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A bound frictionless microsystem has as model a closed Riemannian manifold M, i.e. 
its mechanics is translated into the topology and geometry of M. A stationary state of 
the microsystem is thought of as a coherent flow of micromatter on M, and the energy 
levels of the microsystem are interpreted in terms of the topological nature of this flow. 
A crucial hypothesis made is that a cohomology class defined by this flow must be 
combinatorially realizable via some triangulation K of M. (One can think of this 
simplicial complex K as modelling the fine-grained discrete nature of micromatter, with 
M being a continuous visualisation obtained by using the real numbers.) We show that 
this geometric model is related in a simple way with the Schrodinger equation of the 
microsystem. 

Our perceptions seem to depend on our concepts and conversely; or, as a Deist 
would have it, the same tendencies which shaped the external world are responsible 
for our abstract concepts. 

Be it as it may, a geometer perhaps perceives a natural phenomenon as 
a sequence M{ ^ M2 ^ ... 2 M„ 2 ... of manifolds, each of dimension smaller 
than the previous, each stage corresponding to a more precise comprehension. If 
one finally gets down to a zero dimensional manifold, one has acheived exact 
determination of the phenomenon. 

To take an example, in analytical mechanics we pick up this process at a stage 
when we have decided that all the possible configurations of the system are 
represented by points of a smooth finite dimensional manifold M. We shall use the 
word "system" to connote the phenomenon together with all the boundary 
conditions, e.g. the measuring devices. Furthermore we will suppose that this 
physical system is conservative. This amounts to assuming that M, and the 
geometrical structure which we will put on M to go to more precise stages in our 
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mental process, do not depend on time. We remark that m = dim(M) is generally 
equal to the degrees of freedom of the system; but, in some special cases it might 
be bigger. We will think of time as a one dimensional continuum IR and, to start 
with, we think of any smooth function / : IR —• M as a possible motion of the 
system. In case when m is bigger than the number of degress of freedom, one can 
select a sub tangent bundle D a TMi and rule out of the realm of possible motions 
those functions / which are not always tangent to D. The fibre dimension of 
D equals the degrees of freedom. But D is not integrable; in fact the totality of its 
integral curves is M — that is why we could not start off with a manifold of 
smaller dimension. 

One can say that knowledge of the exact configuration of the system amounts 
to knowing a Dirac delta function on M, the "function" being nonzero at the point 
of M in question. 

In continuous mechanics, though the degrees of freedom is infinite, a similar 
finite dimensional configuration space M can be used if one considers a possible 
configuration as a smooth measure on M (instead of a Dirac distribution). 

So the kinematics of the system is abstracted as a smooth finite dimensional 
manifold. In this geometrical process of visualisation the dynamics of the system 
becomes a geometrical structure on M. Just as kinematics and topology are two 
sides of the same coin so are dynamics and geometry. It is such a tautology that 
is put forth by the "law" of inertia: "a body moves in a straight line with uniform 

From a point 
within it one sees 
only local features of M. 

Fig. 1 
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motion". In fact this sentence makes sense only if one is visualising motion in 
a space equipped with some sort of connection. We will assume as usual that the 
dynamics of the system is expressed by a Riemannian connection on M. When one 
has reached this stage of perception, the set of all possible motions is reduced only 
to those functions / : R -> M which are geodesies, i.e. "straight lines" in the given 
connection. In particular at this stage one is enabled to explain how the system, 
starting with given positions and velocities, moves in the space M. 

But in many cases, e.g. in microphenomena, one cannot accurately measure the 
positions and velocities at time t = 0, and the knowledge of this Riemannian 
manifold is not a "deterministic" model. In such cases the "measurable quantities" 
are rather obtained by performing suitable integrations over all of M, i.e. we are 
concerned only with properties in the large. The following pictures might help such 
a visualisation. 

From well outside it 
we see only some global 
features of M. 

Fig. 2 

Here M is closed so as to correspond to the fact that physically the micro-
phenomenon is "bound". So a (bound) microsystem, as far as its mechanics 
(kinematics + dynamics) is concerned, is a closed Riemannian manifold of 
dimension m (with, if needed, some potential function). 

We will assume that this microsystem is "continuous". So there is a sort of 
microfluid distributed on M according to some rule: if one knows this density 
function one knows the "configuration" of the microsystem. 
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In this picture a stationary microflow will be represented by a smooth tangent 
vector field X on M, with X not depending on time. The integral curves of X are 
the paths of motion of the microfluid. Since X is independent of time, on any given 
region of M the flow evolves in the same fashion for all time. The law of inertia 
now gives us the equation 

Vx-Y = 0. (1) 

Next it is natural to assume that in such a stationary state the micromatter is 
spread uniformly on M. We shall assume that M is orientable and that the mass 
is spread uniformly with respect to the volume form \ig of our Riemannian 
metric g. Now the equation of continuity for this fluid motion reads 

LX{M) = 0, (2) 

divX = 0. (2a) 

Let us look now at the real function M -> IR defined by p i—> (X{p),X{p)}. This 
function is constant on each integral curve of X. We will assume that our 
stationary microflow is ergodic. This implies in particular that this function must 
be a constant. Hence we would have an equation 

<X,X} = e. (3) 

The constant e will be called the energy level of the stationary flow. We note that 
we could have introduced the hypothesis that one of the orbits our flow is dense 
(instead of ergodicity) to get (3); but on physical grounds ergodicity seems to be 
a natural hypothesis (we note, by virtue of (2) and a theorem of Poincare, that our 
flow X was already recurrent). By introducing ergodicity we have replaced the 
equation 

mL <X,X}-w = e (3a) 
'M 

by the simpler equation (3). 
Corresponding to the vector field X we have the 1-form cox defined by 

u>x{Y) = (X, Y). We shall say that our flow X is coherent if 

dK) = 0. (4) 

Now we will examine the consequences of this condition. 

Proposition 1. The conditions (4) and (3) imply (1). 

Proof. We recall (see e.g. [1], p. 149) that for a torsionless connection 
d = A- V where A is alternation and V denotes covariant differential. So equation 
(4) says that for all vector fields Y and Z, 

0 = 2(dco*) (Y, Z) = (Vzt»z) (Y) - (VYcox) (Z) = 

= Z(a>0)) - cox(VzY) - Y(wx(Z)) + (o^VyZ). y ' 
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Now let us put y = X in this equation. Using (3) it follows that cox(X) is constant, 
so the first term is zero. Again the second term is equal to <X,VZX> = 
\Z«X,Xy) and so this too is zero. So we get 0 = -X(X,Zy + (X,VxZy = 
-<VXX, Z> - <X,VxZy + <X,VxZy = -<VXX, Z>. Since this equation holds 
for all Z we see that WXX = 0. q.e.d. 

We will denote by X1 the codimension one sub bundle of TM formed by tangent 
vectors perpendicular to X. 

Proposition 2. The equation (4) implies that X1 is integrable. 

Proof. We use equation (4a) and put Y and Z as sections of X1. Then the first 
and third terms vanish. Again, since Vzy — VyZ = [Z, y ] we get the result 

<X,[z,y]> = o (4b) 

which shows that [Z, y ] is also a section of X1. Since X1 is thus involutive the 
result follows, q.e.d. 

Proposition 3. If (1) and (3) hold and X1 is integrable then the flow X is 
coherent. 

Proof. We have to show that (4a) is true for all vector fields Y and Z. Now if 
y and Z are sections of X1 so is [Y, Z] and equation (4a) is just (4b) which is 
true. So we only need to verify (4a) when Y is a section of X1 and Z is of the 
form fX where / is a smooth function on M. The right side of (4a) reads 

fx<x,Yy - <x,fvxYy - Y<x,fxy + <x,vYfxy. 
Clearly the first term is zero. As for the second it equals — f(X,VxYy = 
f<yxX, y> because <K, y> = 0. So by (1) this equals zero. The third term equals 
— (Yf)(X,Xy because by (3), <X,X> is a constant. The last term equals 
<X,(Yf)Xy + <X,/VyX>. But <X,VyX> = \Y(X,Xy = 0. So this term can­
cels with the third, q.e.d. 

From now on we will assume that the flow X is coherent, and to thek 
codimension one foliation which is perpendicular to X we will give the name 
stationary wave. 

Since ix(cox) = <X,X> is a constant we note that Lxcox = ix dcox + dixcox = 0. 
This implies that the one parameter group of diffeomorphisms of X carries leaves 
into leaves. 

We can write the equation (2a) also as 

S(ox) = 0 (2b) 

where 3 denotes the codifferential. So equations (2) and (4) can be combined into 
the statement that cox — or X — is harmonic, this word covers both the equation of 
continuity and the coherence of our flow. 
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Now, by a theorem of Hodge, the real vector space of all harmonic 1-forms is 
isomorphic to H\M; R), the 1-dimensional cohomology of M with real coef­
ficients. Not all of these classes can be defined by using only whole numbers of 
simplices of a simplicial triangulation K of the manifold M. These integral or 
combinatorially realizable classes form a lattice in this vector space H\M; IR). We 
shall say that X is realizable if cox represents such a cohomology class. 

Definition. Let M be an orientable Riemannian manifold. A vector field X on 
M which is harmonic, "ergodic" and realizable is called a stationary state of M. 
Or, of the microsystem whose mechanics is given by M. We note that the energy 
levels are thus countable in number; hence we get the discrete levels which are so 
characteristic of microsystems. In this definition the word "ergodic" only means 
that (X,Xy is a constant function. 

Let us suppose now that U is an open contractible subset of M. Since dco* = 0 
we can employ Poincare's lemma to find on U a smooth function S such that 
dS = cox. We recall that for a function / its gradient grad(f) is a tangent vector 
field defined by <grad(f), Y} = df(y). Hence grad(S) = X. Hence our equations 
(3) and (2b) can be written as 

<grad(S),grad(S)> = e, (3b) 

AS = 0. (2c) 

Here, as usual, A = 3d is the Laplace operator; if our metric were Euclidean then 

A = " % 

in local coordinates (xl5..., x„ ..., xm). 

Proposition 4. A function S satisfies the differential equations (3b) and (2c) if 
and only if the function \j/ = exp (27riS) satisfies 

4 ^ = **. (5) 

We shall say that the equation (5) is the Schrodinger equation (compare e.g. 
with [2], p. 69) of the microsystem. 

Proof. We recall that Scoz is a function which, at each point, is the trace of the 
linear tensor map Y i—> VyZ. We use this with Z = grad(i/() = 2ni • exp (27riS) • 
grad(S) to see that Ai// = 2ni\// AS + Trace [Y i-> 47i2iKgradS, Y> gradS] = 
2nii// AS + 47r2iKgradS, gradS>. Hence the real part of (5) is (3b) and the 
imaginary part is (2c). q.e.d. 

We note that on a contractible open set U a function S satisfying grad(S) = X 
is unique upto an additive constant; so the function i/t is unique upto a multi­
plicative constant of absolute value one. 
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Proposition 5. We can have a stationary state with energy level e if and only 
if 4n2e is an eigenvalue of A: C^^M) -• Cco(M) and has an eigenfunction with 
absolute value 1. 

Proof. Take any point q0e M and an open cell V0 9 q0. Choose any function S0 

on V0 such that dS0 = cox on V0, X being the given stationary state on M. Let us 
now cover M by the open cells V0, Vx,..., Vn; and choose one point qt in each Vt. 
We now choose a function S, on Vt such that dS, = cox and 

%) = %) + {<ox. 

Here yt is any singular 1-simplex with vertices q0 and qh i.e. yt; I -> M is 
continuous with y,(0) = q0, y,(l) = g,. 

Since ox defines an integral cohomology class we can say that ]ecox is an 
integer whenever 0 is a singular 1-cycle. This remark shows that in VtnVp 
Si — Sj e Z. So we can define a smooth function ^ on M which equals exp (2mSj) 
on Vj. By Prop. 4 this is the required eigenfunction. 

Conversely, if such an eigenfunction is known, on each open cell Vj we can find 
a smooth real function S, such that exp (2niSj) = \j/ and define X to be the tangent 
vector field on M which equals grad(S,) on Vj. By Prop. 4, X must be harmonic 
and with energy level e. q.e.d. 

An the referee has so kindly pointed out, the above ideas are close to those on 
pages 130 — 132 of Nelson [3], and the author hopes to elaborate on this connection 
in a sequel to this paper. 
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