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Self distributive Groupoids Part Al: 
Non-Idempotent Left Distributive Groupoids 

TOMÁŠ KEPKA and PETR NĚMEC 

Praha 

Received 21. October 2002 

In this paper, the essentials of the algebraic theory of (generally non-idempotent) left 
distributive groupoids are presented. 

0. Introduction 

The (left and right) equations (or identities, laws, etc.) of selfdistributivity for 
a binary operation (say multiplication) are expressed as 

x(yz) =--= (xy) (xz) and (zy) x =--= (zx) (yx). 

Inasmuch, for instance, the operation of arithmetic mean satisfies both of them, 
they were implicitly present from ancient times. On the other hand, the first 
explicit allusion to selfdistributivity seems to appear in [Pei, 1880]. Looking at the 
pages 33 and 34 of that article, we can read the following comment on self­
distributivity: 

"These are other cases of the distributive principle. ... These formulae, which 
have hitherto escaped notice, are not without interest." 

Another early work which is worth mentioning is [Sch, 1887]. We can already see 
there (p. 249) a particular example of a non-associative distributive groupoid G: 
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G 0 1 2 

0 0 2 1 
1 2 1 0 
2 1 0 2 

Of course, G is idempotent and commutative and, in fact, it is the smallest non-
trivial Kirkman-Steiner triple system. 

The first article fully devoted to selfdistributivity is (perhaps) [BurM, 29]. The 
paper deals with (two-sided) distributive quasigroups and a portion of the results 
may be found in (now rarely seen) book [Sus, 37] (pp. 154 — 157). 

One-sided selfdistributive structures (namely left distributive quasigroups) ap­
peared a bit later in [Tak, 43]. Two-sided (generally non-idempotent) distributive 
groupoids were studied in [Rue, 66] and, finally, non-idempotent left distributive 
groupoids in [Kep, 81]. 

Idempotent (either one-sided or two-sided) selfdistributive groupoids are known 
to appear in many algebraic, geometrical, topological and combinatorial contexts 
and the theory of (two-sided) distributive groupoids is easily transferred to the 
idempotent case. 

On the other hand, the theory of non-idempotent left distributive groupoids (even 
of those possessing no idempotent elements) has its own flavour and some of these 
groupoids are of special interest because of their connections to more popular and 
fashionable objects like opulent cardinal numbers and braid groups. The role of 
selfdistributivity in the Set Theory was more or less known for a long time (first 
results in this direction are due to P. Dehornoy) and the most important theorems 
were proved by R. Laver. The relations to the braid groups were studied mainly 
by P. Dehornoy. Anyway, all this goes beyond the scope of the present treatment 
which is fully devoted to the essentials of the algebraic theory of (generally non-
idempotent) left distributive groupoids. As concerns the applications mentioned 
above (and more), the kind reader is referred to the excellent monograph [Deh, 2000]. 

I. Groupoids 

1.1 Groupoids — first concepts 

1.1 Let G be a groupoid. For every a e G, we define transformations LaG and 
RaG of G by LaG(x) = ax and Ra,G(x) = xa for every xeG. The transformation 
LaG (Ra,G)i often denoted only by La (Ra), is called the left (right) translation by a. 

The transformation semigroup Mt(G) (Mr(G)) generated by all La (Ra) is called 
the left (right) multiplication semigroup of G. The transformation semigroup M(G) 
generated by all Lfl, Ra is called the multiplication semigroup of G. Moreover, we 
define M\(G) = Mt(G) u {ic^}, M\(G) = Mr(G) u {ic^}, Ml(G) = M(G) u {ic^} 
(the left, right, two-sided multiplication monoids of G). 



1.2 Let G be a groupoid. We denote by End(G) the endomorphism semigroup 
(in fact, monoid) of G and by Aut(G) the automorphism group of G. 

A subset A of G is said to be characteristic (fully characteristic) if f(A) ^ A 
for every / e Aut(G) ( / e End(G)). 

1.3 Let G be a groupoid. For every n > 1, define transformations onlG and 
o„,r,G of G by oUG(x) = x = oUG(x) and o„ + U G = xon,/)G(x), on>r>G(x) = on,r,G(x) x. 
We put also oG = oU G , rG = o U G and sG = o3>r>G (oG(x) = xx = x2, rG(x) = 
X • XX, SG(x) = XX • X). 

The grupoid G is said to be uniquely 2-divisible if oG is a permutation of G. The 
inverse permutation is oG

l and we shall also write oG\x) = x* (oG(x) = 2x and 
oG

l(x) = x/2 if the operation is denoted additively). 

1.4 If A, B are subsets of a groupoid G then AB = {ab\a e A, b e B} ^ G. 
Further, (A}G will denote the subgroupoid generated by A. 

If the intersection of all subgroupoids of G is non-empty, denote it by S, then S 
is the smallest subgroupoid of G and we put <0>G = S. 

1.5 Let G be a groupoid. Then o(G) means the smallest cardinal number 
card(M) for a generator set M of G. 

The groupoid G is said to be cyclic if a(G) < 1. The groupoid G is said to be 
pseudocyclic if either a(G) < 1 or G is idempotent and o(G) = 2. 

It is easy to see that o(G) = 0 iff G contains no proper subgroupoid; G(G) = 1 iff 
there is an element a e G such that a is contained in no proper subgroupoid but 
G contains at least one proper subgroupoid. Finally, G is pseudocyclic and cr(G) = 2 
iff G is idempotent, non-trivial and every proper subgroupoid of G is one-element. 

1.6 If G is a groupoid then Id(G) = {a e G \ a = aa} = {a e G \ oG(a) = a} de­
notes the set of idempotent elements. 

1.7 Let G be a groupoid. An element e e G is said to be left (right) neutral if 
ex = x (xe = x) for every x e G, i.e., if Le = idG (Re = idG). An element e is said 
to be neutral if it is both left and right neutral. 

Clearly, G possesses at most one neutral element, usually denoted by 1 or 1G (0 
or 0G) if the operation is denoted multiplicatively (additively). 

An element e e G is said to be left (right) constant if Le (Re) is a constant 
transformation, i.e., if ex = ey (xe = ye) for all x,yeG. An element e e G is said 
to be constant if it is both left and right constant. 

An element e e G is said to be (left, right) absorbing for annihilating, domi­
nating) if it is (left, right) constant and e = ee. 

Clearly, G possesses at most one absorbing element, usually denoted by 0 or 0G 

if the operation is denoted multiplicatively. 

1.8 Let G be a groupoid and e $ G. We shall define four groupoids G[e], G[e}, 
G{e\ and G{e}as follows: In all the four cases, the underlying set is G u {e}and G 



is a subgroupoid; e is absorbing in G[e]; e is left (right) absorbing and right (left) 
neutral in G[e] (G{e\)\ e is neutral in G{e). 

1.9 Let G be a groupoid. An element a e G is said to be left (right) cancellable 
if La (Ra) is injective. We denote by %(G) (%(G)) the set of all left (right) 
cancellable elements of G and we put %>(G) = %(G) n %(G). The elements from 
#(G) are called cancellable. 

The groupoid G is said to be (left, right) cancellative if %>(G) = G (%(G) = G, 
%(G) = G). 

1.10 Let G be a groupoid. An element a e G is said to be left (right) divisible 
if La (Ra) is projective. We denote by %(G) (%(G)) the set of all left (right) 
divisible elements of G and we put Q)(G) = %(G) n %(G). The elements from 
@>(G) are called divisible. 

The groupoid G is said to be (left, right) divisible if S>(G) = G (%(G) = G, 
%(G) = G). 

1.11 Let G be a groupoid. We put 0}(G) = %(G) n ^(G), ^ r(G) = %(G) n ^ r(G) 
and ^ ( # ) = %(<$) n 0 ( 0 ) ( = 0J(G) n ^ r(G)). 

The groupoid G is said to be a (7e/f, ng/z.0 quasigroup if ^(G) = G (0*i(G) = G, 
^r(G) = G). 

1.12 Lemma, (i) The class of (left, right) cancellative groupoids is closed 
under isomorphic images, subgroupoids and cartesian products. 

(ii) The class of (left, right) divisible groupoids is closed under homomorphic 
images and cartesian products. 

(iii) The class of (left, right) quasigroups is closed under isomorphic images and 
cartesian product. 

(iv) A finite groupoid is (left, right) cancellative iff it is (left, right) divisible; if 
this is so then it is a (left, right) quasigroup. 

(v) A non-trivial left cancellative (or divisible) groupoid contains no left constant 
element. 

Proof. Easy. • 

1.13 Let G be a left (right) quasigroup. Them Jl*(G\ (Jt*(G)) denotes the 
permutation group generated by all the left (right) translations LaG,aeG 
(RO,G>

 a e G). If G is a quasigroup then M*(G) is the permutation group generated 
by all La G, Ra G, a e G. 

1.2 Stable relations and congruences 

2.1 Let G be groupoid. A (binary) relation r defined on G is said to be 
— left stable if x, a, b e G and (a, b) e r implies (xa, xb) e r; 
— right stable if x, a, b e G and (a, b) e r implies (ax, bx) e r\ 
— stable if it is both left and right stable; 



— compatible if (a, b) e r, (c, d)er implies (ac, bd) e r; 
— left cancellative if x, a, b e G and (xa, xb) e r implies (a, b) e r; 
— right cancellative if x,a,b e G and (ax, fex) e r implies (a, ft) e r; 
— cancellative if is both left and right cancellative; 
— a congruence if it is a stable equivalence. 

2.2 Lemma. Let G be a groupoid. Then: 
(i) Every reflexive and compatible relation is stable. 

(ii) Every transitive and stable relation is compatible. 
(iii) A quasiordering is stable iff it is compatible. 
(iv) If r is a stable quasiordering then ker(r) is a congruence. 
(v) If G is a finite left quasigroup then a relation is left stable iff it is left 

cancellative. 
(vi) If G is a finite (left, right) quasigroup then every congruence is (left, right) 

cancellative. 
(vii) A congruence r is (left, right) cancellative iff the factorgroupoid G/r is (left, 

right) cancellative. 

Proof. Easy. • 

2.3 Lemma. Let r be a relation defined on a groupoid G and let s (t) be the 
smallest symmetric (transitive) relation containing r. Further, let u be the greatest 
symmetric relation contained in r and let v = r u idG. 

(i) If r is (left, right) stable then s, t, u and v are so. 
(ii) If r is compatible then u is so. 

(iii) If r is (left, right) cancellative then s and u are so. 
(iv) IfG is (left, right) cancellative (or divisible) and ifr is (left, right) cancellative 

then v (t) is so. 

Proof. Easy. • 

2.4 Lemma. Let r be a relation defined on a groupoid G and let s be the 
smallest equivalence containing r. 

(i) If r is stable then s is a congruence. 
(ii) IfG is (left, right) divisible and r is reflexive, stable and (left, right) cancellative 

then s is a (left, right) cancellative congruence. 
(iii) If G is a (left, right) quasigroup and r is stable and (left, right) cancellative 

then s is a (left, right) cancellative congruence. 

Proof. Let v = r u idG and let u be the smallest symmetric relation containing v. 
Then s is just the smallest transitive relation containing u and the rest follows from 
2.3. • 

2.5 Lemma. Let G be an idempotent groupoid and let r be a non-empty stable 
and left cancellative relation defined on G. Furthermore, let r satisfy the following 
condition: 
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If a,b,ceG and (a, c) e r, (a, be) e r then (a, b) e r. 
Then r is a congruence of G. 

Proof. Since r =J= 0, (a, b)er for some a,beG. Then (a, ab) e r (we have a = ad), 
and hence (a, a) e r by our condition. For every xeG, (ax, ax) e r and (x, x) e r, 
since r is right stable and left cancellative. We have proved that r is reflexive. 

Now, let a,b,ceG and (a, b), (a, c) e r. Then (ab, b), (a, ac) e r and (ab, ac b)er 
as follows from the stability of r. Using our condition, we get (ab, ac) e r. But r is 
left cancellative, and henceforth (b, c) e r. Setting a = c, we get (b, a) e r, i.e., r is 
symmetric. Finally, the transitivity easily follows. • 

2.6 Lemma. Let G be a divisible groupoid and let r be a compatible and 
cancellative relation defined on G. Then r is transitive. In particular, if r is 
symmetric and reflexive then r is a cancellative congruence on G. 

Proof. Let a,b,ceG and (a, b), (b, c) e r. Then a = ad,b = ed and c = ef for some 
d,e,feG and we have (a, e), (d, / ) , (ad, ef) e r. This means that (a, c)er. • 

2.7 Lemma. Let r, s be cancellative congruences of a divisible groupoid G. 
Then rOs = sOrisa cancellative congruence. 

Proof. Let a,b,ceG and (a, b) e r, (b, c) e s. There are d,e,feG with a = ad, 
b = ed, c = ef and we have (ad, ed) e r, (ed, ef) e s, and hence (a, e) e r, (d, f) e s, 
(ad, af) e s, (af, ef) e r, (a, af) e s, (afl c) e r. We have proved that r O s ^ s O r . 
Quite similarly s O r ^ r O s , and s o r O s = s O r i s a congruence of G. On the 
other hand, r O s is just the equivalence generated by r u s. By 2.4(H), r O s is 
a cancellative congruence. • 

2.8 Lemma. Let r be a reflexive relation defined on a quasigroup Q and let s be 
the union of all cancellative congruences contained in r. Then s is a cancellative 
congruence and it is the greatest cancellative congruence contained in r. 

Proof. Since idQ is a cancellative congruence, we have s #= 0 and it is easy to see 
that s is reflexive, stable, cancellative and symmetric. It remains to show that s is 
transitive. However, if u and v are cancellative congruences of Q and if (a, b)eu 
and (b, c)ev then (a, c) e u o v and u o v is a cancellative congruence by 2.7. • 

2.9 Lemma. Let A, B be blocks of a cancellative congruence rofa groupoid G. 
(i) (a, b)erifa,beGandaAnbA + 0 (Aa n Ab 4- 0). 

(ii) If G is left divisible and a,beG then (a, b)er iff a A = bA. 
(iii) If G is divisible then {xA\x e G} is the set of blocks of r (i.e., the set G/r). 
(iv) If G is divisible then card(yl) = card(B) and card(G) = card(,4) • card(G/r). 

Proof. Easy. • 

2.10 Lemma. Let r be a congruence and s be a (left, right) cancellative 
congruence of a divisible groupoid G. 
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(i) If A c B (B c ,4) for a Wock A of r and a block B of s then r ^ s (s ^ r). 
(ii) If r and s have a common block then r = s. 

Proof, (i) First, let A c B and (a, b) G r. If c e A then c = ad for suitable d e G 
and we have (ad, bd) er, bde A, (ad, bd) e s and (a, b) e s, since s is right 
cancellative. 

Now, let B c A and (a, b) e s. Again, if c e B then a = cd, b = ed for some 
d,eeG and we have (cd, ed)e s, (c, e)e s, c,ee B, (c, e) e r, (cd, ed) e r and 
(a, b) e r. 
(ii) This follows immediately from (i). • 

2.11 Lemma. Let r, s be congruences of a groupoid G such that r n s = idG 

and r O s = G x G. Then G is isomorphic to the cartesian product G/r x G/s. 

Proof. Put f(x) = (x/r, x/s) e G/r x G/s for every x e G. Since r n s = idG, f 
is an injective homomorphism. Let a,b e G. Then (a, c)er and (c, b)e s for some 
ce G and we have f(c) = (a/r, b/s). Thus f is an isomorphism. • 

2.12 Let G be a groupoid. We denote by coG the intersection of all non-identical 
congruences of G for G non-trivial and we put coG = idG for G trivial. The 
groupoid G is said to be subdirectly irreducible if coG 4= idG; then G is non-trivial 
and coG is the smallest non-identical congruence of G. 

The groupoid G is said to be simple if it is non-trivial and idG, G x G are the 
only congruences of G (then G is subdirectly irreducible and coG = G x G). 

2.13 Let G be a groupoid. If G is non-trivial then coCtG (c0/c,G, c0rcG) will denote 
the intersection of all non-identical (left, right) cancellative congruences of G 
(G x G is always a cancellative congruence). If G is trivial then CDCG = coUG = 
U>r,c,G = l d G . 

The groupoid G is said to be subdirectly c-irreducible (lc-irreducible, rc-ir-
reducible) if cocG #- idG (coUG 4= idG, ojrcG 4- idG); then G is non-trivial and c0cG 

(colc G, corcG) is the smallest (left, right) cancellative congruence of G. 
The groupoid G is said to be c-simple (Ic-simple, rc-simple) if it is non-trivial 

and if it possesses no (left, right) cancellative congruence r such that r =\= idG and 
r + G x G (then G is subdirectly c-irreducible (lc-irreducible, rc-irreducible) and 
O>C,G = GxG (a)UfG = GxG, cor,c,G = G x G)). 

2.14 Lemma. Let G be a groupoid. 
(i) coG <= a ) U G c cOCjG, coG c cLyC>G cz co c G . 

(ii) If G w subdirectly irreducible then it is subdirectly lc-irreducible and rc-irre­
ducible. 

(iii) If G is subdirectly lc-irreducible (rc-irreducible) then it is subdirectly c-irre­
ducible. 

(iv) If G is not (left, right) cancellative then it is subdirectly c-irreducible (lc-irre­
ducible, rc-irreducible). 



(v) If G is a finite (left, right) quasigroup then coG = coc G (coG = cot c G, coG = 

(0TtCiG). 

Proof. Obvious. • 

2.15 Let G be a groupoid and a, b e G, a =# b. By Zorn's lemma there exists at 
least one congruence r of G such that r is maximal with respect to (a, b) ^ r. Now, 
the factorgroupoid G/r is subdirectly irreducible (coG/r is just the congruence of G/r 
generated by the pair (a/r, b/r)). 

Setting r^b) = r, we get idG = P)rM)> (a, b) e G(2). Thus G (if non-trivial) is 
a subdirect product of subdirectly irreducible groupoids. 

2.16 Let G be a non-trivial groupoid and let a, b e G be such that (a, b) £ s for 
a (left, right) cancellative congruence s of G (e.g., if G is (left, right) cancellative 
and a #= b). By Zorn's lemma there exists at least one (left, right) cancellative 
congruence r of G such that r is maximal with respect to s ^ r and (a, b) $ r. Now, 
the factorgroupoid G/r is subdirectly c-irreducible (lc-irreducible, rc-irreducible). 

2.17 Lemma. Let G be a left cancellative and right divisible groupoid and let 
H be a subgroupoid of G such that every (cancellative) congruence of H can be 
extended to a (cancellative) congruence of G. Suppose further that G is subdirectly 
(c-)irreducible and that H is a block of a (cancellative) congruence of G. If H is 
non-trivial then it is subdirectly (c-)irreducibe. 

Proof. H is a block of a cancellative congruence r. Put s = coG n (H x H) 
(s = cocG n(H x H)). It suffices to show that s 4- idH. 

There are elements a,b,ceG such that a #= b, (a, b) e coG ((a, b) e CDCG) and 
ca G H. We have coG c= r (coc G <= r), (ca, cb) er, cb e H and (ca, cb) e 5. Since G is 
left cancellative, ca -# cb, • 

2.18 Lemma. Let G be a groupoid, e£G and H = G\e\. Then H is subdirectly 
irreducible iff either G is trivial (then H is simple and coH = H x H) or G is sub­
directly irreducible and contains no absorbing element (then coH = coG u {(c,c)}j. 

Proof. Easy. • 

2.19 Lemma. Let G be a groupoid, e£G and H = G[c}. Then H is subdirectly 
irreducible iff either G is trivial or G is subdirectly irreducible and contains no 
left absorbing right neutral element (then coH = coG u {(c, e)}). 

Proof. Easy. • 

2.20 Lemma. Let G be a groupoid, e$G and H = G{e}. Then H is subdirectly 
irreducible iff either G is trivial or G is subdirectly irreducible and contains no 
neutral element (then coH = COGKJ {(C,C)}). 

Proof. Easy. • 
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2.21 Let G be a groupoid. For every aeG, let paG = ker(i?a) and qa,G = ker(Lfl). 
Further, let 

PG = f]Pa,c and qG = f]qa,G' 
aeG aeG 

Thus (x, y) e pG iff Lx = Ly and (u, v) e qG iff Ru = Rv. 
Finally, put tG = pG n qG. 

2.22 Lemma. Let G be a groupoid. Then: 
(i) pG is a right stable equivalence. 

(ii) qG is a left stable equivalence. 
(iii) If r is an equivalence on G and ifr^tG then r is a congruence of G. 
(iv) tG is a congruence of G. 
(v) If G is subdirectly irreducible and tG =j= idG then there are two elements 

a,beG such that a 4- b and coG = tG = {(a, b), (b, a)} n idG. 

Proof. Easy. • 

2.23 A groupoid G is said to be left (right) faithful if pG = idG (qG = idG). G is 
said to be semifaithful if tG = idG. 

2.24 Lemma. A groupoid G is semifaithful provided at least one of the 
following conditions is satisfied: 
(1) %(G) u %(G) =# 0. 
(2) oG is injective. 
(3) G is idempotent. 
(4) G is anticommutative (i.e., ab =j= bafor all a,b e G, a =(= b). 
(5) G is simple and contains at least three elements. -

Proof. Easy (see 2.21). • 

2.25 Lemma. Let G be a commutative idempotent groupoid. Then pG = qG = 
tG = idG. 

Proof. Easy. • 

2.26 Lemma. Let r be a left stable equivalence on an idempotent groupoid G. 
Then every block of r is a subgroupoid of G. 

Proof. Obvious. • 

1.3 Ideals 

3.1 By a left (right) ideal of a groupoid G we mean a non-empty subset I of 
G such that GI ^ I (IG c / ) . If / is both a left and right ideal then I is called 
a (two-sided) ideal. 

Clearly, every left (right) ideal of G is a subgroupoid and the sets G and GG are 
ideals of G. 

11 



We denote by Int(G) the intersection of all ideals of G; if Int(G) =# 0 then it is 
the smallest ideal of G. 

The groupoid G is said to be left-ideal-free (right-ideal-free, ideal-free) if G is 
the only left (right, two-sided) ideal of G. 

The groupoid G is said to be ideal-simple if card(I) = 1 for every ideal I of G, 
7 * G . 

3.2 Lemma, (i) The intersection of a non-empty set of (left, right) ideals of 
a groupoid G is either empty or a (left, right) ideal of G. 
(ii) If I, J are ideals of G then IJ ^ I n J and I n J is an ideal. 

(iii) The intersection of a finite non-empty set of ideals is an ideal. 
(iv) The union of a non-empty set of (left, right) ideals is a (left, right) ideal. 

Proof. Easy. • 

3.3 A groupoid G is said to be left (right) uniform if I n J 4= 0 whenever I and 
J are left (right) ideals of G. In this case, the intersection of a finite non-empty set 
of left (right) ideals is again a left (right) ideal. 

3.4 Lemma. A groupoid G is left uniform iff for all a,beG there exist 
n, m > 1 and ch ..., cm du ..., dme G such that c{(...(cna)) = di(...(dmb)). 

Proof. Obvious. • 

3.5 Lemma. Let I be an ideal of a groupoid G and =I = (lxl)u idG. Then: 
(i) =j is a congruence of G. 

(ii) I is a block of = 7 and every other block is a one-element set. 
(iii) G/I = G/ = i contains an absorbing element. 
(iv) If Id(G) = I then G/I contains just one idempotent element. 
(v) If is an ideal ofG then =7 n = , = =InJ and =7 O = , = =JO=I= = 7 u j . 

Proof. Easy. • 

3.6 Lemma, (i) The class of (left, right-) ideal-free groupoids is closed under 
homomorphic images. 

(ii) Every left (right) divisible groupoid is right-ideal-free (left-ideal-free). 
(iii) Every ideal-free groupoid is ideal-simple. 
(iv) The class of ideal-simple groupoids is closed under homomorphic images. 
(v) If e e G then [e] is an ideal of G iff e is an absorbing element. 

(vi) A groupoid G is ideal-simple iff either G is ideal-free or G contains an 
absorbing element 0 and {0}, G are the only ideals of G. 

(vii) If G is ideal-simple then either G = GG or card(GG) = 1 and card(G) = 2. 
(viii) If G is ideal-fre then G = GG. 

(ix) Every simple groupoid is ideal-simple. 

Proof. Easy (use 3.5). • 
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3.7 Lemma. Let G, H be (left, right-) ideal-free groupoids, G idempotent. Then 
the cartesian product G x H is (left, right-) ideal-free. 

Proof. Put K = G x H and denote by g: K -• G, h:K -+ H the natural 
projections. Let / be a (left, right) ideal of G. Then g(l) and h(l) are (left, right) 
ideals of G and H, resp., and so g(l) = G and h(l) = H. Now, let xeG. There is 
a e H with (x, a) e I. Then J = {ye H; (x, y) e 1} -# 0 and, for all y e J and zeH, 
we have (x, yz) = (x, y) (x, z)e I and (x, zy) = (x, z) (x, y) e I. Thus J is a (left, 
right) ideal of H, J = H and I = K. • 

3.8 Lemma. The cartesian product of finitely many (left, right-) ideal-free 
idempotent groupoids is again (left, right-) ideal-free. 

Proof. This follows immediately from 3.7. • 

3.9 Lemma. Let r be a congruence of a groupoid G such that every block of 
r is either a one-element set or an ideal-free subgroupoid of G. Then every ideal 
of G is closed under r. Moreover, G is ideal-free iff G/r is so. 

Proor. Let I be an ideal of G, a e I, b e G and (a, b)er, a 4= b. Then there is 
an ideal-free subgroupoid H of G such that a,b e H. But ae H n I and H n I is 
an ideal of H. Consequently, H _= I and be I. The rest is clear. • 

3.10 Lemma. Let I be an ideal of a subdirectly irreducible groupoid G such 
that every congruence of I can be extended to a congruence of G. Then either 
G contains an absorbing element 0 and I = {0} or I is a subdirectly irreducible 
groupoid. 

Proof. Let card(I) > 2. Then a>G ^ = 7, coG n (I x I) 4= id7 and the rest is 
clear. • 

3.11 Lemma. If G is a subdirectly irreducible groupoid then Int(G) =1= 0. 

Proof. If G contains an absorbing element 0 then Int(G) = {0}.Now, assume 
that G contains no absorbing element and let a,b e G be such that a -# b and 
(a, b) e (DG. If I is an ideal of G then coG ̂  = 7, and hence a,b e I. This implies 
a, beInt(G). • 

3.12 Let G be a groupoid. We shall define relations uG, vG and wG on G by 
(a, b) e uG (vG, wG) iff the elements a, b generate the same left (right, two-sided) 
ideal of G. Clearly, these relations are equivalences. 

3.13 Lemma. Let G be a groupoid and a,beG. Then (a, b) e uG (vG, wG) iff 
either a = b or a = f(b), b = g(a)for some f,ge MX(G) (Mr(G), Jt(G)). 

Proof. Easy. • 

3.14 Lemma. Let G be a groupoid. Then: 
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(i) Every left (right, two-sided) ideal is closed under uG (vG, wG). 
(ii) uG = G x G (vG = G x G, wG = G x G) iff G is left-ideal-free (right-ideal-free, 

ideal-free). 

3.15 Let G be a groupoid. Define a relation zlG (zr G) on G by (a, b) e z, G (zrG) 
iff a = f(b) for some f e Jtx(G) (Jfr(G)). Further, put z\G = ZIGKJ idG (z\G = 
zr>G u idG). 

3.16 Lemma. Let G be a groupoid. Then: 
(i) z/)G (zrG) is transitive and z\G (z\G) is a quasiordering. 

(ii) wG = ker(z[G) (vG = ker(z,! G)j. 
(iii) If Zi G (zrG) is irreflexive then z\G (z\G) is an ordering. 

Proof. Easy. • 

3.17 Let G be a groupoid. Define a relation zG on G by (a, b) e zG iff a = f(b) 
for some f e M(G). Further, put zG = zG u idG. 

3.18 Lemma. Let G be a groupoid. Then: 
(i) zG is transitive and zG is a quasiordering. 

(ii) wG = ker(zG). 
(iii) If zG is irreflexive then zG is an ordering. 

Proof. Easy. • 

3.19 Let G be a groupoid. An ideal I of G is said to be prime if I n {a,b} =(= 0 
whenever a,b e G and ab e I. 

A left (right) ideal I of G is said to be left (right) strongly prime if b e I 
whenever a,b e G and ab e I (ba e I). 

3.20 Lemma. Let G be a groupoid. 
(i) An ideal I of G is prime iff either I = G or G — I is a subgroupoid of G. 

(ii) If I is a prime ideal of G then r = 1^ u (G — if2) is a congruence of G. 
Moreover, G/r is a semilattice. 

(iii) If e e G then [e] is a prime ideal of G iff e is an absorbing element of G, 
xy =t= efor all x, y e G, x =t= e 4= y; in this case, G = (G — {e})|V]. 

(iv) The union of a non-empty set of prime ideals of G is again a prime ideal. 
(v) The intersection of a non-empty chain of prime ideals (i.e., a set of prime 

ideals linearly ordered by inclusion) is either empty or a prime ideal. 
(vi) If I is a prime ideal and M is a non-empty generator set ofG then M n I =t= 0 

and I is just the ideal generated by M n I. 

Proof. The first five assertions are easy, 
(vi) Let K = M n I, N = M - K and L = G - I. If L = 0 then / = G and 
K = M 4 = 0 . If L =t= 0 then L is a subgroupoid of G, L 4= G, and hence M $ L 
and K -# 0. Now, denote by J the ideal generated by K. Then J ^ I and we can 
assume that N -# 0. 
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Let, on the contrary, a e I — J. If a e </V>G, then N n I =1= 0, a contradiction. 
Hence a £ <N>G

 ar1d this implies a e J, again a contradiction. • 

3.21 Lemma. Let G be a groupoid. 
(i) If G is cyclic then G contains no proper prime ideal. 

(ii) If G is finitely generated and o(G) > 1 then G contains at most 2a^ — 2 
proper prime ideals. 

Proof. Use 3.20(vi). Q 

3.22 Lemma. Let I be a proper prime ideal of a finitely generated groupoid G. 
Then: 
(i) o(G - I) < o(G) - 1. 

(ii) If G is pseudocyclic then card(G — I) = 1. 

Proof, (i) We have o(G) > 2 (see 3.2l(i)). Let M be a generator set of G such 
that card(M) = o(G). Then M $ H = G - I and H is generated by M n H. 

(ii) G is not cyclic, and hence G is idempotent and o(G) = 2. By (i), o(G — I) < 1, 
and so G — / is a one-element groupoid. • 

3.23 Lemma. A subdirectly irreducible semilattice contains just two element. 

Proof. Let G be a subdirectly irreducible semilattice, i.e., G is a commutative 
idempotent semigroup and there are a,b e G such that a =f= b and (a, b) e coG. 
Furthermore, we can assume that b is not an absorbing element of G. Then 
card(Gb) > 2 and, since Gb is an ideal, we have ae Gb and a = ab. Similarly, if 
card(Ga) > 2 then b e Ga and ba = b, a contradiction. Hence card(Ga) = 1 and 
a is an absorbing element of G. On the other hand, a = ab #= bb = fc, and 
therefore (a, b) <£ paG. But pa is a congruence of G, hence pa = idG and this implies 
that b is a neutral element of G. Finally, if xe G, x #= b then px =t= idG, 
a = xa = xb = x. • 

3.24 Lemma. A groupoid G contains no proper prime ideal iff no non-trivial 
homomorphic image (i.e., no non-trivial factorgroupoid) of G is a semilattice. 

Proof. If no non-trivial image of G is a semilattice then G possesses no proper 
prime ideal by 3.20(ii). Conversely, if some non-trivial images of G are semi-
lattices then there is a congruence r of G such that G/r is a two-element semilattice 
(this follows from 3.23). Now, G/r contains an absorbing element and the inverse 
image of this element is a proper prime ideal of G. • 

3.25 Let G be a groupoid. We shall define a relation uG (vG) on G by (a, b) e uG 

(vG) iff the elements a and b are contained in the same left (right) strongly prime 
left (right) ideals, i.e., iff a and b generate the same left (right) strongly prime left 
(right) ideal. 

Clearly, both uc
G and vG are equivalences on G. 
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3.26 Lemma. Let G be a groupoid. 
(i) A left ideal I of G is left strongly prime iff either I = G or G — I is again 

a left ideal (then G — I is also left strongly prime). 
(ii) If I is a left strongly prime left ideal of G then r = I® u (G — If2) is 

a congruence of G. Moreover, G/r is an RZ-semigroup (see 6.1). 
(iii) The union of a non-empty set of left strongly prime left ideals is again a left 

strongly prime left ideal. 
(iv) The intersection of a non-empty set of left strongly prime left ideals is either 

empty or a left strongly prime left ideal. 

Proof. Easy. • 

3.27 Lemma. The following conditions are equivalent for a groupoid G: 
(i) uc

G = G x G. 
(ii) G pocesses no proper left strongly prime left ideal. 

(iii) No non-trivial homomorphic image of G is an RZ-semigroup. 

Proof. Easy (use 3.26). • 

3.28 For a groupoid G, let 4(G) (Jr(G), J(G)) denote the set of left (right, 
two-sided) ideals of G. 

1.4 Closed subgroupoids 

4.1 For a groupoid G and S ^ G, let aG(S) = {xe G | ax e S for some a e S}, 
yG(S) = {x e G | xa e S for some a e S} and cpG(S) = aG(S) u yG(S). 

The subset S is said to be (left, right) closed in G if cp(S) _= S (a(S) _= S, 
y(S) _= S). Clearly, S is closed iff it is both left and right closed. 

The intersection of a non-empty set of (left, right) closed subsets is again (left, 
right) closed. Hence, given a subset R of G, we denote by [i?]G ([i?]G, [R]G) the 
smallest (left, right) closed subset containing R. Clearly, [i?]G u [i?]G _= [-R]G. 

4.2. Let S a subset of a groupoid G. 
(i) Put S0 = S and S/+1 = (?(S,) u S, (a(S,) u Si9 y(St) u S,) for every i > 0. Then 

S0 <= Si _= S2 _= ... _= S, _= S,+i _=. ... and (Ji_oS, = [S]G ([S]G, [S]G). 
(ii) Put i?0 = S, Rt = a(.R,-_i) u _*,_- for i > 1 odd and Rt = y(Rt.i) u Rt_{ for 

i > 2 even. Again, i?0 = J?i = ^2 = •• = -Rf = ^ t + i = ••• and Uf_o -̂ i = [S]G. 

4.3 Lemma. L^r H be a subgroupoid and S be a subset of a groupoid G. Then: 
(i) H <= aG(H) n yG(H) n cpG(H). 

(ii) aG(H) _= aG
+1(H), yG(H) _= yG

+1(H) and (pG(H) _= (p^\H)for every i > 1. 
(iii) [/f]G = Ut_i«Uff). Wo = U ' - i V ' ^ [ff]e = U'_IV'G(H). 
(iv) cpG(H) _= aGyG(H) n yGaG(H). 
(v) [H]G = U^ i ( a ^ ) ' (H) = u^i(yG«Gy(H). 

(vi) 7/* S w f/eft, r/g/ir) closed in G then S n H is (left, right) closed in H. 
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(vii) IfS~\H,Sis (left, right) closed in H and H is (left, right) closed in G then 
S is (left, right) closed in G. 

(viii) IfS~\H and S is (left, right) closed in G then S is (left, right) closed in H. 
(ix) IfS s H then [S]<_ _= [S]G, [S]„ _= [S]G and [S]H _= [S]G. 
(x) Tjff i_ a projective homomorphism of G onto a groupoid K and ifH = f~\L) 

is the inverse image of a subgroupoid L of K then H is (left, right) closed 
in G iff L is (left, right) closed in K. 

Proof. Easy observations. ~~ 

4.4. Let G be a groupoid. The intersection of a non-empty set of (left, right) 
closed subgroupoids is either empty or a (left, right) closed subgroupoid. Hence, 
given a non-empty subset S of G, <S>G «S>G, <S>G) will denote the smallest (left, 
right) closed subgroupoid containing S. Clearly, [S]G _= <S>G ([S]G _= <S>G, 
[s]G _= <SXD. 
(i) Put S0 = S, S, = {xy\ x,ye St_i} u S,__ for every odd i > 1 and S, = cpG{Si_l) 

u Si_! for every odd i > 1 and S, = (pG(S,_!) u Sf__ (aG(Sf__) u S,_1? 

yG^-i) u S,_!) for every even i > 2. Then S0 .= S_ _= S2 _= ... _= S, _= SI+1 _= ... 
andU.fcoS. = <S>G «S>^, <S>^). 

(ii) If the intersection A of all (left, right) closed subgroupoids is non-empty then 
A is the smallest (left, right) closed subgroupoid of G and we put <0>G = A, 
«0>£ = A). 

We denote by GC{G) (tr/c(G), orc{G)) the smallest cardinal number card(M) for 
a set M of c-generators (lc-generators, rc-generators) of G. Clearly, 0 < GC{G) < 
alc{G) < G{G) and 0 < ac{G) < orc{G) < c{G). 

4.5 A subset S of a groupoid G is said to be left (rigth) strongly dense in G if S 
lc-generates (rc-generates) G, i.e., if G = <S>£ (G = <S>r

G
c) (see 4.4). 

A subset S of G is said to be dense in G, if S c-generates G, i.e., if G = <S>G 

(see 4.4). Clearly, if S is left (right) strongly dense in G then S is dense in G. 
A subset S of G is said to be strongly dense in G if it is both left and right 

strongly dense in G. 

4.6 Lemma. Let G be a groupoid and S a subset of G. Then: 
(i) S is left (right) strongly dense in <S>£ «S>g) (see 4.4(ii) if S = 0). 

(ii) S is dense in <S>G (see 4.4(ii) if S = 0). 
(iii) If H is a (left, right) strongly dense subgroupoid of G, S _= H and S =)= 0 is 

(left, right) strongly dense in H then S is (left, right) strongly dense in G. 
(iv) If H is a dense subgroupoid of G, S _= H and S =}= 0 is dense in H then S is 

dense in G. 

Proof, (i) Put K = <S>_. Then K is left closed in G. If L is a left closed sub­
groupoid of K with S ~] L then L is left closed in G by 4.3(vii) and L = K. 

(ii) Similar to (i). 
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(iii) We have H = <S>£ c <S>£ = K (by 4.3(vi)). But K is left closed in G and 
H is left strongly dense in G. Consequently K = G. 

(iv) Similar to (iii). • 

4.7 Lemma, (i) Every (left, right) closed subgroupoid of a (left, right) divisible 
groupoid is (left, right) divisible. 

(ii) A subgroupoid H of a (left, right) quasigroup G is (left, right) closed iff H is 
also a (left, right) quasigroup. 

(iii) Let f, g be homomorphisms of a groupoid G into a (left, right) cancellative 
groupoid K. Then the set [xe G \ f(x) = g(x)} is either empty or a (left, right) 
closed subgroupoid of G. 

Proof. Easy. • 

4.8 Lemma. Let H be a subgroupoid of a groupoid G and let f be a homo-
morphism of H into a groupoid K. 
(i) If H is left (right) strongly dense in G and K is left (right) cancellative then 

f can be extended to at most one homomorphism of G into K. 
(ii) If H is dense in G and K is cancellative then f can be extended to at most 

one homomorphism of G into K. 

Proof. This is an immediate consequence of 4.7(iii). • 

4.9 Lemma. Let a subgroupoid H be a block of a (left, right) cancellative 
congruence of a groupoid G. Then H is a (left, right) closed subgroupoid of G. 

Proof. Easy. • 

4.10 Lemma. Let r, s be cancellative congruences of a divisible groupoid G 
and let A and B be blocks of r and s, resp., such that A n B =|= 0 and A is 
a subgroupoid of G. Then (A u B}G is a block ofrOs (see 2.7). 

Proof. By 2.7, t = r O s = s O r i s a cancellative congruence of G. Let C be the 
block of t such that A ^ C. Since A n B + 0, A u B c C and (A u B}C

G c C by 
4.9 (clearly, C is a subgroupoid). Now, let c e C and a e A. Then (a, b)er and (b, c)es 
for some b e G. We have be A and dbe B for an element de G. Then (db, dc) e s 
implies dc e B. Thus b, d, b, dc e (AKJ B}G, and hence c e ( / 4 u B}G. • 

4.11 Lemma. Let G be a left divisible groupoid, r a congruence of G and 
H a subgroupoid of G such that H contains a block A of r. Then H is closed under 
r, provided that at least one of the following two conditions is satisfied: 
(1) H is right divisible and r is left cancellative. 
(2) H is closed in G. 

Proof. Let (x, y) e r, x e H. If (1) is true then x = ba, y = be for some ae A, 
b e H, ceG, (ba, be) e r and (a, c) e r, since r is left cancellative. Then ce A and 
y = be e H. If (2) is true then xae A for some ae G, (xa, yd) er, yae A, 
x, xa, ya e H, and hence y e H, since H is closed. • 

18 



4.12 Lemma. Let a subgroupoid H be a block of a congruence r of a left 
divisible groupoid G. Put K = G/r. Then: 

(i) oc(G) < oc(H) + oc(K), provided that oc(H) > 1. 
(ii) oc(G) < 1 + oc(K), provided that oc(H) = 0. 

(iii) oc(G) < oc(H) + oc(K) - 1 (oc(G) < oc(H) or oc(G) < oc(K) or oc(G) < I), 
provided that oc(H) > 1 and oc(K) > 1 (oc(H) > 1 and oc(K) = 0 or 
oc(H) = 0 and oc(K) > 1 or oc(H) = 0 = oc(K)) and that for all x, y e G 
there exists a projective endomorphism f of G such that f(x) = y and r is 
invariant under f. 

(iv) If both H and K are finitely c-generated then G is finitely c-generated. 

Proof. Denote by g: G - • K the natural projection. There are subsets A c H 
and B c G such that H = (A)C

H, card(yl) = max(l, oc(H)), K = (g(B)}c
K and 

card(B) = oc(K). Put F = {A u B}C
G. Then FnH + 0, , 4 < = F n / / a n d F n H 

is a closed subgroupoid of H. Hence FnH = H,H^F and F is closed under r 
by 4.11(2). This implies easily that g(F) is closed in K. However, g(B) ^ g(F), 
hence g(F) = K and F = G. 

Now, suppose that B + 0 (card(B) = max(l, oc(K))) and there exists a projective 
endomorphism f of G such that f(B) n H + 0 and r is invariant under / Then 
/ induces a projective endomorphism k of K such that gf = kg. Put E = 
{A u (f(B) = {a})%, where a e f(B) n H is arbitrary. Again, H ^ E, E is closed 
under r , / (B) c E, fcg(B) = gf(B) c #(£), g(£) <= L, where L = k~lg(E) is the 
inverse image of g(E) under k, L is closed in K,L = K and g(E) = K. Con­
sequently £ = G. • 

4.13 Lemma. Let H be a dense (left strongly dense, right strongly dense) 
subgroupoid of a groupoid G. Then oc(G) < max(crc(II), 1) (olc(G) < max(a/c(/I), 1), 
orc(G) < max((jrc(H), I)). 

Proof. Let A be a subset of H such that card(^) = max(crc(IJ), 1) and// = (A}H. 
Put K = (A}G. Then K n / / is closed in / / , and so H ^ K. Since / / is dense in 
G,K = G and <rc(G) < card(^l). • 

4.14. Lemma. Let A be a non-empty subset of a (left, right) cancellative 
groupoid G and let a = max(K0, card(A)). Then card(<^4>c;) < a fcard(<^4>G) < a, 
card«A>£) < aj. 

Proof. The result is clear from 4.4. • 

4.15 Lemma. Let H be a (left, right strongly) dense subgroupoid of a (left, 
right) cancellative groupoid G. Then card(Z/) = card(G). 

Proof. If H is infinite then the result follows easily from 4.14. If H is finite 
then H is a (left, right) quasigroup, and consequently H is (left, right) closed in 
G (see 4.7(ii)) and H = G. • 
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4.16 Let H be a subgroupoid of a groupoid G. We denote by MX(G, H) the trans­
formation semigroup generated by all La G, a e H in the left multiplication semigroup 
of G. Thus Mi(G, H) is a subsemigroup of Jtx{fj). Similarly we define Jir(G, H) and 
M(G, H\ and we put M\(G, H) = M{(G, H) u {idG}, Jt\G, H) = J((G, H) u {idG}. 

4.17 Let S be a subset of a groupoid G. Put p0iG(S) = S (<5o,G(S) = S). Further, 
for n > 1, let fin,G(S) (<5n,G(S)) be the set of xeG such that ax(a2(...(anx)))e S 
(i({xal)a2)...) aneS) for some au ..., aneS. Clearly, j?1G(S) = aG(S) (o\,G(S) = 
yG(S)) and j?G(S) c= [S]G (<5G(S) <= [S]G), where jSG(S) = U ; > o M s ) (<MS) = 
U-.*oM-5))-

4.18 Lemma. Lef H be a subgroupoid of a groupoid G. Then: 
(i) £G(H) = {XG G |/(x) G Hfor some f e MX(G, H)}. 

(ii) H = p0,G(H) <= PUG(H) c= ... i= PUG(H) <= pi+lG(H) = ... • 
(iii) pu G(H) c aG(H)/or every i > 0. 

Proof. Easy. • 

4.19 Let S be a subset of a groupoid G. Put iA0,G(S) = S and, for n > 1, let ^„,G(S) 
be the set of x G G such that {Tai... Xn(x) G S for some tT e {L, /?} and at G S. 
Clearly, î,G(S) = aG(S)uyG(S) = cpG(S) and <AG(S) [S]G, where ^ S ) = U^o<M s)-

4.20 Lemma. Let H be a subgroupoid of a groupoid G. Then: 
(i) \jjG(H) = {x G G | /(x) G H /or some / G Jt(G9 H)}. 

(ii) ff = iAo,G(W) s= iAi,G(H) S ... -= <MH) <= iAI+i,G(H) s= ... . 
(iii) ij/ifG(H) c <p'G(H)/or every i > 0. 

Proof. Easy. • 

4.21 Let G be a groupoid. For aeG and a subset S of G, let fia,G(S) = 
MGG|awGS} and vaG(S) = {ueG\uae S}. Clearly, aG(S) = \Jaesl*a,<j(S) and 
7G(S) = UaesVa,G(S). ' 

A subset S of G is said to be a-stable (y-stable) if S <= aG(S) (S <= yG(S)). 
Clearly, S is a-stable (y-stable) iff for every b e S there exists ae S with ab e S 
(ba G S). If this is true then aG(S) (yG(S)) is also a-stable (y-stable). 

1.5 Regular groupoids 

5.1 A groupoid G is said to be left (right) regular if, for all a,b,ce G, ca = cb 
(ac = be) implies xa = xb (ax = bx) for every xeG. The groupoid G is said to 
be regular if it is both left and right regular. 

5.2 Lemma, (i) Every (left, right) cancellative groupoid is (left, right) regular. 
(ii) The class of (left, right) regular groupoids is closed under isomorphic images, 

subgroupoids and cartesian products. 

Proof. Obvious. • 
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5.3 Lemma. The following conditions are equivalent for a groupoid G: 
(i) Every element of G is left (right) absorbing. 

(ii) Every element of G is right (left) neutral. 
(iii) G satisfies the identity x =--= xy (x =--= yx), i.e., G is an LZ-semigroup 

(RZ-semigroup). 
(iv) Every non-empty subset of G is a right (left) ideal of G. 
(v) G is idempotent, left (right) regular and contains at least one left (right) 

absorbing element. 
(vi) G is idempotent and qG = G x G (pG = G x G). 

Proof. Easy. • 

5.4 Lemma. The following conditions are equivalent for a groupoid G: 
(i) Every element of G is left (right) constant. 

(ii) Rx = Ry (Lx = Ly) for all x,y = G. 
(iii) qG = Gx G (pG = Gx G). 
(iv) G satisfies the identity xy =--= xz (yx =--= zx), i.e., G is a left constant groupoid 

(right constant groupoid) (see 6.1). 
(v) G is left (right) regular and contains at least one left (right) constant element. 

Proof. Easy. • 

5.5 Lemma. The following conditions are equivalent for a groupoid G: 
(i) G satisfies the identity xy =--= zx. 

(ii) G satisfies the identity xy =--= yz. 
(iii) G satisfies the identity xy =--= uv, i.e., G is an Z-semigroup. 
(iv) G is both a left and right constant groupoid (see 6.1). 
(v) G is (left, right) regular and contains an absorbing element. 

(vi) tG = GxG. 

Proof. Easy. • 

5.6 Lemma. Let G be a groupoid. 
(i) If qG (pG) is left (right) cancellative then G is left (right) regular. 

(ii) If G is left (right) regular then G is left (right) cancellative iff G is right (left) 
faithful. 

(iii) If G is regular then G is cancellative iff G is both left and right faithful. 
(iv) If G contains a (left, right) neutral element then G is (left, right) regular iff it 

is (left, right) cancellative. 
(v) If G is (left, right) regular, idempotent ankd every subgroupoid of G is (left, 

right) closed in G then G is (left, right) cancellative. 

Proof. Only (v) needs a proof. Let a,b,ceG and ab = ac. Then b = bb = be, 
and so b, be e H = <b>G. But H is left closed in G and H = {b}. This implies 
b = c. • 
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5.7 Lemma. Let G be a regular commutative groupoid. Then G is cancellative, 
provided that at least one of the following three conditions is satisfied: 
(1) G is idempotent. 
(2) G is simple and contains at least three elements. 
(3) G is subdirectly irreducible and G is a semimedial divisible groupoid. 

Proof, (i) If ab = ac for some a,b,ceG then b = bb = be = cb = cc = c. 
(ii) Since card(G) > 3, tG = idG and this implies that G is cancellative. 

(iii) It suffices to show that tG = idG. Assume, on the contrary, that tG #= idG. 
Since every equivalence contained in tG is a congruence of G, we have tG = 
<*>G = {(a, b), (b, a)} u idG for some a,beG,a + b. Now, G is divisible and 
not cancellative, and hence G is infinite. There exist elements x, y,u,v e G 
with a = yx, b = ux, y $ {a, b} and yv <£ {a, b}. We have yv • xx = yx • vx = 
a • vx = b • vx = ux • vx = uv • xx, and so either uv = yv or {uv,yv} c= {a,b}. 
The latter possibility is excluded, so that uv = yv, (y, u) e tG and y = u. Then 
a = yx = ux = b, a contradiction. • 

5.8 Lemma. Let r be a congruence of a groupoid G such that the factor H = G/r 
is regular. Then r is cancellative (or, equivalently, H is cancellative) provided that 
at least one of the following three conditions is satisfied: 
(1) Every block of r is a closed subgroupoid of G. 
(2) H is a semifaithful idempotent divisible groupoid, both pH and qH are 

congruences ofH, at least one of the blocks ofr is left closed in G and at least 
one is right closed in G. 

(3) H is a faithful divisible groupoid, both pH and qH are congruences of H and 
at least one of the blocks of r is a closed subset of G. 

Proof. Denote by / the natural projection of G onto H. 
(i) If a, b, c e G and (ab, ac) e r then (xb, xc) e r for every xeG, since H is left 

regular. In particular, (bb, be) e r. On the other hand, H is idempotent, and so 
(bb, b)er and (b, be) e r. Thus b • be e A for a block A of r and ce A, since A 
is left closed. This shows that (b, c) e r, i.e., r is left cancellative. Similarly, 
r is right cancellative. 

(ii) Let (x, y) e qH and let A be a block of r such that A is a left closed subgroupoid 
of G. If a e A then xz = f(a) and yz = f(b) for some zeH and be G. Since 
qH is a congruence, we have (xz, yz) e qH and xz = xz • xz = xz- yz, f(a) = 
xz = xz • yz = f(ab), (a, ab) e r, a, ab e A, b e A and xz = f(a) = f(b) = yz. 
Since H is regular, (x, y) e pH, and so (x, y)e pH n qH = tH = idG. Thus 
x = y> qH = idH and H is left cancellative. Similarly, H is right cancellative. 

(iii) Let (x, y) e qH, let A be a block of r such that A is a closed subset of G and let 
ae A. Since H is divisible, xz = f(a), yz = f(b) and xz = /(c) • xz for some 
zeH and b,ceG. Then f(a) = xz = f(c) • xz = f(ca), (a, ca) er, a,cae A 
and ce A, since A is right closed. Further, qH is a congruence of H, hence 
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(xz, yz) e qH and f(a) = f(c) • xz = f(c) • yz = f(cb), (a, cb) er, c,cbeA and 
b e A, since ,4 is left closed in G. Now, xz = f(a) = f(b) = yz and (x, y) e pH, 
since H is right regular. We have proved that qH _= pH, which implies that 
qH = tH. But H is semifaithful, i.e., tH = idH. Since /I is left regular and 
<7H = 1d/f, H is left cancellative. Quite similarly, H is right cancellative. • 

5.9 Lemma. Let r be a congruence of a groupoid G such that H = G/r is 
a right regular divisible groupoid, qH is a congruence of H and a block A of r is 
a closed subset of G. Then A is a subgroupoid of G and qH = tH. 

Proof. We can proceed in the same way as in the proof of 5.8(iii) to show that 
qH = tH. Now, let a,b e A. Since H is left divisible, ace A for some ceG. 
However, A is left closed, ce A and (c, b) e r, (ac, ab) e r, ab e A. • 

1.6 Some varieties of groupoids 

6.1 A groupoid is said to be 
— idempotent if it satisfies the identity x =--= xx; 
— unipotent if it satisfies the identity xx =--= yy; 
— zeropotent if it satisfies the identities xx • y =--= y • xx — xx; 
— commutative if it satisfies the identity xy =--= yx; 
— elastic if it satisfies the identity x • yx =--= xy • x; 
— left alternative if it satisfies the identity x • xy =--= xx • y; 
— right alternative if it satisfies the identity y • xx =--= y • xx; 
— left symmetric if it satisfies the identity x • xy — y; 
— right symmetric if it satisfies the identity yx • x =--= y; 
— semisymmetric if it satisfies the identity x • yx — y; 
— LZ-semigroup if it satisfies the identity x =--= xy; 
— RZ-semigroup if it satisfies the identity x =-= yx; 
— left constant if it satisfies the identity xy =--= xz; 
— right constant if it satisfies the identity yx =--= zx; 
— Z-semigroup if it satisfies the identity xy =--= uv; 
— associative (or semigroup) if it satisfies the identity x • yz =--= xy • z; 
— left permutable if it satisfies the identity x • yz =--= y • xz; 
— right permutable if it satisfies the identity xy • z =--= xz • y; 
— left modular if it satisfies the identity x • yz =--= z • yx; 
— right modular if it satisfies the identity xy • z =--= zy • x; 
— A-semigroup if it satisfies the identity x • yz =--= uv • w; 
— left semimedial if it satisfies the identity xx • yz =--= xy • xz; 
— right semimedial if it satisfies the identity yz • xx =--= yx • zx; 
— middle semimedial if it satisfies the identity xy • zx =--= xz • yx; 
— left distributive if it satisfies the identity x • yz =--= xy • xz; 
— right distributive if it satisfies the identity yz • x =--= yx • zx; 
— medial if it satisfies the identity xy • uv =-= xu • yv; 
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6.2 A groupoid is said to be 
— alternative if it is both left and right alternative; 
— strongly alternative if it is alternative and elastic; 
— symmetric if it is both left and right symmetric; 
— semimedial if it both left and right semimedial; 
— strongly semimedial if it is semimedial and middle semimedial; 
— distributive if it is both left and right distributive; 
— semilattice if it is associative, commutative and idempotent. 

6.3 A groupoid G is said to be 
— monoassociative (diassociative) if every subgroupoid of G generated by at most 

one (two) elements is associative; 
— monomedial (dimedial, trimedial) if every subgroupoid of G generated by at 

most one (two, three) elements is medial; 
— strongly trimedial if <a,b, c, d}G is a medial subgroupoid of G, whenever 

a,b,c,deG and ab • cd = ac • bd. 

6.4 Lemma. A groupoid G is semisymmetric iff it satisfies the identity 
xy • x == y. In this case, G is a quasigroup. 

Proof. Let G be semisymmetric. Then x = (yx) (x • yx) = yx • y for all x,yeG. 
The rest is clear. • 

6.5 Lemma. The following conditions are equivalent for a groupoid G: 
(i) G is symmetric. 

(ii) G is left (right) symmetric and semisymmetric. 
(iii) G is left (right) symmetric and commutative. 
(iv) G is commutative and semisymmetric. 

Proof, (i) => (ii). For all x, y e G, x = (x • xy) (xy) = y • xy. 
(ii) => (iii). For all x, y e G, xy = x(x • yx) = yx. 
The remaining implications are similar. • 

6.6 Lemma, (i) Every medial groupoid is strongly trimedial. 
(ii) Every strongly trimedial groupoid is trimedial. 
(iii) Every trimedial groupoid is strongly semimedial. 
(iv) Every commutative groupoid is middle semimedial. 
(v) An idempotent groupoid is (left, right) semimedial iff it is (left, right) distributive. 

(vi) Every left (right) modular groupoid is medial. 
(vii) Every commutative semigroup is medial. 

Proof, (ii) If G is a groupoid and a,b,ceG then ab • be = ab • be. 
(vi) Let a, b,c,de G, where G is left modular. Then ab- cd = d(c • ab) = 
dip • ac) = ac • bd. • 

6.7 A semigroup S is said to be nilpotent of class at most n > 1 if it contains 
an absorbing element 0 and Sn = 0 (i.e., a{... an = 0 for all ah ..., ane S). 
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6.8 Lemma, (i) Z-semigroups are just semigroups nilpotent of class at most 2. 
(ii) A-semigroups are just semigroups nilpotent of class at most 3. 

Proof. Easy. • 

6.9 For every n = 1, 2, . . . , let us define a left (right) constant groupoid Cyc/(n) 
(Cycr(n)) by Cyc^n) = {0,1, . . . , n - 1} (Cycr(n) = {0,1, . . . , n - 1}), i *j = i + 1 
for i + n — 1 and (n — 1) *j = 0 (i *j = j + 1 forj + n — 1 and i * (n — 1) = 0). 

Further, we shall define a left (right) constant groupoid Cyc/(oo) (Cycr(oo)) by 
cyC/(oo) = {0,1, 2,...} (Cycr(oo) = {0,1, 2,...}) and i *j = i + 1 (i *j = j + 1). 

6.10 Lemma. Let G be a simple left constant groupoid. Then just one of the 
following three cases takes place: 

(i) There is a prime p > 2 such that G = Cyc;(p). 
(ii) G is a two-element LZ-semigroup. 

(Hi) G is a two-element Z-semigroup. 

Proof. Easy. • 

6.11 Lemma. Let G be a left constant groupoid. Then every cyclic left constant 
subgroupoid of G is isomorphic to G iff G = Cyc/(a)for some 1 < a < oo. 

Proof. Easy. • 

6.12 Lemma. Let G, H be left constant groupoids. Then they are isomorphic, 
provided that G is cyclic, H is a homomorphic image of G and G is a homomorphic 
image of H. 

Proof. Easy. • 

I I . Gene ra l theory of left d i s t r i b u t i v e g roupo ids 

II.1 Basic properties of left distributive groupoids 

1.1 Recall that a groupoid is said to be left fresp. right) distributive if it satisfies 
the identity x • yz =--= xy • xz (resp. zy • x =--- zx • yx). A groupoid is said to be 
distributive if it is both left and right distributive. In the sequel, for short, left 
distributive (right distributive, distributive) groupoids will be also called LD-gro-
upoids (RD-groupoids, D-groupoids). Similarly, idempotent left distributive grou­
poids will be called LD/-groupoids, etc. 

1.2 Proposition. The following conditions are equivalent for a groupoid G: 
(i) G is left distributive. 

(ii) Every left translation is an endomorphism of G. 
(iii) Ji{G) c End(G). 

Proof. Obvious. • 
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1.3 Lemma. Let G be an LD-groupoid. 
(i) If a e Id(G) then LaRa = RaLa. 

(ii) If ae G and Raa is injective then a e Id(G). 

Proof, (i) a- xa = ax- aa = ax- a for every xeG. 
(ii) The equality a- aa = aa- aa implies a = aa. • 

1.4 Proposition, (i) Every LD-groupoid satisfies the identity x • xx =--= xx • xx 
(i.e., rG = oG). 

(ii) Every LDI-groupoid satisfies the identity x • yx =--= xy • x, i.e., the elasticity. 

Proof. Obvious. • 

1.5 Proposition. Let G be an LD-groupoid. Then: 
(i) Id(G) is either empty or a left ideal of G. 

(ii) If G is right cancellative then G is idempotent. 
(iii) If G is left-ideal-free then either G is idempotent or Id(G) = 0. 
(iv) If G is right divisible then either G is idempotent or Id(G) = 0. 

Proof, (i) For a e Id(G) and x e G, xa • xa = x • aa = xa. 
(ii) If follows immediately from 1.3(H). 

(iii) This is a consequence of (i). 
(iv) Every right divisible groupoid is left-ideal-free. • 

1.6 Proposition. The following conditions are equivalent for a groupoid G: 
(i) G is left distributive and left semimedial. 

(ii) G is left distributive and it satisfies the identity x • yz == xx • yz. 
(iii) G is left semimedial and it satisfies the identity x • yz — xx • yz. 

Moreover, if G = GG then these conditions are equivalent to the following two 
additional conditions: 
(iv) G is left distributive and it satisfies the identity xy — xx • y. 
(v) G is left semimedial and it satisfies the identity xy — xx • y. 

Proof. Easy. • 

1.7 Proposition. An idempotent groupoid is left distributive iff it is left semi-
medial. 

Proof. Easy. • 

1.8 Proposition. Let G be an LD-groupoid. Then: 
(i) qG is a congruence of G. 

(ii) If G is left cancellative then qG = idG is left cancellative. 
(iii) If G is right cancellative then qG is right cancellative. 
(iv) G/qG is an idempotent groupoid (i.e., (x, xx) e qGfor every xeG) iff GG ^ Id(G). 

Proof, (i) We have qG = f] ker(Lx), xeG, and all Lx are endomorphisms of G. 
Hence ker(Lx) are congruences and their intersection qG is also a congruence. 
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(ii) This is clear. 
(iii) Let (ba, cd) e qG for some a,b,ce G. Then xb- xa = x-ba = x- ca = ex- xa, 

and hence xb = xc for every xeG. 
(iv) Clearly, ax = a • aa for all a,xeG iff ax = ax- ax, i.e., iff ax e Id(G). • 

1.9 Lemma. Let G be an LD-groupoid. 
(i) If ae G is such that La is projective then (a, aa) e pG. 

(ii) If ae G is such that Laa is injective then (a, aa) e pG iff aa = aa- a. 
(iii) If(x, xx) e pGfor every xeG then G is left semimedial and the transformation 

oG is an endomorphism of G. 
(iv) If oG is injective then oG = sG (i.e., xx = xx- xfor every x e G). 

Proof, (i) We have aa- ax = a- ax for every xeG and, since La is projective, 
aG = G. 

(ii) If (a, ad) e pG then obviously aa = aa- a. Conversely, if aa = aa- a then 
aa- ax = (aa • a) (aa • x) = (ad) (aa • x), and so ax = aa- x for every xeG. 

(iii) For all x, y e G, xx • yz = x • yz = xy • xz. 
(iv) First, oG(xx) = xx- xx = (xx • x) (xx • x) = oG(xx • x) for every xeG. Since 

oG is injective, oG(x) = xx = xx- x = sG(x). • 

1.10 Proposition. Let G be an LD-groupoid. Then pG is a congruence of G, 
provided that at least one of the following six conditions is satisfied: 
(1) G is left cancellative and xx = xx • xfor every xeG (i.e., oG = sG). 
(2) G is left cancellative and idempotent. 
(3) G is right regular. 
(4) G is left divisible. 
(5) G is medial and G = GG. 
(6) G is right distributive. 

Proof. First, let (1) be satisfied and let a,b,x,yeG, (a,b)epG. By 1.9(H), 
xy = xx-y and we have (x • ax) (xa • y) = (xa • xx) (xa • y) = (xa) (xx - y) = xa- xy = 
x • ay = x • by = xb • xy = (xb) (xx • y) = (xb • xx) (xb • y) = (x • bx) (xb • y) = 
(x • ax) (xb • v). Since G is left cancellative, xa • y = sb • y. We have proved that 
(xa, xb) e pG. 

The condition (2) implies (1). If (6) is satisfied then our assertion is just the dual 
of 1.8(i). Now, assume that (3) or (4) is satisfied. Let a,b,x,yeG, (a,b)epG. 
Then xa • xy = x • ay = x • by = xb - xy. In both cases, we see that xa- z = xb • z 
for every zeG, i.e., that (xa, xb) e pG. 

Finally, assume that (5) is true. If a, b,x,ye G, (a, b) e pG then xa- yz = 
xy • az = xy • bz = xb • yz, and so (xa, xb) e pG. • 

1.11 Proposition. Let G be an LD-groupoid. Then (x, xx) e pGfor every xeG 
(i.e., G satisfies the identity xy == xx • y), provided that at least one of the 
following seven conditions is satisfied: 
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(1) G is left cancellative and xx = xx • x for every x G G. 
(2) G is idempotent. 
(3) G is right regular. 
(4) G is left divisible. 
(5) G is left semimedial and G = GG. 
(6) oG is an injective endomorphism of G. 
(7) oG is a projective endomorphism of G. 

Proof. If (1) (resp. (3), (4)) is satisfied then the result follows from 1.9(H) (resp. 
1.4(i), 1.9(i)). If (2) is satisfied then the result is trivial, and if (5) is true then 
a • xy = ax • ay = aa • xy for all a, x, y e G. 

Finally, suppose that oG is an endomorphism of G. Then aoG(x) = a • xx = 
ax- ax = oG(ax) = oG(a) oG(x) = aa- x for all a,xeG and the result is clear for 
oG projective. If oG is injective then oG(ax) = oG(a) oG(x) = oG(a) • xx = 
oG(a) x • oG(a) x = oG(oG(a) x) implies ax = oG(a) x = aa- x. • 

1.12 Theorem. Let G be an LD-groupoid satisfying at least one of the 
conditions (1), (2), (3), (4), (5) from 1.10. Then: 

(i) pG is a congruence of G and G/pG is an LDI-groupoid. 
(ii) Every block of pG is a right constant subgroupoid of G. 

(iii) Every one-generated subgroupoid of G is a right constant groupoid. 
(iv) G is left semimedial. 
(v) oG = sG and rG = oG are endomorphisms of G. 

Proof, (i) See 1.10 and 1.11. 
(ii) Since G/pG is idempotent, every block of pG is a subgroupoid, and hence right 

constant. 
(iii) This is an immediate consequence of (ii). 
(iv) We have xx • yz = x • yz = xy • xz. 
(v) By 1.9(iii), oG is an endomorphism, and hence rG = oG is also an endomor­

phism. Further, xx = xx • x, and so oG = sG. • 

1.13 Proposition. Let G be a right divisible LD-groupoid such that pG is a congru­
ence of G and G/pG is idempotent (see 1.12). Then there exists a e {1, 2 , . . . , oo} such 
that every one-generated subgroupoid of G is isomorphic to Cycr(a). 

Proof. Let a,b e G, A = <a>G and B = <b>G. There are c,deG with ca = b 
and db = a. Then LC(A) = B and Ld(B) = A. According to our assumptions, both 
A and B are right constant and the rest is clear from 1.6.11, 1.6.12. • 

1.14 Proposition. Let G be an LD-groupoid. 
(i) If G is left cancellative then pG is left cancellative. 

(ii) If G is right cancellative then pG = idG is right cancellative. 

Proof, (i) Let a,b,c,xe G and (ca, cb)epG. Then c • ax = ca • ex = cb • ex = 
c • bx and ax = bx. 

(ii) Obvious. • 
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1.15 Lemma. Let G be an LD-groupoid. Then: 
(i) oG(G) _= Id(G) iff G satisfies the identity xx =--= x • xx (i.e., iff oG = rG = oG). 

(ii) rG(G) ^ Id(G) iff G satisfies the identity x • xx == x(x • xx) (i.e., iff oG = oG). 
(iii) sG(G) ^ Id(G) iff G satisfies the identity x • xx == xx • x (i.e., iffrG = oG = sG). 

Proof. We have x • xx = xx • xx, x(x • xx) = x(xx • xx) = (x • xx)(x • xx) and 
x • xx = xx - xx = (xx - x) (xx - x). • 

1.16 Lemma. Let G be an LD-groupoid. Then: 
(i) For all fge Jtx(G) there exists h e Jix(G) such that fg = hf. 

(ii) Jtx(G) and J{X(G) are left uniform. 

Proof, (i) There are n > 1 and ah..., ane G with g = Lai... Lan. Since / is an 
endomorphism of G, we can put h = Lf^... Lf^ny 

(ii) This follows immediately from (i). • 

1.17 Lemma. Let G be an LD-groupoid. Define a relation r on G by (a, b)er 
iff f(a) = f(b) for some f e MX(G). Then r is the smallest left cancellative 
congruence of G. Moreover: 
(i) If (u, uu) e r for some ueG then Id(g) =t= 0. 

(ii) If (vv, vv v)er for some veG then zz = zz- z for at least one zeG. 

Proof. Clearly, r is reflexive, symmetric and left cancellative. Further, from 
1.16(i) it follows easily that r is transitive and the inclusion Jix(G) ^ End(G) 
implies the fact that r is stable. Thus r is a left cancellative congruence of G. 

Now, let 5 be a left cancellative and reflexive relation on G, let / e MX(G), 
a,beG and f(a) = f(b). We have / = L a ] . . . Lan, and so ai(...(ana)) = ax(...(anb)), 
which implies (a, b) e s. We have proved that r ^ s. 

Finally, if (u, uu) e r ((vv, vvv)e r) then f(u) = f(u) f(u) (f(v) f(v) = 
(f(v) f(v)) f{v)) for some / e MX(G). U 

1.18 Theorem. Let G be an LD-groupoid, A = [ae G\aa = aa- a) and 
B = G — A. Then: 

(i) G = A\j B and AnB = 0. 
(ii) A is either empty or a left ideal. 

(iii) If G is left cancellative then B is either empty or a left ideal. 
(iv) If G is left cancellative then s = (A x A) u (B x B) is a left cancellative 

congruence of G and either s = G x G or G/s is a two-element RZ-semi-
group. 

(v) If a,b e G and ab = a then ae A. 
(vi) If G is finite then A =(= 0. 

(vii) If G is finite and left-ideal-free then A = G. 

Proof. The assertions (i), (ii), (iii), (iv) are easy and (vii) follows from (vi). 
(v) We have aa = a- ab = aa- ab = aa- a. 

29 



(vi) Consider the left cancellative congruence r defined in 1.17 and put H = G/r. 
Then H is a left cancellative finite groupoid, and hence it is a left quasigroup. 
By 1.11, xx = xx • x for every xeH. This means that (vv, vv • v) e r for every 
v e G and we can use 1.17(ii). • 

1.19 Lemma. Let G be an L D-groupoid. Then: 
(i) (a, b) e zlG iff a = f(b)for some f e Jix(G) (i.e., iff a = ax(...(anb))for some 

n > 1 and au ..., an e G). 
(ii) Z/ G is transitive and left stable. 

(iii) (a, b) e z\G iff a = f(b)for some f e Jtx
L(G). 

(iv) z\G is a left stable quasiordering. 
(v) If zlG is irreflexive then z\G is a left stable ordering. 

(vi) If G is idempotent then zlG = z\G. 

Proof. Obvious (see 1.3.16). • 

1.20 Lemma. Let G be an LD-groupoid. Then: 
(i) uG = ker(z\G) is a left stable equivalence. 

(ii) (a, b)euG iff a= f(b) and b = g(a)for some fge Jt}(G). 
(iii) If G is idempotent then (a, b)euGiffa = f(b) and b = g(a)for some fge Jix((j). 
(iv) If G is idempotent then every block of uG is a subgroupoid of G. 

Proof. Obvious (see 1.19 and 1.2.26). • 

1.21 Lemma. Let G be an LD-groupoid. Then: 
(i) (a, b) e uc

G iff f(a) = g(b)for some fge Ji{G). 
(ii) uG is a congruence of G, G/uG is an RZ-semigroup and every block of uG is 

a left ideal. 
(iii) uG c= uG and uG is the smallest congruence of G such that the corresponding 

factor is an RZ-semigroup. 

Proof, (i) If f(a) = g(b) then (a, b) e uG follows easily from the definition of uG. 
Now, let (a, b) e uG and let / be the set of x e G such that h(a) = k(x) for some 
h, k e Jtx(G). Then ael and, for every y e G, k(yx) = k(y) k(x) = k(y) h(a) = 
1(a), I = Lk(y)h, and so yx e I and we have proved that I is a left ideal. On the 
other hand, if x = yz then h(a) = j(z), j = kLy, and we see that I is left 
strongly prime. Since (a, b) e uG and a e l , we must have b el. 

(ii) Clearly, uG is an equivalence and it follows easily from (i) and the left 
distributivity, that uG is left stable. 

Let a,beG. Then a- ab = aa- ab, I}a(b) = Laa(ab), and therefore (ab, b) e uG. 
This implies that (yx, zx) e uG for all x, y, z e G, and hence uG is right stable, thus 
being a congruence of G. The rest is clear. 
(iii) It follows from 1.20(ii) that uG ^ uG and the rest is clear. • 

1.22 Lemma. Let G be an LD-groupoid and a left quasigroup. Then: 
(i) (a, b) e uc

G iffb = f(a) for some f e Mf(G). 
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(ii) If the order of La in the permutation group Jtf(G) is finite for every ae G 
(e.g., if G is finite), then uc

G = uG. 

Proof. Easy (use 1.21). • 

1.23 Lemma. Let G be an LD-groupoid. Then: 
(i) (a, b) ezrGijfa = f(b)for some f e Mr(G) (i.e., iff a = ((bax)...)an for some 

n > 1 and ah ..., an e G. 
(ii) zr G is transitive and left stable. 

(iii) (a, b) e z\G iff a = f(b)for some f e Jtr\G). 
(iv) z\ G is a left stable quasiordering. 
(v) If zr G is irreflexive then z\G is a left stable ordering. 

(vi) If G is idempotent then zrG = z\G. 

Proof. Obvious, (see 1.3.16). • 

1.24 Lemma. Let G be an LD-groupoid. Then: 
(i) vG = ker(z\ G) is a left stable equivalence. 

(ii) (a, 6) e vG iffa = f(b) and b = g(a) for some fge Jtr\G). 
(iii) If G is idempotent then (a, b)evG iff a = f(b) and b = g(a) for some 

fge J/r(G). 
(iv) If G is idempotent then every block of vG is a subgroupoid of G. 

Proof. Obvious. • 

1.25 Lemma. Let G be an LD-groupoid and f e Jt(G). Then there are 
g e Jt\(G) and h e Jt)(G) such that f = hg and either g e Jtx(G) or he Jtr(G). 

Proof. We have a- xb = ax • ab for all a,b,xe G, and hence LaRb = RabLa. 
The rest is clear. • 

1.26 Lemma. Let G be an LD-groupoid. Then Jt(G) = Jti(G) u Jtr(G) u 
Jtr(G) Jtx(G) and Jt\G) = Jtr\G) u Jt}(G). 

Proof. This follows immediately from 1.25. • 

1.27 Lemma. Let G be an LD-groupoid. Then: 
(i) (a, b)e zGiff a = hg(b), where h e Jtr(G), g e M\(G) and either h e Jtr(G) or 

g e Jt{G). 
(ii) (a, b)ezG iff there are n > 0, m > 0, au ..., an,bl9..., bmeG such that 

n + m > 1 and a = (((ax(...(anb))) b{)...) bm. 
(iii) zG is transitive and left stable. 
(iv) (a, b)ezGiff a = hg(b) for some h e Jt}(G) and g e M}(G). 
(v) zG is a left stable quasiordering. 

(vi) If zG is irreflexive then zG is a left stable ordering. 
(vii) If G is idempotent then zG = zG. 

Proof. Easy (see 1.25, 1.26 and 1.3.18). Q 
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1.28 Lemma. Let G be an LD-groupoid. Then: 
(i) wG = ker(zG) is a left stable equivalence. 

(ii) (a, b)ewG iff a = h{g{(b) and b = h2g2(a) for some hh h2 e Jl}(G) and 
gl9 g2 e Jt}(G). 

(iii) If G is idempotent then (a, b)ewG iff a = h{g{(B) and b = h2g2(a) for some 
hu h2 E Jtr(G) and gu g2 e Jt{(G). 

(iv) If G is idempotent then every block of wG is a subgroupoid. 

Proof. Obvious. • 

1.29 Proposition. Let G be an LD-groupoid. 
(i) If G possesses a right neutral element then G is an idempotent groupoid 

satisfying the identity xy =--= xy • x. 
(ii) If G possesses a neutral element then G is an idempotent semigroup satisfying 

the identity xy =--= xyx. 

Proof, (i) Let e e G be right neutral. Then x = xe = x • ee = xe • xe = xx and 
xy = x • ye = xy • xe = xy • x for all x, y e G. 

(ii) Let e e G be neutral. Then xy = x • ey = xe • xy = x • xy and x • yz = xy xz = 
(xy • x) (xy • z) = (xy) (xy • z) = xy • z for all x,y,zeG. • 

1.30 Lemma. Every right permutable LD-groupoid is medial. 

Proof. We have xa • by = (x • by) a = (xb • xy) a = ((x • xy) b)a = ((x • xy) a)b = 
(xa • xy) b = (x- ay)b = xb • ay for all a, b, x, y e G. • 

1.31 Example. Consider the following two-element groupoid G (= Cycr(2)): 

G 0 1 

0 
1 

1 0 
1 0 

Then G is an LD-groupoid, G is not right distributive and Id(G) = 0. 

1.32 Example. Consider the following two-element groupoid G: 

G 0 1 

0 
1 

0 1 
0 0 

Then G is an LD-groupoid, pG 

Id(G) = {0}is an ideal of G. 
idG (and hence G/pG is not idempotent) and 

1.33 Example. Consider the following three-element groupoid G: 

G 0 1 2 

0 0 1 2 
1 0 1 1 
2 0 1 2 
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Then G is an LDI-groupoid and pG = idG u {(0,2), (2,0)} is not a congruence 
of G. On the other hand, G is idempotent and hence (x, xx) e pG for every xeG 
and oG = idG is an automorphism of G. Furthermore, G is left and middle 
semimedial but G is not right semimedial. 

1.34 Example. Consider the following three-element groupoid G: 

G 0 1 2 

0 
1 
2 

0 0 0 
0 1 2 
0 1 1 

Then G is an LD-groupoid and pG = idG. On the other hand, G is not idempotent 
and not left semimedial. 

1.35 Example. Consider the following three-element groupoid G: 

G 0 1 2 

0 
1 
2 

0 0 0 
0 0 1 
0 0 0 

Then G is a medial LD-groupoid but pG is not a congruence of G and (0, 1) £ pG, 
1 = 0 0. Moreover, oG is an endomorphism of G. 

1.36 Example. Consider the following three-element groupoid G: 

G 0 1 2 

0 
1 
2 

0 0 0 
0 1 2 
1 1 1 

Then G is an LD-groupoid and pG = idG is a congruence of G. On the other 
hand, oG is not an endomorphism of G. 

1.37 Lemma. Let G be an LD-groupoid. 
(i) If ae G is left constant then aa e Id(G). 

(ii) The set of right constant elements is either empty or a left ideal of G. 
(iii) If ae G is constant then aa is right absorbing. 

Proof, (i) We have aa- aa = a- aa = aa. 
(ii) If a e G is right constant then y • xa = y • aa = ya • ya = aa • aa = a • aa 

for all x, y e G, and hence xa = aa is also right constant, 
(iii) By (i) and (ii), aa e Id(G) and aa is right constant. Hence x- aa = aa- aa = 

aa. • 
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1.38 Lemma. Let G be an LD-groupoid and let a,b eG be right constant 
elements such that aa = bb. Then: 
(i) ax = bx for every x e GG. 

(ii) IfG = GG then (a, b) e tG. 

Proof, (i) We have a- uv = aw av = (au- a)(au• v) = (aa)(au• v) = (aa• au)(aa-v) = 
((aa • a) (aa • u)) (aa • v) = ((aa) (aa • u)) (aa • v) = ((bb) (bb • u)) (bb • v) = b • uv 
for all U,VGG. 

(ii) By (i), (a, b) e pG. On the other hand, xa = aa = bb = xb for every x e G, 
and so (a, b) e qG. Thus (a, b) e pG n qG = tG. • 

II.2 Ideals of left distributive groupoids 

2.1 Lemma. Let I, J, K be left ideals of an LD-groupoid G. Then: 
(i) IJ is a left ideal and IJ c J. 

(ii) IJK = IJ- IK. 
(iii) 7(J u K) = IJ u IK and (J u K) I = JI u KI. 
(iv) IfJ = K then IJ c IK and JI c KI. 

Proof, (i) If a e I, b e J and xe G then x- ab = xa- xbe I J. 
(ii) If a e I, be J and ceK then a- be = ab • ac, and hence I • JK c JJ • IK. 

Conversely, if a, b e I, c e J and d e K then ac-bd = (ac • b) (ac • d), ac be I, 
ace J and ac • bde I • JK. 

(iii) and (iv) This is obvious. • 

2.2 Lemma. Let G be an LD-groupoid such that G = G2. 
(i) If I is a right ideal and J is an ideal ofG then IJ is a right ideal and IJ = I n J. 

(ii) If I, J are ideals of G then IJ is an ideal and IJ = I n J. 

Proof, (i) If a e I, b e J and xeG then x = yz for some y,zeG and ab- x = 
ab • yz = (ab • y) (ab • z). Of course, ab • ye I and ab • z e J. 

(ii) This follows from (i) and 2.1(i). • 

2.3 Let G be a groupoid and let ^P(G) denote the set of all subsets of G. Then 
we have a binary operation defined on ^P(G), namely AB = [ab\a e A, b e B] for 
all A, B e ^P(G). In this way, ^P(G) becomes a groupoid. Clearly, 0 is an absorbing 
element of ^(G) and {0} is a prime ideal of ty(G). Further, we denote by 01(G) the 
subgroupoid of ^3(G) generated by G. Then 01(G) is a trivial groupoid iff G2 = G. 

2.4 Let G an LD-groupoid. Then the set J\(G) of left ideals of G is a sub­
groupoid of ^P(G) and ^\(G) is again an LD-groupoid (see 2.1(i), (ii)). Since 
GeJ\(G), 01(G) is a subgroupoid of J\(G)\ in particular, ^?(G) is also an 
LD-groupoid. If G is idempotent then both <//(G) and 01(G) are idempotent. 

2.5 Let G be an LD-groupoid such that G = G2. By 2.2(H), ./(G) is a sub­
groupoid of ^/(G). Again, since G e ~^(G), we have ^?(G) _= -^(G). Further, if 
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I, J, K,Le J(G) and a el, be J, ce K, de L then ab • cd = (ab • c) (ab • d) e 
IK • JL, and so IJ • KL ~\ IK • JL. Similarly the converse and we have proved 
that J(G) is a medial groupoid. 

2.6 Let G be an LDI-groupoid. If I, J, Ke J(G) and ae I, b e J, c e K then 
a- be = ab- aceU• K and ab- c = ab- cc = (ab- c)(ac c)eI• JK. This shows 
that *$(G) is an idempotent semigroup. By 2.5, ^(G) is medial, and so ^(G) is 
a D-groupoid. Moreover, for ae I, be J, ab = ab- ab = (ab - a) (ab - b) e JL 
Thus IJ = JI and ^(G) is a semilattice. 

2.7 Let G be a groupoid. Then we put G<1> = G and G<n+1> = G • G<n> for every 
n > 1. Let .2(G) = {G(n>|n > 1} c 01(G). 

2.8 Lemma. Let G be an LD-groupoid and A e 0t(G). Then: 
(i) GA c X. 

(ii) I/A =j= G am/ n > 1 then G<n> - A = GA. 
(iii) There exists m > 1 swc/i t/*a*> G<m> := A. 

Proof, (i) A is a left ideal (see 2.4). 
(ii) Let F be an absolutely free groupoid with a one-element free basis {x}and let 
/ denote the uniquely determined homomorphism of F onto 3%(G) such that 
f(x) = G. Since A 4= G, we have G 4= G2 and A = f(r) for some r e F, /(r) > 2 
(l(r) means the length of r). Now, we shall proceed by induction on l(r) + n. 

First, let l(r) = 2. Then A = G2 and G<3> = G<n> • G2 = (G<n>G) (G<n>G) = 
((G<n>G)((G<n>G) G) c G<n+1>- G2 = G<3>. 

Next, let r = sx, l(s) > 2, B = f(s). Then GA = G<n> • BG = (G<n> • B) (G<n> • G) = 
((G<n> • B) (G<n>) • ((G<n> B)G)-l G<n+1> • BG = G<n+1> • A, and so GA = G<n+1> • A. 
Similarly, if r = xs, /(s) > 2 then GA = G<n> • GB = (G<n> • G) (G<n> • B) = 
((G<n> • G) G<n>) ((G<n> • G) B) c G<n+1> • A. 

Finally, let r = :st, /(s) > 2, /(f) > 2, B = /(s), C = /(t). Then G<n> • A = 
(G<n> - B) (G<n> C) = GBGC = GBC = GA. 
(ii) We can assume that A = BC and that G<n> c B n C for some n > 2. Then 
G<n> • G<n> c A. However, by (ii), G<n> • G<n> = G<n+1>. D 

2.9 Let G be a groupoid and n > 1. Then we put G<n0> = G<n> and G<nw+1> = 
G<n,m> . G for e y e r y m > 0. 

2.10 Lemma. Let G be an LD-groupoid. Then G<n,m> - G<k> = G<k+l> for all 
n > 1, m > 0 and k > 2. 

Proof. If G = G2 then the result is clear. Hence, assume that G 4= G2. Now, for 
m = 0, our equality follows from 2.8(ii). 

Let k = 2. We shall proceed by induction on m. We have G<3> = G<nw> • G2 = 
(G<n,m> • G) (G<n,m> - G) c G<n'm+1> • G2 c G<3>, and so G<3> = G<n'w+1> • G2. 

Let k > 3. Again, we shall proceed by induction on m. We have G</c+1> = 
Q<n,m>. G<fc> = G<n'w> • (G • G<fc_1>) = (G<n'w>- G)(G<n'w>* G</c_1>) = G<n'w+1>- G<k>. D 
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2.11 Lemma. Let G be an LD-groupoid, n > 1, m > 1. Then G • G<nw> = G<3>. 

Proof. Again, we assume that G + G2. We shall proceed by induction on m. 
Now, G • G<nw> = (G • G<nw"1>) • G2. If m > 2 then G • G<n-m~l> = G<3> by induction 
and G<3>-G2 = G<3y by 2.10. If m = 1 then G • G ^ " - 0 = G<n+1> and 
G<*+i>. G 2 = G<3> a g a i n b y 2 1 0 Q 

2.12 Lemma. Let G fee an LD-groupoid, n > 1, m > 0, k > 1 and / > 1. F/ien 
G<n,m> . G</c,/> = G<3>^ 

Proof. Let G =N G2. If k = 1 = / then the result follows from 2.10. If k > 2 
and / = 1 then G<n'w> • G</u> = (G<n'w> • G<ky) • (G<n'w> • G) = G<fe+1> • G<n'w+1> = 
G • G<nw+1> = G<3> by 2.10, 2.8(ii) and 2.11. 

Now, let / > 2. We shall proceed by induction on /. We have G<nw> • G<kJ> = 
(G<«.m>G<*,/-i>) (G<n'w> • G) = G<3>G<"'W+1> = G • G<n'w+1> = G<3> by induction, 
2.8(H) and 2.11. • 

2.13. Proposition. Let G be an LD-groupoid. Then: 
(i) G<ww> • G<kJ> = G<3yfor all n > 1, m > 1, k > 1, / > 1. 

(ii) G<n'w> • G</c0> = G<k+uoyfor all n > 1, m > 0, k > 2. 
(iii) G<n'w> • G<10> = G<n>m+l>for all n > 1, m > 0. 

Proof. See 2.10 and 2.12. • 

2.14 Corollary. Let G be an LD-groupoid. Then: 
(i) 01(G) = {G<"'W>|M > 1, m > 0}. 

(ii) IfG + G2 then 1(G) - {G}= {G<ky\k > 2} is a left ideal of @(G). • 

2.15 Construction. Denote by D0 the set of all ordered pairs (n, m), where n, m 
are integers, n > 1, n =(= 2 and m > 0. We shall define a multiplication on D0 as 
follows: (rz,m)(k,/) = (3,0) if / > 1 ; (n,m)(k,0) = (k + 1,0) if k>3; (n,m)(l,0) = 
(n, m + 1). Now, I)0 becomes a groupoid and it is easy to check that D0 is an 
LI)-groupoid. Namely, for u = (n, m), v = (k, I) and z = (p, q) from D0, we have 
u- vz = uv - uz = (4,0) if q > 1, w vz = uv - uz = (p -\- 2,0) if q = 0, p > 3, 
and u • vz = uv • uz = (3, 0) if q = 0, p = 1. Proceeding similarly, we can show 
that Do 1s medial and uv - z ^ uz - vz for all u, v, z e D0. In particular, D0 is not 
right distributive. Furthermore, Id(D0) = 0, pDo = idDo, D0/qDo is a right constant 
groupoid and ((n, m), (k, /)) e qDo iff either (n, m) = (k, /) or m > 1, / > 1 (D0/qDo is 
isomorphic to the right constant groupoid * defined on the set of positive integers 
by i *j = j + 1: (n, m) -• 2 if m > 1 and (n, 0) -> n, and so D0/q = Cycr(oo)). 

Define a relation <0 on D0 by (n, m) <Q (k, I) iff at least one of the following 
four cases takes place: k < n,m = 1; 3 < m < I; 3 < n,k = 1; k = 1,0 < I < m. 
It is easy to check that <0 is a linear ordering of D0 and that <0 is stable (with 
respect to the operation of the groupoid D0). 

Finally, notice that the groupoid D0 is generated by the element (1, 0), and hence 
Do is cyclic and 0"(DO) = 1. 

36 



2.16 Theorem. Let G be an LD-groupoid. Define a mapping f : D0 -* 0t(G) by 
f(n, m) = G<"m>. Then: 
(i) f w a projective homomorphism of the groupoid D0 onto the groupoid 

0t(G). 
(ii) If(n, m), (fc, /) e D0 ̂  (n, m) <0 (fc, /) t/*e" /(n, m) = G<n'm> c G<M> = f(fc, /). 

Proof, (i) This follows from 2.13, the definition of the operation of D0
 a nd the 

fact that f(l, 0) = G. 
(ii) First, let k <n,m = I. We have G<n> = G(...(G • G</c>)), where G appears 

(n — fc)-times, and hence G<n> c G<fc>, since G</c> is a left ideal. This also 
implies G<nm> c G<M>. 

Next, let 3 < n and 0 < m < /. If m = 0 then G<n0> <= G<3> = G • G<M> c G<M>. 
If m > 1 then G<n0> c G<fc/-m>, and therefore G<nm> = ((G<n0> • G)...) G c 
((Gw-m>-G)...)G = G<M>. 

Now, let 3 < n and fc = 1. With respect to the preceding case, we can assume 
that / < m. Now G<nm> = ((G<"'m-/> • G)...) G c (GG)...) G = G<1/>. Finally, if 
fc = 1 and 0 < / < m then we can proceed similarly. • 

2.17 Corollary. Let G be an LD-groupoid. Then 0t\G) is a medial LD-grou­
poid which is linearly ordered by inclusion (this ordering is stable). • 

2.18 Example. Consider the following three-element groupoid G: 

G 0 1 2 

0 1 2 2 
1 1 2 2 
2 1 2 2 

Then G is an LD-groupoid, it is right constant and 0t(G) = JX(G) = {&l\ G<2>, 
G<3>}; we have G<2> = {1,2}, G<3> = {2}and G<3> = G<x> • G<2> is not a right ideal. 
Moreover, the groupoids G and M(G) are isomorphic. 

2.19 Example. Consider the following four-element groupoid G: 

G 0 1 2 3 

0 0 0 0 0 
1 0 0 3 0 
2 0 0 1 0 
3 0 0 3 0 

Then G is an LD-groupoid, ®{G) = {G<10> G<u>, G<u> G<30>}, G<u> = {0,1, 3}, 
G<12> = {0,3}, G<30> = {0},every element of ®{G) is an ideal, M{G) = J{G) = 
Jr{G) =|= J,{G) = ®{G) \j {A},where A = {0,1} is a left ideal but not a right ideal 
(Ji{G) is not linearly ordered by inclusion). 
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2.20 Example. Consider the following three-element groupoid G: 

G 0 1 2 

0 
1 
2 

0 0 0 
0 1 0 
0 0 0 

Then G is an LD-groupoid and G is commutative (in fact, G is a semigroup), 
01(G) = {G<1>, G<2>} =# J(G) and J(G) is not linearly ordered by inclusion. 

2.21 Lemma. Let G be an LD-groupoid and ae G. Then the set of all xe G 
such that f(x) = g(a)for some ftge Jtx(G) is just the left strongly prime left ideal 
generated by a. 

Proof. See the proof of 1.21(i). • 

II.3 Dense subgroupoids of left distributive groupoids 

3.1 Lemma. Let H be a subgroupoid of an LD-groupoid G. Then: 
(i) For all f,ge MX(G, H) there exists h e Jtx(G, H) such that fh = hf. 

(ii) Jix(G, H) and M\(G, H) are left uniform. 

Proof. We can proceed in the same way as in the proof of 1.16. • 

3.2 Lemma. Let H be a subgroupoid of an LD-groupoid G. Then <H>G = 
[H]G = pG(H) = {xeG\ f(x) e H for some f e MX(G, H)} = [j^,aG(H). 

Proof. We have pG(H) c [H]G cz <H>£ (see 1.4.17 and 1.4.4). On the other hand, 
if f(x), g(y) e H then fg(y) e H and fg = hf for some h e Jtx(G, H) (see 3.1). 
Now, fg(xy) = fg(x) fg(y) = hf(x) fg(y) e H, i.e., pG(H) is a subgroupoid of G. 
Similarly, if f(x), g(xy) e H then hf(x) fg(y) = fg(x)fg(y) = fg(xy) e H, and so 
k(y) e H, where k = Lhf^fg e Jt{(G, H). We have proved that fiG(H) is a left 
closed subgroupoid of G. Consequently, <H>g ^ pG(H). Finally, [H]G = (J a'G(H) 
by I.4.3(iii). • 

3.3 Lemma. Let H be a subgroupoid of an LD-groupoid G. Then for all n > 1 
and xu...,xne <i/>G there exists f e Jlx(G, H) with f(x{),..., f(xn) e H. 

Proof. By 3.2, <H>£ = pG(H), and hence f^) e H for some ft e M{G, H). 
Since fiG(H) is a subgroupoid, we have f(x2) e /JG(H), and so f2f(x2) e H for an 
f2 G Ji\(G, H). Clearly, f2fi(xi) e H and the rest is clear by induction. • 

3.4 Theorem. Let H be a left strongly dense subgroupoid of an LD-groupoid 
G. Then: 

(i) For all n>\ and xx,..., xneG there exists fe Jtx(G,H) with f(x{),..., 
f(xn)eH. 

(ii) Every left cancellative congruence r of H can be uniquely extended to a left 
cancellative conguence s of G. 
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(iii) If s is a left cancellative congruence of G and r = s n(H x H) then s is 
a cancellative congruence of G iff r is cancellative congruence of H. 

(iv) If G is left cancellative and H is cancellative then G is cancellative. 
(v) If G is a left quasigroup and H is right divisible then G is right divisible. 

(vi) If G is left cancellative then the groupoids H and G satisfy the same groupoid 
identities (i.e., they generate the same groupoid variety). 

Proof, (i) See 3.3. 
(ii) Define s by (x, y)e s iff (f(x), f(y)) e r for some / e Jix(G, H). Then s is 

clearly symmetric, s is reflexive by (i) and the transitivity of s follows easily 
from 3.1(1). Thus s is an equivalence on G. Moreover, s n (H x H) = r, since 
r is left cancellative. 

If (x,y)es, (f(x),f(y))er, feJtx(G,H) and zeG then gf(x), gf(y), 
gf(z) e H for some g e MX(G, H) (by (i)) and gf(zx) = gf(z) gf(x), gf(zy) = 
gf(z) gf(y\ (gf(*\ gf(y)) ' r, (gf(zx), gf(zy)) e r and (zx, zy) e s. Quite simi­
larly (xz, yz) e s and we have proved that s is a congruence of G. 

Now, let x,y,zeG, f e Jtx(G, H) and (f(zx), /(zy)) G r. Again, we have 
gf(*\ gf(y\ gf(~) ' H for some g e MX(G, H), (gf(z) gf(x), gf(z) gf(y)) G r 
and (gf(x), gf(y)) ~ r, since is left cancellative. Thus (x, y)e s and we have 
proved that s is left cancellative. If r right cancellative then, proceeding 
similarly, we can show that s is right cancellative. 

Finally, let t be a congruence of G such that t n (H x H) = r. If (x, y) e t 
and / e Mx(fi, H) is such that f(x), f(y) e H then (f(x), f(y)) e t implies 
(f(x), f(v)) ' r and (x, y) e s. Thus t _= s. Now, assume that t is left cancellati­
ve, x,yeG,fe MX(G, H) and (f(x), f(y)) e r. Then (f(x), f(y)) e t, and so 
(x, y) e t due to the left cancellativity of t. Consequently, s ~l t, and so s = t. 

(iii) See the preceding part of the proof. 
(iv) The identity relations idH and idG are left cancellative congruences of H and 

G, respectively, and idG extends idH. Since H is cancellative, idH is so, and 
hence idG is cancellative by (iii). However, this means that G is cancellative. 

(v) Let x, y G G. Then f(x), f(y) G H for some / e MX(G, H) and, since H is right 
divisible, there is a e H such that af(x) = f(y). Now, G is a left quasigroup, 
hence / is a permutation and f(y) = af(x) = f(x), b = f~\a), y = bx. 

(vi) Let u, v G W be such that u == v holds in H and let h: W -> G be a homo-
morphism. Then there is / G MX(G, H) such that fh(x) e H for each variable 
x occurring in u and v. Further, there is a homomorphism k: W -> H such 
that k(x) = fh(x). Now, fh(u) = k(u) = k(v) = fh(v) and, since G is left 
cancellative, h(u) = h(v). ~~ 

3.5 Proposition. Let H be a left strongly dense subgroupoid of an LD-groupoid 
G and let cp be a homomorphism of H into an LD-groupoid K such that K is a left 
quasigroup. Then q> can be extended in a unique way to a homomorphism of G 
into K. 

39 



Proof. Let A be a subgroupoid of G such that H __ _4, cp can be extended to 
a homomorphism i/t: _4 -> K and _4 is maximal with respect to these properties. 
We are going to show that A is left closed in G. 

For, let a e A and B = fiG{A). Then B is a subgroupoid of G and _4 _= £. Now, 
if x e B then \//{ax) = \l/{a) £(x) for just one element £(x) e __ and it is easy to 
check that £ : B -> K is a homomorphism such that £ | _4 = i/t. Then B = A due 
to the maximality of A and we have proved that A is left closed in G. Since / / _= _4 
and H is left strongly dense in G, we must have A = G and cp is extended to 
\j/ : G -• K. The unicity of i/t follows from I.4.8(i). D 

3.6 Lemma. Let H be a subgroupoid of an LD-groupoid G and let ae H and 
K = iia,G{H). Then K is a subgroupoid of G, H __ K and cp = LaK is a homo­
morphism of K into H. This homomorphism is injective (projective), provided that 
G is left cancellative (left divisible). 

Proof. Obvious. • 

3.7 Lemma. Let H be a subgroupoid of an LD-groupoid G, n > 0 and 
m = 2n-l. Then aG(H) __ j_m,G(H) __ aS(H). 

Proof. By induction on n. The result is clear for n = 0. Now, let x e aG
+1(If). 

Then ax = b for some a, b e ocG{H) and there are au ..., am, bu ..., bme H such that 
c = a^...(ama))e H and bx{...{bmb))e H. From this we immeadiately obtain 
b\{...{bm{c{ax{...{amx)f$)) e H. The rest is clear. • 

3.8 Let H be a left strongly dense subgroupoid of an LD-groupoid G and suppose 
that olc{H) < K0. Then there is a countable non-empty subset 5 of H such that 
H =

 (S}1H- The subgroupoid A generated by S is also countable and H = (A)1^. 
Now, consider a bijective mapping f: A x N -+ N, N being the set of positive 

integers, f~\i) = {g{i), h{i)), g{i) e _4, h{i) e N. Put K0 = H and Kt = A ^ G ^ . - I ) 

for each i > 1. Then K0 __ K! _= K2 _= ... _= K, _= KI+1 _= ... and all K( are 
subgroupoids of G. Hence K = (J^oK, is a subgroupoid of G and / / _= K. 

(i) By induction on n > 0 we show that finG _= K. This is clear for n = 0. Now, 
let rz > 1, al9..., an e _4, a e G, a!(...(ana)) e _4. By the induction hypothesis, 
ana e K, and so ana e Km for some m > 0. Clearly, there is / > m such that 
g{i) = a„. Then ana e Kt_h and hence a e K, __ K. 

(ii) By (i) and 3.2, <_4>£ = jSG(_4) __ K. However, H __ <_4>̂  and H is left 
strongly dense in G. Consequently, <_4>G = K = G. 

(iii) Put Qi = Lg^K. for each i > 1. Then £, is a homomorphism of X, into K,_i, 
and so rjt = Q{ ... Qi-xQt is a homomorphism of Kt into H. 

If G is left cancellative then all o, and r/, are injective, and hence all Kt are 
isomorphic to subgroupoids of H. 

If G is left divisible then Qt{Kt) = K,_i and ^(K,) = H. 
If G is a left quasigroup then all Q{ and rjt are isomorphisms, and hence all K, are 

isomorphic to H. 
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3.9 Lemma. Let H be a subgroupoid of an LD-groupoid G. Then: 
(i) Jt(G, H) = MX(G, H) u Jir(G, H) u Mr(G, H) Jt\G, H). 

(ii) Ji\G, H) = Jfr\G, H) Jt\(G, H). 
(iii) If H is left divisible then 

Ji(G, H) = MX(G, H) u Jt\G, H) u Jtx(G, H) Jtr(G, H) 

and M\G, H) = Ji}(G, H) Ji}(G, H). 

Proof. We have LaRb = RabLa for all a,beH. If H is left divisible then 
a = be for some ceH and RaLb = LbRc. • 

3.10 Lemma. Let H be a subgroupoid of an LD-groupoid G. Then I/JG(H) ^ 
PGSG(H). Moreover, if H is left divisible then \l/G(H) _= SGfiG(H). 

Proof. See 1.4.19, 1.4.20 and the preceding lemma. • 

II .4 Cancellable and divisible elements of left distributive groupoids 

4.1 Proposition. Let G be an LD-groupoid. Then: 
(i) %(G) is either empty or a left closed subgroupoid of G. 

(ii) %(G) is either empty or a subgroupoid of G. 
(iii) 0*t(G) is either empty or a left closed subgroupoid of G. 
(iv) %(G) %(G) _= %(G) and ^(G) 3Pr(G) c 0>r(G\ 
(v) If both %(G) and %(G) are non-empty then %(G) is an idempotent groupoid. 

If moreover. S>(G) =1= 0 then G is idempotent. 
(vi) If SP(G) 4= 0 then G is idempotent. 

Proof. First, LxLy = LxyLx = LxyxLxy for all x,yeG and (i), (ii), (iii) are 
easily seen. Further, LxRy = RxyLx and (iv) is clear. Now, let a e %(G) and 
be%(G). Then b = ac for some ceG and we have ab = a- ac = aa- ac = aa-b, 
which implies a = aa. If, moreover, <2)(G) =1= 0 then Id(G) = G, since 2(G) ^ Id(G) 
and Id(G) is a left ideal. • 

4.2 Proposition. Let G be an LD-groupoid. Put %*(G) = [a e %(G)\aa = aa- a). 
Then: 

(i) %*(G) is either empty or a left closed subgroupoid of G. 
(ii) If%*(G) 4= 0 then %*(G) is a left strongly prime left ideal of the groupoid %(G). 
(iii) ^(G) c= %*(G). 
(iv) (a, aa) e pG for every a e %*(G). 

Proof. Put A = \aeG\aa = aa- a\ (see 1.18). If ae%(G) and abeA then 
a(bb - b) = (ab • ab) (ab) = (ab) (ab) = abb implies be A. Now (i) and (ii) are 
clear from 4.1(i) and 1.18(ii), (iii). Finally, (iii) and (iv) follow from 1.9(i), (ii). • 

4.3 Proposition. Let G be an LD-groupoid and a e %*(G). Then there exists an 
LD-groupoid K and an element b e K with the following properties: 
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(i) G is a left strongly dense subgroupoid of K, be%*{K) and a = bb = ab, 
{a, b) e pK. 

(ii) K = ^K{G) = phK{G). 
(iii) G = aK = bK and the translation LaK = LhK is an isomorphism ofK onto G. 
(iv) %{K) = ^K{%{G)),%{G) = a%{K) £ %{K). 
(v) %*{K) = fia,K{%*{G)), %*{G) = a%*{K) £ %*{K). 

(vi) If 0 is an absorbing element of G then 0 is also absorbing in K. 

Proof. Put H = aG and cp = LaG. Then cp is an isomorphism of G onto H and 
cp(a) = aa. Now, it is clear that there exists an LD-groupoid K such that G is 
a subgroupoid of K, G = bK for an element be%*(K) and \\i = LbfK is an 
isomorphism of K onto G, \jj \ G = cp. We have \//(b) = bb = a, (a, b) e pK (by 
4.2(iv)) and G = aK = bK. The rest is obvious. • 

4.4 Proposition. Let G be a LD-groupoid and a e %*(G). Then there exists an 
LD-groupoid K with the following properties: 

(i) G is a left strongly dense subgroupoid of K and a e &i(K). 
(ii) K is the union of a chain K0 -= ^ i — ^2 = ••• -= K, -^ Ki+l c . . . of 

subgroupoids such that K0 = G, Kt = aKi+lfor each i > 0 (thus all Kt are 
isomorphic to G). 

(iii) For every xeK there is n > 0 with Ua K(x) = a(...(ax)) e G (thus K = fiK(G)). 
(iv) %(G) c %(K) and %*(G) <= %*(K). 
(v) K is (left, right) cancellative (regular) iff G is so. 

(vi) K is (left, right) divisible, provided that G is so. 
(vii) coG _= coK; K is subdirectly irreducible, provided that G is so. 

(viii) K is simple, provided that G is so. 
(ix) pK = idx, provided that pG = idG. 
(x) K contains an absorbing element iff G does; in the positive case, the 

absorbing elements coincide. 
(xi) The groupoids G and K satisfy the same groupoid identities. 

Proof. The chain K0 = G c Kj c J(2 9 ... is constructed by means of 4.3, 
Ki = aKi+u and K = (J^o-*-^- The assertions of the proposition are easy con­
sequences of 4.3 and the fact that all the links of the chain ... c K(- c K l + 1 c ,„ 
are isomorphic to G. For instance, if G is subdirectly irreducible, r =(= idx is 
a congruence of K and (u, v)er, u + v then L"a(u), Ua(v) e G for some n > 0, 
Ln

a(u) + Ln
a(v), and so r n (G x G) 4= idG and coG _= r. • 

4.5 Theorem. Let G be an LD-groupoid. Then there exists an LD-groupoid 
Q with the following properties: 

(i) G is a left strongly dense subgroupoid of Q and card(Q) = card(G). 
(ii) %{G) £ %{Q) and %*{G) £ %*{Q) = ^{Q). 

(iii) Ifx e Q then there exist n > 1 and au...,ane %*{G) such that at{... {a„x)) e G. 
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(iv) Q is (left, right) cancellative (divisible, regular), provided that G is so. 
(v) coG _= coQ; Q is subdirectly irreducible, provided that G is so. 

(vi) Q is simple, provided that G is so. 
(vii) pQ = id0, provided that pG = idG. 
(viii) Q contains an absorbing element iffG does; in the positive case, the absorbing 

elements coincide. 
(ix) The groupoids Q and G satisfy the same groupoid identities. 

Proof. We can assume that ^ = %>*(G) =# 0. The rest of the proof is divided into 
several parts: 
(i) Let a > 1 be an ordinal number such that ^ = {a^ | 1 < /J < a}. Now, we shall 

construct a chain G ,̂ 0 < /? < a, of groupoids as follows: G0 = G; if 1 < /? < a 
and fi is not limit then G$ is (by 4.3) such that a^Gp = Gp-u if 1 < /? < a and 
P is limit then Gp is such that apGp = [Jo<y<pGy (again, by 4.3). Put K = 
Uo</?<a Gp- By transfinite induction we can show that K satisfies the properties 
(i), (iii), ..., (ix) and that %(G) c %(K\ %*(G) c %*(K). Moreover, for every 
a e %*(G\ G c aK. 

(ii) Define a chain Q0 c Qx cz Q2 cz ... of groupoids in such a way that Q0 = G 
and, for i > 0, Qi+l is constructed by means of (i) (starting from Q,). Put Q = 
[ji>o Qv If x e %*(Q), yeQ then x e L̂*(2.)> y e Q, for some f > 0, and hence 
y = xz for some z e Q. Thus ^*(Q) — &i(Q) (use 4.2(iii)). In the rest, we can 
use (i) and proceed similarly as in the proof of 4.4 (to prove (iii), put H = 
{x e Q | f(x) e G for some / e Jii(Q, %\\ and show that H is left closed in 
0. • 

4.6 Lemma. Ijet G be an LD-groupoid such that %> = %*(G) =1= 0. Then the 
transformation semigroups Ji\(G, %) and Jt\(G, %) are cancellative. 

Proof. Every transformation from Jt{(G, %) is injective, and this implies that 
the semigroup is left cancellative. Now, let fg,he Jtx(G, %) be such that 
fh = gh. There are n > 1 and al9 ...,ane%> such that h = Lai... Lan and we 
shall proceed by induction on n. Put k = Lai... Lan_l (k = idG if n = 1) and 
a = an. We have fk(ax) = gk(ax) for every xeG. Consequently, b = 
fk(aa) = gk(aa) and bfk(x) = fk(aa • x) = fk(ax) = gk(ax) = gk(aa • x) = 
bgk(x). But b e % and hence fk(x) = gk(x) and fk = gk. Then / = g by the 
induction hypothesis. • 

4.7 Remark. Let G be an LD-groupoid and a e %(CJ). Put cp = La. Then cp is 
a projective homomorphism of G onto G, (a, cp(a)) e pG and there is b e G such that 
cp(b) = ab = a. Moreover, ker((p) = qaG and if r is a left cancellative congruence 
of G such that r ^ kev((p) then r = ido and G is a left quasigroup (if (x, y)er then 
x = au, y = av, (u, v)er _= kev((p) and x = au = av = y). 

4.8 Example. Consider the following three-elem,ent groupoid G: 
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G 0 1 2 

0 0 0 0 
1 0 1 2 
2 0 1 1 

Then G is an LD-groupoid, %(G) = %(G) = 3P{G) = {1} is a left closed 
subgroupoid which is not right closed and %(G) = %(G) = 0>r(G) = {2} is not 
a subgroupoid of G. Moreover, G is not idempotent. 

4.9 Proposition. Let G be a subdirectly irreducible LD-groupoid. Then either 
qG -# idG or %(G) * 0. 

Proof. Suppose that %(G) + 0. Then, for every xe G,LX is not injective, qxG = 
ker(Lx) =# idG is a congruence of G and coG = qxG. If (a,b)ecoG, a #= b then 
xa = xb, and so (a, b) e qG. • 

II.5 Left cancellative left distributive groupoinds — first observations 

5.1 Proposition. Let G be a left cancellative LD-groupoid. Then: 
(i) <$ = %*(G) = {ae G\aa = aa- a] is either empty or a left strongly prime 

left ideal of G. 
(ii) ^ = {ae G\(a, aa)epG}. 
(iii) pG is a left cancellative and right stable equivalence. 
(iv) Jfi(G) and Jil(G) are left cancellative left uniform semigroups. 
(v) If^ 4= 0 then Jt{(G, %) and Jif(G, %) are cancellative left uniform semigroups. 

(vi) Either Id(G) = 0 or Id(G) is a left strongly prime left ideal of G. 

Proof. See 1.18, 1.9(ii), 1.14(i), 1.16 and 4.6 (if ab e Id(G) then ab = ab-ab = 
a - bb, and so b = bb). • 

5.2 Proposition. Let G be a left cancellative LD-groupoid. Then G = %?*(G) 
(i.e., G satisfies the identity xx — xx • x) iff (x, xx) epG for every xe G (i.e., iff 
G satisfies the identity xy =--= xx • y). Moreover, if these equivalent conditions are 
satisfied then: 

(i) pG is a congruence of G and G/pG is a left cancellative LDI-groupoid. 
(ii) G is left semimedial and oG is an endomorphism of G. 

(iii) Jt\(G) and Ji}(G) are cancellative left uniform semigroups. 

Proof. See 5A and 1.12. • 

5.3 Theorem. The following conditions are equivalent for a left cancellative 
LD-groupoid G: 

(i) G satisfies the identity xx -= xx • x. 
(ii) G satisfies the identity xy =--= xx • y. 
(iii) G satisfies the identity x • yz =--= xx • yz. 
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(iv) G satisfies the identity xx • yz ----- xy • xz (i.e., G is left semimedial). 
(v) G satisfies the identity xx • yy == xy • xy (7.e., oG is an endomorphism of G). 

(vi) G satisfies the identity x • yy ---= xx • yy. 
(vii) G can be embedded into a left distributive left quasigroup. 

Proof, (i) implies (ii) by 5.2, (ii) implies (iii) trivially, (iii) implies (iv) by the left 
distributivity, (iv) implies (v) trivially and (v) implies (vi) by the left distributivity. 

Let (vi) be satisfied and let xeG. Then x(xx • x) = (xx • xx) (xx) = xx • xx = 
x • xx, and hence xx • x = xx, i.e., (i) is satisfied. 

The condition (vii) implies (i) by 1.11(4). Now, let (i) be satisfied and consider 
the LD-groupoid Q constructed in 4.5. Then G is a subgroupoid of Q, Q is left 
cancellative, Q satisfies xx == xx • x and Q = %*(Q) = &i(Q). Thus Q is a left 
quasigroup. • 

5.4 A left cancellative LD-groupoid satisfying the equivalent conditions of 5.3 
will be called pseudoidempotent (clearly, every left cancellative LDI-groupoid is 
pseudoidempotent). 

5.5 Remark. Let G be a pseudoidempotent left cancellative LD-groupoid. We 
shall exhibit here two alternative proofs of the fact that G can be embedded into 
a left distributive left quasigroup. 

(i) We can assume without loss of generality that G is infinite. Let S be a set such 
that G _l S and card(S) > card(G). Denote by SR the set of pseudoidempotent 
left cancellative LD-groupoids K such that G is a left strongly dense subgroupoid 
of K and the underlying set of K is a subset of S. The set 2R is non-empty 
(we have G e 901) and it is ordered by K < L if K is a subgroupoid of L (then 
K is left strongly dense in L). By Zorn's lemma, let Q be a maximal element 
of 9K. We are going to show that Q is a left quasigroup. For, let a,b e Q. By 
1.4.15, card(Q) = card(G) < card(S), and hence there exists a groupoid P e 901 
such that Q < P and Q = aP (use 4.3). Since Q is maximal, we must have 
Q = P, and so b = ac for some ceQ. 

(ii) First, let G be finitely generated, G = (A}G for a non-empty finite set A_lG. 
Let / : A x N -> N be a bijection (see 3.8). Put Q0 = G and, for i > 1, let 
Qi be such that Qt_x is a subgroupoid of Qt and Q{_x = g(i)Qt (by 4.3), 
f~\i) = (g(i), h(i)). We are going to show that Q = (J;>oQi is a left quasigroup. 
It is easy to see that A _\ SP = 0*i(Q). Since SP is a subgroupoid of Q, we also 
have G _\ SP. However, SP is a left closed subgroupoid (see 4.1 (iii)) and G is 
left strongly dense in Q. Consequently, SP = Q. 

In the general case, G can be embedded into a filtered product of its finitely 
generated subgroupoids. Every such subgroupoid can be embedded (by the 
first part of this proof) into a left distributive left quasigroup, and then G can 
be embedded into the corresponding filtered product of these left quasigroups 
which is again a left distributive left quasigroup. 

45 



(iii) By 5.2(iii), Jtx(G) is a cancellative left uniform semigroup. Then Jtx(G) is 
a subsemigroup of its group Jr of left fractions. Define an operation * on 
Jr by u * v = uvu~l. Then Jr(*) is an LDI-groupoid and a left quasigroup. 
The mapping q>\a-+LaeJf is a homomorphism of G into Jr(*) and 
ker((p) = pG. Thus G/pG can be embedded into Jr(*). 

5.6 Example. Let si be the set of non-projective injective transformations of 
an infinite set A. Define an operation * on si by ( / * g) (f(a)) = fg(a) and 
( / * 9) (b) = b for all / g e si, a e A and b e A - f(A). Then si(*) is a left 
cancellative LD-groupoid and %*(sti(*)) = 0. In particular, si(*) is not pseudo-
idempotent, and hence it cannot be embedded into a left distributive left quasigroup. 

5.7 Theorem. Let H be a left strongly dense subgroupoid of an LD-groupoid 
G such that H <= %(G). Then: 

(i) G = %(G) is left cancellative, card(G) = card(II) and for every xeG there 
exist n > 1 and au ..., ane II such that ax(...(anx)) e II. 

(ii) If K is a finitely generated subgroupoid of G then K is isomorphic to 
a subgroupoid of H. 

(iii) The groupoids G and H satisfy the same groupoid identities. 
(iv) coH c= a>G; G is subdirectly irreducible, provided that H is so. 
(v) &>/,c,H = G>I,C,G\H>' G is subdirectly Ic-irreducible iff H is so. 

(vi) G is Ic-simple iff H is so. 
(vii) G is cancellative iff H is so. 

(viii) pH = pG\H. 

Proof, (i) By 4.1(i), %(G) is left closed in G, and hence G = %(G). The other 
assertions follow from 1.4.15 and 3.2. 

(ii) Let A be a non-empty finite set such that K = (A}G. By 3.4(i), f(A) c II 
for some f e Jtx(G,H). Then f(K) c= II and the groupoids H,f(K) are 
isomorphic, since / is an injective endomorphism of G. 

(iii) Use (ii) or 3.4(vi). 
(iv) Let r 4= idG be a congruence of G, 5 = r | II, v e G, u 4= v, (u, v) e r. Then 

f(u),f(v) * II for some feMx(G,H), (f(u),f(v))es, f(u) 4- f(v) and 
s 4= idH. Consequently, coH c= 5 <= r, and hence cOH c cOG. 

(v) and (vi). See 3.4(h), (iii). 
(vii) See 3.4(iv). 

(viii) Let (a,b)epH and xeG. There are n > 1 and a1?..., aneH such that 
flj(...(flnx)) G II. Now, aa, = bat = ch ci(...(cn • ax)) = a(ax(...(anx))) = 
^(^(...(a^x))) = cx(...(cn • bx)), ax = bx and (a, b) e pG. D 

5.8 Let G be a left strongly dense subgroupoid of a left distributive left 
quasigroup Q. Then we shall say that Q is a left quasigroup-envelope of G and we 
shall write Q = QX(G). 

With respect to 5.3, an LD-groupoid G possesses a left quasigroup-envelope iff 
G is left cancellative and pseudoidempotent. 
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5.9 Theorem. Let G be a pseudoidempotent left cancellative LD-groupoid. 
(i) If Q and P are left quasigroup-envelopes of G then there exists just one 

isomorphism f : Q -> P such that f \ G = idG (i.e., a G-isomorphism). 
(ii) If g : G —> H is a homomorphism, where H is a pseudoidempotent left 

cancellative LD-groupoid, and if Q and P are left quasigroup-envelopes of 
G and H, respectively, then there exists just one homomorphism f: Q -> P 
such that f | G = g. Moreover, f is injective (projective), provided that g is so. 

(iii) If G is a subgroupoid of a left distributive left quasigroup P then (G}p is 
a left quasigroup-envelope of G. 

Proof. Clearly, (i) follows from (ii) and (iii) is evident. Now, we shall prove (i). 
By 3.5, g can be extended in a unique way to a homomorphism / : Q -> P. If g is 
injective then ker(g) = idG. However, ker(/) extends ker(g), and so ker(/) = idg 
by 3.4(ii). If g(G) = H then H c f(Q) cz P. But, f(Q) is a left quasigroup, and 
hence it is left closed in P. On the other hand, H is left strongly dense in P, and 
therefore f(Q) = P. Q 

5.10. Theorem. Let G be a pseudoidempotent left cancellative LD-groupoid 
and Q = Q,(G). Then: 

(i) card(Q) = card(G) and Q, G satisfy the same groupoid identities. 
(ii) Q is right cancellative (regular) iff G is so. 

(iii) Q is right divisible, provided that G is so. 
(iv) coG .= (i)Q; Q is subdirectly irreducible, provided that G is so. 
(v) u>lcG = cO/c Q| G; Q is subdirectly Ic-irreducible iff G is so. 

(vi) Q is simple, provided that G is so. 
(vii) Q is Ic-simple iff G is so. 

(viii) pG = pQ | G and pG = idc iff pG = idG. 

Proof, (i) is proved in 5.7(i), (iii); (ii) and (iii) follow from 3.4(iv) and (v), 
respectively; (iv), (v) and (vii) are proved in 5.7(iv), (v) and (vi), respectively, 

(vi) This follows from 4.5(vi), however we shall present a direct proof here. 
Let K be a subgroupoid of Q maximal with respect to the properties that 

G c K and K is simple. We show that K is left closed in Q (then K = Q). 
Indeed, if a e K and L = fia,Q(K) then K .= L and aL = K (since Q is a left 
quasigroup). Hence K and L are isomorphic, L is simple and L = K. 

(viii) By 5.7(viii), pG = pQ | G, and so pQ = idQ implies pG = idG. If pG = idG and 
(u, v) e pQ then f(u), f(v) e G for some / e Jtx(Q, G), (/(w), f(v)) e pG (since 
pQ is a congruence), f(u) = f(v) and u = v. • 

5.11 Remark. Let G be a pseudoidempotent left cancellative LD-groupoid 
such that G is infinite countable and G is not a left quasigroup. Put Q = Qi(G). 
Then there exists a chain G0 i= Gj ^ G2 i= ... _.= G, ^ Gi+l c ... of subgroupoids 
of Q and elements a^e G such that G0 = G, ( J ^ Q G , = Q and G, =1= G,.! = afii 
for each i > 1 (all the subgroupoids G, are isomorphic to G). The existence of such 
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a chain follows from 3.8 (see also the first part of 5,5(ii), where we could take 
A to be also infinite countable). 

5.12 Remark. Let G be an LD-groupoid. If a e %(G) then there exists an 
LD-groupoid K such that G is a subgroupoid of K, %(G) = %(K) and G = bK, 
a = bb for some b e %(K) (to show this, we proceed similarly as in 4.3). 

If G is left cancellative then G is a left strongly dense subgroupoid of a left 
cancellative LD-groupoid P such that oP(P) = P and G, P satisfy the same 
groupoid identities. 

5.13 Remark. Let G be a right cancellative LD-groupoid. Then G is idem-
potent (see 1.5(ii)) and pG = idG. Consequently, pG is a congruence and G/pG is 
idempotent. 

II.6 Left divisible left distributive groupoids— first observations 

6.1 Proposition. Let G be a left divisible LD-groupoid. Then: 
(i) pG is a congruence of G and G/pG is idempotent. 

(ii) The semigroups Jt\(G) and J(i(G) are right cancellative. 
(iii) Ji(G) = M{G) u Jir(G) u Jtr(G)Jt{(G) = Jf\G) u Jir(G) u Jt{G)Mr(G) 

and Jt\G) = Jt?(G)Jtr\G) = Jtr\G)M{(G). 
(iv) %(G) is either empty or a left ideal of G. 
(v) If %(G) 4= 0 and G is left-ideal-free then G is divisible. 

(vi) If %(G) 4- 0 then G is idempotent. 

Proof. See 1.12, 3.9, 4.1(iv), (v). • 

6.2 Proposition. Let G be an LD-groupoid and a left quasigroup and let ^(G) 
denote the subgroup in M*(G) generated by all LxL~l, x, y e G. Then: 

(i) y(G) is a normal subgroup of Jf*(G) and the corresponding factorgroup is 
cyclic. 

(ii) If a,b G G and (a, b) e uG then La, Lb are conjugate in J(?(G). 
(iii) G is medial iffLyL~lLz = LzL~lLyfor all x, y, z e G and iff <£(G) is abelian. 
(iv) 3Pr(G) is either empty or a left ideal of G. 
(v) If SPr(G) 4= 0 and G is left-ideal-free then G is a quasigroup. 

Proof, (i) We have L^Lr/L'1 = LzxLzL~lL;1 = LzxL-y
lLyzL-1 e &(G) for 

all x,y,ze G. The rest is clear. 
(ii) Let (a, b) e uG. Then b = f(a) for some / e Jt*(G) (see 1.22(i)) and we have 

Lb = fLaf~\ since f is an automorphism of G. 
(iii) G is medial iff LxyLz = LxzLy for all x, y, z e G. But Lxy = LxLyL~l, Lxz = 

LXLZL~\ and so G is medial iff LyL~lLz = LzL~lLz = LzL~lLy. If this is so 
then LyL~lLzL~l = LzL~lLyL~l = LzL~lLyL~l for all x,y,z,ueG, and 
hence i?(G) is abelian. Conversely, if =S?(G) is abelian then LyL~xLzL~l = 
L7LY LyLx and LyLx Lz — LZLX Ly. 
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(iv) See4.1(iv). 
(v) This follows immediately from (iv). • 

6.3. Example. Let G be a non-trivial group such that all non-unit elements of 
G are conjugate. Define a binary operation * on H = G — {l}by x * y = xyz~l. 
Then H(*) is a divisible LDI-groupoid and a left quasigroup. Moreover, pH^ = 
idH = g//(„) and H(*) is not right regular. 

6.4 Example. Let G(+) = Z2oo and define a multiplication on G by xy = — x + 2y. 
Then G becomes a divisible IM-groupoid (hence a DLgroupoid) and a right 
quasigroup. If a e G is such that a + 0 and 2a = 0 then L0 4= La and 
LoLo = L0La in Jt^G). Consequently, ^#/(G) is not left cancellative, 

6.5 Example. Let G( + ) = Z2oo, a e G, a + 0, 2a = 0 and xy = 2x — y + a 
for all x j e G . Then G is a divisible medial LD-groupoid and a left quasigroup. 
Moreover, Id(G) = 0 and G is not right distributive. Since every right cancellative 
LD-groupoid is idempotent, G is not a homomorphic image of an LD-groupoid 
which is also a right quasigroup. If x e G then <x>G ^ Cycr(2). 

6.6 Remark. Let G be a right divisible LD-groupoid. Then either Id(G) = 0 or G 
is idempotent (see 1.5(iv)). Similarly, either G satisfies xx == xx • x or xx + xx • x 
for every xeG (see 1.18). If pG is a congruence of G and G/pG is idempotent then 
there exists 1 < a < oo such that every cyclic subgroupoid of G is isomorphic to 
Cycr(a) (see 1.13). 

6.7 Example. Let G( + ) = Z2oo and let H = G u G(2). Define an operation * 
on H by a * x = a + 2x, a * (x, y) = ( — a + 2x, —a + 2y), (a, b) * x = —a — 2b + 4x 
and (a, b) * (x, y) = ( — a — 2b + 4x, —a — 2b + 4y) for all a, b, x, y e G. It is 
not difficult to check that H(*) is a left divisible LD-groupoid. 

Now, let e e G be an element such that 4e = 0 4- 2e. Then (0, 0) * (e, 0) = 
(0, 0) * (0, 0) and 0 * (e, 0) = (2e, 0) + (0, 0) = 0 * (0, 0). This shows that H(*) is 
not left regular. Further, pH^ = id// u {((a,b), (c, d))\a + 2b = c + 2d}, and we 
have ((2e, 0), (0, 0)) ̂  pH^y This also shows that the left divisible LDJ-groupoid 
H(*)/PH{*) 1s not left regular. 

II.7 Simple left distributive groupoids— first observations 

7.1 Lemma. Let G be a simple LD-groupoid. Put A = {ae G\ax = aafor each 
xe G} (i.e., A is the set of left constant elements of G)y B = {be A\bb e %(G)} 
and C = {ce A \ cc e A}. Then: 

(i) G = Au %(G) and A n %(G) + 0. 
(ii) For each aeA there exists an idempotent e(a)eId(G) such that aa = e(a) = ax 

for every xeG; if aeC then e(a) e C and e(a) is a left absorbing element ofG. 
(iii) A = B u C and B n C = 0. 
(iv) C is either empty or a right ideal of G. 
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(v) %(G) A<= A, %(G) B <= Band %(G) C c C. 
(vi) 7/* G contains at least three elements then either %(G) = G or C = G or 

card(%(G)) = card(fl) = card(C) = 1. 

Proof, (i) Let a e G. Then r = qaG = ker(La) is a congruence of G, and hence 
either r = G x G and a e A or r = idG and a e %(G). Thus G = A u #,(G). 
On the other hand, A n ^/(G) = 0, since G is non-trivial. 

(ii) For a e A, aa • aa = a • aa = aa = e(a) and the rest is clear. 
(iii) This follows from (i). 
(iv) If a e C and xeG then ax = aa = e(a) e C. 
(v) Let a e %(G), b e B, ceC and xeG. Then ab • ax = a- bx = ae(b), and 

hence Lab is not injective, ab $ %(G) and ab e A. But ab - ab = ae(b) e ^(G), 
since %(G) is a subgroupoid of G (see 4.1(i)), and so ab e B. Similarly, ac e A, 
ac ac = ae(c) and ae(c) • ax = a- e(c) x = ae(c), so that ac e C. 

(vi) Put r = (%(G) x %(G)) u (B x B) u (C x C). Then r is an equivalence and 
we are going to show that r is a congruence of G. 

For, let a,b,ceG, (a,b)er. If ce%(G) then (ca,cb)er by (v). If c$%(G) then ce/1, 
ca = cb and again (ca, cb) e r. We have proved that r is left stable. Further, if a, b, c e %(G) 
then ac,bee%(G) and (ac,bc)er. If a,beB then ac = e(a),bc = c(b), c(a),c(b)e^J(G)and 
again (ac,bc)er. If a,beC then ac,bceC by (iv) and we have (ac,bc)er. Finally, if 
a, b e%(G) and CGB (resp. ceC) then ac,bceB (iesp. ac,beeC) and (ac,be)er. 

We have proved that r is a congruence of G. If r = G x G then either #/(G) = G 
or B = G or C = G. However, if B = G then #/(G) = 0 and this is not possible. 
Finally, if r =(= G x G then r = idG and all the three sets are one-element. • 

7.2 It is easy to check that every two-element LD-groupoid is isomorphic to one 
of the following six pair-wise non-isomorphic two-element LD-groupoids: 

D(l) 0 1 

0 
1 

0 0 
0 1 

D(2) 0 1 

0 
1 

0 1 
0 1 

D(3) 0 1 

0 
1 

0 0 
1 1 

D(4) 0 1 

0 
1 

0 0 
0 0 

D(5) 0 1 

0 
1 

0 1 
0 0 

D(6) 0 1 

0 
1 

1 0 
1 0 

7.3 Consider the following three-element groupoid D(30) (see V.6.1): 

0(30) 0 1 2 

0 
1 
2 

0 0 0 
0 1 2 
1 1 1 

Then D(30) is a simple LD-groupoid and oD(30) is not an endomorphism of D(30). 
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7.4 Theorem. Let G be a simple LD-groupoid. Then exactly one of the 
following three cases takes place: 

(i) G is a two-element groupoid (and then G is isomorphic to one of the 
groupoids D(\),..., D(6)from 7.2). 

(ii) G is isomorphic to the LD-groupoid D(30)from 7.3. 
(iii) G contains at least three elements and G is left cancellative. 

Proof. Suppose that G contains at least three elements and that G is not left 
cancellative. Then %(G) 4- G. 

First, let C = G, where C is from 7.1. There is a mapping e: G -> Id(G) such 
that xy = e(x) and e(e(x)) = e(x) for all x,yeG. Since ker(e) is a congruence of 
G, either ker(e) = G x G or ker(e) = idG. If ker(e) = G x G then G is a Z-semi-
group, and then G contains just two elements (every equivalence is a congruence), 
a contradiction. If ker(e) = idG then x = e(x) for every x e G, G is an LZ-semi-
group and, again, G is a two-element groupoid. 

We have proved that C 4= G. By 7.1(vi), each of the sets %(G), B, C contains 
only one element, say %(G) = [a], B = {b}, C = {c}. Now, aa = a, ab = b, 
ac = c, ba = bb = be = a, ca = cb = cc = c (see 7.1), and hence G is iso­
morphic to D(30) (a -> 1, b -• 2, c -> 0). • 

7.5 Theorem, (i) The groupoids D(l),..., D(6), D(30) and Cycr(p), p > 3 
a prime number, are pair-wise non-isomorphic finite simple LD-groupoids. 

(ii) If G is a finite simple LD-groupoid then either G is isomorphic to 
one of the groupoids from (i) or G is an idempotent left quasigroup with 
PG = 1dG. 

Proof, (i) See 7.2, 7.3 and 1.6.9. 
(ii) In view of 7.4, we can assume that G is left cancellative. Then G is a left 

quasigroup, and hence pG is a congruence of G and G/pG is idempotent (see 
1.12). If pG = idG then G is idempotent. If pG = G x G then G is a right 
constant groupoid (see L6.10). • 

7.6 Theorem. Let G be a simple left cancellative LD-groupoid. Then: 
(i) Either G is pseudoidempotent or xx #- xx • x for every xe G. 

(ii) If G is pseudoidempotent then either G is isomorphic to D(2) or to Cycr(p)for 
a prime p > 2 or G is idempotent and pG = idG. 

(iii) If G is idempotent and pG = idG then there exists a simple LDI-groupoid 
Q such that Q is a left quasigroup, pQ = idg and G is a left strongly dense 
subgroupoid of Q and card(Q) = card(G). 

Proof, (i) This follows easily from 1.18(iv). 
(ii) This follows from the fact that pG is a congruence of G and G/pG is 

idempotent (see 5.2, 5.3 and 5.4). 
(iii) We can put Q = Qt(G) (see 5.10). • 
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7.7 Proposition. Let G be a simple LD-groupoid such that oG is an endo-
morphism of G (i.e., G satisfies the identity x • yy =-= xx • yy). Then either G is 
isomorphic to one of the groupoids D(l),..., D(6), Cycr(p), p > 3 being a prime 
number, or G is left cancellative, idempotent and contains at least three elements. 

Proof. Put r = ker(oG). If r = G x G then G is unipotent and xx = xx- xx = 
x • xx for every x e G, and hence G is not left cancellative and we can use 7.4 to 
show that G is isomorphic to one of D(4), D(5). 

Now, assume r = idG. With respect to 7.4, either G is isomorphic to one of D(l), 
D(2), D(3), D(6) or G is a left cancellative groupoid containing at least three 
elements. By 5.3, G is pseudoidempotent and the rest is clear. • 

II.8 Comments and open problems 

This chapter is based essentially on [Kep,81] and [Kep,94b] (see also [KepP,91], 
..., [KepP,95b] and [BashJK,?]). The ideal theory of left distributive groupoids 
(see II.2) was initiated by [Bir,86] and the important example 5.6 is taken from 
[Deh,89b]. 

The following problems remain open: 
Do there exist non-pseudoidempotent simple left cancelative LD-groupoids? 
Is pG a congruence of G for every right divisible LD-groupoid G? 
Is every (right) divisible LD-groupoid left regular? 
Is every left divisible LD-groupoid a homomorphic image of an LD-groupoid 

which is also a left quasigroup? 
Which LD-groupoids can be embedded into (left, right) divisible LD-groupoids? 

III. Subdirect decompositions of some non-idempotent 
left distributive groupoids 

III.l Introduction 

1.1 Let G be an LD-groupoid. We shall say that G is 
— delightful if satisfies the identity xx • y — x • yy; 
— strongly delightful if it is delightful and satisfies the identity (xx • y) z =-= xy • z; 
— an LDA-groupoid if is delightful and satisfies the identity x • xx =-= y • yy. 

1.2 Lemma. Let G be an LD-groupoid. Then: 
(i) x • yz = (xy • x) (xy • z) for all x,y,ze G. 

(ii) If G is elastic then x • yx = xy • x = (xy) (x • xx) e Id(G) for all x,yeG. 

Proof, (i) x • yz = xy • xz = (xy • x) (xy • z). 
(ii) xy • x = x • yx = xy • xx = (xy • x) (xy • x) = (x • yx) (x • yx) = x(yx • yx) = 

x(y • xx) = (xy) (x • xx). • 
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1.3 Theorem. Let G be a delightful LD-groupoid. Then: 
(i) G satisfies the identity x • xx == xx • x (i.e., rG = sG). 

(ii) Id(G) is an ideal of G and x • xxe Id(G) for every xeG. 
(iii) rG is an endomorphism ofG, rG(G) = Id(G) and rG | Id(G) is the identity mapping. 
(iv) H = G/Id(G) is an LDA-groupoid. 
(v) ker(rG)n =id{G}= idG. 

(vi) G is the subdirect product of Id(G) and H. 
(vii) Every block ofker(rG) is a subgroupoid and an LDA-groupoid. 

Proof, (i) Obvious, 
(ii) First, (x • xx) (x • xx) = x(xx • xx) = xx • xx = x • xx, x- xxe Id(G) and 

Id(G) is a left ideal by 1.5(i). Moreover, if aeld(G) and yeG then 
ay ay = a • yy = aa • y = ay and we see that Id(G) is an ideal, 

(iii) (x • xx) (y • yy) = (xx • xx) (y • yy) = (xx) (y • yy)2 = (xx) (y • yy) = x(y • yy)2 = 
x(y ' yy) = (xy) (xy ' xy) by (ii) and the rest is clear, 

(iv) This follows from (ii). 
(v) and (vi). If (a, b) e ker(rG) and a, be Id(G) then a = a • aa = b • bb = b. 

(vii) This is obvious. • 

1.4 Proposition. Let G be an LDA-groupoid. Then G contains just one 
idempotent element 0. Moreover, 0 is an absorbing element of G and x • xx = 0 = 
xx • x for every xeG. 

Proof. By 1.3(ii), Id(G) is an ideal, and hence Id(G) = {0} is a one-element set. • 

1.5 Remark. Let G be a delightful LD-groupoid and x,y,ze G. Then: 
x • xy = xx • xy = (xx • x) (xx • y) = (x • xx) (x • yy) = x(xx • yy) = x(x(yy • yy)) = 
x(x(yyy))eld(G), 
xx- y = x- yy = xy xy = (xy x) (xy - y), 
(xx- y)(xx • y) = xx- yy = x(yy • yy) = x(y • yy) = (xx • xx)y = (x • xx)y eId(G), 
x • yx = xy • xx = (xy • xy) x = (x • yy) x = (xx • y) x, 
(x • yx) (x • yx) = x(y • xx) = x(yy • x) = (x • yy) (xx) = (xy • xy) (xx) = (xy) (xx • xx) = 
(xy) (x • xx) e Id(G), 
(xy • x) (xy • x) = xy • xx = x • yx, 
xx • yz = (xx • y) (xx • z) = (x • yy) (x • zz) = x(yy • zz) = x(y(zz • zz)) = x(y(z • zz)) e 
Id(G), 
xx- yz = x(yz • yz) = x(y • zz), 
xy zz = (xy • xy) z = (x • yy) z = (xx • y) z. 

Moreover, if G is an LD^-groupoid then x • xy = (x • yx) (x • yx) = (xx • y) (xx • y) = 
xx- yz = 0. 

1.6 Proposition. Let G be an elastic delightful LD-groupoid. Then: 
(i) x- yz e Id(G) for all x,y,ze G. 

(ii) (xy • z) (xy • z) = (x • yy) z = (xx • y) z e Id(G) for all x,y,ze G. 
(iii) G is left semimedial. 
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Proof, (i) By 1.2(h), x • yx = xy • x e Id(G) for all x, y e G. However, Id(G) is 
an ideal by 1.3(H), and so x • yz e Id(G) by 1.2(i). 

(ii) (xy • z) (xy • z) = (x • yy) z = (xx • y) z e Id(G) by (i) (since x • yy e Id(G)). 
(iii) The assertion is clear if G is idempotent, and hence, with respect to 1.3(vi), 

we can assume that G is an LDA-groupoid. Then x • yz = xy • xz = 0 by (i) 
and xx- yz = x(yz • yz) = 0 also by (i). • 

1.7 Proposition, (i) A delightful LD-groupoid G is strongly delightful iff 
G/Id(G) is a semigroup. If this is so, then G is elastic and G/ld(G) is an 
A-semigroup. 
(ii) A groupoid G is strongly delightful LDA-groupoid iff G is an A-semigroup. 

Proof. Put H = G/Id(G). First, let G be strongly delightful. Then xy x = 
(xx - y) x = (x - yy) x = (xy • xy) x = xy xx = x • yx, G is elastic, x- yz e Id(G) 
by 1.6(i) and (xy • z) (xy • z) = xy zz = (xy • xy) z = (x • yy) z = (xx • y) z = xy z, 
so that xy z e Id(G) as well. This implies that H is a semigroup. 

Conversely, if II is a semigroup then both H and Id(G) are strongly delightful, 
and hence G is so by 1.2(vi). • 

1.8 Proposition. If G is a strongly delightful LD-groupoid then every block of 
ker(rG) is an A-semigroup. Moreover, G is a D-groupoid iff Id(G) is so. 

Proof. Use 1.3(vii) and 1.7(ii). • 

1.9 Theorem. Let G be a D-groupoid. Then G is strongly delightful, elastic and 
semimedial. 

Proof. First, xx- y = xy xy = x- yy by the left and right distributivity and we 
have proved that G is delightful. Now, by 1.3(vi), G is the subdirect product of Id(G) 
and H = G/Id(G), where Id(G) is idempotent (and hence strongly delightful) and 
If is an LIM-groupoid. Now, it suffices to show that II is strongly delightful. But 
II is a delightful D-groupoid, II contains an absorbing element 0 and, for u,u,w e II, 
uv • w = uw • vw = (uw • v) (uw • w) = (uw • v) (uw • ww) = (uw • v) ((u • ww) (w • ww)) = 0, 
since w • ww = 0. 

We have proved that G is strongly delightful. By L7(i), G is elastic and, by 
1.6(iii), G is left semimedial. Since G is right distributive, G is right semimedial 
by the left-right symmetry. • 

1.10 Example. Consider the following three-element groupoid G: 

G 0 1 2 

0 
1 
2 

0 0 0 
0 1 2 
0 0 0 
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Then G is an elastic LD-groupoid and Id(G) = {0,1} is not an ideal. Conse­
quently, G is not delightful. Furthermore, pG is a congruence of G, G/pG is 
idempotent and oG is an endomorphism of G. 

1.11 Example. Consider the following five-element groupoid G. 

G 0 1 2 3 4 

0 0 0 0 0 0 
1 0 0 3 0 0 
2 0 0 0 0 0 
3 0 0 4 0 0 
4 0 0 0 0 0 

It is easy to check that G is an elastic LIM-groupoid and that G is not strongly 
delightful (in this case, it means that G is not a semigroup). 

1.12 (i) Let G, H be delightful LD-groupoids, I = Id(G), J = ld(H)9 A = G/I 
and B = H/J. Let / : G -> H be a homomorphism. Then / ( / ) 9= J, and so 
g = f 11 is a homomorphism of I into J. If / is injective then, trivially, g is 
injective. If / is projective and UEJ then u = f(x) for some XE I and 
f(x • xx) = u - uu = u9 x • xx E I\ consequently, g is projective. Further, / induces 
a homomorphism h: A —• B9 h(x/l) = f(x)/J. Again, h is injective (projective), 
provided that / is so. 

(ii) Let G, be a non-empty family of delightful LDZ-groupoids and G = Y\ Gt> 
Then Id(G) = Y\ Id(Gf) and Y\ GI-/Id(GI-) is isomorphic to a subgroupoid of G/Id(G). 
Moreover, if all the LD,4-groupoids G,/Id(Gt) are unipotent (or Z-semigroups) then 
G/Id(G) is unipotent (or a Z-semigroup). 

III.2 Construction of strongly delightful left distributive groupoids 

2.1 (i) Let G be a strongly delightful LD-groupoid, / = Id(G), r = rG and, for 
every i e I9 let A(i) be the block of r such that i E A(i). Then / is an ideal of G, I is 
an LDLgroupoid, A(i) is an A-semigroup and i = 0, is an absorbing element of 
A(i) (see 1.3 and 1.8). Further, G = [jieIA(i) is the disjoint union. 

Let i9j E I. If a E A(I), b E A(j) then r(ab) = r(a) r(b) = ij E I and ab e A(ij). We 
get a mapping gtJ : A(i) x A(j) -> ,4(y), &• 7(a, b) = ab. 

Let i e /, A(i9 2) = A(i) A(i) = {xy\ x9 y e A(i)} and A(i91) = A(i) - A(i9 2). If 
j E I9 aE A(i9 2) and b e A(j) then ab e I n i4(y) = {i/},afc = y. Similarly, ba = j7 
and the following condition is satisfied: 

(1) 9iJ(A(i, 2) x A(j)) = {Q,} = giJ(A(i) x X(;, 2)) for all i,j el,i±j. 

For iel, let B(i) = {xe A(i)\xA(i) = 0, = A(i)x}. Clearly, A(i,2) £ B(i). If 
j e I, ae A(i, 1) and fc e A(j, 1) then afc e B(ij). Hence: 

(2) g^(A(i, 1) x A(j, 1) <= B(y) for all i,jel,i+j. 
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Finally, for ij e I, let C{ij) = gtJ{A{i, 1) x A{j, 1)) - {Q;}. If k e I, a e C{ij) 
and b e A{k), then ab = 0/}. k and ba = 0k. tj. Now, we can formulate our last 
condition: 

(3) If ij el J 4= j, C(i,j) # 0 and if k e I, k -# ij then 
gilk{C{ij) x t̂(k)) = {Q7.,} and gkJj{A{k) x C(y)) = {C\,}. 

(ii) Now, conversely, let I be an LDI-groupoid and A{i), i e I, be a family of 
pairwise disjoint ^-semigroups (their absorbing elements being denoted by 0,). For 
all ij el, i 4- ;, let there be given mappings gUj: A{i) x A{j) -> A{ij) such that the 
conditions (1), (2) and (3) from (i) are satisfied (the sets A{i, 1), A{i, 2), B{i) and 
C{ij) are defined in the same way as in (i)). 

Put G = [jieIA{i) and define an operation * on g by x * y = xy if x, y e A{i) 
for some i e I and x * y = gtj{x, y) if x e A{i), y e A{j) and i #- j . It requires just 
a tedious checking to show that G(*) is a strongly delightful LD-groupoid, 
Id(G(*)) = {Q | i e 1} ^ I and A{i), i e I, are just the blocks of ker(rG(„)). Clearly, 
G(*) is a D-groupoid iff I is so. 

2.2 Theorem. Every strongly delightful LD-groupoid is constructed from an 
LDI-groupoid and a family of disjoint A-semigroups in the way described in 2.1. 

Proof. See 2.1. • 

2.3 Example. Let I be an LDI-groupoid and A be an A-semigroup such that 
A n I = 0. Further, let g be a mapping of B = A — {0} (0 being the absorbing 
element of A) into I such that g{xy) = g{x) g{y) whenever x, y e B and xy =t= 0. 
Put G = B u I and define an operation * on G as follows: x * y = xy if x, x e B 
and xy #= 0; x * y = g{x) g{y) if x, y e B, xy = 0; x * y = xg{y) and y * x = g{y) x 
for all x e I, y e B; x * y = xy for all x, y e I. 

Clearly, I = Id(G(*)) is an ideal of the groupoid G(*) and G(*)/I = A. Moreover, 
rG^ | B = g is a homomorphism of G(*) onto I and G(*) is the subdirect product 
of I and A. Consequently, G(*) is a strongly delightful LD-groupoid and G(*) is 
distributive iff I is so. 

2.4 Example. Let I be an LDI-groupoid and A be an ^-semigroup such that 
I n A = {0}, where 0 is the absorbing element of A. Put G = I u A and define 
an operation * on G as follows: x * y = xy if either x, y e I pr x,yeA; 
x * y = xO and y * x = 0 x i f x e I and y e A. Then G(*) is a strongly delighful 
LD-groupoid, I = Id(G(*)) and G(*)/I ^ A. 

2.5 Proposition. 7/ze following conditions are equivalent for a delightul 
LD-groupoid G (and then G is strongly delightful): 

(i) (x, xx) e pGfor every xeG (i.e., G satisfies xy =--= xx • y), 
(ii) The factorgroupoid G/qG is idempotent. 

(iii) GG c Id(G). 
(iv) G/Id(G) /s a Z-semigroup. 
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Proof, (i) implies (ii). We have xy = xx • y = x • yy for all x, y e G, and hence 
(y, yy) e qG, which means that G/qG is idempotent. 

Proceeding conversely, we can show that (ii) implies (i) and the rest is clear. • 

2.6 Proposition. Let G be an LD-groupoid. Then the factorgroupoid G/tG is 
idempotent iff G is delightful and G/Id(G) is a Z-semigroup. 

Proof. If G/tG is idempotent then xx • y = xy = x • yy for all x, y e G. • 

I I I .3 Splitting strongly delightful left distributive groupoids 

3.1 Let G be a strongly delightful LD-groupoid. For every i e Id(G), let AG(i) 
(or only A(i)) be the block of ker(rG) containing i. Then A(i) is an ^-semigroup and 
i is an absorbing element of A(i). 

We shall say that G is balanced if all A(i), i e Id(G), are isomorphic. 
We shall say that G is splitting if G is isomorphic to the cartesian product I x A 

for an LD/-groupoid I and an ^-semigroup A; then Id(G) = /, AG(i) = A for every 
i e Id(G) and G is balanced. 

3.2 Lemma. Let G be a strongly delightful LD-groupoid. Then G is splitting 
iff there exist an A-semigroup A and isomorphisms g,: AG(i) -* A9 ie Id(G), such 
that g,(x) gj(y) = gtj(xy)for all ij e Id(G\ x e AG(i) and y e AG(j). 

Proof. The direct implication is clear and, as concerns the converse one, the 
mapping x -> (rG(x), grc(x)) e Id(G) x A is an isomorphism of G onto Id(G) x A. • 

3.3 Proposition. Let G be a strongly delightful LD-groupoid. The following 
conditions are equivalent: 

(i) G is splitting and AG(i) is a Z-semigroup for every i e Id(G). 
(ii) G is splitting and G satisfies the equivalent conditions of 2.5. 

(iii) G is balanced and G/ld(G) is a Z-semigroup. 

Proof. It suffices to show that (iii) implies (i). Coose u e Id(G) and, for each 
i e Id(G), let g, be an isomorphism of A(i) onto A(u). Then g,(x) g;(y) = gtj(xy) = u 
for all ij e Id(G), x e A(i), y e A(j) and we can use 3.2. • 

3.4 Proposition. Let G be a strongly delightful LD-groupoid such that G/Id(G) 
is a Z-semigroup and card(AG(f)) = card(AG(j)) for all iJeld(G). Then G is 
splitting. 

Proof. This follows from 3.3, since two Z-semigroups are isomorphic iff they 
have the same cardinality. • 

3.5 Proposition. Let G be a strongly delightful LD-groupoid such that Id(G) 
is a quasitrivial groupoid and card(_4G(f)) = 2 for every i e Id(G). Then G is 
splitting. 
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Proof. With respect to 3.4, it is enough to show that G/Id(G) is a Z-semigroup. 
Suppose, on the contrary, that ab $ Id(G) for some a9b e G. Then a e A(i)9 b e A(j)9 

i9j e Id(G), / =(= j9 ab e A(ij)9 an -# ij and a =# /, b 4- j . Since Id(G) is quasitrivial, 
we can assume that ij = i (the other case, ij = j9 being similar). Then a, ab e 
A(i) — {i}9a = ab9 a = ab- beId(G) and this is a contradiction with the fact that 
G is strongly delightful (see 1.7(i)). • 

3.6 Theorem. Let I be an LD-groupoid and A an A-semigroup. Then every 
balanced strongly delightful LD-groupoid G with Id(G) = I and AG(i) ^ A 
(i e Id(G)) is splitting iff at least one of the following three cases takes place: 

(a) I is trivial. 
(b) A is trivial. 
(c) I is quasitrivial and card(^l) = 2 (then A is a Z-semigroup). 

Proof. If I is trivial then G is an ^-semigroup. If A is trivial then G is 
idempotent. If (c) is true then G is splitting by 3.5. The rest of the proof is divided 
into three parts: 

(i) Let / be non-trivial and let A be not a Z-semigroup. Consider a family A(i)9 

i E I9 of pair-wise disjoint A-semigroups isomorphic to A and denote by 0, the 
absorbing element of A(i). Further, put G = [jiElA(i) and g^x9 y) = 0tj for 
all i9j E I9 i #- j9 x E A(i)9 y e A(j). It is easy to check that the conditions (1), 
(2) and (3) from 2.1 are satisfied and we obtain a strongly delightful LD-groupoid 
G(*) such that Id(G(*)) = I and AG^(i) = A(i) ^ A. In particular, G(*) is 
balanced and G(*)/Id(G(*)) is not a Z-semigroup. Furthermore, x * y E Id(G(*)), 
whenever x9 y e G and rG^(x) 4= rG^(y). Now, suppose that G is splitting and 
that cp : K = I x A -» G(*) is an isomorphism. Since A is not a Z-semigroup, 
there are a9b E A such that ab + 0. Let i9j e I9 i 4= j9 u = (/, a), v = (j9 b), 
UVE I x A. Then rK(u) + rK(v) and uv $Id(K), and hence r^(cp(u)) 4= r^(cp(v)) 
and cp(u) cp(v) <£ Id(G(*)), a contradiction. 

(ii) Suppose that I is not quasitrivial and that card(A) = 2. Consider a family A(i) 
of pair-wise disjoint two-element Z-semigroups with the absorbing elements 
0, and put G = \JieIA(i). There are k, / E I such that Ic 4 W 4 /, and hence 
also k 4= /. Let A(k) = {0k9 a}, A(l) = {0l9 b} and A(kl) = {0kl9 c\ The elements 
a, b, c are pair-wise different. Now, define mappings gUj: A(i) x A(j) -> A(ij) 
for all i9j E I, i + j , by gtJ(x9 y) = 0tj in all cases except for the one when 
i = k9j = /, x = a, y = b. Then gk,i(a9 b) = c. Obviously, the conditions (1), 
(2), (3) from 2.1 are satisfied and we get a strongly delightful LD-groupoid 
G(*) such that Id(G(*)) ^ 7 and card(^G{#)) = 2. Further, a * b = c £ Id(G(*)), 
G(*)/Id(G(*)) is not a Z-semigroup and G(*) is not splitting by 3.3. 

(iii) Let I be non-trivial and let A be a Z-semigroup containing at least three 
elements. Again, consider a family A(i)9 i E I, of pair-wise disjoint A-semigroups 
isomorphic to A and with the absorbing elements 0, and put G = [jieIA(i). 
There are k, / e /, k =# /, and a e ^(k) - {Q,}, b e A(l) = {Q}, c e A(k/) - {Q,,} 

58 



such that the elements a, b, c are pair-wise different. Now, we can proceed 
similarly as in the foregoing part. • 

3.7 Example. Let I be a non-trivial LDI-groupoid and A be a non-trivial 
^-semigroup such that A n I = {0}, where 0 is the absorbing element of A. Put 
G = I u A and define * by x * y = xy for all x, y e I, u * v = uv for all u,vs A 
and x * u = Ox, u * x = xO for all x e I, u e A (see 2.4). Then G(*) is a strongly 
delightful LD-groupoid, Id(G(*)) ^ I, G(*)/Id(G(*)) ^ A and G(*) is not splitting. 

3.8 Proposition. Let G be a regular delightful LD-groupoid. Then G is 
isomorphic to the cartesian product of a regular LDI-groupoid and a Z-semigroup. 
Hence G is strongly delightful and balanced. 

Proof. Easy. • 

III.4 Varieties of strongly delightful left distributive 
groupoids — first observations 

4.1 Throughout this section, let J denote the variety of LDI-groupoids and st 
that of ^-semigroups. Further, let srf0 denote the variety of trivial groupoids, s/{ the 
variety of Z-semigroups, stf2 the variety of commutative ^4-semigroups satisfying 
the identity xx — yy ((i.e., the variety of unipotent commutative ^-semigroups), 
s/3 the variety of commutative ^-semigroups, s/4 the variety of unipotent 
A-semigroups and let stf5 = stf. 

It is easy to check that s/0 ^ s/{ ^ s/2 ^ s/3 ^ s/5, s/2 c= s/4 ^ stf5, and that 
there are no other inclusions except for those which follow by transitivity. 
Moreover, s/0, ..., s/5 are pair-wise distinct and they are the only subvarieties of s/. 

4.2 Proposition. Let Y be a variety of strongly delightful LD-groupoids. 
(i) if is generated by {Y n J) u (TT n s/). 

(ii) If 'Yn s4 <= stf3 and i^ns/^ $4\ then every groupoidfrom Y is commutative. 

Proof, (i) This result follows immediately from the fact that every strongly de­
lightful LD-groupoid is a subdirect product of the LDI-groupoid Id(G) and the 
^-semigroup G/Id(G). 

(ii) Let, on the contrary, G e V be not commutative. Since G/I, I = Id(G), is 
a commutative ^-semigroup, the LDI-groupoid I is non-commutative, i.e. 
ab #- ba for some a,bel. Further, ir c\$4 <£ $4X and there exist II ei^nsrf 
and u,ve H such that uv $ Id(II). The groupoid K = I x II belongs to Y, and 
so K/ld(K) is commutative. On the other hand, w, v $ Id(II), and hence x = 
(a, u), y = (b, v) $ Id(K); furthermore, xy =# yx, xy $ ld(K) and this shows that 
K/ld(K) is not commutative, a contradiction. • 

4.3 Proposition. Let if be a variety of LDI-groupoids and ^U a variety of 
A-semigroups such that either every groupoid from iV is commutative or 
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°U 4- si2, s/3. Denote by iT the class of strongly delightful LD-groupoids G such 
that Id(G) e Or and G/Id(G) E °U. Then y is a variety of LD-groupoids and 
f n / = f ; f n i - - f 

Proof. In view of 1.12(i), iT is closed under subgroupoids and homomorphic 
images. If °tt = sf0, s/5 then iT is clearly closed under cartesian products. If °U = 
sfl9 sf29 ^3> ̂ 4 then the result follows from 1.12(ii). • 

4.4 Let iT be a variety of strongly delightful LD-groupoids and denote by S£\y) 
the lattice of subvarieties of iT (more precisely, to be in better accordance with 
the basic set theory, the dual lattice of fully invariant congruences of a free strongly 
delightful LD-groupoid of countably infinite rank). For 2T e y put <p(2T) = 
(2TnJ,2Tnsf)e S£(iTn J) x JS?(TT n sf) and let 2R be the collection of ordered 
couples ( # ; °U\ where itr = S£{V'n «/), ^ E JS?(lTr. ^ ) , and either every groupoid 
from iV is commutative or ^ #- J^2, j ./3 . Then 90? is a lattice with respect to the 
induced ordering ( ( ^ , %) < (% %) iff HTX = iir2 and % = %) and q> is an 
isomorphism of the lattice S£(ir) onto 9J? (this follows easily from 4.2 and 4.3). 

Now, put itr = iT c\ J and ^ = y c\ stf. We have the following six cases: 
(i) 91 = st0, and then TT = HT c , / and if(TT) = jS?(ir). 

(ii) ^r = s/h and then JS?(TT) ^ ST(Hr) x % (where % denotes a two-element chain), 
(iii) °U = s/2, and then every groupoid from y is commutative and S£(iT) ^ 

i f [if) x % (where #3 is a three-element chain), 
(iv) °U = s/3, and then every groupoid from iT is commutative and S£\y) = 

S£\if) x % (where % is a four-element chain), 
(v) ^ = sf4, and then ^ ( T T ) ^ 2R, where 2R = {(iTl9 W{) \ iVx e S£(iV\ and either 

°UX = sf0, s/u s/4 or every groupoid from iVx is commutative and °l/x = srf2\ 
(vi) W = st5, and then S£(y) ^ SR, where SR = {(1TU <ttx) \ HTX e JSf(iT), and either 

^ i = -^o- ̂ i - ^45 ̂ 5 or every groupoid from HTX is commutative and °UX = sf2, sf3\ 

4.5 Remark. Let iT be a variety of strongly delightful LD-groupoids, # " = 
y n «/ and tfl = y n srf. Suppose that ^ $ ^ and ^ contains some non-com­
mutative groupoids. Then stf2 = 6lle f^4, ^s] and the varieties sfh sf2, sf4, yh y2 

(where iTx is generated by HT u sfx and ir2 by #^ u «a/4) are subvarieties of TT and 
form a five-element non-modular sublattice of S£\iT). Consequently, the lattice 
S£(iT) of subvarieties of iT is not modular. 

4.6 Construction. Let y be a variety of strongly delightful LD-groupoids such 
that both iV = y n J> and ^ = y n ^ are non-trivial varieties. Let X and Y be 
two disjoint non-empty sets of the same cardinality and let f : X -> Y be a bijection. 

Now, let G(*) be a free groupoid in HT having Y as a set of free generators and, 
similarly H(o) be free over X in %\ H(o) is then an ^-semigroup and possesses 
an absorbing element 0. Put F = G u (H — {0}), and define a mapping g: K = 
H — {0} -• G as follows: g(x) = f(x) for every x e X; if x9 y E X and x O ^ O 
then g(x O y) = f(x) * f(y). Notice that the mapping g is well defined: If x O y =)= 0 
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then necessarily x, y e X and x o y = x{0 y{ implies that either x = xu y = y{ 

(and then f(x) * f(y) = f(xi) * /(yi)) or x = yu y = xx. However, in the latter 
case, fy c j</3? o]i ^ j / i 9 every groupoid from iV is commutative by 4.2(ii) and 
again f(x) * f(y) = f(xx) * f(yx). 

Now, define a multiplication on F: uv = u O v for all u,ve K, u O v 4- 0; 
wv = g(w) * g(v) for all u, ve K,u O v = 0;uv = g(u) * v and vu = v * g(u) for all 
ueK,veG\uv = u * v for all w, v e G. It is easy to check that F is a free groupoid 
in y and that X is a set of free generators of F. 

III.5 Left distributive groupoids with just one idempotent element 

5.1 Let G be an LD-groupoid such that card(ld(G)) = 1. By 1.5(i), Id(G) = {z} 
is a left ideal and this means that z is a right absorbing element. Throughout this 
section, we shall use the notation z = 0 (more precisely, z = 0G). 

5.2 Proposition. Let G be an LD-groupoid such that card(ld(G)) = 1. Then: 
(i) The set A = [ae G\0a = 0} is a left ideal of G. 

(ii) x • Oy = 0 • xy = Ox • Oy for all x, y e G. 
(iii) If G is left cancellative then A is left strongly prime. 
(iv) If either G is right regular or L0 is projective then (x, Ox) e pGfor every xeG. 
(v) If G is elastic then 0 is an absorbing element of G (i.e., A = G). 

(vi) If G is a semigroup then 0 is an absorbing element of G. 
(vii) If G is right distributive then 0 is an absorbing element of G. 

Proof, (i) If ae A and xeG then 0 • xa = Ox • 0a = Ox • 0 = 0. 
(ii) x - Oy = xO - xy = 0 - xy = Ox - Oy. 
(iii) If ab e A then a0 = 0 = 0 • ab = a • Ob (see (ii)), and hence 0 = Ob and be A. 
(vi) This follows easily from (ii). 
(v) By (ii), Ox = xO • x = x • Ox = Ox • Ox, and hence Ox e Id(G) and Ox = 0 

for every xeG. 
(vi) This follows from (v), since every semigroup is elastic, 

(vii) Since G is right distributive, Id(G) = {0} is a right ideal, and so 0 is left 
absorbing. • 

5.3 Proposition. An LD-groupoid G is an LDA-groupoid iffG is delightful and 
card(Id(G)) = 1. 

Proof. See 1.3 and 1.4. • 

5.4 Proposition. Let G be a unipotent LD-groupoid. Then: 
(i) card(ld(G)) = 1 and xx = 0 for every xeG. 

(ii) G is delightful iff 0 is an absorbing element. 
(iii) (x, xx) e pG for every xe G iff G is a Z-semigroup. 

Proof, (i) and (ii) are obvious. 
(iii) If (x, 0) e pG for every xeG then 0 = yy = Oy and xy = Oy = 0. • 
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5.5 Proposition. Let G be a groupoid satisfying the identity x • yz=-u • vw. Then: 
(i) G is an LD-groupoid and card(ld(G)) = 1. 

(ii) GG ^ A = [ae G | Oa = 0} and A is an ideal of G. 

Proof, (i) Obviously, G is an LD-groupoid and card(ld(G)) < 1. Now, if 
0 = a-bc,a,b,ceG then 0 • 0 = 0(a • be) = 0. 

(ii) Obvious. • 

5.6 Let G be a groupoid satisfying the identity x • yz — u • vw. Then G is an 
LD-groupoid and if G is, moreover, delightful then we shall say that G is an 
LDB-groupoid. 

5.7 Proposition, (i) Every LDB-groupoid is an LDA-groupoid. 
(ii) Every unipotent LDA-groupoid is zeropotent. 

(iii) Every zeropotent LD-groupoid is an LDA-groupoid. 
(iv) Every finite zeropotent LD-groupoid is an LDB-groupoid. 

Proof, (i), (ii) and (iii). Obvious, 
(iv) Let G be a finite zeropotent LD-groupoid and denote by Q the set of ordered 

triples (a, b, c) e G® such that a e be -# 0. 
Now, define a mapping f: G x G x N0 -+ G by f(a, b, 0) = a, f(a, b, 1) = ab 

and f(a, b, n) = f(a, b, n — 1) f(a, b,n — 2) for all a,beG and n > 2. The rest 
of the proof is divided into five parts: 

(ivl) Proceeding by induction on n > 0, we show that f(ab, b, n) = f(a, b,n + 1). 
Indeed, the equality is clear for n < 1. However, if n > 2 then f(ab, b, n) = 

f(ab, b, n - 1) f(ab, b,n - 2) = f(a, b, n) f(a, b, n - 1) = f(a, b, n + 1). 
(iv2) By induction on n > 0, we show that af(a, b, n) = 0. 
First, we have af(a, b, 0) = aa = 0 and af(a, b, 1) = a • ab = aa • ab = 0 • ab = 0. 

For n> 2, af(a,b,n) = a• f(a,b,n— l)f(a,b,n — 2) = af(a,b,n — 1)• af(a,b,n — 2) = 
0 0 = 0. 

(iv3) By induction on n > 1, we show that f(a, b, n) (f(a, b, n — 1) c) = a • be 
for all a,b,ce G. 

For n = 1, the equality is just the left distributive law. For n > 2, we can write 
f(a, b, n) (f(a, b,n-\)c) = (f(a, b,n - 1) f(a, b, n - 2)) (f(a, b,n-\)c) = 
f(a, b,n - 1) (f(a, b, n - 2) c) = a • be. 

(iv4) Let (a, b, c) e Q. We are going to show by induction on n > 0 that the 
elements f(a, b, 0),..., f(a, b, n) are pair-wise different. 

For n = 0, there is nothing to prove. Let n > 1. Then, by induction, the elements 
f(a, b, 0),..., f(a, b, n — 1) are pair-wise different. On the other hand, ab- ac = 
a • be -j= 0, and hence (ab, a,c)eQ and f(ab, a, 0),..., f(ab, a, n — 1) are also pair-wise 
different. Using (ivl), we see that the elements f(a, b, 1),..., f(a,b,n) are pair-wise 
different and it remains to show that a = f(a, b, 0) + f(a, b, n). If this is not true then 
a • be = f(a, b, n) (f(a, b, n — 1) c) = a • f(a, b, n — 1) c = af(a, b, n — 1) • ac = 
0 • ac = 0 (by (iv3) and (iv2)), a contradiction. 

(iv5) It follows immediately from (iv4) and the finiteness of G that Q = 0. • 
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5.8 Example. Consider the following three-element groupoid G: 

G 0 1 2 

0 
1 
2 

0 0 0 
0 0 0 
0 0 1 

Then G is a commutative LDB-groupoid, but G is not unipotent. 

5.9 Remark. There are examples of infinite zeropotent LD-groupoids which 
are not LDB-groupoids (see [Deh, 98b]). 

III.6 Comments and open problems 

The material of this chapter is based mainly on [Rue, 66] and [JezKN, 81]. 
Proposition 5.7 appeared in [Jez, 95]. 

A general task is to find various classes of LD-groupoids with "nice" subdirect 
decompositions into idempotent LD-groupoids and LD-groupoids having just 
one idempotent. Also, more information on the latter groupoids should be of 
interest. 

IV. Constructions and examples of left distributive groupoids 

IV.1 Various constructions of left distributive groupoids 

1.1 Let be a right constant groupoid and let / be the transformation of G such 
that xy = /(>') for all x, y e G. Then: 

(i) G is a medial LD-groupoid. 
(ii) G is right distributive (or delightful, strongly delightful, elastic, associative) 

iff/2 = / . 
(iii) G is idempotent iff / = idG. 
(iv) G is commutative iff / is constant. 
(v) G is left symmetric iff f2 = idG, 

(vi) G is right symetric (or semisymmetric, symmetric) iff G is trivial. 
(vii) Id(G) = {aeG\f(a) = a} and Id(G) is an ideal of G iff Id(G) * 0 and 

P = f 
(viii) G is regular. 
(ix) G is left cancellative (left divisible) iff / is injective (projective). 
(x) Both oG = sG and xG are endomorphisms of G. 

(xi) pG = G x G (and hence pG is a congruence of G and G/pG is idempotent). 
(xii) qG = tG = ker(/). 
(xiii) (a, b) e z^G iff a = fn(b) for some n > 1. 
(xiv) (a, b) e zrG iff aef(G). 
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1.2 Example. Define an operation * on the set f\l of positive integers by x * y = 
y + 1. Then G = N(*) is a right constant groupoid and an LZ)-groupoid (see 1.1). 
Furthermore, G = <1>G, i.e., G is cyclic. By 1.1 (xii), (a, b) e zUG iff a > b, and hence 
zlG is irreflexive and z\G = > is the dual of the usual ordering of the set iM. 

1.3 Let G be a non-trivial groupoid such that G = A u B, where A is the set of 
left neutral elements of G and ax = ay e Id(G) for all a e B and x,yeG (in 
particular, every element from B is left constant and A n B = 0). Then: 

(i) G is an LD-groupoid. (Indeed, if a, b, c e G then a • be = be = ab • ac for 
a e A and a • be = e = ee = ab • ac for a e B and c = ax e Id(G).) 

(ii) Id(G) = A u C, where C = B and C is the set of left absorbing elements of G. 
(iii) Id(G) is an ideal of G iff either C = B (i.e., G is idempotent) or B = G (and 

then G is a left constant groupoid). 
(iv) G is idempotent iff C = B (i.e., every element from B is left absorbing). 
(v) G is distributive (or delightful, strongly delightful) iff either B = G (and then 

G is a left constant groupoid) or C = B and card(B) > 1 (and then either A = G 
and G is an RZ-semigroup or B = {0} and G = A[0]). (Indeed, let G be 
distributive and a e A. Then x = ax = aa • x = ax • ax = xx for each xeG.lf 
zeC then z = zx = az • x = ax • zx = xz and z is an absorbing element.) 

(vi) G is elastic iff aae B for each a e B (i.e., iff either B = 0 or B is 
a subgroupoid of G). 

(vii) pG is a congruence of G. 
(viii) G/pG is idempotent iff aae B for each ae B (see (vi)). 
(ix) oG is an endomorphism of G iff either card(X) = 1 and xx e A for each 

x e G or aa e B for every ae B. (Let e = aa$B fox some a e 5. Then, for 
each ce/4, c = ec = aa • cc = ac • ac = ee = e. Moreover, for be B, 
bb = e • bb = aa- bb = ab • ab = ee = e). 

1.4 Let G be a groupoid such that G = A u B, where A is a subgroupoid of 
G, .4 is an LD-groupoid, B 4- 0 and every element from £ is left neutral and right 
absorbing in G. Then: 

(i) G is an LD-groupoid. 
(ii) G is distributive iff A is a DJ-groupoid satisfying the identities x =--= yx • x and 

xy == y xy. 
(iii) G is idempotent (or delightful, strongly delightful, elastic) iff A is idempotent. 
(iv) pG is a congruence of G iff pA is a congruence of A and the set of left neutral 

elements of A is either empty or a left ideal of A. 
(v) (x, xx) e pG for every x e G iff (a, aa) G p^ for every ae A. 

(vi) oG is an endomorphism of G iff oA is an endomorphism of A. 

1.5 Let G be an LD-groupoid and n > 1. Put H = G(") (the set of ordered 
rc-tuples) and define an operation * on H by 

(xl9..., xn) * (yb ..., y„) = (xi(x2(...(xnyi))),..., x1(x2(...(xnyn)))). 
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Then H(*) is an LZ)-gropoid. Moreover, if G is left cancellative (left divisible) then 
//(*) is so. 

1.6 Let G be an LD-groupoid and H = (J,>i G '̂l Define an operation * on H by 

(x1?..., xn) * (yb ..., ym) = (x!(...(x„yi)),..., Xi(...(x,,ym))). 

Then H(*) is an LD-groupoid. Moreover, if G is left cancellative (left divisible) 
then H(*) is so. 

For n > 1, let Hn = (J?=1 G
w. Then Hn is a left ideal of if(*) and H„ is left 

strongly prime. 
Similarly, all G^ are left strongly prime left ideals of H(*). 

1.7 Let / be an endomorphism of an LD-groupoid G such that (/(x), f2(x)) e pG 

for every xe G. Define an operation * on G by x * y = f(xy) (= f(x) f(y)). Then 
G(*) is again an LD-groupoid. If G is idempotent then oG^ = / , and hence oG^ is 
an endomorphism of G(*) and (x, x * x) e pG^ for every x e G. 

1.8 (i) Let G be an LD-groupoid such that / = oG is an automorphism of G and 
(x, xx) G pG for every XE G (i.e., G satisfies xy == xx • y). Put x O y = f~l(xy) 
(= f~\x) f~l(y)) for all x,yeG. Then G(o) is an LD/-groupoid, / is an 
automorphism of G(o), (/(x), f2(x)) e pG^ for every xe G and xy = f(x O y) 
for all x, y G G (compare with 1.7). 

(ii) Let G be an LD-groupoid such that oG is an injective endomorphism of G. 
Starting from the imbedding o(G) £\ G, we can construct a chain G = G0 ~\ 
Gx <~\ G2 <~\ ... 9 Gj c Gl+1 9 ... of groupoids isomorphic to G such that 
o(Gi+l) = G,. Then H = (J>oG, is an LD-groupoid satisfying the same 
identities as G and oH is an automorphism of H. 

1.9 Proposition. Let G be an LD-groupoid and e$G. Then: 
(i) G[e 

(ii) G{e 
is an LD-groupoid. 
is an LD-groupoid. 

(iii) G\e} is an LD-groupoid iff G is an idempotent groupoid satisfying the 
identities xy == x • yz and xy == xy • x. 

(iv) G{e}/s arz LD-groupoid iffG is an idempotent semigroup satisfying xy == xyx. 

Proof, (i) and (ii) are easy, 
(iii) Assume that G[e} is an LD-groupoid. Then xy = x- ye = xy xe = xy x and 

x = xe = x • ey = xe • xy = x • xy for all x, y e G. From this, x = x(x • xx) = xx 
and x • yz = xy • xz = (xy • xz = (xy • x) (xy • z) = (xy) (xy • z) = xy. 

(iv) Use 1.29(ii). Q 

IV.2 Group constructions of left distributive groupoids 

2.1 Let / be an endomorphism of a group G, g(x) = x/(x)_1 for every x e G, let 
a G G and let x * y = g(x)/(y) a (= x/(x)_1/(y) a = x/(x_1y) a) for all x.yeG. 
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Now, x * (y * z) = x * (y * z) = x * (g(y)f(z) a) = g(x)fg(y)f2(z)f(a) and (x * y) * 
(x*z) = (g(x)f(y) a) * (g(x)f(z) a) = g(g(x)f(y) a)fg(x)f2(z)f(a). Consequently, 
x * (y * z) = (x * y) * (x * z) iff g(x) fg(y) = g(g(x)f(y) a)fg(x). However, g(x)fg(y) = 
xf(x)~l f(y) f2(y)~l and g(g(x) f(y) a) fg(x) = g(xf(x)'1f(y) a) f(xf(x)~l) = 
x^-'fW^fW-V^-'f^^-VWf^-^x^-'^afW-'f2^)-1-
Thus we have proved the following assertion (the other assertions are also easy to 
check): 

(i) G(*) is an LD-groupoid iff f(a) = a. 
(ii) x * x = xa for every x e G. 

(iii) G(*) is a D-groupoid iff a = 1 and fg(x)fg(y) = fg(y)fg(x) for all x, y e G. 
(iv) Either Id(G(*)) = 0 or a = 1 and G(*) is idempotent. 
(v) G(*) is a regular groupoid. 

(vi) G(*) is left (right) cancellative ifff(g) is injective. 
(vii) G(*) is left (right) divisible iff f(g) is projective, 

(viii) oG(+) is an endomorphism of G(*) iff g(a)f(x) = f(x) g(a) for every x e G. 
(ix) (w, v)epG[m) iff f(u~lv) = u~lv. 
(x) If f(a) = a (see (i)) then pG^ is a congruence of G(*). 

2.2 Let f be an endomorphism of a group G, let a e G and let x * y = 
xf(y) af(x)~l for all x,yeG. 

Now, x * (y * z) = x * (yf(z) af(y)~l) = xf(y)f2(z)f(a)f2(y)-laf(x)~l and 
(x * y) * (x * z) = (xf(y) af(x)"1) * (xf(z) af(x)"1) = 
xf(y) af(x)-'f(x)f2(z)f(a)f2(x)-^ af2(x)f(x)f(a)^f2(y)^f(x)^ = 
x f ^ a f ^ f ^ f ^ ^ a f ^ f ^ ) - 1 ^ ) - 1 ^ ) - 1 . Consequently, x * (y * z) = 
(x * y) * (x * z) iff f^f^f2^)"1 a = af^f^f^x)"1 af2(x)f(a)-*f2(y)-\ 
or equivalent ,̂ f^z)"1 a-y2(z) • f(a) • f2^)"1 af2(y) = f(a) • f2(x)^ af2(x) • f(a)"1. 

If af2(u) = f2(u)a for every ueG then the equality x *(y *z) = (x *y) *(x*z) is 
equivalent to a_1f(a) a = f(a) af(a)-1, which is the same as af(a) a = f(a) af(a). 

Conversely, if G(*) is an LD-groupoid then 1 * (1 * 1) = (1 * 1) * (1 * 1) implies 
a"lf(a)a =f(a)af(a)~l and l*(l*z) = (l*l)*(l*z) implies f2(z)a'^^z)f(a)a = 
f(a) af(a)"1 = a-'f(a) a,f2(z) a-'f

2(z) = a~l and a~lf2(z) = f2(z) a~l for every 
z e G; of course then also af2(w) = f2(w) a for every ueG. 
(i) G(*) is an LD-groupoid iff af(a) a = f(a) af(a) and af2(w) = f2(w) a for 

every ueG. 
(ii) x * x = xf(x) af(x)-1 for every x e G. 

(iii) G(*) is idempotent iff a = 1. 
(iv) G(*) is left regular, 
(v) G(*) is left cancellative (left divisible) iff f is injective (projective). 

2.3 Let f be an endomorphism of a group G and let a e G. 
(i) If x* y = axf(x)'lf(y) (= axf(x"V)) for all x , y e G then G(*) is an 

LD-groupoid iff f(a) = a and auf(u)~l = uf(u)~l a for every ueG. 
(ii) If x * y = xaf(x)~1f(y) (= xaf(x-1)) then G(*) is an LD-groupoid iff f(a) = a. 
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(iii) If x * y = xf(x)~x af(y) then G(*) is an LD-groupoid iff f(a) = a and 
af(f(u) w"1) = f(f(u) u~l)a for every ueG. 

(iv) If x * y = tfx/(y)/(x)_1 (= ax/(yx-1)) then G(*) is an LD-groupoid iff 
f(a) = a and a e Z(G) (the centre of G). 

(v) If x * y = xa/(y)/(x)_1 (= xa/(yx-1)) then G(*) is an LD-groupoid iff 
f(a) = a and af(u) = f(u) a for every ueG. 

(vi) If x * y = x/(y)/(x)_1 a (= xf(yx~l)a) then G(*) is an LD-groupoid iff 
f(a) = a and af(u) = f(u) a for every ueG. 

IV.3 One particular example 

3.1 Throughout this section, let F be a free group with an infinite countable 
basis {al9a29a39...}. 

For every / > 1, define endomorphisms s, and tt of F by s{a) = atai+la~l
9 

t{a) = ai+b s{ai+l) = ai9 t{ai+l) = a~_\aiai+l and s,{a,) = t{a^) = a, for every 
j> IJ + Ui + 1. 

Clearly, stt{ak) = ak = tts{ak) for each k > 1 and this shows that si9 t( are 
mutually inverse automorphisms of F. 

Let 5 denote the subgroup generated by all s, in the automorphism group of 
F and let T be the subgroup generated by sj9 j > 2. 

3.2 Lemma. stSi+lSi = si+lSiSi+l for every i > 1. 

Proof. Put / = stSi+lSi and g = Sf+iS^+i. Then /(a,) = a, = g(aj) for j + i9 i + 1, 
i + 2 and f(a) = SA+i^+iflr1) = s{aiai+lai+2ar+\arl) = aiai+xai+2a-r+\a~l = 
Si+i(aiai+la~l) = s^^a,) = g(a)9 f(ai+l) = stSi+l(a) = s{a) = api+larx = 
Si+i(aiai+2a-{) = si+ls{ai+lai+2a-+\) = g(ai+l)9 f(ai+2) = SiSi+l(ai+2) = s{ai+1) = 
at = si+l(at) = s} + ls{ai+l) = g(ai+2). • 

3.3 Lemma. stSj = s^for all 1 < i < i + 2 < j . 

Proof. Similar to that of 3.2. • 

3.4 Lemma. Let i > 1 and let n be an integer. Then s{a") = aidl+la~x
9 

s{a"+l) = a" and s{af) = a" for every j > l9j + i9 i + 1. 

Proof. The equalities follow easily from the definition of st. • 

3.5 Every element w e F, w 4= 1, has a uniquely determined reduced form 

w = akil... a%9 

where n > 1, kl9..., kn are non-zero integers and ix + i2 + i3 + ... =|= in. 
Now, let P̂ T (V) denote the set of w e F, w #= 1, such that ix + \ + in (i{ + 1,2, 

in + 1, 2). 

3.6 Lemma. I/i + 1 rhen s{W) = W. 
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Proof. Let E be the subgroup of F generated by {a2, a3,...} and let E* = E — {1}. 
Clearly, s{E*) = E* = t{E*). Now, let weW. Then just one of the following 
cases takes place: 
(i) weE* and s{w), t{w) e E* <~\ W. 

(ii) w = uxa
nxu2a

n
x
2u3... an

x
kuk+x, where k > 1, ul9..., Mfc+1 £ E* and n-,..., nfc are 

non-zero integers. Then s,(w) = s{ux) a
n
x
x st(u2) a

n
x
2... an

x
kst(uk+x) e W and, simi­

larly, tt(w) eW. • 

3.7 Lemma. sx(axWax~
x) ~\ axWax~

x. 

Proof. Let w eW. We have to distinguish the following cases: 
(i) weV. 
Then sx(w) e V, sx(axwax~

x) = axa2ax~
x sx(w) axa2~

xa~x, a2a~x sx(w) axa2
x e W. 

(ii) w = a2. 
Then sx(axwax~

x) = axa2ax~
xa\axa2

xa~x = axa2a\a2
xax~

x and a2a\a2
x e W. 

(iii) w = akv, veV. 
Then s^aiwaf1) = axa2ax~

xa\sx(v) axa2~
xa~x = axa2a\~x sx(v)axa2

xa~x and 
a2a\~x sx(v) axa2

x e W. 
(iv) w = va2, veV. 
Then sx(axwax~

x) = axa2ax~
x sx(v) a\axa2~

xa~x = axa2ax~
x sx(v) a\+xa2~

xa~x and 
a2ax~

x sx(v) a\+xa2
x e W. 

(v) w = ak
2
xa[xak

2
2a[2... ak

2"a[-ak
2"

+x, n > 1. 
Then sx(axwax~

x) = axa2ax~
xa\xaxd2

xax~
xa\2axd2

2ax~
x... a\"axd2

na~xa\n+xaxa~xa~x = 
ai^i1^^2^2-.. a\"d2"a\"+xa2

xa~x and a2a\xd2
x... a\"d2"a\n+xa2~

x e W. 
(vi) w = a^i1 ••• ak"a[nv, n > I, v e V. 
Then s ^ w a f ! ) = aia2^f la\xd2

xax~
x sx(v) axa2

 xax~
x = axa2a\xd2

x... a\"d2"ax~
x sx(v) axa2~

 xax~
x 

and a2^i^2 ••• a\"d2
na~xsx(v) axa2~

x e W. 
(vii) w = va\xd2

2... a\"d2", n > I, v e V. 
Then s^aiWaf1) = axa2ax~

x sx(v) axa2
xax~

xa[x ... axa2"ax~
xa["axa2

xa~x = 
axa2ax~

xsx(v) axa
kxa[x... a2

xa["a2
xa~x and a2a~xsx(v) axa2

xa[x... a2"dx
na2~

x e W. 
(viii) w = a*1^1 ••• a2"a["vdx

xd2
x... dx

md2
m, n > l,m > 1, veV. 

Then sx(axwax~
x) = axa2ax

xa\xaxd2
xax~

x ... a\"axd2
nax~

x sx(v) axa2
xax~

xdx
x ... 

axa
l
2
max~

xdx
maxa2

xax = axa2a\ld2
x... a\"d2"ax~

x sx(v) axa
l
2

xdx
x... al

2
mdx

ma2
xax and t^ i 1 ^ 1 - - -

a\"d2
xax

xs(v) axd2
xdx

x... d2
mdx

ma2~
x eW. ~~ 

3.8 Lemma. I>t n > 1, r b ..., rneT and r = rxsxr2sx... r„Sirn+i. F/zen 
r(ai) =)= ax, and hence r 4= idF. 

Proof. By induction on n we show that r(ai) e axWax~
x. If n = 1 then riSir2(ai) 

= riSi(ai) = rx(axa2a~x) = axrx(a2) ax~
x e axWax~

x, since rx(a2) e W. Now, let n > 2 
and s = r2sx... r„Sir„+i. Then s(ax) = axwax~

x for some w e IVand r(ax) = riSis(ai) 
= rx(axuax~

x) = axrx(u)ax~
x, where sx(axwax~

x) = axuax~
x, ueW and rx(u)e W by 

3.6 and 3.7. • 
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3.9 Lemma. There exists a uniquely determined endomorphism oofS with the 
following properties: 

(i) o-(Sj) = si+ifor every i > 1. 
(ii) sxo(sx) sx = o(sx) s&fa). 

(Hi) s{o
2(r) = o2(r) st for every reS. 

(iv) o is injective and o(S) = T. 

Proof. Define an endomorphism s of F by s(a;) = aj+l for every j > 1. One 
may check easily that s{ = si+ls for every i > 1. Now, let r e S, r = sf/ ... sfn" = 
slj\... s|-, where w > 1, m > 1, kl9..., kmlu..., lme {±1}.Then sr = s^+l... s^+i = 
sj; + 1... sj^+1s and this implies that the endomorphisms rx = s?1^... s^"+1 and 
r2 = 5jl + i- • 5/™+i coincide on £. On the other hand, rx(a^) = ax = r2(ax), and 
hence rx = r2. Now, we can put o(r) = rx and we get an endomorphism satisfying 
(i), (ii) and (iii) (see 3.2 and 3.3). Clearly, o(S) = T. Finally, if o(p) = o(q) for 
some p,qeS then sp = o(p) s = o(q) s and p = q, since s is an injective 
endomorphism of F. • 

3.10 Define a binary operation * on S by p * q = po(q) s{o(p~l) for all p,qeS. 
With respect to 3.9 and 2.2(i), S(*) is an LD-groupoid. We shall prove that the 
relation zr ^ is irreflexive (see 1.23). 

Let p, q, qu ..., qne S, n > 1, be such that p = (((q * aj) * q^2) * ...) * qn. Then 
we have p = qo(q1)slo(q~l)o(q2)s1o(q*ql)-

1... (%„)SI(T(((<J *a.x)* ...) * ^ _ i ) _ 1 = 
qo^s^r^Si... o(rn)s{o(rn+l\ where rx = ql9 r2 = q~lq2, r3 = (q*qi)~lq39...9rn = 
((((q * qx) * g2) * . . . ) * an_2)

_1 q„, rM+1 = ((a * qx) * . . . ) * ^ . j ) - 1 . From this, 
idF = p~lqr, where r = o(r{) s{o(r2) sx... o(rn) s{o(rn+l). Clearly, o(r)eT and 
p-1^ =(= idF by 3.8. Thus p * q. 

The endomorphism r/ is injective and consequently the groupoid S(*) is left 
cancellative. 

IV.4 Two-element left distributive groupoids 

4.1 Consider the following six two-element groupoids: 

D(l) 0 1 

0 
1 

0 0 
0 1 

D(2) 0 1 

0 
1 

0 1 
0 1 

ű(3) 0 1 
0 
1 

0 0 
1 1 

D(4) 0 1 
0 
1 

0 0 
0 0 

D(5) 0 1 
0 
1 

0 1 
0 0 

D(6) 0 1 
0 
1 

1 0 
1 0 

It is easy to check that these six groupoids are pair-wise non-isomorphic 
LD-groupoids and that every two-element LD-groupoid is isomorphic to one of 
them. Some properties of the groupoids are listed in the following table: 
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D LSM RSM MSM м S c I E Dl Pi Pc Oe Id La Ra Ln Rn Gop 

D(l) + + + + + + + + + + + + + + 1 1 1 1 D(í) 
D(2) + + + + + + — + + + + + + + 0 2 2 0 D(3) 
D(3) + + + + + + — + + + + + + + 2 0 0 2 D(2) 
D(4) + + + + + + + — + + + + + + 1 1 0 0 Щ 
D(5) — — — — — — — — — — — + + — 0 1 1 0 — 

D(6) — + + + + + + + — 0 0 0 0 — 

Explanation: D ... distributive; LSM ... left semimedial; RSM ... right semi-
medial; MSM ... middle semimedial; M ... medial; S ... associative; C ... com­
mutative; I ... idempotent; E ... elastic; Dl ... delightful; Pi ... (x,xx)epG for 
every xe G (i.e., xy =--- xx • y); Pc ... pG is a congruence of G; Oe ... oG is an 
endomorphism of G (i.e., x • yy =---xx • yy); Id ... Id(G) is an ideal of G; La 
(Ra) ... the number of left (right) absorbing elements; Ln (Rn) ... the number of 
left (right) neutral elements; G o p . . . the opposite groupoid is isomorphic to ... (only 
in the two-sided distributive case). 

IV.5 Three-element left distributive idempotent groupoids 

5.1 Consider the following seventeen three-element groupoids: 

D(l) 0 1 2 

0 
1 
2 

0 0 0 
0 1 1 
0 1 2 

Ð(8) 0 1 2 

0 
1 
2 

0 0 0 
0 1 0 
0 0 2 

D(9) 0 1 2 

0 
1 
2 

0 0 0 
0 1 1 
0 2 2 

o(ю) 0 1 2 

0 
1 
2 

0 0 0 
0 1 2 
0 1 2 

D(ll) 0 1 2 

0 
1 
2 

0 0 0 
1 1 1 
2 2 2 

D(Ì2) 0 1 2 

0 
1 
2 

0 1 2 
0 1 2 
0 1 2 

Ø(iз) 0 1 2 

0 
1 
2 

0 0 0 
1 1 1 
0 0 2 

D(14) 0 1 2 

0 
1 
2 

1 0 0 
0 1 0 
0 1 2 

Ð(15) 0 1 2 

0 
1 
2 

0 2 1 
2 1 0 
1 0 2 

Ð(16) 0 1 2 

0 
1 
2 

0 2 1 
0 1 2 
0 1 2 

D(П) 0 1 2 

0 
1 
2 

0 0 0 
2 1 1 
1 2 2 

Ð(18) 0 1 2 

0 
1 
2 

0 1 2 
0 1 0 
0 1 2 

70 



D(19) 0 1 2 

0 
1 
2 

0 0 0 
1 1 1 
2 0 2 

D(20) 0 1 2 

0 
1 
2 

0 0 0 
1 1 1 
0 1 2 

D(21) 0 1 2 

0 
1 
2 

0 0 0 
1 1 1 
1 0 2 

Ð(22) 0 1 2 

0 
1 
2 

0 1 2 
0 1 1 
0 2 2 

D(23) 0 1 2 

0 
1 
2 

0 1 2 
1 1 1 
0 1 2 

(i) 0(7) ^ O(l) [e] ( s O(l) {<?}), 0(9) ^ 0(3)[e] and 0(10) =" 0(2)|>] are 
LO-groupoids by 1.9(i) (0(7) is a semilattice). 

(ii) 0(12) ^ 0(2) {e], 0(22) ^ 0(3){e] and 0(23) £ 0(l){e] are LO-groupoids 
by 1.9(H) (0(12) is an i?Z-semigroup). 

(iii) 0(11) ^ 0(3) [e} is an LZ-semigroup. 
(iv) O(20) ;= 0(3) {4 is an LO-groupoid by 1.9(iv). 
(v) 0(8) is a subdirect product of two copies of 0(1), and hence it is a semi-

lattice. 
(vi) 0(13) is a subdirect product of O(l) and 0(3), and hence it is a O-semi-

group. 
(vii) 0(14) is a subdirect product of O(l) and 0(2), and hence it is a O-semi-

group. 
(viii) 0(15) is an IM-quasigroup, 0(16), 0(17), 0(18), 0(19) are JM-groupoids 

(0(17) = 0(16)op and 0(19) = 0(18)op). 
(ix) 0(21) is an LO J-groupoid (since 0,1 are left absorbing, it is enough to show 

that 2 • yz = 2y • 2z). 
(x) All the groupoids 0(7),..., 0(23) are LOI-groupoids and possess the fol­

lowing properties (see p. 72). 

Explanation: See 4.1; Si... G is subdirectly irreducible. Notice that an idem-
potent groupoid is left (right) semimedial iff it is left (right) distributive, 
(xi) Assigning the ordered quadruple (La, Ra, Ln, Rri) to each of the groupoids D(i) 

(see the foregoing table), we see that these groupoids are pair-wise 
non-isomorphic with possible exceptions of the pairs 0(13), 0(21) and 0(18), 
0(23). However 0(13), 0(18) are right distributive and 0(21), 0(23) are not. 
Thus we have shown that the groupoids 0(7),..., 0(23) are pair-wise 
non-isomorphic. 

In the remaining part of this section, we show that every three-element 
LO/-groupoid is isomorphic to one of the groupoids 0(7),..., 0(23). 
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D мsм м s c Pc SÍ La Ra Ln Rn Gop 

D(7) + + + + + + — 1 1 1 1 D(7) 

D(8) + + + + + + — 1 1 0 0 D(8) 
D(9) + + + + — + + 1 1 0 2 D(10) 
D(10) + + + + — + + 1 1 2 0 D(9) 
D(ll) + + + + — + — 3 0 0 3 D(12) 
D(12) + + + + — + — 0 3 3 0 D(ll) 

D(13) + + + + — + — 2 0 0 1 D(14) 
D(14) + + + + — + — 0 2 1 0 D(13) 
D(15) + + + — + + + 0 0 0 0 D(15) 
D(16) + + + — — + + 0 1 2 0 D(17) 
D(17) + + + — — + + 1 0 0 2 D(16) 
D(18) + + + — — + + 0 2 2 0 D(19) 
D(19) + + + — — + + 2 0 0 2 D(18) 
D(20) — — — + — + + 2 0 1 1 — 

D(21) — — — — — + + 2 0 0 1 — 

D(22) — — — — — + + 0 1 1 0 — 

D(23) — + — — — — + 0 2 2 0 — 

5.2 Lemma. Let G be a three-element LD-groupoid such that Id(G) =(= 0 and 
G contains no left and no right absorbing elements. Then G is commutative, 
distributive and idempotent. 

Proof. Let G = {a, b, c}. Since Id(G) is a left ideal of G and G contains no right 
absorbing elements, Id(G) possesses at least two elements, say a, b e Id(G). Now, 
we have to distinguish the following cases: 

(i) Let Id(G) = {a,b}. We can further assume that cc = a. Since Id(G) is a left 
ideal, we have ab, ba, ca, cb e {a, b} and a = aa = a • cc = ac • ac implies 
ace {a,c}. If ac = a then, since a is not left absorbing, ab = b and 
a • cb = ac ab = a • ab = ab = b, cb = b and b is right absorbing, a contra­
diction. Hence ac = c and ca = c • cc = cc cc = aa = a, and so ba = b, since 
a is not right absorbing. On the other hand, be = b • ac = ba • be = b • be. 
Since b is not left absorbing, we have bce{a,c}. If be = a then 
a = be = b • ba = b, a contradiction. Hence be = c and b = ba = b • cc = 
be cc = a, again a contradiction. 

(ii) Let G be idempotent and ac = b. Then a • ca = aca = ba and cb = c ac = ca- c. 
If ca = a then a = ba and a is right absorbing, a contradiction. If ca = b then 
ab = a- ca = ac• a = ba, cb = c ac = ca- c = bc and G is commutative. Finally, 
if ca = c then cb = c ac = ca- c = cc = c and c is left absorbing, a contradiction. 
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(iii) Let G be idempotent and ac = c, be = a. Then a = a • be = ab • ac = ab • c, 
and so ab = b. Further, a = bc = b-ac = ba-bc = ba-a,b = bb = b-ab = ba-b 
and ba 4= c, since b is not right absorbing. If ba = b then a = ba- a = ba = b, 
a contradition. Hence ba = a. If cb = c then, since a is not right absorbing, 
we have ca = b and c = cb = c • ab = ca- cb = be = a, a contradiction. If 
cb = a then a = ba = b • cb = be • b = ab = b, again a contradiction. Finally, 
if cb = b then b is right absorbing and this is not possible. 

(iv) Let G be idempotent and ac = c, be = b. If ba = a then b = be = b • ac = 
ba-bc = ab, b • ca = be • ba = ba = a, and hence ca = a and a is right 
absorbing, a contradiction. If ba = b then b is left absorbing, a contradiction. Thus 
ba = c and b = be = b• ac = ba- be = cb, ab = a- be = ab• ac = ab• c, and 
therefore ab = c. From this, ca = ab-a = a-ba = ac = c and G is commutative. 

(v) Let G be commutative. If ac = c then be =t= c (since c is not right absorbing) 
and either (iii) or (iv) applies. If ac = b then (ii) applies. Finally, if ac — a 
then ab 4= a and, replacing c by b, we can proceed in the same way as in (ii), 
(iii) and (iv). • 

5.3 Lemma. Let G be a three-element LDI-groupoid containing an absorbing 
element. Then G is distributive. 

Proof. Let G = {a,b, c], where a is the absorbinbg element, and let x, y, z e G. 
If a e {x,y, z\ then xyz = a = xz-yz. Hence, assume {x,y, z] ^ {b,c}. However, 
then one of the following cases takes place: bb• b = bb• bb, bb- c = bcbc, bc-b = 
bb • cb, be c = be - cc, cb • b = cb • bb, cb • c = cc • b = cb - cb, cc • c = cc • cc. • 

5.4 Lemma. Let G be a three-element LDI-groupoid containing at least two 
left absorbing elements. Then G is isomorphic to one of the groupoids D(ll), D(13), 
D(19), D(20), D(21). 

Proof. Let G = {a,b, c], where a, b are left absorbing. If (ca, cb) = (c, c) then 
G ^ Z)(ll); if (ca, cb) = (a, a) or (ca, cb) = (b, b) then G ^ D(13); if (ca, cb) = (c, a) 
or (ca, cb) = (b, c) then G ^ D(19); if (ca, cb) = (a, b) then G ^ D(20); if (ca, cb) = 
(b, a) then G ~ D(21). If ca = a and cb = c then c = cb = c-ba = cb- ca = ca = a, 
a contradiction. If ca = c, cb = b then c = ca = c • ab = ca • cb = cb = b, 
again a contradiction. • 

5.5 Lemma. Let G be a three-element LDI-groupoid containing just one left 
absorbing element and no right absorbing elements. Then G = D(17). 

Proof. Let G = {a, b, c] and let a be the only left absorbing element. Since a is 
not right absorbing, we can assume that ca =# a. Now, let us distinguish the 
following cases: 

(i) Let ca = ba = b. Then b = ba e b • ac = ba • be = b • be, and so be = a, since b 
is not left absorbing. Further, b = ba = b • ca = bc- ba = ab = a, a con­
tradiction. 
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(ii) Let ca = b and ba = c. Then c = ba = b • ab = ba • b = cb and c • be = 
cb- c = c. Hence be e {b,c}. If be = b then G ^ D(17). If be = c then 
b = bb = b • ca = be • ba = cc = c, a contradiction. 

(iii) Let ca = b and ba = a. Then b = bb = b • ca = be • ba = be • a, and hence 
be = c. Then also b = ca = c • ac = ca • c = be = c, a contradiction. 

(iv) Let ca = cb = c. Then c is left absorbing, a contradiction. 
(v) Let ca = c and cb = a. Then cba = cb- ca = ac = a, and so ba = b. Since b is not 

left absorbing, we have be e {a, c}. If be = a then c = ca = c • be = cb • c = 
ac = a, a contradiction. If be = c then a = cb = be • b = b • cb = ba = b, 
again a contradiction. 

(vi) Let ca = c and cb = b. If be = b then c • ba = cb • ca = be = b, ba = b and b is 
left absorbing, a contradiction. If be = c then c • ab = ca • cb = cb = b, and 
hence b = ab = a, a contradiction. Finally, if be = a then e = ca = e • be = 
c^ • c = foe = a, a contradiction. • 

5.6 Lemma. Let G be a three-element LDI-groupoid containing a right 
absorbing element but no left absorbing elements. Then G is isomorphic to one of 
the groupoids D(12), D(14), D(16), D(18), D(22), D(23). 

Proof. Let G = {a,b, c}, a being right absorbing. Since a is not left absorbing, 
we can assume that ac =|= a. Now, consider the following cases: 

(i) Let ac = b. Then cb = c • ac = ca • c = ac = b. If be = a then b = bb = 
b- ac = ba-bc = aa = a, a contradiction. If be = b and ab = a then b = bb = 
b • ac = ba • be = ba • b = ab = ba = a, a contradiction. If be = c and 
ab = c then c = ab = a • be = ab • ac = cb = b, a contradiction. If be = b 
and ab = b then G = D(14). If be = c and ab = a then b = ac = a • be = 
ab- ac = a- ac = ab = a, a contradiction. If be = c and ab = b then G = D(18). 
If be = e and ab = c then G ^ D(16). 

(ii) Let ac = c and ab = a. Then be = b • ac = ba • be = a • be = ab • ac = ac = c 
and a • cb = ac • ab = ca = a. From this, it follows that cb e {a,b}. If 
cb = a then G s D(14). If cb = b then G ^D(23). 

(iii) Let ac = c, ab = b and cb = a. Then c • be = cb • c = ac = c, be = c and 
G ^ D(18). 

(iv) Let ac = c, ab = b and cb = b. If be = a then G ^ D(18). If be = b then 
G s D(23). If be = c then G ^ D(12). 

(v) Let ac = c, ab = b and cb = c. If be = a then a = ca = c • be = cb • e = ee = c, 
a contradiction. If be = b then G ^ D(22). If be = c then G ^ D(23). 

(vi) Let ac = ab = c. Then be = b - ab = ba • b = ab = c and a- cb = ac • ab = 
cc = c. This implies that cb G {b,c}. If cb = b, then G = D(18). If cb = c 
then G ^ D(14). • 

5.7 Proposition, (i) The seventeen groupoids D(7),..., D(23) are pair-wise 
non-isomorphic three-element LDI-groupoids. 
(ii) Every three-element LDI-groupoid is isomorphic to one of D(7),..., D(23). 
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Proof, (i) See 5.1. 
(ii) Let G = {a, b, c] be a three-element LDI-groupoid. The rest of this point is 
divided into five parts: 
(a) Let G contain an absorbing element. By 5.3, G is a D/-groupoid and we can 
assume that a is absorbing in G. If {b, c} is a subgroupoid of G then G is isomorphic 
to one of D(7), D(9), D(10). Hence, let {b, c} be not a subgroupoid of G and let be = a 
(the other case, cb = a, being similar). Then a = ca = c be = cb • c and cb 4= c. If 
cb = b then b = b- cb = be- b = ab = a, a contradiction. Thus cb = a and G =. D(8). 
(b) Let G contain no left and no right absorbing elements. By 5.2, G is 
a CD/-groupoid. If G is not subdirectly irreducible then G is a subdirect product 
of copies of D(i) (since D(l) is up to isomorphism the only two-element 
CD/-groupoid), and hence G is a semilattice. But every finite semilattice contains 
an absorbing element and we have proved that G is subdirectly irreducible. If 
pG =# idG, say (a, b) e pG then a = aa = ba = ab = bb = b, a contradiction. Thus 
pG = qG = idG and ^(G) =t 0 by II.4.9; we can assume that a e <g(G). Then La = Ra 

is a permutation. If a is a neutral element of G then be = a (otherwise either b or c 
would be absorbing) and a = bc = b- ac = ba- be = b• be = ba = b, a contradiction. 
Thus a is not neutral and we have ab = c = ba, ac = b = ca. Further, a- be = 
ab- ac = cb = be, which implies be = a = cb. Now, it is clear that G = D(15). 
(c) Let G contain at least two left absorbing elements. By 5.4, G is isomorphic to 
one of D(ll), D(13), D(19), D(20), D(21). 
(d) Let G contain just one left absorbing element but no right absorbing element. 
By 5.5, G .= D(17). 
(e) Let G contain at least one right absorbing element but no left absorbing element. 
By 5.6, G is isomorphic to one of D(12), D(14), D(16), D(18), D(22), D(23). Q 

IV.6 Three-element left distributive groupoids with two idempo t en t 

elements 

6.1 Consider the following twelve three-element groupoids: 

Ð(24) 0 1 2 

0 
1 
2 

0 0 0 
0 1 0 
0 0 0 

.0(27) 0 1 2 

0 
1 
2 

0 1 0 
0 1 0 
0 1 0 

Ð(30) 0 1 2 

0 
1 
2 

0 0 0 
0 1 2 
1 1 1 

JЩ 0 1 2 

0 
1 
2 

0 0 0 
0 1 1 
0 1 1 

Ð(28) 0 1 2 

0 
1 
2 

0 0 0 
0 1 2 
0 0 0 

.0(31) 0 1 2 

0 
1 
2 

0 0 0 
0 1 2 
0 1 1 

.0(26) 0 1 2 

0 
1 
2 

0 0 0 
1 1 1 
0 0 0 

£>(29) 0 1 2 

0 
1 
2 

0 1 2 
0 1 1 
0 1 1 

D(32) 0 1 2 

0 
1 
2 

0 1 2 
0 1 2 
0 1 1 



D(33) 0 1 2 

0 
1 
2 

0 0 2 
0 1 2 
0 0 0 

D(34) 0 1 2 

0 
1 
2 

0 1 2 
0 1 0 
0 1 0 

D(35) 0 1 2 

0 
1 
2 

0 1 2 
0 1 2 
0 0 0 

(i) D(24) and D(25) are subdirect products of D(l) and D(4), and so D(24), D(25) 
are CD-semigroups. Moreover, D(25) = D(4) [e], 

(ii) D(26) (D(27)) is a subdirect product of D(3) (D(2)) and D(4), and so D(26) 
(D(27)) is a D-semigroup. 

(iii) D(28) is a medial LD-semigroup (0,2 are left constant, 0 is right absorbing 
and 1 is left neutral). 

(iv) D(29) ^ D(4){e] is a medial LD-groupoid (see 1.9(H); 0,1 are right ab­
sorbing, 0 is left neutral and (1, 2) e pG). 

(v) D(30) is an LD-groupoid (0,2 are left constant and 1 is left neutral). 
(vi) D(31)^D(5)[> 

(vii) D(32) =. D(5) {e 
is an LD-groupoid by 1.9(i). 
is an LD-groupoid by 1.9(ii). Moreover, it is a subdirect 

product of D(2) and D(5). 
(viii) D(33) is subdirect product of D(l) and D(5), and therefore D(33) is an 

LD-groupoid. 
(ix) D(34) is an LD-groupoid (0,1 are right absorbing, 0 is left neutral, (1, 2) e pG, 

2 • y2 = 2y • 22 = 0 for every y e G). 
(x) D(35) is an LD-groupoid (0 is right absorbing, 0,1 are left neutral and 2 is 

left constant), 
(xi) All the groupoids D(24),..., D(35) are LD-groupoids with card(ld(G)) = 2 

and they possess the properties listed in the following table: 

D LSM RSM мsм м S C E Dl Pi Pc Ol Id Si La Ra Ln Rn Gop 

0(24) + + + + + + + + + + + + + — 1 1 0 0 D(24) 

D(25) + + + + + + + + + + + + + — 1 1 0 0 D(25) 

D(26) + + + + + + — + + + + + + — 2 0 0 0 D(27) 

D(27) + + + + + + + — + + + + + — 0 2 0 0 D(26) 

D(28) — + + + + + — + — + + + — + 1 1 1 0 — 

D(29) — + + + + — — — — + + + — + 0 2 1 0 — 

D(30) — — — — — — — — — — + — - + 1 0 1 0 — 

D(31) — — — — — — — — — — + + — + 1 1 1 0 — 

D(32) — — — — — — — — — — + + — — 0 2 2 0 — 

D(33) — — — — — — — — — — + + — — 0 1 1 0 — 

D(34) — — — — — — — — — — — + — + 0 2 1 0 — 

D(35) + 0 1 2 0 — 
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Explanation: See 4.1 and 5.1. 
(xii) Considering the items of the foregoing table and taking into account that they 

are invariant under isomorphisms, we see easily that the groupoids D(24),..., 
D(35) are pair-wise non-isomorphic with possible exception of D(24), D(25). 
However, 0 is absorbing in the both groupoids, 0 appears seven times in the 
table of D(24) and only five times in the table of D(25). Consequently, D(24) 
and D(25) are not isomorphic. 

In the remaining part of this section, we show that D(24),..., D(35) are (up to 
isomorphism) the only three-element LD-grupoids having just two idempotents. 

6.2 Lemma. Let G be a three-element LD-groupoid such that G contains an 
absorbing element and card(ld(G)) = 2. Then G is isomorphic to one of D(24), 
D(25), D(28), D(31). 

Proof. Let G = {a,b,c}, where a is absorbing, bb = b and cc =1= c. Since 
Id(G) is a left ideal, we have cb e {a,b}. Now, we shall distinguish the following 
cases: 

(i) Let cc = a and be = a. Then b • cb = be • b = ab = a, and hence cb = a 
and G ^ D(24). 

(ii) Let cc = a and be = b. Then a = ba = b • cc = be • be = bb = b, a con­
tradiction. 

(iii) Let cc = a and be = c. Then a = a • cb = cc • cb = c • cb, and hence cb = a 
and G £ D(28). 

(iv) Let cc = b. Then cb = c • cc = cc • cc = bb = b, b = b • cb = be • b and 
be e {b,c}. If be = b then G ^ D(25). If be = c then G ^ D(31). • 

6.3 Lemma. Let G be a three-element LD-groupoid such that G contains at 
least two left absorbing elements and card(ld(G)) = 2. Then G = D{26). 

Proof. Let G = {a,b, c}, where a, b are left absorbing and cc 4- c. We can 
assume that cc = a. Further, ca, cb e Id(G) = {a, b}, ca = c cc = cc cc = aa = a, 
c • cb = cc • cb = a • cb = a, and hence cb = a and G = D(26). 

6.4 Lemma. Lcl G be a three-element LD-groupoid containing just one left 
absorbing element, no right absorbing element and such that card(ld(G)) = 2. Then 
G =* D(30). 

Proof. Let G = {a,b, c}, where a is left absorbing, bb = b and cc -# c. Again, 
ba, ea, cb e {a,b}. 

(i) Let cc = a. Then ca = c • cc = cc • cc = aa = a, and, since a is not right 
absorbing, ba = b. On the other hand, b = ba = b • cc = be • be, be = b is 
left absorbing, a contradiction. 

(ii) Let cc = b and be = b. Then be = c • cc = cc • cc = bb = b, cba = cb- ca = 
b • ca = be • ba = b • ba. If ba = a then ca = a and a is absorbing, which is 
not true. Hence ba = b and b is left absorbing, again a contradiction. 

77 



(iii) Let cc = b and be =1= b. We have b = bb = b- cc = bcbc, and so be = c. If 
ba = b then b = ba = b- ac = ba-bc = bc = c, a contradiction. Hence ba = a, 
and then ca = b, since a is not absorbing. We have proved that G = Z)(30). • 

6.5 Lemma. Let G be a three-element LD-groupoid containing at least two 
right absorbing elements and such that card(ld(G)) = 2. Then G is isomorphic to 
one ofD(21), D(29), D(32), D(34). 

Proof. Let G = {a. b, c}, where a, b are right absorbing and cc = a. Then 
a = aa = a • cc = ac • ac, and hence ac e {a, c}. Similarly, a = ba = b • cc = be be 
and be e {a, c}. The rest is clear. • 

6.6 Lemma. Let G be a three-element LD-groupoid containing just one right 
absorbing element, no left absorbing element and such that card(ld(G)) = 2. Then 
G is isomorphic to one of D(33), D(35). 

Proof. Let G = {a,b, c}, where a is right absorbing, bb = b and cc =t= c. Then 
Id(G) = {a,b}, and so ab, cb e {a,b}. 

(i) Let cc = a and ab = b. Then cb = a, since b is not right absorbing and 
a = ba = b-cb = be- b, so that be = c. Finally, a = aa = a- cb = ac ab = ac b, 
ac = c and G .= D(35). 

(ii) Let cc = a and ab =t= b. Then ab = a, a = aa = a- cc = ac ac, ac + a, since a 
is not absorbing, and so ac = c. Further, c cb = cc cb = a- cb = ac ab = ca = a, 
cb 4= b, cb = a, and be = b • ac = ba • be = a • be = ab • ca = ac = c. Thus 
G s D(33). 

(iii) Let cc = b. Then ab = a- cc = ac ac,b = bb = b- cc = bc be, cb = c cc = 
cc cc = bb = b. Since b is not right absorbing, ab = a, and so a = ab = 
ac • ac implies that ac = a and a is left absorbing, a contradiction. • 

6.7 Proposition, (i) The twelve groupoids D(24),..., D(35) are pair-wise non-
isomorphic three-element LD-groupoids containing just two idempotents. 

(ii) Every three-element LD-groupoid containing just two idempotents is isomor­
phic to one ofD(24),..., D(35). 

Proof, (i) See 6.1. 
(ii) Combine 5.2, 6.2, ..., 6.6. • 

IV.7 Three-element unipotent left distributive groupoids 

7.1 Consider the following ten three-element groupoids: 

D(36) 0 1 2 

0 
1 
2 

0 0 0 
0 0 0 
0 0 0 

Ð(37) 0 1 2 

0 
1 
2 

0 0 0 
0 0 1 
0 0 0 

D(38) 0 1 2 

0 
1 
2 

0 0 1 
0 0 0 
0 0 0 
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D(39) 0 1 2 

0 
1 
2 

0 0 1 
0 0 1 
0 0 0 

D(40) 0 1 2 

0 
1 
2 

0 1 0 
0 0 0 
0 1 0 

D(41) 0 1 2 

0 
1 
2 

0 1 1 
0 0 0 
0 0 0 

D(42) 0 1 2 

0 
1 
2 

0 1 2 
0 0 0 
0 0 0 

D(43) 0 1 2 

0 
1 
2 

0 2 1 
0 0 0 
0 0 0 

D(44) 0 1 2 

0 
1 
2 

0 1 2 
0 0 0 
0 1 0 

D(45) 0 1 2 

0 
1 
2 

0 1 2 
0 0 2 
0 1 0 

(i) D(36) is a Z-semigroup. 
(ii) D(37), D(38) and D(39) are medial LD-groupoids (easy to check directly), 

(iii) D(40) and D(41) are subdirect products of D(4) and D(5), and hence D(40), 
D(4l) are LD-groupoids. 

(iv) D(42) is an LD-groupoid by 1.3(i). 
(v) D(43) is an LD-groupoid (clearly, L0 is an autofmorphism of D(43)). 

(vi) D(44) is an LD-groupoid (2 • yz = 2y - 2z for y + 0 + z, y + z, and the 
remaining cases are clear), 

(vii) D(45) is a subdirect product of two copies of D(5), and so D(45) is an 
LD-groupoid. 

(viii) Taking into account 5.2 and 5.4 and the fact that D(5) is a homomorphic 
image of D(39),..., D(45), we have the following table: 

D LSM RSM мsм м s c E Dl Pi Pc Ol Id Si Lc Rc Lp Rp Gop 

D(36) + + + + + + + + + + + + + — 3 3 0 0 D(36) 

D(37) — + + + + — — + + — — + — + 2 2 0 0 — 

D(38) — + + + + + — + 2 2 0 0 — 

D(39) - + + + + + + — + 1 2 0 0 — 

|D(40) — — — — — — — — — — + + — — 1 2 0 0 — 

D(41) — — — — — — — — — — + + — — 2 1 0 0 — 

D(42) — — — — — — - — — — + + — + 2 1 1 0 — 

D(43) — — — — — — — — — — + + — + 2 1 1 0 — 

D(44) — - — — — — — — — — + + — + 1 1 1 0 — 

D(45) — — — — — — — — — — + + — — 0 1 1 0 — 
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Ob 0 0 b b c c c 
Oc 0 b b c 0 ò c 

G s £>(36) 0(38) .0(41) .0(42) .0(38) .0(43) .0(41) 

Explanation: See 4.1 and 5.1; Lc (Re)... the number of left (right) constant 
elements; Lp = card(^(G)), Rp = card(^r(G)). 

(ix) Considering the foregoing table, we see easily that the groupouds D(36),..., 
D(45) are pair-wise non-isomorphic with possible exception of D(42), Z)(43). 
But D(42) possesses a left neutral element and D(43) does not. 

7.2 Lemma. Let G be a three-element unipotent LD-groupoid such that 
xy = 0 (0 being the only idempotent of G) for all x, y e G, x #= 0 =t= y, x #= y. 
Then G is isomorphic to one of D(36), D(38), D(41), D(42), D(43). 

Proof. Let G = {a,b, c}; we have be = 0 = cb. If Ob = 0 and Oc = c then 
0 = 00 = 0 • be = Ob • Oc = Oc = c, a contradiction. If Ob = b and Oc = 0 then 
0 = 00 = 0 • cb = Oc • Ob = Ob = b, a contradiction. The remaining cases are 
clear from the following table: 

• 
7.3 Lemma. Let G be a three-element unipotent LD-groupoid such that xy = x 

for some x, y e G, x 4- 0 #= y. Then G is isomorphic to one of D(37), D(39). 

Proof. We can assume that G = {0, b, c} and be = b. Then 0 = bb = b • be = 
bb • be = 0 • be = 0b, c • cb = cc • cb = 0 • cb = 0c • 0b = 0c • 0 = 0, and hence 
cb e {0,c}. Further, 0b = 0 • be = Ob • Oc = 0 • Oc, and therefore Oc e {0,b}. 

If cb = 0 and Oc = 0 then G ^ D(37). If cb = 0 and Oc = b then G ^ D(39). 
If cb = c then b = be = b • cb = be • bb = be • 0 = 0, a contradiction. • 

7.4 Lemma. Let G be a three-element unipotent LD-groupoid such that xy = y 
for some x, y e G, x =N 0 =j= y. Then G is isomorphic to one o/D(40), D(44), D(45). 

Proof. We can assume that G = {0,b, c} and be = c. Then c = b- be = 
bb • be = 0 • be = Oc, c = 0 • be = Ob • Oc = Ob • c, and so Ob e {0,b}. If Ob = 0 
and cb = 0 then G ̂  D(40). If ob = 0 and cb = b then b = cb = c cb = cc cb = 
0 • cb = Oc • Ob = cO = 0, a contradiction. If Ob = 0 and cb = e then 0 = cO = 
c • Ob = cO • cb = Oc = c, a contradiction. If Ob = b and cb = 0 then G ^ D(44). 
If Ob = b and cb = b then G ^ D(45). If Ob = b and cb = c then 0 = cc = 
c • cb = cc • cb = 0 • cb = Oc • Ob = cb = c, a contradiction. • 

7.5 Proposition, (i) The ten groupoids D(36),..., D(45) are pair-wise non-
isomorphic three-element unipotent LD-groupoids. 

(ii) Every three-element unipotent LD-groupoid is isomorphic to one of D(36),..., 
D(45). 

Proof, (i) See 7.1. 
(ii) Combine 7.2, 7.3 and 7.4. • 
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IV.8 Three-element left distributive groupo ids with one idempotent element 

8.1 Consider the following seven three-element groupoids: 

D(46) 0 1 2 

0 
1 
2 

0 0 0 
0 0 0 
0 0 1 

Ð(47) 0 1 2 

0 
1 
2 

0 0 0 
0 0 1 
0 0 1 

D(48) 0 1 2 

0 
1 
2 

0 0 1 
0 0 0 
è o i 

£>(49) 0 1 2 

0 
1 
2 

0 0 1 
0 0 1 
0 0 1 

£(50) 0 1 2 

0 
1 
2 

0 0 0 
0 2 1 
0 2 1 

Ð(51) 0 1 2 

0 
1 
2 

0 1 2 
0 2 1 
0 2 1 

Z>(52) 0 1 2 

0 
1 
2 

0 2 1 
0 2 1 
0 2 1 

(i) D(46) is a commutative A-semigroup, and hence an LD-groupoid. 
(ii) D(47) and D(48) are medial LD-groupoids (easy to check directly). 

(iii) D(49) and D(52) are right constant groupoids, and hence they are LD-groupoids. 
(iv) D(50) ^ D(6) [e] and D(51) ^ D(6) {e}and so D(50) and D(51) are LD-grou­

poids by 1.9(i), (ii). 
(v) Taking into account 5.2 and the fact that D(6) is isomorphic to a subgroupoid 

of D(50), D(51) and D(52), we have the following table: 

D LSM RSM мsм м S c E Dl Pi Pc Ol Id Si La Ra Ln Rn Gop 

D(46) + + + + + + + + + — + + + + 1 1 0 0 D(46) 

D(47) — + + + + + + + 1 1 0 0 — 
D(48) — + + + + + — + 0 1 0 0 — 
D(49) — + + + + — — — — + + + — + 0 1 0 0 — 
D(50) — + + + + — — — — + + + + + 1 1 0 0 — 
D(51) — + + + + — — — — + + + — + 0 1 1 0 — 
D(52) — + + + + — — — — + + + — — 0 1 0 0 — 

Explanation: See 4.1 and 5.1. 
(vi) The foregoing table shows that D(46),..., D(52) are pair-wise non-isomorphic 

(with possible exception of D(49), D(52), but these are evidently non-isomorphic). 

8.2 Proposition, (i) The seventeen groupoids D(36),..., D(52) are pair-wise 
non-isomorphic three-element LD-groupoids with just one idempotent element. 
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(ii) Every three-element LD-groupoid with just one idempotent element is isomor­
phic to one cfD(36),..., D(52). 

Proof, (i) The groupoids D(36),..., D(45) are unipotent and D(46),..., D(52) are 
not. The statement now follows from 7.5(i) and 8.1. 

(ii) With respect to 7.5(h), we can assume that G = {a, b, c} is a non-unipotent 
three-element LD-groupoid and that a is the only idempotent of G. Since Id(G) 
is a left ide^l, a is a right absorbing element. Further, since G is not unipotent, 
we can assume that cc + a. Then cc = b and either bb = a or bb = c. 

(iil) Let bb = a. Then cb = c • cc = cc • cc = bb = a, a = bb = b • cc = be • be, 
and so be e {a,b}.Further, ab = cb • cc = c • be e {ca.cb} = {a},i.e., ab = a. 
If ac = a = be then G =" D(46). If ac = a and be = b then G i= D(47). If ac = b 
and bc = a then G i= D(48). If ac = b = be then G ^ D(49). If ac = c and 
be = a then a = aa = a • be = ab • accc • ac = ac = c, a contradiction. If 
ac = c and be = b then b = be = b • ac = ba • be = ab = a, a. contradiction. 

(ii2) Let bb = c. Then be = b • bb = bb • bb = cc/? and cb = c • cc = cc • cc = 
bb = c. Further, ab = a- cc = ac ac and ac = a • bb = ab • ab. Now, it is 
clear that ab = a iff ac = a, ab = b iff ac = b. If ab = a then G = D(50). 
If ab = b then G .= D(51). If ab = c then G ^ D(52). • 

IV.9 Three-element left distributive groupoids without idempotent elements 

9.1 Consider the following two three-element groupoids: 

D(53) 0 1 2 

0 
1 
2 

1 0 0 
1 0 0 
1 0 0 

D(54) 0 1 2 

0 
1 
2 

1 2 0 
1 2 0 
1 2 0 

Both D(53) and D(54) are right constant groupoids, and hence they are medial 
LD-groupoids (see 1.1). Clearly, they are not isomorphic and we have the 
following table (see 1.1 again): 

D M s c E Dl Pi Pc 01 Si 
D(53) — + — — — — + + + — 
D(54) — + — — — — + + + + 

Explanation: See 4.1 and 5.L 

9.2 Proposition, (i) The two groupoids D(53) and D(54) arc non-isomorphic 
three-element LD-groupoids without idempotent elements. 

(ii) Every three-element LD-groupoid without idempotent elements is isomorphic 
to one 0fD(53), D(54). 
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Proof, (i) See 9.1. 
(ii) Let G = [a,b, c), Id(G) = 0. It is easy to see that we can restrict ourselves 

to the following two cases: 
(iil) Let aa = b, bb = a and cc = a. Then ab = a- aa = aa- aa = bba, ba = 

b • bb = bb • bb = aa = b, b = aa = a • cc = aa • ac, and hence ac = a. Simi­
larly, b = ba = b • cc = bc- be and be = a. Finally, b = aa = cc • cc = ca and 
cb = c • aa = ca- ca = bb = a. We have proved that G = D(53). 

(ii2) Let aa = b, bb = c and cc = a. Then ab = a • aa = aa • aa = bb = c, 
be = b • bb = bb • bb = cc = a, ca = c • cc = cc • cc = aa = b. Moreover, 
b = aa = b • aa = a • cc = ac • ac, and so ac = a; c = bb = b • aa = ba- ba, 
and so ba = b; a = cc = c bb = cb • cb, and so cb = c. Thus G = D(54). • 

IV.10 Three-element left distributive groupouds — the concluding table 

10.1 By 5.1(x), 6.1(xi), 7.1(viii), 8.1(v) and 9.1, we have the following table 
(see p. 84). 

Explanation: See 4.1 and 5.1; Sm... the groupoid G is simple (it is easy 
to check that D(15), D(30), D(54) are the only simple groupoids among 
D(7),..., D(54)). 

IV.11 Number of isomorphism types of at most six element left distributive 
groupoids 

11.1 The following table shows the number of all LD-groupoids and the number 
of their isomorphism types on a given set of at most 6 elements: 

Elements 1 2 3 4 5 6 
Groupoids 1 9 224 14067 3717524 ? 

Iso types 1 6 48 720 33425 35527485 

11.2 The following table specifies the numbers of isomorphism types of 
LD-groupoids (from 1 up to 5 elements) according to the number of idempotent 
elements: 

Idempotents 
Elements 

0 1 2 3 4 5 

1 0 1 0 0 0 0 
2 1 2 3 0 0 0 
3 2 17 

• 
12 17 0 0 

4 25 233 179 142 141 0 
5 704 21699 3936 3115 2267 1704 
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0 LSM RSM мsм M S C I E Dl Pi Pc 01 Id 5/ Sm La Ra Ln Rи G°p 

0(7) + + + + + + + + + + + + + + - - 1 1 1 1 0(7) 
0(8) + + + + + + + + + + + + + + - - 1 1 0 0 0(8) 
0(9) + + + + + + - + + + + + + + + - 1 1 0 2 0(10) 
0(10) + + + + + + - + + + + + + + + - 1 1 2 0 0(9) 

o(п) + + + + + + - + + + + + + + - - 3 0 0 3 0(12) 
0(12) + + + + + + - + + + + + + + - - 0 3 3 0 0(11) 
0(13) + + + + + + - + + + + + + + - - 2 0 0 1 0(14) 
0(14) + + + + + + - + + + + + + + - - 0 2 1 0 0(13) 
0(15) + + + + + - + + + + + + + + + + 0 0 0 0 0(15) 
0(16) + + + + + - - + + + + + + + + - 0 1 2 0 0(17) 
0(17) + + + + + - - + + + + + + + + - 1 0 0 2 0(16) 
0(18) + + + + + - - + + + + + + + + - 0 2 2 0 0(19) 
0(19) + + + + + - - + + + + + + + + - 2 0 0 2 0(18) 
0(20) - + - - - + - + + + + + + + + - 2 0 1 1 
0(21) - + - - - - - + + + + + + + + - 2 0 0 1 -
0(22) - + - - - - - + + + + + + + + - 0 1 1 0 -
0(23) - + - + - - - + + + + - + + + - 0 2 2 0 -
0(24) + + + + + + + - + + + + + + - - 1 1 0 0 0(24) 
0(25) + + + + + + + - + + + + + + - - 1 1 0 0 0(25) 
0(26) + + + + + + - - + + + + + + - - 2 0 0 0 0(27) 
0(27) + + + + + + - - + + + + + + - - 0 2 0 0 0(26) 
0(28) - + + + + + - - + - + + + - + - 1 1 1 0 
0(29) - + + + + + + + - + - 0 2 1 0 -
0(30) - - - - - - - - - - - + - - + + 1 0 1 0 -
0(31) - - - - - - - - - - - + + - + - 1 1 1 0 -
0(32) - - - - - - - - - - - + + - - - 0 2 2 0 -
0(33) - - - - - - - - - - - + + - - - 0 1 1 0 -
0(34) - - - - - - - - - - - - + - + - 0 2 1 0 -
0(35) + - 0 1 2 0 -
O(Зб) + + + + + + + - + + + + + + - - 3 3 0 0 O(Зб) 
0(37) - + + + + - - - + + - - + - + - 2 2 0 0 
0(38) - + + + + + - + + 2 2 0 0 -
0(39) - + + + + - - - - - - + + - + - 1 2 0 0 -
0(40) - - - - - - - - - - - + + - - - 1 2 0 0 -
0(41) - - - - - - - - - - - + + - - - 2 1 0 0 -
0(42) - - - - - - - - - - - + + - + - 0 1 1 0 -
0(43) - - - - - - - - - - - + + - + - 2 1 1 0 -
0(44) - - - - - - - - - - - + + - + - 1 1 1 0 -
0(45) - - - - - - - - - - - + + - - - 0 1 1 0 -
0(46) + + + + + + + - + + - + + + + - 1 1 0 0 0(46) 
0(47) - + + + + + + + - 1 1 0 0 -
0(48) - + + + + - - - - - - - + - + - 0 1 0 0 -
0(49) - + + + + + + + - + - 0 1 0 0 -
0(50) - + + + + + + + + + - 1 1 0 0 -
0(51) - + + + + + + + - + - 0 1 1 0 -
0(52) - + + + + + + + - + - 0 1 0 0 -
0(53) - + + + + + + + - - - 0 0 0 0 -
0(54) - + + + + + + + - + + 0 0 0 0 -
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11.3 The following table contains the numbers of isomorphism types of at most 
five-element LD-groupoids satisfying some basic identities: 

Identity 
Elements 

LD D M S C I IM /S CI 

1 1 1 1 1 1 1 1 1 1 

2 6 4 5 4 2 3 3 3 1 

3 48 19 32 16 7 17 13 9 3 
4 720 120 405 93 24 141 71 38 7 
5 33425 921 25185 682 103 1704 449 179 22 

IV.12 Comments and open problems 

Group constructions of idempotent self-distributive groupoids are quite common 
(e.g., the operation of mean, (x, y) -> (x + y)/2, in a uniquely 2-divisible Abelian 
group or the operation of conjugation, (x, y) -> yx, in any group). Group construc­
tions of non-idempotent (left) distributive groupoids were introduced in [Kep, 81]. 
A substantial progress was made by P. Dehornoy, who (using indirect methods) 
came to the constructions 2.2 and 2.3 which are the most sophisticated up to now. 
These constructions then yield the very important example IV.3 which is essentially 
due to P. Dehornoy again (the present formulation comes from D. Larue). 

Three-element LDJ-groupoids were classified in [Kep, 81] and the enumerating 
tables 11.1, 11.2, 11.3 are due to [Jez, 95]. 

The following open problem might be of interest: For n > 1, let a(n) denote the 
number of iso-types of LD-groupoids having n elements and, for m > 1, let a(n, m) 
be the number of iso-types of those n-element LD-groupoids which have just m 
idempotent elements. Find 

a(n, m) 
lim 

for every m > 1. 
«(«) 

List of symbols 

A • B ... the set of all products ab, a e A, b e B (denoted also by AB) 
(AyG ... subgroupoid of G generated by a subset A c= G 
AG(i) ... block of ker(rG) containing an element ieId(G) in a strongly 

delightful groupoid G 
ocG(S) ... the set of all x e G such that axe S for some ae S, S being a subset 

of a groupoid G 
Aut(G) ... the automorphism group of a groupoid G 
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/?„,G(S) ... the set of all x € G such that ax(a2(... (a„x))) e S for some ah ..., an e S 
(p0 G(S) = S), S being a subset of G 

fiG(S)... t he ' s e tU^oMS) 
card(M) ... the cardinality of a set M 

%(G) ... the set of all left cancellable elements of a groupoid G 
%(G) ... the set of all right cancellable elements of a groupoid G 
^(G) ... the set of all cancellable elements of a groupoid G 

%*(G) ... the set of all a e %(G) such that aa = aa- a 
Cyc/(n) ... groupoid defined on {0,1,..., n — 1} by i *j = i + 1 for i + n — 1 

and (n — 1) *j = 0 
Cycr(n) ... groupoid defined on {0,1,..., n — 1} by i *j = j + 1 for; #= n — 1 

and f * (n —• 1) = 0 
Cyc/(oo) ... groupoid defined on 0, 1, ... by i *j = i + 1 
Cycr(oo) ... groupoid defined on 0, 1, ... by i *j = j + 1 

yG(S) ... the set of all x e G such that xae S for some a e S 
Q)\(G) ... the set of all left divisible elements of a groupoid G 
^r(G) ... the set of all right divisible elements of a groupoid G 
S)(G) ... the set of all divisible elements of a groupoid G 

(5n G(S) ... the set of all x e G such that (((xax)a2)...)aneS for some au..., an e S 
(<5o G(S) = S), S being a subset of a groupoid G 

<5G(S) ... t h e s e t U ^ o M s ) 
End(G) ... the endomorphism monoid of a groupoid G 

<pG(S) ... the set aG(S) u yG(S) 
G[e] ... groupoid defined on the set G u {e} (e $ G) such that G is a sub-

groupoid of G[e] and e is an absorbing element of G[e] 
G[e} ... groupoid defined on the set G u {e} (e $ G) such that G is a sub-

groupoid of G[e} and e is left absorbing and right neutral 
G{e] ... groupoid defined on the set G u {e} (e $ G) such that G is a sub-

groupoid of G{e] and e is right absorbing and left neutral 
G{e} ... groupoid defined on the set G u {e} (e $ G) such that G is a sub-

groupoid of G{e} and e is a neutral element of G{e} 
G[e, / ] ... groupoid defined on the set G u {e} (e $ G) such that G is a sub-

groupoid of G[e, / ] , xe = e and ey = f(y) for all x e G u {e} and 
y e G, where G is an LSLD-groupoid and / is an automorphism of 
G such that f2 = idG and (x, f(x))epG for every xeG 

G^ ... the set of ordered n-tuples of elements of G 
GM ... subset of G defined inductively by G^ = G and G^1* = G • G® 

G^ ... subset of G defined inductively by G ^ = G^ and G^m+1^ = G^m^ • G 
Gop ... the opposite groupoid of a groupoid G 
idG ... the identical mapping (relation) on a set G 

Id(G) ... the set of all idempotent elements of a groupoid G 
</(G) ... the set of all two-sided ideals of a groupoid G 
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$\(G) ... the set of all left ideals of a groupoid G 
J>r(G) ... the set of all right ideals of a groupoid G 
Int(G) ... intersection of all ideals of a groupoid G 

ipG ... relation defined on an LSLD-groupoid G by (a, b) e ipG iff either 
a = b or a = bb 

ker(f) ... the kernel equivalence of a mapping / ((a, b) e ker(f) iff f(a) = f(b)) 
LaG ... left translation by an element a in a groupoid G, LaG(x) = ax for 

all x e G (denoted also by La) 
$£(G) ... subgroup in Ji*(G), G being a quasigroup, generated by all map­

pings LxLry
x, x,yeG 

££(1^) ... the lattice of subvarieties of a variety Y 
M(G) ... the multiplication semigroup of a groupoid G, i.e., the subsemigroup 

of the transformation monoid of the set G generated by all left and 
right translations 

MX(G) ... the multiplication monoid M(G) u {ic^} 
Jt{(G) ... the left multiplication semigroup of a groupoid G (generated by all 

left translations) 
M\(G) ... the left multiplication monoid of a groupoid G (M\(G) = MX(G) u 

{1dG}) 
Jtr{G) ... the right multiplication semigroup of a groupoid G (generated by all 

right translations) 
Jt}(G) ... the right multiplication monoid of a groupoid G (Jtr\G) = Jir(G) u 

{idG}) 
M*(G) ... permutation group generated by all (left and right) translations in 

a quasigroup G 
Jt*((j) ... permutation group generated by all left translations in a left 

quasigroup G 
Ji*(G) ... permutation group generated by all right translations in a right 

quasigoup G 
Ji(G,L() ... the transformation semigroup generated in J/(G) by all left and 

right translations LaG, RaG, a = H,H being a subgroupoid of G 
MX(G, H) ... the transformation monoid Jt(G, H) u {ic^} 
Jtx(G, H) ... the transformation semigroup generated in Jtx(G) by all left trans­

lations LaG, ae H, H being a sugroupoid of G 
Jl\(G, H) ... the transformation monoid Jtt(G, H) u {ic^} 
Jir(G,H) ... the transformation semigroup generated in Jir(G) by all right 

translations RaG, ae H, H being a sugroupoid of G 
Ji){G, H) ... the transformation monoid Jtr(G, H) u {idc} 

jua,G(S) • • • the set of all u e G such that aue S, S being a subset of a groupoid G 
va,c(S) • • • the set of all u e G such that uaeS,S being a subset of a groupoid G 

oG ... transformation of a groupoid G defined by oG(x) = xx for all x e G 
pG ... relation on a groupoid G defined by pG = (°)aeGker(i?fl G) 
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ЩG) 

0>(G) 

0>{G) 

&r(G) 

Фn4s) 

Ms) 
G 

ĄG) 
Q{G) 

Ra,G 
M(G) 

m 

rG 

sG 

<SУG 

<sУê 

<sys 

a(G) 

Ф) 

°ic(G) 

*rc(G) 

"c 

.. groupoid of all subsets of a groupoid G with multiplication defined 

by A • B = AB = {ab \ a e A, b e B} for all A, B c G 
.. the set of all elements of a groupoid G which are both cancellable 

and divisible 
.. the set of all elements of a groupoid G which are both left cancellable 

and left divisible 
.. the set of all elements of a groupoid G which are both right cancellable 

and right divisible 
.. the set of all xeG such that {Tai... nTan(x)eS for some n > 1, 

,T e {L, R) and a, e S9i = 1,..., n, S being a subset of a groupoid G 
(i/t0,G(s) = S) 

.. thesetU .>o<M s ) 

.. relation on a groupoid G defined by qG = f]aec ker(La G) 

.. the set of all G^n > 1 

.. the left-quasigroup-envelope of a groupoid G 

.. right translation by an element a a groupoid G, RajG(x) = xa for all 
xeG 

.. the subgroupoid of *P(G) generated by G (obviously, 1(G) c 01(G)) 

.. the smallest closed subset of a groupoid G containing a set R c= G 

.. the smallest left closed subset of a groupoid G containing a set 
R^G 

.. the smallest right closed subset of a groupoid G containing a set 
R^G 

.. transformation of a groupoid G defined by rG(x) = x • xx for all x e G 

.. transformation of a groupoid G defined by sG(x) = xx • x for all x e G 

.. the smallest closed subgroupoid of a groupoid G containing a set 
S g G 

.. the smallest left closed subgroupoid of a groupoid G containing a set 
S c G 

.. the smallest right closed subgroupoid of a groupoid G containing 
a set S c G 

.. minimal cardinality of a generating set of a groupoid G 

.. minimal cardinality of a set M of ogenerators of a groupoid G (G is 
the least closed subgroupoid containing M) 

.. minimal cardinality of a set M of /c-generators of a groupoid G 
(G is the least left closed subgroupoid containing M) 

.. minimal cardinality of a set M of rc-generators of a groupoid G 
(G is the least right closed subgroupoid containing M) 

.. relation defined on a groupoid G by tG = pG n qG (i.e., (x, y) e tG 

iff Lx = Ly and £x = Ry) 
.. relation defined on a groupoid G by (a, b) e uG iff the elements a and 

b generate the same left ideal 
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uG ... relation defined on a groupoid G by (a, b) e uG iff the elements a and 
b generate the same left strongly prime left ideal 

vG ... relation defined on a groupoid G by (a, b) e vG iff the elements a and 
b generate the same right ideal 

vG ... relation defined on a groupoid G by (a, b) e vG iff the elements a and 
b generate the same right strongly prime right ideal 

wG ... relation defined on a groupoid G by (a, b) e wG iff the elements 
a and b generate the same two-sided ideal of G 

zG ... relation defined on a groupoid G by (a, b) e zG iff a = f(b) for some 
f*Jt(G) 

zG ... relation defined on a groupoid G by zG = zG u {ic^} 
z/G ... relation defined on a groupoid G by (a, b)ezlG iff a = f(b) for 

some / G .#/(G) 
z/G ... relation defined on a groupoid G by zJjG = z/>G u {ic^} 
zrG ... relation defined on a groupoid G by (a, b)ezrG iff a = f(b) for 

some / e */#r(G) 
zJ>G ... relation defined on a groupoid G by zJG = zr>G u {ic^} 
coG ... the intersection of all non-identical congruences of a groupoid G 

(coG = idG if G is a trivial groupoid) 
cocG ... the intersection of all non-identical cancellative congruences of 

a groupoid G 
colc G ... the intersection of all non-identical left cancellative congruences of 

a groupoid G 
cor,c,G "• ^ e intersection of all non-identical right cancellative congruences 

of a groupoid G 

Abbreviations of groupoid varieties 

A- v4-semigroup (satisfying x • yz = uv • w) 
CD- commutative distributive groupoid (satisfying x • yz = xy xz and xy = yx) 

CDI- commutative distributive idempotent groupoid (satisfying x • yz = xy • xz, 
xx = x and xy = yx) 

DI- distributive idempotent groupoid (satisfying x• yz = xy xz, xy z = xz- yz 
and xx = x) 

LD- left distributive groupoid (satisfying x • yz = xy xz) 
LDA- groupoid satisfying x- yz = xy xz, xx • y = x • yy (i.e., left distributive 

delightful groupoid) and x • xx = y yy 
LDB- groupoid satisfying xx • y = x • yy and x * yz = u • vw 
LDI- left distributive idempotent groupoid (satisfying x • yz = xyxz and xx = x) 

LSLD- left symmetric left distributive groupoid (satisfying x- yz = xy xz and 
x- xy = y) 
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LSLDI- left symmetric left distributive idempotent groupoid (satisfying x • yz = 
xy • xz, xx = x and x • xy = y) 

LZ- semigroup of left zeros (satisfying x = xy) 
IM- idempotent medial groupoid (satisfying xx = x and xy • uv = xu • yv) 
RD- right distributive groupoid (satisfying xy • z = xz • yz) 

RDI- right distributive idempotent groupoid (satisfying xyz = xz-yz and xx = x) 
RZ- semigroup of right zeros (satisfying x = yx) 

Z- Z-semigroup (satisfying xy = uv) 
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