A-semigroups and let &5 = /.

It is easy to check that &/, € &, S &, S o3 S As, A, S Ay S s, and that
there are no other inclusions except for those which follow by transitivity.
Moreover, %, ..., &5 are pair-wise distinct and they are the only subvarieties of .</.

4.2 Proposition. Let ¥~ be a variety of strongly delightful LD-groupoids.
(i) 7 is generated by (V" 0 F) U (V" N A).
W) If V' NS S oAysand V" N oA & o, then every groupoid from ¥~ is commutative.

Proof. (i) This result follows immediately from the fact that every strongly de-
lightful LD-groupoid is a subdirect product of the LDI-groupoid Id(G) and the
A-semigroup G/Id(G).

(ii) Let, on the contrary, G € ¥~ be not commutative. Since G/I, I = 1d(G), is
a commutative A-semigroup, the LDI-groupoid I is non-commutative, i.e.
ab # ba for some a, b € I. Further, V"N o/ & o/, and there exist He ¥ N of
and u, v € H such that uv ¢ Id(H). The groupoid K = I x H belongs to 7] and
so K/Id(K) is commutative. On the other hand, u, v ¢ Id(H), and hence x =
(a,u), y = (b, v) ¢ 1d(K); furthermore, xy * yx, xy ¢ Id(K) and this shows that
K/I1d(K) is not commutative, a contradiction. []

4.3 Proposition. Let # be a variety of LDI-groupoids and U a variety of
A-semigroups such that either every groupoid from W is commutative or
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U + oA,, 3. Denote by v the class of strongly delightful LD-groupoids G such
that 1d(G)e #~ and G/1d(G)€ %. Then ¥ is a variety of LD-groupoids and
VI =W,V nod =AU

Proof. In view of 1.12(i), ¥~ is closed under subgroupoids and homomorphic
images. If % = </, /5 then ¥ is clearly closed under cartesian products. If % =
oA\, o, oy, 4, then the result follows from 1.123i). O

4.4 Let ¥ be a variety of strongly delightful LD-groupoids and denote by #(¥")
the lattice of subvarieties of ¥~ (more precisely, to be in better accordance with
the basic set theory, the dual lattice of fully invariant congruences of a free strongly
delightful LD-groupoid of countably infinite rank). For 7 € ¥, put ¢(7) =
(TnIETnd)eL(V N I)x L(¥ N ) and let M be the collection of ordered
couples (%, %), where W = L(V" " F), U € L (¥ N ), and either every groupoid
from # is commutative or % =+ of,, o/;. Then M is a lattice with respect to the
induced ordering (#1, %) < (%5, %,) iff W; = #; and % < %) and ¢ is an
isomorphism of the lattice #(7”) onto M (this follows easily from 4.2 and 4.3).

Now, put #" = ¥'n £ and % = ¥ n /. We have the following six cases:

(i) % = oy, and then ¥" = # <= S and L(V") = L(W).

(i) % = ), and then L(¥") = L(#') x 6, (Where %, denotes a two-element chain).

(iii) % = o, and then every groupoid from ¥~ is commutative and £(¥") =
L(W) x 6 (where %, is a three-element chain).

(iv) % = sf5, and then every groupoid from 7~ is commutative and £(¥") =
L(W') x €, (where €, is a four-element chain).

(V) % = s, and then Z(¥") = M, where M = {(#;, %,)| #; € L(#), and either
U, = sy, o, Sy or every groupoid from #] is commutative and %, = o4}.

(vi) % = ofs, and then L(¥") = I, where M = {(#1, %)) | #1 € L(#), and either
U, = Ay, A\, A4, A5 o every groupoid from #7 is commutative and %, = .o, Jf:;}.

4.5 Remark. Let 7" be a variety of strongly delightful LD-groupoids, # =
v nSFand % = ¥ N . Suppose that & </, and ¥ contains some non-com-
mutative groupoids. Then o/, S % € {o/,, o5} and the varieties <), oy, Ay, V1, V3
(where 77 is generated by #~ U ./, and ¥, by #" U ;) are subvarieties of ¥~ and
form a five-element non-modular sublattice of #(¥”). Consequently, the lattice
Z(¥") of subvarieties of ¥ is not modular.

4.6 Construction. Let ¥ be a variety of strongly delightful LD-groupoids such
that both ¥~ = ¥" N ¥ and % = ¥~ N </ are non-trivial varieties. Let X and Y be
two disjoint non-empty sets of the same cardinality and let ' : X — Y be a bijection.

Now, let G(*) be a free groupoid in %" having Y as a set of free generators and,
similarly H(O) be free over X in %; H(O) is then an A-semigroup and possesses
an absorbing element 0. Put F = G U (H — {0}),and define a mapping g: K =
H — {0} > G as follows: g(x) = f(x) forevery xe X;if x,ye X andx Oy + 0
then g(x © y) = f(x)* f(y). Notice that the mapping g is well defined: If x O y & 0
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then necessarily x, y€ X and x O y = x, O y, implies that either x = x;, y = y,
(and then f(x)* f(y) = f(x)) * f(»1)) or x = y;, ¥y = x,. However, in the latter
case, % < sts, U & o, every groupoid from #  is commutative by 4.2(ii) and
again f(x) * () = f(x1) * f(3)-

Now, define a multiplication on F:uv = uOv for all u,veK, uOv % 0;
uv = g(u) * g(v) for all u,ve K, u O v = 0; uv = g(u) * v and vu = v * g(u) for all
ueK,ve G;uv = uxvforall u, v e G. Itis easy to check that F is a free groupoid
in 7~ and that X is a set of free generators of F.

II1.5 Left distributive groupoids with just one idempotent element

5.1 Let G be an LD-groupoid such that card(Id(G)) = 1. By 1.5(1), Id(G) = {z}
is a left ideal and this means that z is a right absorbing element. Throughout this
section, we shall use the notation z = 0 (more precisely, z = 0).

5.2 Proposition. Let G be an LD-groupoid such that card(ld(G)) = 1. Then:
(i) The set A = {ae G|0a = 0} is a left ideal of G.

(i) x 0y =0-xy = 0x -0y forall x,y€QG.

(iii) If G is left cancellative then A is left strongly prime.

(iv) If either G is right regular or Ly is projective then (x, 0x) € p; for every x € G.
(v) If G is elastic then O is an absorbing element of G (i.e., A = G).

(vi) If G is a semigroup then O is an absorbing element of G.

(vii) If G is right distributive then 0 is an absorbing element of G.

Proof. (i) f ae Aand xe Gthen0-xa =0x-0a =0x-0 = 0.
(i) x 0y = x0-xy =0-xy = 0x-0y.
(iii) Ifabe Athen a0 = 0 = 0" ab = a - Ob (see (ii)), and hence 0 = 0b and b € A.
(vi) This follows easily from (ii).
(v) By (ii), Ox = x0- x = x- 0x = Ox - Ox, and hence Ox € Id(G) and Ox = 0
for every x € G.
(vi) This follows from (v), since every semigroup is elastic.
(vii) Since G is right distributive, Id(G) = {0} is a right ideal, and so O is left
absorbing. [

5.3 Proposition. An LD-groupoid G is an LD A-groupoid iff G is delightful and
card(Id(G)) = 1.

Proof. See 1.3 and 1.4. [

5.4 Proposition. Let G be a unipotent LD-groupoid. Then:
(i) card(Id(G)) = 1 and xx = 0 for every x € G.
(i) G is delightful iff O is an absorbing element.
(iii) (x, xx) € pg for every x € G iff G is a Z-semigroup.
Proof. (i) and (ii) are obvious.
(iii) If (x, 0) € p; for every x € G then 0 = yy = Oy and xy = 0y = 0. [J
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5.5 Proposition. Let G be a groupoid satisfying the identity X - yz==u - vw. Then:
() G is an LD-groupoid and card(1d(G)) = 1.
(i) GG =< A = {ae G|0a = 0} and A is an ideal of G.
Proof. (i) Obviously, G is an LD-groupoid and card(Id(G)) < 1. Now, if
0=a-bc,abceGthen0-0 = 0(a-bc) =0.
(ii) Obvious. [

5.6 Let G be a groupoid satisfying the identity X - yz == u - vw. Then G is an
LD-groupoid and if G is, moreover, delightful then we shall say that G is an
LD B-groupoid.

5.7 Proposition. (i) Every LDB-groupoid is an LD A-groupoid.

(ii) Every unipotent LD A-groupoid is zeropotent.
(iii) Every zeropotent LD-groupoid is an LD A-groupoid.
(iv) Every finite zeropotent LD-groupoid is an LD B-groupoid.

Proof. (i), (ii) and (iii). Obvious.

(iv) Let G be a finite zeropotent LD-groupoid and denote by Q the set of ordered
triples (a, b, ¢) € G® such that a € bc + 0.

Now, define a mapping f: G x G x Ny > G by f(a,b,0) = a, f(a,b,1) = ab
and f(a,b,n) = f(a,b,n — 1) f(a,b,n — 2) for all a,be G and n > 2. The rest
of the proof is divided into five parts:

(iv1) Proceeding by induction on n > 0, we show that f(ab, b, n) = f(a, b, n + 1).

Indeed, the equality is clear for n < 1. However, if n > 2 then f(ab, b, n) =
flab,b,n — 1) f(ab,b,n — 2) = f(a,b,n) f(a,b,n — 1) = f(a,b,n + 1).

(iv2) By induction on n > 0, we show that af(a, b, n) = 0.

First, we have af(a,b,0)=aa=0 and af(a,b,1)=a-ab=aa-ab=0-ab=0.
For n>2, af(a,b,n)=a- f(a,b,n—1) f(a,b,n—2)=af(a,b,n—1)- af (a,b,n—2) =
0-0=0.

(iv3) By induction on n > 1, we show that f(a, b, n) (f(a,b,n — 1)c) = a- bc
for all a, b, c € G.

For n = 1, the equality is just the left distributive law. For n > 2, we can write
fla,b,n)(f(a,b,n — 1)c) = (f(a,b,n — 1) f(a,b,n — 2))(f(a,b,n — 1)c) =
fla,b,n — 1)(f(a,b,n — 2)c) = a" be.

(iv4) Let (a, b, c)e Q. We are going to show by induction on n > 0 that the
elements f(a, b,0), ..., f(a, b, n) are pair-wise different.

For n = 0, there is nothing to prove. Let n > 1. Then, by induction, the elements
f(a,b,0),..., f(a,b,n — 1) are pair-wise different. On the other hand, ab- ac =
a- bc +0, and hence (ab,a,c)e Q and f(ab,a,0),..., f(ab,a,n — 1) are also pair-wise
different. Using (iv1), we see that the elements f(a, b, 1), ..., f(a,b,n) are pair-wise
different and it remains to show that a = f(a,b,0) % f(a, b,n). If this is not true then
a bc=f(a,b,n)(f(a,b,n—1)c)=a-f(a,b,n—1)c= af(a,b,n — 1) ac =
0-ac = 0 (by (iv3) and (iv2)), a contradiction.

(iv5) It follows immediately from (iv4) and the finiteness of G that Q = 0. [
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5.8 Example. Consider the following three-element groupoid G:

Then G is a commutative LDB-groupoid, but G is not unipotent.

5.9 Remark. There are examples of infinite zeropotent LD-groupoids which
are not LDB-groupoids (see [Deh, 98b]).

ITI1.6 Comments and open problems

The material of this chapter is based mainly on [Rue, 66] and [JezKN, 81].
Proposition 5.7 appeared in [Jez, 95].

A general task is to find various classes of LD-groupoids with “nice” subdirect
decompositions into idempotent LD-groupoids and LD-groupoids having just
one idempotent. Also, more information on the latter groupoids should be of
interest.

IV. Constructions and examples of left distributive groupoids

IV.1 Various constructions of left distributive groupoids

1.1 Let be a right constant groupoid and let f be the transformation of G such
that xy = f(y) for all x, y € G. Then:
(i) G is a medial LD-groupoid.
(ii) G is right distributive (or delightful, strongly delightful, elastic, associative)
iff f2 = f.
(iii) G is idempotent iff f = idg.
(iv) G is commutative iff f is constant.
(v) G is left symmetric iff /? = id.
(vi) G is right symetric (or semisymmetric, symmetric) iff G is trivial.
(vii) 1d(G) = {ae G| f(a) = a} and 1d(G) is an ideal of G iff Id(G) + @ and
fr=r
(viii) G is regular.
(ix) G is left cancellative (left divisible) iff f is injective (projective).
(x) Both o5 = s and x; are endomorphisms of G.
(xi) p¢ = G x G (and hence pg; is a congruence of G and G/p; is idempotent).
(xii) g¢ = tg = ker(f).
(xiii) (a, b) € z,6 iff a = f"(b) for some n > 1.
(xiv) (a, b) ez, ¢ iff ae f(G).
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1.2 Example. Define an operation * on the set N of positive integers by x *x y =
y + 1. Then G = N(x) is a right constant groupoid and an LD-groupoid (see 1.1).
Furthermore, G = (1), i.e., G is cyclic. By 1.1(xii), (a, b) € z, ¢ iff a > b, and hence
2,6 is irreflexive and zj; = > is the dual of the usual ordering of the set N.

1.3 Let G be a non-trivial groupoid such that G = A U B, where A is the set of
left neutral elements of G and ax = ay e Id(G) for all aeB and x,ye G (in
particular, every element from B is left constant and 4 N B = ). Then:

(i) G is an LD-groupoid. (Indeed, if a,b,c€ G then a* bc = bc = ab - ac for

acAand a-bc = e = ee = ab- ac for ae B and e = ax €1d(G).)

(i) 1d(G) = AU C, where C < B and C is the set of left absorbing elements of G.

(iii) Id(G) is an ideal of G iff either C = B (i.e., G is idempotent) or B = G (and
then G is a left constant groupoid).

(iv) G is idempotent iff C = B (i.e., every element from B is left absorbing).

(v) G is distributive (or delightful, strongly delightful) iff either B = G (and then
G is a left constant groupoid) or C = B and card(B) > 1 (and then either 4 = G
and G is an RZ-semigroup or B = {0} and G = A[0]). (Indeed, let G be
distributive and a € A. Then x = ax =aa' x = ax-ax = xx for each xe G. If
zeCthen z = zx = az- x = ax ' zx = xz and z is an absorbing element.)

(vi) G is elastic iff aae B for each ae B (i.e., iff either B=0 or B is
a subgroupoid of G).

(vil) p¢ is a congruence of G.

(viii) G/pg is idempotent iff aa € B for each a € B (see (vi)).

(ix) og is an endomorphism of G iff either card(4) = 1 and xx € 4 for each
x € G or aa € B for every ae€ B. (Let e = aa ¢ B for some a € B. Then, for
each ce A, ¢ =ec =aa cc = ac-ac = ee = e. Moreover, for beB,
bb=e¢-bb =aa-bb = ab-ab = ee = e).

1.4 Let G be a groupoid such that G = A U B, where A is a subgroupoid of
G, A is an LD-groupoid, B + ( and every element from B is left neutral and right
absorbing in G. Then:

(i) G is an LD-groupoid.

(ii) G is distributive iff A is a DI-groupoid satisfying the identities x = yx - x and
Xy ==y - Xy.

(iii) G is idempotent (or delightful, strongly delightful, elastic) iff 4 is idempotent.

(iv) pg is a congruence of G iff p, is a congruence of A and the set of left neutral
elements of A is either empty or a left ideal of A.

(v) (x, xx) € pg for every x € G iff (a, aa) € p, for every a€ A.

(vi) og is an endomorphism of G iff 0, is an endomorphism of A.

1.5 Let G be an LD-groupoid and n > 1. Put H = G" (the set of ordered
n-tuples) and define an operation * on H by

(X1 wer Xn) % (V15 wees V) = (31X (Xap)))s -os Xa(Xal--- (X 0))) -
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Then H(x) is an LD-gropoid. Moreover, if G is left cancellative (left divisible) then
H(*) is so.

1.6 Let G be an LD-groupoid and H = U,-Z 1 G, Define an operation * on H by

(X1 cees Xn) % (V15 ves Ym) = (xa(co-(Xa20))s ooes Xi(o (X V)
Then H(x) is an LD-groupoid. Moreover, if G is left cancellative (left divisible)
then H(x) is so.
For n > 1, let H, = (J; G". Then H, is a left ideal of H(x) and H, is left
strongly prime.
Similarly, all G are left strongly prime left ideals of H(x).

1.7 Let f be an endomorphism of an LD-groupoid G such that ( f(x), f%(x)) € ps
for every x € G. Define an operation * on G by x * y = f(xy) (= f(x) f(y)). Then
G(*) is again an LD-groupoid. If G is idempotent then o) = f, and hence 0g.) is
an endomorphism of G(*) and (x, x * x) € P+ for every x € G.

1.8 (i) Let G be an LD-groupoid such that f = o is an automorphism of G and
(x, xx) € pg for every x € G (i.e., G satisfies Xy = xx - y). Put x 0 y = f ~!(xy)
(=f"'x) f~'(y) for all x,ye G. Then G(O) is an LDI-groupoid, f is an
automorphism of G(O), (f(x), f*(x)) € pg(c) for every x € G and xy = f(x O y)
for all x, y € G (compare with 1.7).

(ii) Let G be an LD-groupoid such that o is an injective endomorphism of G.
Starting from the imbedding o(G) = G, we can construct a chain G = G, <
G =G, c... €G <SGy ... of groupoids isomorphic to G such that
0(Giy1) = G. Then H = | J5,G, is an LD-groupoid satisfying the same
identities as G and oy is an automorphism of H.

1.9 Proposition. Let G be an LD-groupoid and e ¢ G. Then:
(i) Gle] is an LD-groupoid.

(ii) G{e]is an LD-groupoid.

(iii) G[e} is an LD-groupoid iff G is an idempotent groupoid satisfying the
identities Xy == X - yZ and Xy == Xy - X.

(iv) G{e}is an LD-groupoid iff G is an idempotent semigroup satisfying Xy == XyXx.

Proof. (i) and (ii) are easy.

(iii) Assume that G[e} is an LD-groupoid. Then xy = x* ye = xy* xe = xy - x and
x = xe=x-ey=xe:xy=x-xy for all x,yeG. From this, x = x(x - xx) = xx
and x - yz = xy - xz = (xy - xz = (xy- x)(xy - z) = (xy) (xy - z) = xy.

(iv) Use 1.29Gi). OO

IV.2 Group constructions of left distributive groupoids

2.1 Let f be an endomorphism of a group G, g(x) = xf(x)~" for every x € G, let
acGandlet x xy = g(x) f(y) a (= xf(x)"'f(y) a = xf(x"'y) a) for all x,y€eG.
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Now, x * (y* z) = x * (y * z) = x *(g(y) f(2) @) = g(x) fa(y) f¥(2) f(a) and (x * y) *
(x2) = (0(3) £) a) = (o)1) ) = gla(x) S () @) o) (). Consequents,
xx(yx2) = (x* y)* (x * 2) iff g(x) fg(y) = g(9(x) f(y) a) fg(x). However, g(x) fg(y) =
xf()7 1) f2y)" and glg(x) () @) f9x) = g(x/(x) 'S (y) a) £ (xS (x)"1) =
xf()~" ) af (@) £2(y) ™" £200) S1x) 7 () £200) ™" = %A ()~ A(¥) af (@)~ £3(y) .
Thus we have proved the following assertion (the other assertions are also easy to
check):
(i) G(x)is an LD-groupoid iff f(a) =

(i) x * x = xa for every x € G.

(iii) G(x)is a D-groupoid iff @ = 1 and fg(x) fg(y) = fa(y) fg(x) for all x, y € G.

(iv) Either Id(G(x)) = @ or a = 1 and G(*) is idempotent.

(v) G(*)1is a regular groupoid.

(vi) G(*)is left (right) cancellative iff f (g) is injective.
(vii) G(x) is left (right) divisible iff f(g) is projective.
(viii) 0g) is an endomorphism of G(x) iff g(a) f(x) = f(x) g(a) for every x € G.

(ix) (u, v) € pga) iff f(u='v) = u™'v.

(x) If f(a) = a (see (i)) then pg,, is a congruence of G(x).

2.2 Let f be an endomorphism of a group G, let ae G and let x xy =
xf(y) af(x)~" for all x,y € G.
Now, x+(y+2) = x = (4(2) af(0) ) = xf0) S ) A0 L) af(o) " and
(o 3)+ (x5 2) = (/) af o) (1 (2) af () =
7 0) a3 9776 fla) £ @) 10 o) £0) 1)
xf(y) af¥(z) f(a) £3(x) " af*(x) f(a)~" fA(y)"' f(x)~". Consequently, x*(y*z) =
(xx0) = (v +2) 7 £36) (o) £0)* @ = ar() a) P @) o) *120)
or equivaently, 16 & 10)- /(0 1°0)°' &) = S1a)- 00 ae)-f(a)-
If af(u) = f*(u)a for every ue G then the equality x x(y*z) = (x*y)*(x*z) is
equivalent to a~'f(a) a = f(a) af(a)~', which is the same as af(a) a = f(a) af(a).
Conversely, if G(x) is an LD—groupoid then 1 x(1*1) = (1%1)=x (1 * 1) implies
a~'f(a)a=f(a)af(a)~" and 1x(1%z)=(1%1)(1xz) implies f¥z)a"'fYz) f(a)a=
fla)af(a)™" = a"'f(a)a, fHz) a~'fHz) = a~' and a~'f*(z) = f¥(z) a~" for every
z € G; of course then also af*(u) = f*(u)a for every ue G.
(i) G(x) is an LD-groupoid iff af(a)a = f(a)af(a) and af*(u) = fH(u)a for
every ueG. ‘
(i) x *x = xf(x) af(x)"" for every x € G.
(iii) G(*) is idempotent iff a = 1.
(iv) G(*) is left regular.
W) G(*) is left cancellative (left divisible) iff f is injective (projective).

\_/

2.3 Let f be an endomorphism of a group G and let a € G.
(i) If x*y = axf(x)"'f(y) (= axf(x"'y)) for all x,ye G then G(x) is an
LD-groupoid iff f(a) = a and auf(u)™' = uf(u)~" a for every ue G.
(i) If x*y =xaf(x)~' f(y) (= xaf(x~')) then G(x) is an LD-groupoid iff f(a)=
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(i) If x*y = xf(x)""af(y ) then G(x) is an LD-groupoid iff f(a) = a and
af (f(u)u=") = f(f(u) u=") a for every ue G.

(iv) If x*y = axf(y) f(x)~' (= axf(yx~')) then G(x) is an LD-groupoid iff
f(a) = a and a € Z(G) (the centre of G).

) If x*y = xaf(y)f(x)~"' (= xaf(yx~")) then G(x) is an LD-groupoid iff
f(a) = a and af(u) = ( ) a for every u e G.

i) If x*y = xf(y)f(x)™'a (= xf(yx~')a) then G(x) is an LD-groupoid iff
f(a) = a and af(u) = f(u) a for every ue G.

IV.3 One particular example

3.1 Throughout this section, let F be a free group with an infinite countable
basis {a, a, as, ...}.

For every i > 1, define endomorphisms s; and t; of F by s{a) = aa;, a7,
t{a) = a1, s{aiy) = a, t{a;,,) = azhaa,, and s{a) = t{a) = a; for every
j=Lj+ii+ 1.

Clearly, sit{a;) = a, = t:s{a) for each k > 1 and this shows that s, t; are
mutually inverse automorphisms of F.

Let S denote the subgroup generated by all s; in the automorphism group of
F and let T be the subgroup generated by s;, j > 2.

3.2 Lemma. s;;,S; = 5;,15:Si41 for every i > 1.

Proof. Put f =s;s;,,5; and g = 5,55, 1. Then f(a)=a,=g(a) for j*i, i+ 1,
i+ 2 and f(a) = sisiyi(@ai107") = s{@ai1ai,0203467") = aa,,a0,, 00707 =
Si+1(aiai+lai_l) = SH—IS( ) = g( ) f(ai+1) = sisi+l(ai) = s:(ai) = a@.a7" =
si+1(aiai+2ai_1) = Sx+1s(az+1a.+2ax+11) = g(ai+1)s f(ai+2) = sisi+l(ai+2) = Sz(ai+1) =
a; = si(a) = sas{ai) = glas,). O

3.3 Lemma. s;5;, = s;5,forall 1 <i<i+2<j.
Proof. Similar to that of 3.2. [J

3.4 Lemma. Let i > 1 and let n be an integer. Then s{a}) = aal',,a’’,
s{a,1) = af and s{a}) = d for everyj > 1,j +i,i + 1.
Proof. The equalities follow easily from the definition of 5, []

3.5 Every element w € F, w # 1, has a uniquely determined reduced form

w=af.. ar

in o

where n > 1, ki, ..., k, are non-zero integers and i; + i, F i3 ¥ ... * i,
Now, let W (V) denote the setof we F,w % 1,suchthati, £ 1 +i,(; + 1,2,
i, + 1,2).

3.6 Lemma. Ifi % 1 then s(W) = W.
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Proof. Let E be the subgroup of F generated by {a,, a, ... } and let E* = E — {1}.
Clearly, s(E*) = E* = t(E*). Now, let we W. Then just one of the following
cases takes place:

(i) we E* and s{w), t(w)e E* = W.

(1)) w = wa'u,atus ... atu,,,, where k > 1, uy, ..., u,,, € E* and n,, ..., n, are
non-zero integers. Then s{w) = s(u,) ai* s{uy) ai> ... ai*s{u;,,)€ W and, simi-
larly, t{w)e W. O

3.7 Lemma. s,(a;Wa;') = a;Wa; .

Proof. Let we W. We have to distinguish the following cases:
G weV.
Then sy(w) € V, si(aywar!) = a\axai ' s(w) a,a5 'ar’, aar' sy(w) aja5' e W.
(i) w = ak.
Then sy(a,war ') = aja,a; 'ata,a; 'ar! = a,a,dfa; 'ar! and ayafa;'e W.
(i) w = dbo, ve V.
Then s)(aywar?!) = aaar'dis(v)ajar'ar' = a0t 'sy(v) a5 'a7! and
aai~'s(v) ajayt e W
Giv) w=vds, ve V.
Then s\(awai') = aaa;'s(v)afaa;'ar’ = aaar!s(v) ait?
aai'si(v)ditlaz e W.
(V) w = ditalakal ... dkralraln+i n > 1.
Then s(awar') = ayaa; 'afadtar 'aPaabar’ ... dira,ayaral"+1a,a5 ar! =
aa,atabalay ... abayakniay'ar ! and a,atab ... alrabalnrraste W
(vi) w = adal ... dirabo,n > 1, ve V.
Then si(awai )= aia.a; 'ai'diar " si(v) aya; 'ar ' = ayanay'dy .. afrasar s (v) ayay tar!
and a,at'a? ... afraya;'s\(v) a,a;' e W.
(vii) w = vaka? ... afray,n > 1, ve V.
Then sy(aywai!) = aya.ay's\(v) ayastar’al ... adfrartalraastart =
a0y ' 5)(v) ayasial ... asdray 'ar! and aar s (v) adiial ... dirdraz e W
(viii) w = dsalt ... ddrvalrdy ... arde,n > 1, m > 1, veV.
Then s)(aywar') = aaar'afaatar’ ... 'afl"'a,a’z"'al"lsl(u) a,aba; '}
adrar 'dra,a;tay = a,aa'd} ... dirdyarsy(v) a,did) ... apdira;a, and ayatady ...
airatai ' s(v) a,didt ... dydraz'e W. O

a;'a;! and

r(a\) * a,, and hence r * id;.

38 Lemma. Let n>1, ry,...,r,€T and r = rs;r,;... ',Si¥n.1. Then

Proof. By induction on n we show that r(a;) € a,Wa; . If n = 1 then r;s,r5(a,)
= risi(a)) = ri(aaar") = ayry(ay) ar' € a,Way!, since r,(a,) € W. Now, let n > 2
and s = 38, ... ,SiFny . Then s(a;) = a,wa;! for some w e Wand r(a,) = rys,5(a,)
= r(auar’') = ayry(u) ar’!, where s,(a,war') = auar', ue W and r\(u) e W by
3.6and 3.7. [
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3.9 Lemma. There exists a uniquely determined endomorphism o of S with the

following properties:

(i) o(s) = si1 for every i > 1.

(ii) s,0(s1) s; = o(sy) sy0(sy).

(iii) s,6%(r) = o*(r) s, for every r € S.
(iv) o is injective and o(S) = T.

Proof. Define an endomorphism s of F by s(a;) = a;,, for every j > 1. One
may check easily that s, = s, s for every i > 1. Now, letre S, r = sk ... si» =
st.. s, wheren>1,m>1,ky...,kyly,...,l,€ {+1}.Then sr = s, ;... sf',| =
sty i... st ,,s and this implies that the endomorphisms r, = sk, ;... sf,; and
r,=sl'y... sy, coincide on E. On the other hand, ry(a;) = a, = ry(a,), and
hence r, = r,. Now, we can put o(r) = r, and we get an endomorphism satisfying
(i), (i) and (iii) (see 3.2 and 3.3). Clearly, ¢(S) = T. Finally, if o(p) = o(qg) for
some p,qeS then sp =o(p)s =o(q)s and p = g, since s is an injective
endomorphism of F. []

3.10 Define a binary operation * on S by p * ¢ = po(q) s,0(p~") for all p,q € S.
With respect to 3.9 and 2.2(i), S(*) is an LD-groupoid. We shall prove that the
relation z, g,) is irreflexive (see 1.23).

Let p, 4,4, ..., 4. €S, n > 1, be such that p = (((q * g;) * ¢;) * ...) * g,. Then
we have p = qo(q)) s,0(q7") a(q2) s106(q * q1) " ... o(qn) s10((g* 1) *...) ¥ qu_y) ' =
qo(r)) $10(ry) 51 ... o(r,) s:6(rn 1), where ry = g1, 1, = ¢ g, 13 = (4% q1) ' g3, s 1n =
((g*g)*q2) * ) * gn2) "G Tws1 = (g * q1) *...) * go_y)™'. From this,
idp = p~'qr, where r = o(r,)s,6(r) s, ... o(r,) $,6(rny). Clearly, o(r)e T and
p~'q # id; by 3.8. Thus p * q.

The endomorphism o is injective and consequently the groupoid S(x) is left
cancellative.

IV.4 Two-element left distributive groupoids

4.1 Consider the following six two-element groupoids:

D(1)[0 1 D(2)[0 1 D(3)[0 1
000 001 000
1101 1101 111
D(4)[0 1 D(5)[0 1 D(6)|0 1
0 (00 001 010
1100 1]oo0 1110

It is easy to check that these six groupoids are pair-wise non-isomorphic
LD-groupoids and that every two-element LD-groupoid is isomorphic to one of
them. Some properties of the groupoids are listed in the following table:
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D|LSM|RSMMSM|M|S |C|I |E|DI|Pi|Pc|Oe|ld|La|Ra|Ln{Rn| G*®
D) |+| + | + | + [+|+|+|+|+|+]|+|+|[+]|+]|1|1[1]1]|D()
DR)|+| + | + | + |+|+|=|+|+|+|+|[+]|+|+]|0[2]2]0]|D3)
DB3)|+| + | + | + |+|+]|—-|+|+H|+]|+|+[+[+]2]0]0]2]|D(Q)
DA)|[+| + | + | + [+|+|+|—|+|+|+|+[+]|+]|1]1]|0]|0]|D4)
D) |- = | = | = |-|-|-|-|-|—-|=[+]|+]|—-|O0O|1|1|O| —
DEe)|—| + | + | + [+|-|-|—|-|—|+]|+|+|—-|0]O0|O]O| —
Explanation: D ... distributive; LSM ... left semimedial; RSM ... right semi-

medial; MSM ... middle semimedial; M ... medial; S ... associative; C ... com-
mutative; I ... idempotent; E ... elastic; DI ... delightful; Pi ... (x, xx) € pg for

every x€ G (ie., Xy =xx-Y); Pc ... p;s is a congruence of G; Oe ...

0¢ is an

endomorphism of G (i.e., X-yy =xx-yy); Id ... 1d(G) is an ideal of G; La
(Ra) ... the number of left (right) absorbing elements; Ln (Rn) ... the number of
left (right) neutral elements; G ... the opposite groupoid is isomorphic to ... (only
in the two-sided distributive case).

IV.5 Three-element left distributive idempotent groupoids

5.1 Consider the following seventeen three-element groupoids:

D(7) 012 D®) |0 1 2 Do) [0 1 2
0 (000 0 000 0 (000
1 (011 1 (010 1 (011
2 012 2 002 2 1022

D(10) [0 1 2 p(i)fo 1 2 D(12) |0 1 2
0 (000 0 (000 0 012
1 (012 1111 1 {012
2 (012 2 222 2 012

D(13) 0 1 2 D(14) |0 1 2 D(15) |0 1 2
0 000 0 [too 0 [021
1111 1 (010 1 210
2 002 2 o122 2 |102

D(16) [0 1 2 D(17) |0 1 2 D(18) [0 1 2
0 (021 0 [000 0 (012
1 012 1211 1 010
2 012 2 122 2 012
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D(19) |0 1 2 D(20) |0 1 2 D(21) [0 1 2
0o 000 0 000 0 000
1 (111 1 (111 1 (111
2 202 2 012 2 |102

D(22) [0 1 2 D(23) [0 1 2

0 012 0 |012

1 011 1111

2 022 2 012

(i) D(7) = D(1)[e] (= D(1){e}), D(9) = D(3)[e] and D(10) = D(2)[e] are
LD-groupoids by 1.9(i) (D(7) is a semilattice).
(i) D(12) = D(2){e], D(22) = D(3){e] and D(23) = D(1){e] are LD-groupoids
by 1.9(i) (D(12) is an RZ-semigroup).
(iii) D(11) = D(3)[e} is an LZ-semigroup.
(iv) D(20) = D(3) {e}is an LD-groupoid by 1.9(iv).
(v) D(8) is a subdirect product of two copies of D(1), and hence it is a semi-
lattice.
(vi) D(13) is a subdirect product of D(1) and D(3), and hence it is a D-semi-
group.
(vii) D(14) is a subdirect product of D(1) and D(2), and hence it is a D-semi-
group.
(viii) D(15) is an IM-quasigroup, D(16), D(17), D(18), D(19) are IM-groupoids
(D(17) = D(16) and D(19) = D(18)").
(ix) D(21) is an LDI-groupoid (since 0, 1 are left absorbing, it is enough to show
that 2 - yz = 2y - 2z).
(x) All the groupoids D(7), ..., D(23) are LDI-groupoids and possess the fol-
lowing properties (see p. 72).

Explanation: See 4.1; Si... G is subdirectly irreducible. Notice that an idem-
potent groupoid is left (right) semimedial iff it is left (right) distributive.

(xi) Assigning the ordered quadruple (La, Ra, Ln, Rn) to each of the groupoids D(i)
(see the foregoing table), we see that these groupoids are pair-wise
non-isomorphic with possible exceptions of the pairs D(13), D(21) and D(18),
D(23). However D(13), D(18) are right distributive and D(21), D(23) are not.
Thus we have shown that the groupoids D(7),..., D(23) are pair-wise
non-isomorphic.

In the remaining part of this section, we show that every three-element

LDI-groupoid is isomorphic to one of the groupoids D(7), ..., D(23).
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DMSMM|S |C|Pc|Si|La|Ra|Ln|Rn| G®
D(7) |+| + |+|+|+|+|-|1|1]|1]|1]|D(7)
DEB) |+| + [+|+[+|+|—-|1][1[0]0]|D(s)
DO) |+| + |+|+|—|+|+]|1|1]0]2]D(10)
D(10) |+| + |+|+|—|[+|+]|1]|1[2]0]|D(9
D(11) |[+| + |+|+|—=|+|—]3]0]0|3|D(12)
D(12) |[+| + |+|+|=|+|—|0]3|3]|0]|D(11)
D(13) |+]| + [+|+|=|+|—[2]0]0|1]|D(14)
D(14) |+| + |+|+|—|+|—|0[2]|1]0]|D(13)
D(15) |[+| + |+|—|+|+|+]|0]0|0 |0 |D(15)
D(16) |+| + |+|—|—|+|+|0]|1]|2|0|D(17)
D(17) [+| + |+|—|—=|+|+]|1]0]|0]|2]D(16)
D(18) |+| + |+|—|—|+|+|0]|2]2]|0|D(19)
D(19) |+| + |+|—|—|+|+]2]|0|0]|2]|D(18)
DQ20) || — [=|+|=|+[+]|2]0|1]|1] -
DY) || — |—|=|=|+|+]2]0|0[1]| —
D(22) |—| — |=|=|-|+|+|O|1|1|O| —
D223) |—| + |=|—|—=|—|+]|0]2]2]|0] —

5.2 Lemma. Let G be a three-element LD-groupoid such that 1d(G) + @ and
G contains no left and no right absorbing elements. Then G is commutative,
distributive and idempotent.

Proof. Let G = {a,b, c}. Since 1d(G) is a left ideal of G and G contains no right
absorbing elements, Id(G) possesses at least two elements, say a, b € Id(G). Now,
we have to distringuish the following cases:

®

(i)
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Let 1d(G) = {a,b}. We can further assume that cc = a. Since Id(G) is a left
ideal, we have ab, ba, ca, cb € {a,b} and a =aa = a- cc = ac- ac implies
ace{a,c}. If ac=a then, since a is not left absorbing, ab=b and
a-cb=ac-ab= a-ab=ab=>b, cb=> and b is right absorbing, a contra-
diction. Hence ac = c and ca = c¢* cc = cc*cc = aa = a, and so ba = b, since
a is not right absorbing. On the other hand, bc = b-ac = ba-bc = b - bc.
Since b is not left absorbing, we have bce {a,c}. If bc =a then
a = bc = b- ba = b, a contradiction. Hence bc = cand b = ba = b-cc =
bc - cc = a, again a contradiction.

Let G be idempotent and ac =b. Then a-ca=ac-a=baand cb=c-ac=ca-c.
If ca = a then a = ba and a is right absorbing, a contradiction. If ca = b then
ab=a-ca=ac-a=ba, cb=c-ac=ca'c=bc and G is commutative. Finally,
if ca=cthen ch=cac=ca-c¢=cc=c and c is left absorbing, a contradiction.




(iii) Let G be idempotent and ac = ¢, bc =a. Thena=a bc =ab-ac=ab-c,
and so ab = b. Further, a=bc=b-ac=ba-bc=ba-a,b=bb=b-ab=ba-b
and ba # c, since b is not right absorbing. If ba = b then a = ba-a = ba = b,
a contradition. Hence ba = a. If cb = c then, since a is not right absorbing,
we have ca = band ¢c = ¢b = c-ab = ca- ¢cb = bc = a, a contradiction. If
cb =athena =ba=>b-cb =bc-b=ab = b, again a contradiction. Finally,
if ¢cb = b then b is right absorbing and this is not possible.

(iv) Let G be idempotent and ac = ¢, bc = b. If ba = athen b = bc = b ac =
ba-bc = ab, b-ca = bc-ba = ba = a, and hence ca = a and a is right
absorbing, a contradiction. If ba = b then b is left absorbing, a contradiction. Thus
ba=cand b=bc=b-ac=ba-bc=cbh, ab=a-bc=ab-ac=ab-c, and
therefore ab = c. From this, ca=ab-a=a-ba= ac = ¢ and G is commutative.

(v) Let G be commutative. If ac = ¢ then bc # ¢ (since c is not right absorbing)
and either (iii) or (iv) applies. If ac = b then (ii) applies. Finally, if ac = a
then ab =+ a and, replacing ¢ by b, we can proceed in the same way as in (ii),

(i) and (iv). O

5.3 Lemma. Let G be a three-element LDI-groupoid containing an absorbing
element. Then G is distributive.

Proof. Let G = {a,b, c}, where a is the absorbinbg element, and let x, y, z € G.
If ae{x,y,z} then xy-z = a = xz - yz. Hence, assume {x,y,z} < {b,c}. However,
then one of the following cases takes place: bbb =bb- bb, bb- ¢ =bc- bc, bc-b =
bb-cb, bc-c=bc-cc,cb-b=cb-bb,cb-c=cc-b=cb-cb, cc-c=cc-cc. []

5.4 Lemma. Let G be a three-element LDI-groupoid containing at least two
left absorbing elements. Then G is isomorphic to one of the groupoids D(11), D(13),
D(19), D(20), D(21).

Proof. Let G = {a,b, ¢}, where a, b are left absorbing. If (ca, cb) = (c, ¢) then
G = D(11); if (ca, cb) = (a, a) or (ca, cb) = (b, b) then G = D(13); if (ca, cb) = (c, a)
or (ca, cb) = (b, ¢) then G = D(19); if (ca, cb) = (a, b) then G = D(20); if (ca, cb) =
(b,a) then G = D(21). If ca=a and ch=c then c=cb=c-ba = cb-ca=ca=a,
a contradiction. If ca=c¢, ¢cb=b then ¢ =ca=c-ab=ca-cb =cb = b,
again a contradiction. []

5.5 Lemma. Let G be a three-element LDI-groupoid containing just one left
absorbing element and no right absorbing elements. Then G =~ D(17).

Proof. Let G = {a,b, ¢} and let a be the only left absorbing element. Since a is
not right absorbing, we can assume that ca + a. Now, let us distinguish the
following cases:

(i) Let ca=ba=b. Then b=baeb-ac=ba-bc=b-bc, and so bc = a, since b
is not left absorbing. Further, b=ba=b-ca=bc-ba=ab=a, a con-
tradiction.
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(ii) Let ca = b and ba = ¢. Then c = ba=b-ab =ba-b = cb and c- bc =
cb-c = c. Hence bce{b,c}. If bc = b then G = D(17). If bc = ¢ then
b=bb=>bca=bc-ba = cc= c, a contradiction.

(iii) Let ca = band ba = a. Thenb = bb = b ca = bc - ba = bc - a, and hence
bc = c. Then also b = ca = ¢ ac = ca- ¢ = bc = ¢, a contradiction.

(iv) Let ca = cb = c. Then c is left absorbing, a contradiction.

(v) Let ca=c and cb=a. Then ¢-ba=cb-ca=ac = a, and so ba = b. Since b is not
left absorbing, we have bc € {a,c}.If bc = athenc = ca=c-bc=cb-c =
ac = a, a contradiction. If bc = cthena =c¢b = bc-b =b-cb = ba = b,
again a contradiction.

(vi) Let ca=cand chb=b. If bc=b then ¢c-ba=cb-ca=bc=>b, ba=b and b is
left absorbing, a contradiction. If bc = c then ¢ - ab = ca‘ cb = cb = b, and
hence b = ab = a, a contradiction. Finally, if bc = a then ¢ = ca=c-bc =
¢b- ¢ = bc = a, a contradiction. []

5.6 Lemma. Let G be a three-element LDI-groupoid containing a right

absorbing element but no left absorbing elements. Then G is isomorphic to one of
the groupoids D(12), D(14), D(16), D(18), D(22), D(23).

Proof. Let G = {a,b, c}, a being right absorbing. Since a is not left absorbing,
we can assume that ac + a. Now, consider the following cases:

(1) Let ac=b. Thencb =c-ac =ca-c=ac=b.If bc = athen b = bb =
b-ac=ba-bc =aa = a, a contradiction. If bc =b and ab = a then b=bb =
b-ac =ba-bc =ba-b = ab = ba = a, a contradiction. If bc = ¢ and
ab = cthenc = ab = a-bc = ab-ac = cb = b, a contradiction. If bc = b
and ab = b then G =~ D(14). If bc = cand ab = athen b = ac = a- bc =
ab-ac=a-ac = ab = a, a contradiction. If bc = c and ab = b then G = D(18).
If bc = ¢ and ab = c then G =~ D(16).

(i) Let ac=c and ab=a. Then bc=b-ac=ba-bc=a-bc=ab-ac=ac=c
and a-cb =ac-ab = ca = a. From this, it follows that cb e {a,b}. If
cb = a then G = D(14). If cb = b then G ~D(23).

(iii) Let ac = ¢, ab = b and ¢b = a. Then ¢- bc = ¢b- ¢ = ac = ¢, bc = ¢ and
G = D(18).

(iv) Let ac = ¢, ab = b and ¢b = b. If bc = a then G = D(18). If bc = b then
G = D(23). If bc = ¢ then G = D(12).

(v) Letac=c,ab=band ch=c. If bc=athena=ca=c-bc=cb-c=cc=c,
a contradiction. If bc = b then G = D(22). If bc = c then G =~ D(23).

(vi) Let ac=ab=c. Then bc=b-ab=ba-b=ab=cand a-chb=ac-ab =
cc = c. This implies that cb € {b,c}. If cb = b, then G =~ D(18). If ¢b = ¢
then G =~ D(14). O '

5.7 Proposition. (i) The seventeen groupoids D(7),..., D(23) are pair-wise
non-isomorphic three-element LDI-groupoids.
(ii) Every three-element LDI-groupoid is isomorphic to one of D(7), ..., D(23).
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Proof. (i) See 5.1.
(ii) Let G = {a,b, c} be a three-element LDI-groupoid. The rest of this point is
divided into five parts:
(a) Let G contain an absorbing element. By 5.3, G is a DI-groupoid and we can
assume that a is absorbing in G. If {b, c} is a subgroupoid of G then G is isomorphic
to one of D(7), D(9), D(10). Hence, let {b, c} be not a subgroupoid of G and let bc = a
(the other case, cb = a, being similar). Thena = ca = ¢- bc = cb-cand cb * c. If
cb = bthenb =b-cb = bc- b = ab = a, a contradiction. Thus cb = a and G = D(8).
(b) Let G contain no left and no right absorbing elements. By 5.2, G is
a CDI-groupoid. If G is not subdirectly irreducible then G is a subdirect product
of copies of D(1) (since D(1) is up to isomorphism the only two-element
CDI-groupoid), and hence G is a semilattice. But every finite semilattice contains
an absorbing element and we have proved that G is subdirectly irreducible. If
Pe * idg, say (a, b) € pg then a = aa = ba = ab = bb = b, a contradiction. Thus
Pc = 46 = id; and %(G) + 0 by I1.4.9; we can assume that a € (G). Then L, = R,
is a permutation. If a is a neutral element of G then bc = a (otherwise either b or ¢
would be absorbing) and a =bc =b-ac =ba-bc =b-bc = ba=b, a contradiction.
Thus a is not neutral and we have ab = ¢ = ba, ac = b = ca. Further, a- bc =
ab - ac = cb = bc, which implies bc = a = cb. Now, it is clear that G = D(15).
(c) Let G contain at least two left absorbing elements. By 5.4, G is isomorphic to
one of D(11), D(13), D(19), D(20), D(21).
(d) Let G contain just one left absorbing element but no right absorbing element.
By 5.5, G =~ D(17).
(e) Let G contain at least one right absorbing element but no left absorbing element.
By 5.6, G is isomorphic to one of D(12), D(14), D(16), D(18), D(22), D(23). [J

IV.6 Three-element left distributive groupoids with two idempotent
elements

6.1 Consider the following twelve three-element groupoids:

DR4) [0 1 2 D(R5) |0 1 2 D(26) [0 1 2
0 (000 0 000 0 (000
1 (010 1 [011 1|1 11
2 looo 2 |01 1 2 (000
DR7) [0 1 2 D(28) [0 1 2 D(9) |0 1 2
0 (010 0 (000 0 (012
1 (010 1 012 1 011
2 (010 2 (000 2 (011
D(0) [0 1 2 pB31) |0 1 2 D(32) |0 1 2
0 (000 0 [000 0 (012
1 (012 1 {012 1 (012
2 111 2 011 2 011




D(33) [0 1 2 D(4) [0 1 2 D) [0 1 2
0 002 0 012 0 012
1 012 1 010 1 012
2 1000 2 |010 2 1000

(i) D(24) and D(25) are subdirect products of D(1) and D(4), and so D(24), D(25)
are CD-semigroups. Moreover, D(25) =~ D(4)[e].
(ii) D(26) (D(27)) is a subdirect product of D(3) (D(2)) and D(4), and so D(26)
(D(27)) is a D-semigroup.
(iii) D(28) is a medial LD-semigroup (0,2 are left constant, O is right absorbing
and 1 is left neutral).
(iv) D(29) =~ D(4){e] is a medial LD-groupoid (see 1.9(ii); 0,1 are right ab-
sorbing, 0 is left neutral and (1, 2) € p;).
(v) D(30) is an LD-groupoid (0,2 are left constant and 1 is left neutral).
(vi) D(31) = D(5)[e] is an LD-groupoid by 1.9(i).
(vii) D(32) = D(5){e] is an LD-groupoid by 1.9(ii). Moreover, it is a subdirect
product of D(2) and D(5).
(viii) D(33) is subdirect product of D(1) and D(5), and therefore D(33) is an
LD-groupoid.
(ix) D(34) is an LD-groupoid (0,1 are right absorbing, 0 is left neutral, (1, 2) € pg,
2-y2 =2y-22 = 0 for every y € G).
(x) D(35) is an LD-groupoid (0 is right absorbing, 0,1 are left neutral and 2 is
left constant).
(xi) All the groupoids D(24), ..., D(35) are LD-groupoids with card(Id(G)) = 2
and they possess the properties listed in the following table:

D|LSM|RSMMSM[M|S |C |E |DI| Pi|Pc|Ol|Id | Si |La|Ra|Ln|Rn| G*®
D(24)|+| + | + | + |+|+|+|+|+|+|+|+|+|—|1]|1]0]|0[D(24)
DRS)|+| + | + | + |+|+|+|+|+H|+H|+H|+|+]|—|1]|1]|0]|0|D(25)
DR26)[+| + | + | + |+|+|—|+|+H|+|+|+|[+]|—]2|0]0]0]|D(27)
DQ7)|+| + | + | + |[+|+|+|=|+|+|+[+]|+]|—-]0]2]0]|0]|D(26)
D28)|—| + | + | + |+|+|—|+|—|+ |+ |+|—|+|1|1]1]|O0O] —
DR29)|—| + | + | + |+|=|—|—|—|+|+|+|—|+]|0|2]1|0] —
DBRO)— — [ — [ — [=|=|[=|=|=|=|+|=|—=|+]2]|0|1|0O] —
DBEY)|—| — | = | — |=|=|=|—|=| =+ |+ |—|+|1|1|1|O| —
DB2)—| — | = | = |=|=|-|=|-|—-|+|+|—=[—|0]2]2|0| —
DB3)|—| — | — | — |=|=|=|=|-|=|+|+|—-|—-|0|1|1|0O| —
DB34)—{ — | = | = |=[-|-|-|-|=|—-|+|—-(+]O|2|1|0| —
DB3S)—| — | = | = |=|-|-|-|-|=|=|=|=|+]|O0O|1]|2]0| —

<
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Explanation: See 4.1 and 5.1.

(xii) Considering the items of the foregoing table and taking into account that they
are invariant under isomorphisms, we see easily that the groupoids D(24), ...,
D(35) are pair-wise non-isomorphic with possible exception of D(24), D(25).
However, 0 is absorbing in the both groupoids, O appears seven times in the
table of D(24) and only five times in the table of D(25). Consequently, D(24)
and D(25) are not isomorphic.

In the remaining part of this section, we show that D(24), ..., D(35) are (up to
isomorphism) the only three-element LD-grupoids having just two idempotents.

6.2 Lemma. Let G be a three-element LD-groupoid such that G contains an
absorbing element and card(Id(G)) = 2. Then G is isomorphic to one of D(24),
D(25), D(28), D(31).

Proof. Let G = {a,b, c}, where a is absorbing, bb = b and cc % c. Since
Id(G) is a left ideal, we have cb € {a,b}. Now, we shall distinguish the following
cases:

(i) Let cc = a and bc = a. Then b-cb = bc-b = ab = a, and hence ¢b = a
and G = D(24).

(ii) Let cc=a and bc=b. Then a=ba=b-cc=bc-bc=bb=>b, a con-
tradiction.

(iii) Let cc=a and bc =c. Then a=a-cb =cc-cb = c- cb, and hence cb = a
and G =~ D(28).

(iv) Let cc = b. Then ¢cb =c-cc =cc-cc=bb=b, b=b-cb=bc b and
bce {b,c}.If bc = b then G = D(25). If bc = ¢ then G = D(31). [

6.3 Lemma. Let G be a three-element LD-groupoid such that G contains at
least two left absorbing elements and card(Id(G)) = 2. Then G = D(26).

Proof. Let G = {a,b, c}, where a, b are left absorbing and cc + c¢. We can
assume that cc = a. Further, ca,cbeld(G)={a,b}, ca=c cc=cc cc=aa=a,
c-cb=ccchb=a-cb=a,and hence cb = a and G = D(26).

6.4 Lemma. Let G be a three-element LD-groupoid containing just one left
absorbing element, no right absorbing element and such that card(Id(G)) = 2. Then
G = D(30).

Proof. Let G = {a,b, ¢}, where a is left absorbing, bb = b and cc + c. Again,
ba, ca, cb € {a,b}.

(1) Let cc = a. Then ca = ¢ cc = cc* cc = aa = a, and, since a is not right
absorbing, ba = b. On the other hand, b = ba = b- cc = bc - bc, bc = b is
left absorbing, a contradiction.

(ii) Let cc=b and bc=b. Then bc=c-cc=cc-cc=bb=b, c-ba=cb-ca=
b-ca = bc-ba=Db-ba.If ba = athen ca = aand a is absorbing, which is
not true. Hence ba = b and b is left absorbing, again a contradiction.
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(iii) Let cc=b and bc+b. We have b=bb=b"cc=bc"bc, and so bc=c. If
ba=>b then b=ba="b-ac=ba bc=bc=c, a contradiction. Hence ba = a,
and then ca = b, since a is not absorbing. We have proved that G =~ D(30). O

6.5 Lemma. Let G be a three-element LD-groupoid containing at least two
right absorbing elements and such that card(Id(G)) = 2. Then G is isomorphic to
one of D(27), D(29), D(32), D(34).

Proof. Let G = {a.b,c}, where a,b are right absorbing and cc = a. Then
a=aa=a-cc=ac-ac, and hence ac € {a, c}. Similarly, a = ba =b" cc = bc- bc
and be € {g, c}. The rest is clear. []

6.6 Lemma. Let G be a three-element LD-groupoid containing just one right
absorbing element, no left absorbing element and such that card(Id(G)) = 2. Then
G is isomorphic to one of D(33), D(35).

Proof. Let G = {a,b, c}, where a is right absorbing, bb = b and cc # c. Then

1d(G) = {a, b}, and so ab, cb € {a,b}.

(i) Let cc = a and ab = b. Then cb = a, since b is not right absorbing and
a=ba=b-cb=bc'b, so that bc =c. Finally, a=aa=a-cb=ac-ab=ac-b,
ac = c and G = D(35).

(ii) Let cc=a and ab+ b. Then ab=a, a=aa=a-cc=ac- ac, ac % a, since a
is not absorbing, and so ac = c. Further, c-ch=cc-ch=a-cb=ac-ab=ca=a,
cb+b,cb=a, and bc=b-ac=ba bc=a-bc=ab-ca= ac=c. Thus
G =~ D(33).

(iii) Let cc=b. Thenab=a-cc=ac-ac,b=bb=b-cc=bc bc,cb=c-cc =
cc-cc=bb=>b. Since b is not right absorbing, ab =a, and so a =ab =
ac - ac implies that ac = a and a is left absorbing, a contradiction. [J

6.7 Proposition. (i) The twelve groupoids D(24), ..., D(35) are pair-wise non-
isomorphic three-element LD-groupoids containing just two idempotents.
(ii) Every three-element LD-groupoid containing just two idempotents is isomor-
phic to one of D(24), ..., D(35).

Proof. (i) See 6.1.
(i) Combine 5.2, 6.2,...,6.6. []
IV.7 Three-element unipotent left distributive groupoids

7.1 Consider the following ten three-element groupoids:

D(36) [0 1 2 D(37) [0 1 2 D(38) [0 1 2
0 (000 0 {000 0 [001
1 (000 1 |001 1 (000
2 000 2 000 2 looo
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D(39) [0 1 2 D(40) [0 1 2 pa1) [0 1 2
0 001 0 010 0 011
1 001 1 000 1 000
2 000 2 010 2 000
p@2) |0 1 2 p@3) |0 1 2 D(@4) [0 1 2
0 012 0 021 0 012
1 000 1 000 1 000
2 000 2 000 2 010
D@s) |0 1 2
0 012
1 002
2 010
(i) D is a Z-semigroup.
(ii) D D(38) and D(39) are medial LD-groupoids (easy to check directly).

36) i
37)
40) and D(41) are subdirect products of D(4) and D(5), and hence D(40),
41) are LD-groupoids.
(iv) D(42) is an LD-groupoid by 1.3(i).
(v) D(43) is an LD-groupoid (clearly, L, is an autoimorphism of D(43)).
(vi) D(44) is an LD-groupoid (2-yz = 2y-2z for y £ 0 % z, y % z, and the
remaining cases are clear).
(vii) D(45) is a subdirect product of two copies of D(5), and so D(45) is an
LD-groupoid.
(viii) Taking into account 5.2 and 5.4 and the fact that D(5) is a homomorphic
image of D(39), ..., D(45), we have the following table:

(
(
(iii) D(
D(
(4
(4

D|LSM|RSMMSM|M|S |C|E DI| Pi|Pc|Ol|1d|Si|Lc|Rc|Lp|Rp| G
D(36)|+| + | + | + |+|+|+|+|+|+]|+|[+]|+|—=|3]3[{0]|0|D(36)
D3N)|—| + | + | + |+|=|—|+|+|=|-|+|=|+]|2]|2]|0]0]| —
D38)|—| + | + | + |+|—|—|=|—|—|—-|+]|—|+|2]2|0]|0] —
D(39)|—| + | + | + |+|—|=|—|—|—|+|+]|—|+|1]2|0]|0]| —
DEo)|—| — | = | = |=|-|-|—-|-|—-|+]|+|=|—-|1]2]0]0] —
D@Aa)|—| — | — | - —l=l=|={=]+|+|—|—-]2]1|0|0]| —
DA2)|—| — | = | = |=|=|=|-|-{—|+|[+|—-|+|2]1|1|O0] —
D@A3)|—| — | = | = |=|=|—-|-|-|—-|+|+|—|+]|2|2|1|0O]| —
DE44)|—| — | = | = |=|=|=|-|-|—|+|+|—-|+]|L|j1|1]0] —
D@As)|—| — | — | = |=|=|-|-|-|—-|+|+]|=|-|0|1]1]|O| —
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Explanation: See 4.1 and 5.1; Lc (Rc)... the number of left (right) constant
elements; Lp = card(#(G)), Rp = card(#(G)).
(ix) Considering the foregoing table, we see easily that the groupouds D(36),...,
D(45) are pair-wise non-isomorphic with possible exception of D(42), D(43).
But D(42) possesses a left neutral element and D(43) does not.

7.2 Lemma. Let G be a three-element unipotent LD-groupoid such that
xy = 0 (0 being the only idempotent of G) for all x,ye G, x £+ 0+ y, x *+ y.
Then G is isomorphic to one of D(36), D(38), D(41), D(42), D(43).

Proof. Let G = {a,b, c}; we have bc = 0 = cb. If 0b = 0 and Oc = c¢ then
0=00=0-bc =0b:0c = 0c = c, a contradiction. If 0b = b and Oc = 0 then
0=00=0-ch =0c-0b=0b=b, a contradiction. The remaining cases are
clear from the following table:

0b 0 0 b b c c c
Oc 0 b b c 0 b c
G = D(36) D(38) D(41) D(42) D(38) D(43) D(41) O

7.3 Lemma. Let G be a three-element unipotent LD-groupoid such that xy = x
for some x,y€ G, x + 0 % y. Then G is isomorphic to one of D(37), D(39).

Proof. We can assume that G = {0,b,c}and bc = b. Then 0 = bb = b bc =
bb-bc=0-bc=0b, c-cb=cccb=0-¢cb=0c-0b=0c-0=0, and hence
cb € {0,c}. Further, 0b = 0 bc = 0b- 0c = 0 Oc, and therefore Oc € {0,b}.

If ¢cb = 0 and Oc = 0 then G = D(37). If ¢b = 0 and Oc = b then G = D(39).
Ifcb=cthenb =bc =b-cb =bc-bb = bc-0 =0, acontradiction. []

7.4 Lemma. Let G be a three-element unipotent LD-groupoid such that xy = y
for some x, y € G, x # 0 % y. Then G is isomorphic to one of D(40), D(44), D(45).

Proof. We can assume that G = {0,b,c} and bc =c. Then ¢ =b-bc =
bb-bc=0-bc=0c,c=0"bc=0b-0c=0b"c andso0be{0,b}.1f 0b = 0
and cb =0 then G =~ D(40). If ob=0and chb=bthenb=cb=c-cb=cc'cb=
0:-¢cb =0c-0b = c0 = 0, a contradiction. If 0b = 0 and ¢cb = c then 0 = c0 =
¢:0b=c0-cb = 0c = c, acontradiction. If 0b = b and cb = 0 then G = D(44).
If 0b=>b and cb = b then G = D(45). If 0b = b and cb = ¢ then 0 = cc =
¢c¢chb=cc-cb=0-chb=0c-0b=cb=c, acontradiction. []

7.5 Proposition. (i) The ten groupoids D(36), ..., D(45) are pair-wise non-

isomorphic three-element unipotent LD-groupoids.

(ii) Every three-element unipotent LD-groupoid is isomorphic to one of D(36),...,
D(45).

Proof. (i) See 7.1.
(ii) Combine 7.2, 7.3 and 7.4. [J
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IV.8 Three-element left distributive groupoids with one ‘idempotent element

8.1 Consider the following seven three-element groupoids:

D(46) [0 1 2 D7) |0 1 2 D@48) |0 1 2
0 000 0 [000 0 [001
1 (000 1 (001 1800
2 {001 2 001 2 01
D(49) [0 1 2 D(50) [0 1 2 D(51) |0 1 2
0 001 0 [000 0 [012
1 (001 1 021 1 (021
2 o001 2 1021 2 Jo21

D(52) |0 1 2

0 [021

1 (021

2 021

@i D

(i) D

(46) is a commutative A-semigroup, and hence an LD-groupoid.
(ii) D(47) and D(48) are medial LD-groupoids (easy to check directly).
(49) and D(52) are right constant groupoids, and hence they are LD-groupoids.

(iv) D(50) = D(6) [¢] and D(51) = D(6) {e}and so D(50) and D(51) are LD-grou-
poids by 1.9(i), (ii).
(v) Taking into account 5.2 and the fact that D(6) is isomorphic to a subgroupoid
of D(50), D(51) and D(52), we have the following table:

D|LSM|RSMMSM|M|S |C|E |DI| Pi|Pc|Ol|1d | Si |La|Ra|Ln|Rn| G
D46)|+| + | + | + |+|+|+|+|+|—|+|+|+]|+]|1]1]0]O0 |[D(46)
DAN—| + | + | + |+|=|-|—|—|—=|-|+|+|[+]1]|1]|0]|0] —
DA®)|—| + | + | + [+|=|=|—|-|=|—|+|=|+|O|1|0O|0O| —
DA49)|—| + | + | + |+|=|—|—|-|+|+|+|-|+|O]|1]|O|O| —
DSO)|—| + | + | + [+|—|—|—|—|+]|+|+|[+|+]|1]|1]O]O] —
DiS))|—| + | + | + |+|—=|—|-|—|+|+|+]|—=|+]0|1]1]|0]| —
D(52)|—| + | + | + [+|—|—|=|-|[+|+|+]|—=|{=]0[1]0]0]| —

Explanation: See 4.1 and 5.1.
(vi) The foregoing table shows that D(46),..., D(52) are pair-wise non-isomorphic
(with possible exception of D(49), D(52), but these are evidently non-isomorphic).

8.2 Proposition. (i) The seventeen groupoids D(36),..., D(52) are pair-wise
non-isomorphic three-element LD-groupoids with just one idempotent element.

81




(ii) Every three-element LD-groupoid with just one idempotent element is isomor-
phic to one of D(36),..., D(52).

Proof. (i) The groupoids D(36), ..., D(45) are unipotent and D(46), ..., D(52) are
not. The statement now follows from 7.5(i) and 8.1.

(ii) With respect to 7.5(ii), we can assume that G = {a, b, ¢} is a non-unipotent
three-element LD-groupoid and that a is the only idempotent of G. Since 1d(G)
is a left ideal, a is a right absorbing element. Further, since G is not unipotent,
we can assume that cc + a. Then cc = b and either bb = a or bb = c.

(iil) Let bb=a. Then cb=c-cc=cc-cc=bb=a, a=bb=b-cc = bc- bc,
and so bc € {a, b}. Further, ab = cb - cc = ¢ bc € {ca,cb} = {a}.ie., ab = a.
If ac = a = bc then G = D(46). If ac =a and bc = b then G = D(47). If ac = b
and bc=a then G =~ D(48). If ac =b=bc then G =~ D(49). If ac=c and
bc = a then a = aa = a-bc = ab- aca - ac = ac = ¢, a contradiction. If
ac=cand bc = b then b=bc =b-ac = ba-bc =ab = a, a contradiction.

(ii2) Let bb = c. Then bc = bbb = bb-bb = ccfand ¢cb = c-cc = cc- cc =
bb = c. Further, ab = a-cc = ac- ac and ac = a- bb = ab - ab. Now, it is
clear that ab = a iff ac = a, ab = b iff ac = b. If ab = a then G =~ D(50).
If ab = b then G = D(51). If ab = c then G = D(52). O

IV.9 Three-element left distributive groupoids without idempotent elements

9.1 Consider the following two three-element groupoids:

DG53) (01 2 DG4) (01 2
0 100 0 120
1 100 1 120
2 100 2 120

Both D(53) and D(54) are right constant groupoids, and hence they are medial
LD-groupoids (see 1.1). Clearly, they are not isomorphic and we have the
following table (see 1.1 again):

D[M|S|C|E|DI|Pi|Pc|Ol|Si
D(S3) [—|+|—|—|—| = |+ |+ |+ |-
D(54) |—|+|—|—|—|— |+ |+ |+ |+

Explanation: See 4.1 and 5.1.

9.2 Proposition. (i) The two groupoids D(53) and D(54) are non-isomorphic
three-element LD-groupoids without idempotent elements.
(ii) Every three-element LD-groupoid without idempotent elements is isomorphic
to one of D(53), D(54).
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Proof. (i) See 9.1.
(ii) Let G = {a,b, c},1d(G) = @. It is easy to see that we can restrict ourselves
to the following two cases:

(iil) Let aa = b, bb = a and cc = a. Then ab = a- aa = aa- aa = bba, ba =
b-bb=bb-bb=aa=b, b=aa=a" cc=aa- ac, and hence ac =a. Simi-
larly, b=ba=b"- cc=bc- bc and bc = a. Finally, b=aa =cc* cc = ca and
¢h = c-aa = ca- ca = bb = a. We have proved that G = D(53).

(ii2) Let aa = b, bb = ¢ and cc = a. Then ab = a-aa = aa-aa = bb = c,
bc=b-bb=bb-bb=cc=a, ca=c-cc=cccc= aa = b. Moreover,
b=aa=b-aa=a cc=ac-ac,and so ac =a;c=bb =>b-aa = ba- ba,
and so ba=b; a=cc=c-bb=cb- cb, and so ch =c. Thus G = D(54). O

IV.10 Three-element left distributive groupouds —the concluding table

10.1 By 5.1(x), 6.1(xi), 7.1(viii), 8.1(v) and 9.1, we have the following table
(see p. 84).

Explanation: See 4.1 and 5.1; Sm... the groupoid G is simple (it is easy
to check that D(15), D(30), D(54) are the only simple groupoids among
D(7),..., D(54)).

IV.11 Number of isomorphism types of at most six element left distributive
groupoids

11.1 The following table shows the number of all LD-groupoids and the number
of their isomorphism types on a given set of at most 6 elements:

Elements [1(2| 3 4 5 6
Groupoids |19 (224 | 14067 | 3717524 ?
Isotypes |[1(6| 48 720 33425 | 35527485

11.2 The following table specifies the numbers of isomorphism types of

LD-groupoids (from 1 up to 5 elements) according to the number of idempotent
elements:

Elemelncieszmpotents 0 1 2 3 4 5
1 0 1 0 0 0 0
2 1 2 3 0 0 0
3 2 Ry 12 17 0 0
4 | 25 233 179 | 142 | 141 0
5 704 (21699 | 3936 | 3115 | 2267 | 1704
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11.3 The following table contains the numbers of isomorphism types of at most
five-element LD-groupoids satisfying some basic identities:

Elememsldem“y tp |p| M |s|cl| 1 |IM|IS]|cI
1 1 1l 1] 1| 1] 1 1
2 6| 4 s 4] 2| 3| 3| 3] 1
3 48| 19| 32| 16] 7| 17| 13| 9| 3
4 720 | 120 | 405 | 93| 24| 141| 71| 38| 7
5 33425 | 921 | 25185 | 682 | 103 | 1704 | 449 | 179 | 22

IV.12 Comments and open problems

Group constructions of idempotent self-distributive groupoids are quite common
(e.g., the operation of mean, (x, y) - (x + y)/2, in a uniquely 2-divisible Abelian
group or the operation of conjugation, (x, y) — %, in any group). Group construc-
tions of non-idempotent (left) distributive groupoids were introduced in [Kep, 81].
A substantial progress was made by P. Dehornoy, who (using indirect methods)
came to the constructions 2.2 and 2.3 which are the most sophisticated up to now.
These constructions then yield the very important example IV.3 which is essentially
due to P. Dehornoy again (the present formulation comes from D. Larue).

Three-element LDI-groupoids were classified in [Kep, 81] and the enumerating
tables 11.1, 11.2, 11.3 are due to [Jez, 95].

The following open problem might be of interest: For n > 1, let a(n) denote the
number of iso-types of LD-groupoids having n elements and, for m > 1, let o(n, m)
be the number of iso-types of those n-element LD-groupoids which have just m
idempotent elements. Find

lim M
oo (n)
for every m > 1.

List of symbols

A - B ... the set of all products ab, a € A, b € B (denoted also by AB)

{A)s ... subgroupoid of G generated by a subset 4 = G

Agli) ... block of ker(rg) containing an element i€Id(G) in a strongly
delightful groupoid G

6(S) ... the set of all x € G such that ax € S for some a € S, S being a subset
of a groupoid G

Aut(G) ... the automorphism group of a groupoid G
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G" ...
Gt ...
Grm .
G*” ...
idg ...
14(G) ...
4(G) ...
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.. the set of all x € G such that a,(ay(... (a,x))) € S for some a,, ..., a,€ S

(Bo.6(S) = S), S being a subset of G

.. the set | J)izoBi.6(9)
.. the cardinality of a set M

.. the set of all left cancellable elements of a groupoid G

.. the set of all right cancellable elements of a groupoid G

.. the set of all cancellable elements of a groupoid G

.. the set of all a € 4(G) such that aa = aa - a

.. groupoid defined on {0,1,...,n — 1} by i*j=i+1fori$n—1

and(n — 1)*j =0

.. groupoid defined on {0,1,...,n — 1} by i*j=j+ 1 forj+n—1

andix(n—1)=0

.. groupoid defined on 0, 1, ... by i*j =i + 1

.. groupoid defined on 0, 1, ... by i*j=j + 1

.. the set of all x € G such that xa € S for some a€ S

.. the set of all left divisible elements of a groupoid G

.. the set of all right divisible elements of a groupoid G

.. the set of all divisible elements of a groupoid G

.. the set of all x € G such that (((xa;)a,)...)a, € S for some ay, ..., a,€ S

(80,6(S) = S), S being a subset of a groupoid G

.. the set { Ji»09;4(S)

... the endomorphism monoid of a groupoid G

... the set ag(S) U y4(S)

.. groupoid defined on the set G U {¢} (e ¢ G) such that G is a sub-

groupoid of G[e] and e is an absorbing element of G[e]

.. groupoid defined on the set G U {e} (e ¢ G) such that G is a sub-

Gle] ...

.. groupoid defined on the set G U {e} (e ¢ G) such that G is a sub-

Gle, f] ...

groupoid of G[e} and e is left absorbing and right neutral
groupoid defined on the set G U {e} (e ¢ G) such that G is a sub-
groupoid of G{e} and e is right absorbing and left neutral

groupoid of G{e} and e is a neutral element of G{e}

groupoid defined on the set G U {e} (e ¢ G) such that G is a sub-
groupoid of G[e, f], xe = e and ey = f(y) for all xe G U {e} and
y € G, where G is an LSLD-groupoid and f is an automorphism of
G such that f* = idg and (x, f(x)) € p¢ for every xe G

the set of ordered n-tuples of elements of G

subset of G defined inductively by GY) = G and G"*!} = G- G

. subset of G defined inductively by G"% = G and G*"+!} = GI*™}- G

the opposite groupoid of a groupoid G

the identical mapping (relation) on a set G

the set of all idempotent elements of a groupoid G
the set of all two-sided ideals of a groupoid G
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.. the set of all left ideals of a groupoid G

.. the set of all right ideals of a groupoid G

.. intersection of all ideals of a groupoid G

.. relation defined on an LSLD-groupoid G by (a, b) € ip; iff either

a=bora=>bb

.. the kernel equivalence of a mapping f ((a, b) € ker(f) iff f(a)= f(b))
.. left translation by an element a in a groupoid G, L, ¢(x) = ax for

all x € G (denoted also by L,)

.. subgroup in .#*G), G being a quasigroup, generated by all map-

pings L. L', x,ye G

.. the lattice of subvarieties of a variety ¥~
.. the multiplication semigroup of a groupoid G, i.e., the subsemigroup

of the transformation monoid of the set G generated by all left and
right translations

.. the multiplication monoid .#(G) L {ids}
.. the left multiplication semigroup of a groupoid G (generated by all

left translations)

.. the left multiplication monoid of a groupoid G (#/(G) = 4(G) LU

{ide})

.. the right multiplication semigroup of a groupoid G (generated by all

right translations)

.. the right multiplication monoid of a groupoid G (#}(G) = #,(G) LU

{ide})

.. permutation group generated by all (left and right) translations in

a quasigroup G

.. permutation group generated by all left translations in a left

quasigroup G

.. permutation group generated by all right translations in a right

quasigoup G

.. the transformation semigroup generated in .#(G) by all left and

right translations L, g, R, 6, @ = H, H being a subgroupoid of G

.. the transformation monoid .#(G, H) u {idg}
.. the transformation semigroup generated in .#)(G) by all left trans-

lations L, g, a € H, H being a sugroupoid of G

.. the transformation monoid .#(G, H) U {idg}
.. the transformation semigroup generated in .#,(G) by all right

translations R, s, a € H, H being a sugroupoid of G

.. the transformation monoid .#,(G, H) U {idg}

.. the set of all u € G such that au € S, S being a subset of a groupoid G
.. the set of all u € G such that ua € S, S being a subset of a groupoid G
.. transformation of a groupoid G defined by o4(x) = xx for all xe G
.. relation on a groupoid G defined by pg = (),cc ker(R,¢)
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.. groupoid of all subsets of a groupoid G with multiplication defined

by A-B = AB = {ablac A,beB}forall 4,B< G

.. the set of all elements of a groupoid G which are both cancellable

and divisible

.. the set of all elements of a groupoid G which are both left cancellable

and left divisible

.. the set of all elements of a groupoid G which are both right cancellable

and right divisible

.. the set of all xe G such that T, ... ,T, (x) € S for some n > 1,

Te{L R}anda,eS,i=1,..,n, S being a subset of a groupoid G
(Wo6(S) = S)

... the set {Jizo Vi 6(S)

... relation on a groupoid G defined by gs = (\se ker(L,q)

.. the set of all G",n > 1

.. the left-quasigroup-envelope of a groupoid G

.. right translation by an element a a groupoid G, R, ¢(x) = xa for all

xeG

.. the subgroupoid of P(G) generated by G (obviously, 2(G) = %#(G))
.. the smallest closed subset of a groupoid G containing a set R < G
.. the smallest left closed subset of a groupoid G containing a set

RcG

.. the smallest right closed subset of a groupoid G containing a set

Rc G

.. transformation of a groupoid G defined by r¢4(x) = x - xx forall x e G
.. transformation of a groupoid G defined by s¢(x) = xx - x forall x e G
.. the smallest closed subgroupoid of a groupoid G containing a set

ScG

.. the smallest left closed subgroupoid of a groupoid G containing a set

ScG

.. the smallest right closed subgroupoid of a groupoid G containing

asetS = G

.. minimal cardinality of a generating set of a groupoid G
.. minimal cardinality of a set M of c-generators of a groupoid G (G is

the least closed subgroupoid containing M)

.. minimal cardinality of a set M of lc-generators of a groupoid G

(G is the least left closed subgroupoid containing M)

.. minimal cardinality of a set M of rc-generators of a groupoid G

(G is the least right closed subgroupoid containing M)

.. relation defined on a groupoid G by t; = ps N g (i.e., (x,y) € tg

iff L, = L,and R, = R))

.. relation defined on a groupoid G by (a, b) € ug iff the elements a and

b generate the same left ideal



u ... relation defined on a groupoid G by (a, b) € u§ iff the elements a and
b generate the same left strongly prime left ideal
vg ... relation defined on a groupoid G by (a, b) € v iff the elements a and
b generate the same right ideal
v ... relation defined on a groupoid G by (a, b) € v§; iff the elements a and
b generate the same right strongly prime right ideal
Wg ... relation defined on a groupoid G by (a, b) € wg iff the elements
a and b generate the same two-sided ideal of G
zg ... relation defined on a groupoid G by (a, b) € z iff a = f(b) for some
f e #(G)
z ... relation defined on a groupoid G by z; = zg U {ids}
2,6 ... relation defined on a groupoid G by (a, b)€ z, ¢ iff a = f(b) for
some f € 4(G)
zl g ... relation defined on a groupoid G by zj¢ = 2,5 U {idg}
z, ... relation defined on a groupoid G by (a, b) € z, ¢ iff a = f(b) for
some f € /,(G)
z) s ... relation defined on a groupoid G by z; ¢ = z, ¢ U {idg}
wg ... the intersection of all non-identical congruences of a groupoid G
(wg = idg if G is a trivial groupoid)
. ¢ ... the intersection of all non-identical cancellative congruences of
a groupoid G
. ¢ --- the intersection of all non-identical left cancellative congruences of
a groupoid G
,.c --- the intersection of all non-identical right cancellative congruences
of a groupoid G

Abbreviations of groupoid varieties

A- A-semigroup (satisfying x - yz = uv - w)
CD- commutative distributive groupoid (satisfying x - yz = xy- xz and xy = yx)
CDI- commutative distributive idempotent groupoid (satisfying x - yz = xy - xz,
xx = x and xy = yx)
DI- distributive idempotent groupoid (satisfying x- yz = xy- xz, xy-z=xz"yz
and xx = Xx)
LD- left distributive groupoid (satisfying x - yz = xy - xz)
LDA- groupoid satisfying x - yz = xy - xz, xx -y = x - yy (i.e., left distributive
delightful groupoid) and x- xx = y - yy
LDB- groupoid satisfying xx-y = x-yyand x*yz = u- ow
LDI- left distributive idempotent groupoid (satisfying x - yz = xy - xz and xx = x)
LSLD- left symmetric left distributive groupoid (satisfying x - yz = xy - xz and
XXy =y)
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LSLDI-

LZ-
IM-
RD-
RDI-
RZ-
Z-

[Basa,68]
[BashD,94]

[BashJK,?]
[Bel,63]

[Bel,65]
[BelF,65]

[Bel,67]
[BelO,72]

[Bir,85]
(Bir,86]
[BirH,90]
[BirHK,92]
[BurM,29]

[Deh,89a)
[Deh,89b)

[Deh,89c¢]
[Deh,92a]
[Deh,92b]
[Deh,92c]

[Deh,92d]
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left symmetric left distributive idempotent groupoid (satisfying x - yz =
Xy xz,xx =xand x-xy = y)

semigroup of left zeros (satisfying x = xy)

idempotent medial groupoid (satisfying xx = x and xy - uv = xu - yv)
right distributive groupoid (satisfying xy - z = xz - yz)

right distributive idempotent groupoid (satisfying xy -z = xz - yz and xx = x)
semigroup of right zeros (satisfying x = yx)

Z-semigroup (satisfying xy = uv)

References

BASARAB A. S., Serdcevina obob§¢enoj lupy Mufang, Mat. Issled. 2 (1968), 3 —13.

EL BAsHIR R. and DRAPAL A., Quasitrivial left distributive groupoids, Comment. Math.
Univ. Carolinae 35 (1994), 597 —606.

EL BAsHIR R., JANCARIK A. and KEPKA T., Groupoids of fractions (preprint).

BeLousov V. D., Ob odnom klasse levodistributivnych kvazigrupp, Izv. Vys. Ug€. Zav.
Matematika 32 (1963), 16 —20.

BELousov V. D., Serdcevina lupy Bola, Issled. Ob¢s. Algebre, KiSinév, 1965, pp. 53 —66.
BeLousov V. D. and FLoORIA 1. A., O levodistributivnych kvazigruppach, Bull. Akad.
Stiince RSS Mold., Ser. fiz.-techn. i matem. nauk 7 (1965), 3—13.

BeLousov V. D., Osnovy teorii kvazigrupp i lup, Nauka, 1967.

BeLousov V. D. and ONos V. L., O lupach, izotopnych levodistributivnym kvazigruppam,
Mat. Issled. 7 (1972), 135—152.

BIRKENMEIER G., Exponentiation and the identity x*y = (xy)’, Commun. Algebra 13
(1985), 681 —695.

BIRKENMEIER G., Right ideals in a right distributive groupoid, Algebra Univ. 22 (1986),
103 —108.

BIRKENMEIER G. and HEATHERLY H., Left self distributive near-rings, J. Austral Math. Soc.
49 (1990), 273 —296.

BIRKENMEIER G., HEATHERLY H. and KEPKA T., Rings with left self distributive multi-
plication, Acta Math. Hung. 60 (1992), 107 —114.

BURSTIN C. and MAYER W., Distributive Gruppen von endlicher Ordnung, J. reine und
angew. Math. 160 (1929), 111 —130.

DEHORNOY P., Free distributive groupoids, J. Pure Appl. Algebra 61 (1989), 123 —146.
DEHORNOY P., Algebraic properties of the shift mapping, Proc. Amer. Math. Soc. 106
(1989), 617 —623.

DEHORNOY P., Sur la structure des gerbes libres, C. R. Acad. Sci. Paris 309-I (1989),
143 —148,

DEHORNOY P., Probléme de mots dans les gerbes libres, Theoretical Computer Science 94
(1992), 199 —213.

DEHORNOY P., The adjoint representation of left distributive structures, Commun. Algebra
20 (1992), 1201 —1215.

DEHORNOY P., Preuve de la conjecture d’irréflexivité pour les structures distributives
libres, C. R. Acad. Sci Paris 314-I (1992), 333 —336.

DEHORNOY P., An alternative proof of Laver’s result on the algebra generated by an
elementary embedding, Set Theory of the Continuum, H. Judah et al. eds., Springer
Verlag, 1992, pp. 27 —33.



[Deh,93]
[Deh,94a]
[Deh,94b]
[Deh,94c]
[Deh,95]
[Deh,97a]
[Deh,97b]
[Deh,98a]
[Deh,98b]
[Deh,2000]
[Dou,93]
[Doul,97]
[Dra,94]
[Dra,95a]
[Dra,95b]
[Dra,97a]
[Dra,97b]

[Dra,?]
[DraKM,94]

[Gal,79]
[Gla,64]
[Gla,68]
[Hos,60]
[IkeN,77]
[Jez,95]
[JezK,83]
[JezK,97]

[JezKN,81]

DEHORNOY P., The naming problem for left distributivity, Lecture Notes in Computer
Science 677, Springer Verlag, 1993, pp. 57—178.

DEHORNOY P., A normal form for the free left distributive law, Inter. J. Alg. Comp.
4 (1994), 499 —528.

DEHORNOY P., Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345
(1994), 115—-150.

DEHORNOY P., A canonical ordering for free self-distributive systems, Proc. Amer. Math.
Soc. 122 (1994), 31 —36.

DEHORNOY P., From large cardinals to braids via distributive algebra, J. Knot Theory 4
(1995), 33—179.

DEHORNOY P., On the syntactic algorithm for the word problem of left distributivity,
Algebra Univ. 37 (1997), 191 —222.

DEHORNOY P., Multiple left distributive systems, Comment. Math. Univ. Carolinae 38
(1997), 615 —625.

DEHORNOY P., Transfinite braids and left distributive operations, Math. Z. 228 (1998),
405 —433.

DEHORNOY P., Free zeropotent left distributive groupoids, Commun. Algebra 26 (1998),
1967 —1978.

DEHORNOY P., Braids and self-distributivity, Progress in Mathematics, Vol. 192, Birk-
héuser Verlag, Basel-Bonston-Berlin, 2000.

DouGHERTY R., Critical points in an algebra of elementary embeddings, Ann. Pure Appl.
Logic 65 (1993), 211 —241.

DOUGHERTY R. and JECH T., Left-distributive embedding algebras, Electronic Research
Announcements of the AMS 3 (1997).

DRAPAL A., Homomorphisms of primitive left distributive groupoids, Commun. Algebra
22 (1994), 2579 —2592.

DRAPAL A., On the semigroup structure of cyclic left distributive algebras, Semigroup
Forum 51 (1995), 23 —30.

DRAPAL A., Persistence of cyclic left distributive algebras, J. Pure Appl. Algebra 105
(1995), 137 —165.

DRAPAL A., Finite left distributive groupoids with one generator, Int. J. of Algebra and
Comput. 7 (1997), 723 —748.

DRAPAL A., Finite left distributive algebras with one generator, J. Pure Appl. Algebra 121
(1997), 233 —251.

DRAPAL A., Monogenerated LD-groupoids and their defining relations (preprint).
DRrAPAL A., KEPKA T. and MUSILEK M., Group conjugation has non-trivial LD-identities,
Comment, Math. Univ. Carolinae 35 (1994), 219 —222.

GALKIN V. M., Levodistributivnyje kvazigruppy konecnogo porjadka, Mat. Issled 51
(1979), 43 —54.

GLAUBERMAN G., On loops of odd order, J. Algebra 1 (1964), 374 —396.

GLAUBERMAN G., On loops of odd order II, J. Algebra 8 (1968), 393 —414.

HosszU M., Homogeneous groupoids, Univ. Sci. Budapest, Math. 3—4 (1960—61),
95—98.

IKEDA Y. and NoBUSAWA N., On symmetric sets of unimodular symmetric matrices, Osaka
J. Math. 14 (1997), 471 —480.

JEZEK ., Enumerating left distributive groupoids, Czech. Math. J. 45 (1995), 717 —1727.
Jezex J. and KePkA T., Medial groupoids, Rozpravy CSAV, 93/2, 1983.

Jezex J. and KePkA T., Selfdistributive groupoids of small orders, Czech. Math. J. 47
(1997), 463 —468.

Jezex J., Kepka T. and NEMEC P., Distributive groupoids, Rozpravy CSAV, 91/3, 1981.

91



[Joy,82a]
[Joy,82b]

[KanNN,76]

[Kel,96]
[Kep,81]

[Kep, 84]
[Kep,94a]
[Kep,94b]
[KepN,81]
[KepP,91]
[KepP,92]
[KepP,95a]
[KepP,95b]
[KepZ,89]
[Kik,73]
[Kik,74]
[Kik,75]
[Lar,94a]
[Lar,94b]
[Lar,?a]
[Lar,?b]
[Lav,86]
[Lav,92]
[Lav,93]
[Lav,95]
[Lav,96]
[Loo,67]

[L00,69]

92

Joyce D., Simple quandles, J. Algebra 97 (1982), 307 —318.

JoYce D., A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23
(1982), 37—66.

KANO M., NAGAO H. and NoBUSAWA N., On finite hormogeneous symmetric sets, Osaka
J. Math. 13 (1976), 399 —406.

KELAREV A. V., On left self distributive rings, Acta Math. Hungar. 71 (1966), 121 —122.
KepkA T., Notes on left distributive groupoids, Acta Univ. Carolinae Math. Phys. 22
(1981), no. 2, 23 —37.

KepkA T., Varieties of left distributive semigroups, Acta Univ. Carolinae Math. Phys. 25
(1984), no. 1, 3—18.

KepkA T., Non-idempotent left symmetric left distributive groupoids, Comment. Math.
Univ. Carolinae 35 (1994), 181 —186.

KePKA T., Ideals in selfdistributive groupoids, Comment. Math. Univ. Carolinae 35
(1994), 187—191.

KepkA T. and NEMEC P., A note on left distributive groupoids, Colloq. Math. Soc. J.
Bolyai, vol. 29, Universal Algebra, Esztergom, 1977, pp. 467 —471.

KepkA T. and POLAK P., Groupoids of fractions I, Rivista Mat. Pura Appl. 10 (1991)
109 —124.

KepkA T. and PoLAK P., Groupoids of fractions II, Rivista Mat. Pura Appl. 11 (1992),
113—-123.

KepPkA T. and POLAK P., Groupoids of fractions IlI, Rivista Mat. Pura Appl. 16 (1995),
71—82.

KepkA T. and PoLAK P., Groupoids of fractions IV, Rivista Mat. Pura Appl. 16 (1995),
121—-132.

KEepkA T. and ZEINULLAHU A., Finitely generated left distributive semigroups, Acta Univ.
Carolinae Math. Phys. 30 (1989), no. 1, 33 —36.

KIKKAWA M., On some quasigroups of algebraic models of symmetric space I, Mem. Fac.
Lit. Sci Shamane Univ. (Nat. Sci.) 6 (1973).

KIKKAWA M., On some quasigroups of algebraic models of symmetric space II, Mem. Fac.
Lit. Sci Shamane Univ. (Nat. Sci.) 7 (1974), 29 —35.

KIKKAWA M., On some quasigroups of algebraic models of symmetric space III, Mem.
Fac. Lit. Sci Shamane Univ. (Nat. Sci.) 9 (1975), 7—12.

LARUE D., Left-distributive and left-distributive idempotent algebras, Ph. D. Thesis,
University of Colorado, Boulder, 1994.

LARUE D., On braid words and irreflexivity, Algebra Universalis 31 (1994), 104 —112.
LARUE D., Left-distributive idempotent algebras (preprint).

LARUE D., Group representations of free left-distributive algebras (preprint).

LAVER R., Elementary embeddings of a rank into itself, Abstracts Amer. Math. Soc.
7 (1986), 6. .

LAVER R., The left distributive law and the freeness of an algebra of elementary
embeddings, Advances Math. 91 (1992), 209 —231.

LAVER R., A division algorithm for the free left distributive algebra, Oikkonen & al. eds,
Lect. Notes Logic 2, 1993, pp. 155—162.

LAVER R., On the algebra of elementary embeddings of a rank into itself, Advances in
Math. 110 (1995), 334 —346.

LAVER R., Braid groups actions on left distributive structures and well-orderings in the
braid group, J. Pure Appl. Algebra 108 (1996), 81 —98.

Loos O., Spiegelungsridume und homogene symmetrische Rdaume, Math. Z. 99 (1967),
141 —170.

Loos O., Symmetric spaces, J. Benjamin, New York, 1969.



[Mar,79]
[Nag,79]
[Nob,74]
[Nob,77]

[Nob,79]
[Nob,80]

[Nob,81]

[Nob,83a]
[Nob,83b]

[Ono,70a]
[Ono,70b]
[Ono,72]
[Pei, 1880]
[Pie,78]
[Pie,79]
[Rob,66]
[Rob,79]
[Rue,66]
[Sch,1887]
[Sci,78a]
[Sci,78b]
[Ses,93]
[Ses,96]

[Smi,92]
[Ste.57]

[Ste,59a)
[Ste,59b]
[Sus§,37]

[Tak,43]
[Weh,91]
[Weh,?]
[Win,84]

[Zap,?]

MARKOVSKI S., Za distributivnite polugrupy, God. zbor. Matem. fak. (Skopje) 30 (1979),
15-27.

NAGAO H., A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349 —352.
NoBUSAWA N., On symmetric structure of a finite set, Osaka J. Math. 11 (1974), 569 —575.
NoBuUsAWA N., Simple symmetric sets and simple groups, Osaka J. Math. 14 (1977),
411—415.

NoBusawA N., A remark on simple symmetric sets, Osaka J. Math. 16 (1979), 349 —352.
NoBusawA N., Primitive symmetric sets in finite orthogonal geometry, Osaka J. Math. 17
(1980), 407 —410.

NoBUSAWA N., A remark on conjugacy classes in simple groups, Osaka J. Math. 18
(1981), 749 —754.

NoBuUsawA N., Orthogonal groups and symmetric sets, Osaka J. Math. 20 (1983), 5—8.
NoBUSAWA N., Some structure theorems on pseudo-symmetric sets, Osaka J. Math. 20
(1983). 727 -1734.

OnNoJ V. 1., Levodistributivnyje kvazigruppy odnorodnyje sleva nad kvazigruppoj, Bull.
Akad. Stiince RSS Mold., Ser. fiz.-techn. i matem. nauk 2 (1970), 24 —31.

Onos V. 1, O serdcevinach kvazigrupp so svojstvom pravoj obratimosti, Voprosy terii
kvazigrupp i lup, Kisinév, 1970, pp. 91 —100.

Onos V. L, Svjaz S-lup s lupami Mufang, Mat. Issled. 7 (1972), 197 —212.

PeIRCE C. S., On the algebra of logic, Amer. J. Math. III (1880), 15—57.

PIERCE R. S., Symmetric groupoids, Osaka J. Math. 15 (1978), 51 —76.

PIERCE R. S., Symmetric groupoids II, Osaka J. Math. 16 (1979), 317 —348.

ROBINSON D. A., Bol loops, Trans. Amer. Math. Soc. 123 (1966), 341 —354.

ROBINSON D. A., A loop-theoretic study of right-sided quasigroups, Ann. Soc. Sci.
Bruxelles 93 (1979), 7—16.

RUEDIN 1., Sur une décomposition des groupoides distributifs, C. R. Acad. Sci. Paris 262
(1966), A985 — A988.

ScHRODER E., Uber Algorithmen und Calculi, Arch. der Math. und Phys., 2™ series
5 (1887), 225—278.

SciMeEMI B., Cappi di Bruck e loro generalizzazioni, Rend. Sem. Mat. Univ. Padova 60
(1978), 141 —149.

ScIMEMI B., Sistemi binari construiti su un gruppo, Sistemi binari e loro applicazzioni,
Taormina, 1978, pp. 87 —95.

SESBOUE A., Algebres distributives finies monogénes, Thése de doctorat, Université de
Caén, 1993.

SESBOUE A., Finite monogenic left distributive algebras, Czech. Math. J. 46 (1996),
697 —1719.

SMmrItH J. D. H., Quasigroups and quandles, Discrete Math. 109 (1992), 277 —282.

STEIN S. K., On the foundations of quasigroups, Trans. Amer. Math. Soc. 85 (1957),
228 —256.

STEIN S. K., Left distributive quasigroups, Proc. Amer. Math. Soc. 10 (1959), 577 —578.
STEIN S. K., On a construction of Hosszi, Publ. Math. 6 (1959), 10— 14.

SuSKeviC A. K., Teorija obobscennych grupp, Gosud. Nauéno-Tech. Izdat. Ukrajiny,
Charkov - Kiev, 1937.

TAKASAKI M., Abstractions of symmetric functions, Tohoku Math. J. 49 (1943), 143 —207.
WEHRUNG F., Gerbes primitives, C. R. Acad. Sci. Paris 313-I (1991), 357 —362.
WEHRUNG F., Magmas autodistributifs linéaires (preprint).

WINKLER S. K., Quandles, knot invariants, and the n-fold branched cover, Ph. D. Thesis,
University of Illinois at Chicago Circle, Chicago, 1984.

ZAPLETAL J., Completion of a free distributive groupoid (circulated notes).

93



[Zej,892]

[Zej,89b]

94

ZEINULLAHU A., Splitting left distributive semigroups, Acta Univ. Carolinae Math. Phys.
30 (1989), no. 1, 23 -27.

ZEINULLAHU A., Free left distributive semigroups, Acta Univ. Carolinae Math. Phys. 30
(1989), no. 1, 29 —-32.



		webmaster@dml.cz
	2014-05-02T07:58:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




