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Quasigroups of Fractions

T. KEPKA
Praha

Received 8. June 2000

Various imbeddings of cancellative groupoids into quasigroups are studied.
Studuji se rozmanitd vnofeni groupoidd s krdcenim do kvazigrup.

I. Closed subgroupoids

I.1 Translations

1.1 A groupoid is a non-empty set together with a binary operation which is
usually denoted multiplicatively.

1.2 Let G be a groupoid. For each ae G we define the left translation
L, (= L, ) and the right translation R, (= R, ¢) by L,(x) = xa and R,(x) = xa
for every xe€ G. Now, the left multiplication monoid Mul(G) and the right
multiplication monoid Mul,(G) are the submonoids of the transformation monoid
of G generated by the sets {L,; ae G} and {R, a € G}, resp. The multiplication
monoid is generated by {L,,R;a¢€ G}.

1.3 Let H be a subgroupoid of a groupoid G. We denote by Mul(G, H) the
submonoid of Mul,(G) generated by all L, 5, a € H. The monoids Mul (G, H) and
Mul(G, H) are defined similarly.

1.4 Let G be a groupoid. We say that G is left (right) cancellative if L, (R,) is
injective for each a € G and we say that G is cancellative if G is both left and right
cancellative. We say that G is left (right) divisible if L, (R,) is projective for each
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a € G and we say that G is divisible if G is both left and right divisible. Finally,
G is said to be a (left, right) quasigroup if G is both (left, right) cancellative and
(left, right) divisible.

1.5 Proposition. Let G be a groupoid.

(i) If G is left (right) cancellative, then the monoid Mul{(G) (Mul(G)) is left
cancellative.

(ii) If G is cancellative, then the monoid Mul(G) is left cancellative.

1.6 Proposition. Let G be a groupoid.

(i) If G is left (right) divisible, then the monoid Mul(G) (Mul(G)) is right
cancellative.

(ii) If G is divisible, then the monoid Mul(G) is right cancellative.

1.7 If G is a (left, right) quasigroup, then every (left, right) translation is
a permutation and we denote by (Mult(G), Mult(G)) Mult(G) the permutation
group generated by ({L,, a € G},{R,, a € G}) {L,,R,, a € G}.

1.8 Let r be a relation defined on a groupoid G. We say that r is left (right)
stable if (a, b) € r implies (xa, xb) € r ((ax, bx) € r) for every x € G and we say that
r is stable is it is both left and right stable. We say that r is left (right) cancellative
if a,b,ce G and (ca, cb)er ((ac, bc) e r) implies (a, b) € r and we say that r is
cancellative if it is both left and right cancellative. Finally, we say that r is
compatible if (a, b) € r and (c, d) € r implies (ac, bd) € r. (Clearly, if r compatible
and reflexive, then r is stable and if r is stable and transitive, then r is compatible.)

19 If S is a non-empty subset of a groupoid G, then {S); means the sub-
groupoid generated by S. (Clearly, card((S)) < W, for S finite and card((S)) =
card(S) for S infinite.)

1.10 For a groupoid G we put:

A(G) = {a€e G;L, is injective},

A(G) = {ae G;R, is injective},

A(G) = A(G)  A{G);

B(G) = {a€ G; L, is projective},

B,(G) = {ae G;R, is projective},

B(G) = B,(G) N B,(G);

C(G) = A(G) n B{(G), C(G) = A{G) n B,(G), C(G) = C|(G) n C{G).

1.11 Let G be a groupoid. We define two equivalences p; and q; on G by
(a, b) € pg and (¢, d) € g if and only if L, = L, and R, = R,.

1.12 Let G be a groupoid. We define three transformations g, 7 and pg of
G by a4(x) = X%, 14(x) = x - x* and pg(x) = x* - x for every x € G.

1.13 Proposition. Let G be a groupoid such that o (tg, pg) is an injective
endomorphism of G. Then there exists a groupoid K with the following properties:
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(i) G is a subgroupoid of K and G, K are equationally equivalent (i.e., they
satisfy the same groupoid equations).
(ii) ok (rK, pK) is an automorphism of K.
(iii) Every finitely generated subgroupoid of K is contained in a subgroupoid
isomorphic to G.
(iv) K is (left, right) cancellative if and only if G is so.
(v) K is (left, right) divisible if and only if G is so.

Proof. Clearly, there is a subgroupoid H such that G is a subgroupoid of H,
G =~ H and o4(H) = G. Now, putting G, = G, G, = H, etc., we get the chain

GG <SG c...andK=[)G. A
i=0

1.14 Let G be a groupoid. We denote by c¢ (¢, 6, C, G) the smallest (left, right)
cancellative congruence of G. Further, if G is non-trivial, then we denote by c¥
(cff‘G, c,’.'fc), the intersection of all non-identical (left, right) cancellative congruences
of G. Clearly ¢ = c¥ (c,¢ S ¢ Cg S ¢¥¢) and, if G is not (left, right)
cancellative, then c¢; = ¢ # idg (¢,¢ = cff¢ + idg, . ¢ = ¥ + idg).

A non-trivial (left, right) cancellative groupoid G will be said subdirectly
c-irreducible (cl-irreducible, cr-irreducible) if ¢ + idg (cf¥s + idg, c¥6 + idg).

1.15 Proposition. Let G be a non-trivial (left, right) cancellative groupoid.
Then G is a subdirect product of subdirectly c-irreducible (cl-irreducible,
cr-irreducible) (left, right) cancellative groupoids.

Proof. For every x = (a,b)e G?,a + b, let r, denote a cancellative con-
gruence of G that is maximal with respect to x ¢ r,. Then G can be imbedded onto
the product [ [G/r,, x € GO\id;. A

I.2 Closed subsets

2.1 Let G be a groupoid. For any subset S of G and all n > 1 we put:

(Bo(S) =) BlS) = S:
(ﬂ,,,G(S) =) ﬁn(s) =wS = {xe G; (((xa ) ) a2) a, € S for some ay, ..., a, € S};
(89 =) 5) = Ul

2.2 A subset S of a groupoid G is said to be (left, right) closed in G if (o,(S) < S,
Bi(S) = S) ai(S) L Bi(S) = S.



2.3 The intersection of any non-empty family of (left, right) closed subsets of

a groupoid G is again (left, right) closed. Hence, given a subset S of G, we denote

by ([S].e [S].6) [S]e the smallest (left, right) closed subset containing S. Clearly,
ST U S] € [S]

2.4 Remark. Let S be a subset of a groupoid G.
(i) Put So = Sand S;,; = o,(S;)) U S;foreveryi > 0. Then S, = S, = S, < ...

and [S], = {JS.
(ii) Put .iS'=00= S and Sy, = o,(S;) U Bi(S;) for every i > 0. Again S, = S, <
S,c ... and [S] = .
(iii) Finally, put iTS‘Z =S and S;;; = o(S) U S, for every even i >0 and
Sisi = Bi(S) v S;foreveryoddi > 1.Then S, = S, = S, < ... and [S] = OSi.
i1

2.5 Lemma. Let H be a subgroupoid of a groupoid G and S a subset of G.
(i) If S is (left, right) closed in G, then S N H is (left, right) closed in H.
(i) If S < H, S is (left, right) closed in H, and H is (left, right) closed in G,
then S is (left, right) closed in G.
(iii) If S < H, S is (left, right) closed in G, then S is (left, right) closed in H.
(iv) If S < H, then ([S],n S[She [Slx S [S]6) [S]w = [S]e.

2.6 Lemma. Let S be a subset of a groupoid G. Then:
(i) o(S) < [S], and B(S) < [S].
(ii) oS) U B(S) < [S]

1.3 Closed subgroupoids

3.1 Let G be a groupoid. The intersection of any non-empty family of (left,
right) closed subgroupoids of G is either empty or a (left, right) closed sub-
groupoid. Hence, given a non-empty subset S of G, ({S)c.g, (SDc.¢) (SDe,¢ Will
denote the smallest (left, right) closed subgroupoid containing S. Clearly, ([S], =
(e [S]e € () [S] € {SDe. Moreover, (S U {S). = (S

3.2 Remark. Let S be a non-empty subset of a groupoid G.
(i) PutSo = S, Siy, = {xy;x, ye S;} forevery eveni > Oand S;,, = (S, U

S; for every odd i > 1. Then Sy = S, = S, < ... and (S). = JS.
i=1
(i) PutSy = S, Sy, = {xy;x, ye S;} forevery eveni > O and S;;, = o(S;) U
Bi(S;) L S; for every odd i > 1. Again S, = S; = S, < ... and <{S). = |JS.




(iii) Finally, put So = §, S5y = {xy; X, Y€ S3i}, S3i2 = al(s3i+1) U 834, and
S3iv3 = Bi(S3i+2) U Sz o forevery i > 0. Then S, = S; = S, <... and {S). = JS.
i=1

3.3 A non-empty subset S of a groupoid G is said to be left (right) strongly
dense in G if G = (S). (G = {S)) (we will also say that S lc/rc-generates G,
etc.) and S is said to be strongly dense in G if it is both left and right stronly dense
in G.

3.4 A non-empty subset S of a groupoid G is said to be dense in G if (S). = G
(we will also say that S c-generates G, etc.).

3.5 Lemma. Let S be a non-empty subset of a groupoid G. Then:
(i) S is left (right) strongly dense in {S). ¢ ({S)w c)-
(ii) S is dense in {S). .

3.6 Lemma. Let H be a (left, right) strongly dense subgroupoid of a groupoid
G and S a non-empty subset of H such that S (left, right) strongly dense in H.
Then S is (left, right) strongly dense in G.

Proof. We have H = (S). y S {(S).¢c = K. But K is left closed in G and
consequently K = G and S is left strongly dense in G. A

3.7 Lemma. Let H be a dense subgroupoid of a groupoid G and S a non-empty
subset of H such that S is dense in H. Then S is dense in G.

Proof. Similar to that of 3.6. A

3.8 Lemma. Let H be a subgroupoid of a groupoid G. Then:
(i) ag(H) = {x€ G; f(x) € H for some f € Mul{(G, H)}.

(ii) Bo(H) = {x€ G; f(x) € H for some f € Mul(G, H)}.

(iii) H < ag(H) < [H] .6 € {H)es

(lV) Hc ﬂG(H) = [H]r,G = <H>rc,G~

3.9 Let H be a subgroupoid of a groupoid G. We put (yo(H) =) y(H) = {xe G;
f(x) e H for some f e Mul(G, H)}.
3.10 Lemma. Let H be a subgroupoid of a groupoid G. Then H < y4(H) = [H].

3.11 Lemma. Let H be a subgroupoid of a groupoid G. Then a, o(H) =
of (H) and B, o(H) = Bi o(H) for every n > 0.

3.12 Lemma. Let @,y be homomorphism of a groupoid G into a (left, right)
cancellative groupoid K. Then set {x€ G; ¢(x) = Y(x)} is either empty or a (left,
right) closed subgroupoid of G.

3.13 Corollary. Let H be a (left strongly, right strongly) dense subgroupoid of
a groupoid G and let ¢ be a homomorphism of H into a (left, right) cancellative
groupoid K. Then ¢ can be extended to at most one homomorphism of G into K.

7



I.4 The conditions (A1), ..., (A11) and (B1), ..., (B11)

4.1 Let H be a subgroupoid of a groupoid G. Define the following eleven
conditions for H in G:

(A1) There exists n > 1 such that forallg > 1,m = ¢gn, ay, ..., a,€ H, x, ye G,
ay(... (a.x))e H, there exist k > 0,1 > 0, by,... by, ¢, ... ,c;€ H with by(.... (b xy)) =
(@ (@) (el ()

A2) If m>0, a,a,,...,a,€ H and x e G, then there exist k >0, [ > 0,
by, ..., by, ¢y, ..., ¢;€ H such that by(... (b, - ax)) = (ci(... (ci))) (ai(--- (@nX)));

(A3) For every feMul(G, H) there exist g, h,u,v in Mul(G, H) such that
g(xy) = f(x) h(y) and u(ay) = v(a) f(y) for all ae H, x, y € G, f(x) € H;

(A4) For every feMul(G, H) there exist g € Mul(G, H) such that g(xy) =
f(x) f(y) for all x, y € G;

(AS5) There exist a transformation ¢ of H such that t(a) - xy = ax - ay for all
aeH and x,y € G;

(A6) For every feMul(G, H) there exist g, h,u,v in Mul(G, H) such that
g(xy) = f(x) h(x) and u(wz) = v(w) f(z) for all x, y, w,ze G with f(x)e H and
f(z) e H;

((2\7) For all f, g € Mul(G, H) there exist h, u in Mul(G, H) such that hf = ug
(i.e., the monoid Mul(G, H) is right uniform);

(A8) For all f e Mul(G, H) and a € H there exist g, h € Mul(G, H) such that
gLa,G = hf9

(A9) For every feMul(G, H) there exist g, h,u,v in Mul(G, H) such that
g(xy) = f(x) h(y) and u(wz) = v(w) f(z) for all x, y, w,z€ G such that f(x)e H
and either we H or f(z) € H;

(A10) If x, ye G, ae H and b, c € {a), then bx - cy = bc - xy;

(A11) For every f € Mul(G, H) there exist g, h in Mul,(G, H) such that f(xa) =
g(x) h(a) for all xe G and a € H.

4.2 Proposition. Let H be a subgroupoid of a groupoid G. Then the following
implications take place:

(1) (A3) = (Al), (A2), (A7) and (AS8);

(2) (A4) = (Al), (A2), (A3), (A6), (A7), (A8) and (A9);

(3) (AS) = (Al), (A2), (A3), (A4), (A6), (A7), (A8) and (A9);

(4) (A8) = (A7);

(5) (A9) = (Al), (A2), (A3), (A6), (A7) and (AS8);

(6) (A10) = (Al), (A2), (A3), (A4), (AS), (A6), (A7), (A8) and (A9).

Proof. First, we show that (A5) = (A4). For, let f e Mul(G, H). If f = id,
then we can take g = f. If f % idg, then f =L, ... L, for a some n > 1 and
a ..., a,€ H and we put g = Ly, ... Ly

Now, we are going to show that (A8) = (A7). We have g =L,,... L, for
suitable n > 0 and a,, ..., a,€ H. If n = 0, then we put h = id; and u = f. If
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n = 1, then (A8) applies. If n > 2, then we proceed by induction on n. Put g, =
L,, ... L,,. There are hy, u; in Mul(G, H) such that h, f = u,g,. Further, by (A8),
vL,, = tu, for some v,teMul(G, H). Thus hf = th,f = tu,g, = vL,,g, = vg,
where h = tu, € Mul(G, H).

The remaining implications are easy. A

4.3 Proposition. Let H be a subgroupoid of a groupoid G such that the
conditions (Al) and (A2) are satisfied. Then:

(i) (Hhec = [H]I,G = “G(H)-

(ii) xe {H). if and only if there exist n > 1 and a,,..., a,€ H such that
ay(... (a.x)) € H.

Proof. We have H < o(H) = [H], = (H). and it suffices to show that o(H)
is a left closed subgroupoid of G.

First, we check that oH) is a subgroupoid of G. For, let x, y € «(H). Then
g(x) € H for some g € Mul,(G, H) and we can assume without loss of generality
thatg =L, ... L,, where m = gn,q > 1 and a,, ..., a, € H are by (Al). There
exist k>0, 1 >0 and by,..., by, ¢y, ..., ¢, in H such that by(... (b, xy)) =
(a(-.. (amx))) (cs(--- (c1y))- Further, there is f e Mul(G, H) with f(y)€ H. Now,
define two sequences f,, f5, ... and f}, f5, ... of transformations from Mull(G, H) as
follows: f; = f; if i > 1, then f,, f/ € Mul(G, H) are such that f,(az) =
fa) flz), all aeH, zeG (by (A2)). Then we have fi oby(... (b xy))) =
ﬁl-i-lg(x) ) ﬁ+1(cl(--- (CIJ’))) and ﬁ+1(01(-~- (CIJ’))) = ﬁ,(cl) ) fl(cz( (CIJ’))) = =
file) (filed) (- (filcy) f(c) € H. Thus h(xy)e H, where h = f,,L, ... L, €
Mul,(G, H).

It reamins to show that a(H) is left closed in G. Let x, y € G, x, xy € a(H). Then,
similarly as above (by (Al)), there are f,h, veMul(G, H) such that v(xy) =
f(x) h(y) and f(x) e H. Further, g(xy)e H for some g = L,,...L,, n >0, a,, ...,
a,e H. Now, uvy(a)(vn_i(ar) (... (vi(an) - f(x) h(»)) = vila) (vn_1(a2) (... (vi(a) -
v(xy))) = vifar) (v-1(@) (.. (v{@n-1) - va@n xy)))) = ... =vif@))v{aray(... (@, xy)))) =
v.+19(xy) € H (the sequences v, = v,v,, ..., V), V5, ... are defined similarly as
above). Hence p(y) € H, where p = L, u)... Ly, )Ly € Mul(G, H) and it follows
that ye ao(H). A

4.4 Proposition. Let H be a right closed subgroupoid of a groupoid G such
that the conditions (A9) and (A11) are satisfied. Then ag(H) is closed subgroupoid
of G.

Proof. By 4.2(5) and 4.3, K = ofH) is a left closed subgroupoid. It remains to
show that K is right closed.

For, let x€ G,a,be K and xa = b. There are f,g, he Mul(G, H) such that
f(a)e H and g(b) = h(x) f(a). Further, by (A11), there are u, v, p € Mul/(G, H) such
that ug(b) € H and ug(b) = u(h(x) f(a)) = vh(x) pf(a). From this, vh(x)e H, since
H is right closed, and hence x € K. We have proved that K is right closed. A



4.5 In the sequel, the right hand forms (or the duals) of the conditions (A1), ...,
(A11) will be denoted by (B1), ..., (B11).

4.6 Theorem. Let H be a subgroupoid of a groupoid G.

(i) If (A9) is satisfied for H in G, then ag(H) = {H). ¢ = [H]\c. If, moreover,
(B9) and (B11) are satisfied for a5(H) in G, then 65(H) <= Bo(ae(H)) = <H) o =
<<H}c,c>1c,(; = [[H]r,G]I.G = [H]G-

(ii) If (B9) is satisfied for H in G, then fo(H) = {H). ¢ = [H]. ¢ If, moreover,
(A9) and (Al1) are satisfied for Bo(H) in G, then 6i(H) < a5(Be(H)) = <H).c =
<<H)c,c>1c.c = [[H]r,G]I.G = [H]G-

Proof. (i) By 4.3, K = ag(H) = (H).c = [H]. ¢ and, by the right hand form
of 4.3, we have L = B4(K) = (KD, . Now, by the right hand form of 4.4, L is
closed in G, and so L = (H), ; clearly Bg(ag(H)) = [H]c = {H)e o

(ii) Dual to (i). A

4.7 Corollary. Let H be a subgroupoid of a groupoid G suh that (A9) is
satisfied for H and Po(H) in G, (B9) is satisfied for H and og(H) in G, (All) for
Bo(H) and (B11) for ag(H) in G. Then Bg(os(H)) = ag(Be(H)) = <{HX.¢)re.c =
(H¢ = [[Hlclo = [[Hlicle = [H]s

I.5 The conditions (C1), ..., (C7)

5.1 Let H be a subgroupoid of a groupoid G. Define the following seven
conditions for H in G:

(C1) For every feMul(G, H) there exist g, h € Mul(G, H) such that g(xy) =
f(x) h(y) for all x,y € G, f(x)e H;

(C2) For every fe€Mul(G, H) there exist g, h € Mul(G, H) such that g(xy) =
h(x) f(y) for all x, y € G, f(y) € H;

(C3) For every feMul(G, H) there exist g, h € Mul(G, H) such that g(xa) =
f(x) h(a) for all xe G, a€ H,;

(C4) For every feMul(G, H) there exist g, h € Mul(G, H) such that g(ax) =
h(a) f(x) for all x € G, a € H;

(C5) For every feMul(G, H) there exist g€ Mul(G, H) such that g(xy) =
f(x) f(y) for all x, ye G;

(C6) For all f € Mul(G, H) and a € H there exist g, h, u, v € Mul(G, H) such that
gL.c = hf and uR, ¢ = vf;

(C7) For all f,geMul(G, H) there exist h, u € Mul(G, H) such that hf = ug
(i.e., the monoid Mul(G, H) is right uniform).

5.2 Proposition. Let H be a subgroupoid of a groupoid G. Then the following
implications take place:

(1) (C3) and (C4) = (C6) and (C7);

(2) (C5)=(CI), (C2), (C3), (C4), (C6) and (C7);
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(3) (C6) = (C7);
(4) (A5) and (B5) = (C5).

Proof. We will prove only that (A5) and (B5) imply (C5). First, there are
transformations p and g of H such that p(a) - xy = ax - ay and xy - g(a) = xa - ya
for all ae H and x, y € G. Now, given fe Mul(G, H), f =T, ... Toa, n =1,
ay,...,a,€ H, T, ...,T,e {L,R}, we put b, = p(a) if T, =L and b, = g(a) if
T; = R. Then ¢(xy) = f(x) f(y) for all x,y€ G, where g = T, 5, ... T,;. A

5.3 Theorem. Let H be a subgroupoid of a groupoid G such that the conditions
(CI) (resp. (C2)) and (C3), (C4) are satisfied. Then y(H) is a left (resp. right)
closed subgroupoid of G.

Proof. First, we check that K = y4(H) is a subgroupoid of G. For, let x, y € K.
There are g, u, v in Mul(G, H) such that g(x) € H and u(xy) = g(x) v(y); we have
v =T, ... Tpa, where n > 0, a,€ H and T, € {L,R}. Further, f(y) € H for some
f €eMul(G, H). Now, define sequences fi, f, ..., foi2 and fi, f3, ..., fyy, of trans-
formations form Mul(G, H) as follows: fi=f; if n>i>1 and T, =1L,
j=n+1—i then f,, and f/are such that f;,,(az) = f/(a) fi(z) forallae H, ze G;
ifn>i>1and T,=R,j=n+1—i, then f,, and f are such that f, (za) =
fiz) fi(a)forall ae H, z € G; f,,, and f, are such that f,,,(az) = f,,(a) f,.1(2)
for all a € H, z € G. Then we have f, ,,u(xy) = f,.2(g(x) /(y)) = fis19(x) " fos10(y)
and f;l+lv(y) = f;l+l(T1,a1 Tn,a,.(y)) = Tl,blf;l(TZ,az Tn,a,,(y)) = e = Tl,b|
T, fi(v) € H, where b, = f,,,_i(a)e H. Thus f,,,u(xy)e H and xy € K.

Now, we are going to show that K is left closed in G. Let x, y € G, x, xy € K.
Then h(xy) = f(x) u(y), f(x)e H, g(xy)eH, g =T, .. T,,, for some
f g, h,ue Mul(G, H), n > 0, a;€ H, T, € {L,R}. Define the sequences hj, ..., h,,+1,

1> --» M,y similarly as above and put b, = h;,,_,(a) € H. Then we have T ,,
Tor (£ () = T o T (B(x3)) = T Tor iTa(53) = oo =
h,19(xy) € H and consequently p(y)e H, where p =T, ... T, Lyyue Mul(G, H).
It follows that ye K. A

5.4 Corollary. Let H be a subgroupoid of a groupoid G such that (Cl), (C2),
(C3) and (C4) are satisfied. The y4(H) = {(H). ¢ = [H]c and, moreover, if the
assumptions of 4.7 are satisfied, then also yo(H) = ag(Bo(H)) = Bs(ots(H))-

1.6 Existensions of cancellative congruences

6.1 Proposition. Let H be a subgroupoid of a groupoid G such that K = og(H)
is also a subgroupoid.

(i) If n>1 and x,,..., x,€ K, then there exists feMul(G, H) such that
fxi)s s f(xn) € H.

(ii) If r is an equivalence on H, then r can be extended to at most one left
cancellative left stable equivalence on K.
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Proof. (i) Since x,e€ K, fi(x;)e H for suitable, f;eMul(G, H). But K is
a subgroupoid of G, hence fi(x,)€ K and f,fi(x,) € H for some f, e Mul(G, H);
clearly f>fi € Mul(G, H) as well. Now, there are f;, ..., f, € Mul(G, H) such that
fifofi(X3)s ooy fufuzi .- fi(x,) € H and it suffies to put f = f,... fi.

(ii) Let s,t be left cancellative left stable equivalences on K such that
sNHY =r =1tnHYIf (x, y) es, then f(x), f(y)e H for some f € Mul,(G, H)
(by (1)) and we have (f(x), f(y)es n H® = r < t. Since t is left cancellative, we
have also (x, y) e . Thus s < t and, quite similarly, t 5. A

6.2 Proposition. Let H be a subgroupoid of a groupoid G such that K = ag(H)
is again a subgroupoid and let r be a left stable equivalence on H. Define
a relation s on K by (x, y) € s if and only if (f(x), () € r for some f € Mul|(G, H).
Then:

(i) r < s and s is reflexive and symmetric.
(ii) If (A7) is satisfied for H in G, then s is an equivalence.
(iii) If (A6) is satisfied, then s is left stable.
(iv) If (A6) is satisfied and if r is right stable, then s is right stable.
(v) If (A6), (A7) are satisfied, then s is left cancellative.
(vi) If (A6), (A7) are satisfied and r is cancellative, then s is cancellative.
(vii) If r is left cancellative, then s extends r.

Proof. (i) Since r is symmetric, s is symmetric, too. If x € K, then f (x) € H for
some f € Mul(G, H), and hence (x, x) € s. The inclusion r < s is obvous.

(i) Let (x,y), (y» z) € s. We have (f(x), f(y)) € r and (g(y), g(2)) € r for suitable,
f, 9 e Mul(G, H). By (A7), there are h, u in Mul(G, H) with hf = ug. Since r is
left stable on H, we have (hf(x),hf(y)er and (ug(y), uz(g)) € r. Therefore
(af (x), hf (z)) € r and (x, z) € s.

(iii) Let x, y, z€ K, (x, y) € 5. Again, there are f, g, h in Mul(G, H) such that
(f(x), f(v)) € z and g(zx) = h(z) f(x), g(zy) = h(z) f(y). Further, there are u, p, g in
Muly(G, H) with uh(z) € H and p(vw) = u(v) g(w) for all v, w e G, u(v) € H. Now,
pg(zx) = p(h(z) f(x)) = uh(z)- qf (x), pg(zy) = uh(z) - qf(y). Since r is left stable,
we have (pg(zx), pg(zy)) € r, and so (zx, zy) € s.

(iv) We can proceed similarly as in (iii).

(v) Let x, y,zeK, (zx, zy)€s. There is f € Mul(G, H) such that (f(zx), f(zy))er.
Further, g(x), g(y) € H for some g € Mul(G, H) and there are u, v € Mul(G, H) such
that u(zx) = v(z) g(x) and u(zy) = v(z) g(y). Similarly, pv(z) e H, p € Mul{(G, H),
and there are g, t € Mul(G, H) such that qu(zx) = g(v(z) g(x)) = pv(2) - tg(x) and
qu(zy) = pv(z) - tg(y) (all this by (A6)). Now, by (A7), hf = wqu for some
h,w e Mul(G, H). Of course, (hf(zx), hf(zy))er, since r is left stable. But
hf(zx) = wqu(zx) = w(pv(z) - tg(x)) and hf (zy) = w(pv(z) - tg(y)). We have proved
that (e(x), e(y)) € r for e = WL,,,tg € Mul(G, H) and it follows (x, y) € s.

(vi) By (v), s is left cancellative. Now, let x, y, z € K, (xz, yz) € s. Proceeding
similarly as in (v), we can show that there are w, p, t, v, g in Muly(G, H) such that
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g(x), g(y), pu(z) € H and (w(tg(x) - pu(z)), w(tg(y) - pv(z)) € r. Since r is left cancel-
lative, we have (tg(x) - pv(z), tg(y) - pv(z)) € r. But r is also right cancellative and so

(tg(x), tg(y)) € r. Thus (x, y) € s.
(vii) Obvious. A

6.3 Theorem. Let H be a left strongly dense subgroupoid of a groupoid G such
that the condition (A9) is satisfied. Then:

(i) G = ag(H), i.e.,;for every x € G there exist n > 0 and a,, ..., a, € H such
that aj(ay... (a.x))) € H.

(ii) Every left cancellative congruence r of H can be extended in a unique way
to a left cancellative congruence s of G; s is cancellative if an only if r is so.

Proof. (i) By 4.2(5), the conditions (A3), (A6) and (A7) are satisfied and we
can use 4.3.
(ii) Use 6.2 and 6.1(ii)). A

6.4 Remark. Let G be a groupoid satisfying the following condition: If
f € Mul(G), then there exist g, h, u, v € Mul(G) such that g(xy) = f(x) h(y) and
u(xy) = v(x) f(y) for all x,y € G.

(i) Define a relation ¢ on G by (x, y)et if and only if f(x) = f(y) for some
f € Mul(G). From 6.2 (for H = G and r = id) it follows that ¢ is a congruence
of G and it is easy to see that ¢ is just the smallest left cancellative congruence of
G,ie.t = ¢, (see 1.14).

(i) Let H be a left strongly dense subgroupoid of G such that (A9) is satisfied
and let r denote the smallest left cancellative congruence of H (r is the intersection
of all left cancellative congruences of H). By 6.3, r can uniquely be extended to
a left cancellative congruence s of G. Then t < s (see (i), ' =t N HY is a left
cancellative congruence of H,r < r' < sn H® =pr r=7¢ and s = t. That is,
t extends r.

6.5 Proposition. Let H be a subgroupoid of a groupoid G such that K = y(H)
is again a subgroupoid and let r be a congruence of H. Define a relation s on
K by (x,y) € s if and only if (f(x), f(y)) € r for some f € Mul(G, H). Then:

(i) r < s and s is reflexive and symmetric.
(ii) If (C7) is satisfied for H in G, then s is an equivalence.

(iii) If (C1) and (C3) are satisfied, then s is a congruence of K.

(iv) If (CI), (C2) and (C7) are satisfied, then s is cancellative.

(v) If r is cancellative, then s extends r.

Proof. Similar to that of 6.2. A

6.6 Theorem. Let H be a dense subgroupoid of a groupoid G such that the
conditions (Cl1), (C2), (C3) and (C4) are satisfied. Then:

(i) G = yG(H), i.e., for every x € G there existn > 0, a,,..., a,e Hand T, ...,
T, € {L,R} such that T\, ... T, ,.(x) € H.
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(ii) Every cancellative congruence of H can be extended in a unique way to
a cancellative congruence of G.

Proof. Combine 5.4 and 6.5. A

6.7 Remark. Let G be a groupoid satisfying the following condition: If
f € Mul(G), then there exist g, h, u, v € Mul(G) such that g(xy) = f(x) h(y) and
u(xy) = v(x) f(y) for all x, yeG.

(i) Define a relation t on G by (x, y) € s if and only if f(x) = f(y) for some
f € Mul(G). Then ¢ is the smallest cancellative congruence of G, i.e. t = c¢ (see
1.14).

(i) Let H be dense subgroupoid of G such that (C1), (C2), (C3) and (C4) are
satisfied and let r be the smallest cancellative congruence of H. Then ¢ extends r.

1.7 Comments

The chapter is of introductory character, a basic terminology is introduced and
the results are adapted mainly from [21] and [24].

I1I. Closed subgroupoids of cancellative groupoids

I1.1 Left closed subgroupoids of left cancellative groupoids

1.1 Lemma. Let H be a subgroupoid of a left cancellative groupoid G.
(i) If H is a left quasigroup, then H is left closed in G.
(ii) If H is finite, then H is left closed in G.

1.2 Lemma. Let G be a left quasigroup. A groupoid H of G is left closed in
G if and only if H is also a left quasigroup.

1.3 Corollary. A subgroupoid H of a left quasigroup G is left strongly dense in
G if and only if K = G whenever K is a left subquasigroup of G such that H < K.

1.4 Lemma. Let H be a left strongly dense subgroupoid of a left quasigroup
G, let H' be a subgroupoid of a left divisible groupoid G’ and let ¢ : G’ — G be
a homomorphism such that o(H') = H. Then:

(i) ¢(G') = G and ¢(K') = G, where K' = (H') 6

(ii) If G’ is a left quasigroup, ¢ | H' is injective and K' = os(H') (e.g., if (A3)
is true for H' in G' — see 1.4.1, 1.4.2, 1.4.3), then ¢ | K' is an isomorphism of K’
onto G.

Proof. (i) Put K = (p(K’). Since K’ is left closed in G, K’ is left divisible, and
hence K is a left quasigroup, H < K < G. Now, K = G by 1.3.

(ii) Put ¢ = ¢ [ K'. By (i), ¢(K') = G. On the other hand, ker(y) and idy are left
cancellative congruences of K’ and they extend idy.. By 1.6.1(ii), kel(lll) =idg. A
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1.5 Corollary. Let H be a left strongly dense subgroupoid of a left quasigroup
Q such that (A3) is satisfied and let H be a subgroupoid of a left quasigroup G.
If ¢ : Q — G is a homomorphism such that ¢ | H = idy, then @ is an isomorphism

of Q onto (H ).

1.6 Lemma. Let S be a subset of a left cancellative groupoid G and R = o, ¢(S).
(i) If S is finite, then card(R) < (card(S))>.
(ii) If S is infinite, then card(R) < card(S).

Proof. We have R = (JS,, S, = {x€ G; ax € S},card(S,) < card(S). A
aes

1.7 Lemma. Let S be a non-empty subset of a left cancellative groupoid G.

(i) If S is finite, then card([S], ¢) < card((S) 6) < No.

(ii) If S is infinite, then card([S], g) = card({(S). ) = card(S).

Proof. Combine 1.6 and 1.2.4(i), 1.3.2(1). A

1.8 Proposition. Let H be a strongly dense subgroupoid of a left cancellative
groupoid G. Then card(H) = card(G).

Proof. If H is infinite, then the result follows from 1.7(ii). If H is finite, then
H is a left quasigroup, H is left closed in G, andso H = G. A

1.9 Proposition. Let H be a left strongly dense subgroupoid of a left can-
cellative groupoid G such that (A9) is satisfied. If H is right cancellative, then G is
cancellative.

Proof. The result follows easily from 1.6.3(1i). A

1.10 Theorem. Let H be a left strongly dense subgroupoid of a left cancellative
groupoid G such that (A10) is satisfied. Then the groupoids G and H are
equationally equivalent (i.e., they satisfy the same groupoid equations or, in other
words, they generate the same groupoid variety).

Proof. Of course, every equation which is true for G is true for H. Now, let
W denote the absolutely free groupoid of groupoid words over an infinite
countable set X and let u,v e W be such that u = v holds in H. Let o : W —» G
be a homomorphism. We have to show that ¢(u) = ¢(v).

Let {xi, ..., X,},n > 1, be the set of variables from X that occur in uv. There is
f €Mul(G, H) such that f¢(x,),..., f¢(x,) are all in H and we have f = L,, ... L, ,
m>1l,a,...,a,€ H For 1 <i < m, let ¢; denote the homomorphism of W into
H such that ¢(x) = g, for each x € X. Further, let  : W — H be a homomorphism
such that Y(x;) = fo(x), | <j < n.

We prove by induction on length of ¢ that if t € W and var(t) = {xi, ..., X,}, then
¥(t) = Loy --- Lo, (@(t). This is clear for t = x;, 1 < j < n. Now, let t = pq,
p.q€ W. We have y(t) = y(p) ¥(q) = Lo -+ Lono@(P)) " Loy - Lona(@(d)) =
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Lop)oi@ -+ Lonp)onal@(P) @(2)) = Loy - Loo@(t)) by (A10) (both ¢(p) and
@{q) are in {a)g). Now, since u = v is true in H, we have Y(u) = y(v), ie.,
Lo - Lonu(@®) = Lo .- Lo,of@(v)) Again, ¢{u) = ¢{v) and G is left can-
cellative. Thus @(u) = ¢(v).

1.11 Remark. Let H be a left strongly dense subgroupoid of a left cancellative
groupoid G and let r be a left cancellative congruence of G such that H/r is a left
quasigroup (e.g., H/r finite). Then H/r = G/r, i.e., for every x € G there is a e H
with (a, x) € r. In particular, if H/r is finite, then G/r is so and consequently G/r
is a left quasigroup.

1.12 Remark. Let H be a left strongly dense subgroupoid of a left cancellative
groupoid G. Assume that id; and H x H are the only left cancellative congruences
of H. Now, if r is a left cancellative congruence of G, then either r | H = idy or
r|H=HXxH,and hence r = G x G.

I1.2 Closed subgroupoids of cancellative groupoids

2.1 Lemma. Let H be a subgroupoid of a cancellative groupoid G.
(i) If H is a quasigroup, then H is closed in G.
(ii) If H is finite, then H is closed in G.

2.2 Lemma. Let G be a quasigroup. A subgroupoid H of G is closed in G if
and only if H is also a quasigroup.

2.3 Corollary. A subgroupoid H of a quasigroup G is dense in G if and only
if K = G whenever K is a subquasigroup of G such that H < K.

2.4 Lemma. Let H be a dense subgroupoid of a quasigroup G, let H' be
a subgroupoid of a divisible groupoid G' and let ¢ : G' - G be a homomorphism
such that ¢(H') = H. Then:

(i) ¢(G') = G and ¢(K') = G, where K' = (H'). ;.

(i) If G' is as quasigroup, ¢ | H' is injective and K' = ys(H') (e.g., if (CI),
(C2), (C3) and (C4) are satisfied for H in G' — see 1.5.1 and 1.5.4), then ¢ | K’
is an isomorphism of K' onto G.

Proof. (i) Put K = (p(K’). Since K’ is closed in G', K’ is divisible groupoid,
and hence K is a quasigroup. By 2.3, K = G.

(ii) Puty = ¢ [ K'. By (i), (K’) = G. On the other hand, ker(y/) and idy- are can-
cellative congruences of K’ and they extend id,. By 1.6.6(ii), ker(y/) = idx. A

2.5 Corollary. Let H be a dense subgroupoid of a quasigroup Q such that (C1),
(C2), (C3) and (C4) are satisfied and let H be a subgroupoid of a quasigroup G.
If ¢ : Q = G is a homomorphism such that ¢ | H = idy, then ¢ is an isomorphism

of Q onto {H). ;.
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2.6 Lemma. Let S be a non-empty subset of a cancellative groupoid G.
(i) If S is finite, then card([S]) < card(<S). ) < No.
(ii) If S is infinite, then card([S]s) = card((S). ) = card(S).

Proof. Use 1.6, its dual and 1.2.4(iii), 1.3.2(iii)). A

2.7 Proposition. Let H be a dense subgroupoid of a cancellative groupoid G.
Then card(H) = card(G).

Proof. If H is infinite, then the result follows from 2.6. If H is finite, then H is
a quasigroup, and so H = G. A

2.8 Theorem. Let H be a dense subgroupoid of a cancellative groupoid G such
that (A10), (B10), (Cl), (C2), (C3) and (C4) are satisfied. Then the groupoids
H and G are equationally equivalent.

Proof. Using 1.6.6, we can proceed similarly as in the proof of 1.10. A

2.9 Remark. Let H be a dense subgroupoid of a cancellative groupoid G and
let r be a cancellative congruence of G such that H/r is a quasigroup (e.g., H/r
finite). Then H/r = GJ/r, ie., for every x € G there is a€ H with (a, x)er. In
particular, if H/r is finite, then G/r is so, and consequently G/r is a quasigroup.

2.10 Remark. Let H be a dense subgroupoid of a cancellative groupoid G.
Assume that idy and H x H are the only cancellative congruences of H. Now, if
r is a cancellative congruence of G, then either r [ H =idyorr [ H = Hx H,
and hence r = G x G.

I1.3 Reflexions in left cancellative groupoids

3.1 Let A be an abstract class of groupoids (i.e., K is closed under isomorphic
images) and let ¥ be a non-empty abstract subclass of A If G e £, then
a homomorphism ¢ : G — L, L € %, is said to be a reflexion of G in & if for every
homomorphism ¥ : G — K, K € %, there exists just one homomorphism {: L - K
such that (¢ = .

(i) Let ¢ : G — L be a reflexion of G in %, G e K, Le ¥. A homomorphism
@' :G - L is a reflexion of G in & if and only if there exists an isomorphism
A:L—> L with ¢ = lg.

(ii) Let ¢ : G — L be a reflexion of G in %, G € A, Le Z. Then ¢ is injective
if and only if there exists at least one injective homomorphism { : G - K € ..

(iii) If Ge &, then idg: G — G is a reflexion of G in %.

3.2 Example. Let ¥ be an abstract class If groupoids and let £ be an abstract
subclass of %~ such that % is closed under subgroupoids and cartesian products
and that trivial groupoids are in L. Then every groupoid from 4" has a (projective)
reflexion in %, for G € Jf, the natural projection G — G/r, r being the smallest
congruence with G/r € %, is a reflexion of G in .%.
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3.3 Example. Let " be the class of cancellative semigroups and .# the class
of those semigroups from " which contain an idempotent element (notice that if
e is idempotent in Se€ X, then e is a neutral element of S). If Se.%, then
idg: S — S is a reflexion of S in & If Se . * and S ¢ .%, then S contains no
idempotent and ids : S — T is a reflexion of S in &, where T = S U {e},e ¢ S and
e is neutral in T. Thus every semigroup from " has an (injective) reflexion in .Z.
Notice that this reflexion is an epimorphism in " (viewed as a category) and that
& is closed under cartesian products but not under subsemigroups.

3.4 Proposition. Let £ be an abstract class of left cancellative groupoids such
that ¥ is closed under cartesian products and left closed subgroupoids and that
&F contains trivial groupoids. Then every groupoid G possesses a reflexion
¢:G—> L in & such that ¢(G) is a left strongly dense subgroupoid of L.
Moreover, if G is left cancellative, then ¢ is an epimorphism in the category of
left cancellative groupoids.

Proof. It follows from 1.8 that there is a non-empty family ¢;: G —» A, i€,
of homomorphisms such that the following two conditions are satisfied:

(1) If ie1, then A, € & and ¢{G) is left strongly dense in A;

(2) If Be & and ¥ : G — B is a homomorphism such that y(G) is left strongly
dense in B, then there are j € I and an isomorphism ( : 4, - B with = (g,

Now, put 4 = [[4, ¢(x) = (¢(x))€ A for each x e G and L = {@(G))c.a

iel

Then ¢(G) is left strongly dense in L€ % and ¢ can be viewed as a homomor-
phism of G into L. We are going to check that ¢ : G — L is a reflexion of G in .%.

Let Ce & and let § : G — C be a homomorphism. Then B = {Y(G))..c€ &
and Y(G) is left strongly dense in B. By (2), ¥ = (¢, for some jeI and an
isomorphism (: A; — B. Now, {u¢p = {¢; = Y, {u: L — B, where u means the
restriction of the j-th projection A — A; to L. The unicity of {u and the rest are
clear from 1.3.13. A

3.5 Remark. Let ¥ be an abstract class of left quasigroups closed under
cartesian products and left subquasigroups and containing trivial groupoids. By 3.4,
every groupoid G has a reflexion ¢ : G - L in % such that K = L whenever
¢(G) = K < L and K is a left subquasigroup of L.

3.6 Remark. Let .# be an abstract class of left cancellative groupoids as in 3.4
and let G be a left strongly dense subgroupoid of a groupoid L € £ such that the
imbedding G — L is a reflexion of G in %. Finally, let ¢ be an endomorphism of
G. Then there exists an endomorphism  of L with y | G = ¢, i.e., ¥ extends ¢.
Of course, ¥ is determined uniquely.

(i) If ¢ is projective, then G < Y(L) = L. Now, if L is a left quasigroup, then
Y(L) is so, hence Y(L) is left closed in L and consequently y(L) = L. Thus
Y projective.
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(ii) If @ is injective and G satisfies (A3) in L, then ¥ is injective (we have
L = a;(G) and the result follows from 1.6.1(ii)).

(iii) If ¢ is an automorphism of G, G satisfies (A3) in L and L is a left
quasigroup, then ¥ is an automorphism of L.

3.7 Remark. Let ¥~ be a variety of groupoids, £~ the class of left cancellative
groupoids from 7 # the class of left quasigroups from ¥~ and ] the class of
subgroupoids of left quasigroups from Z.

() X < A, € A < ¥ and all the four classes are abstract and closed under
cartesian products. Moreover, ¥, J and ] are closed under subgroupoids and
£ under left closed subgroupoids.

(ii) By 3.4, every groupoid G has a reflexion ¢ : G — L in . such that ¢(G) is
left strongly dense in L; clearly, ¢ is injective if and only if G € #].

(iii) Now, suppose that (A3) is satisfied everywhere in ¥ i.e. whenever G € ¥~
and H is a subgroupoid of G.

Let Qe % and let G be a left strongly dense subgroupoid of Q. From the
existence of a reflexion of G in % and from 1.5 it follows that the imbedding
G — Q is a reflexion of G in .&; in particular, Q is determined uniquely up to
G-isomorphism. Moreover, if P € ¥ and G is a subgroupoid of P, then (G p is
G-isomorphic to Q.

(iv) Suppose, finally, that (A9) is satisfied everywhere in ¥ By 1.6.3(ii), the
class ] is closed under left cancellative homomorphic images (in particular,
A, = A, provided that J-free groupoids belong to #}). Moreover, by 1.9, if
Qe % and G is a left strongly dense subgroupoid of Q (see (iii)), then Q is
cancellative if and only if G is so.

I1.4 Reflexions in cancellative groupoids

4.1 Proposition. Let £ be an abstract class of cancellative groupoids such that
& is closed under cartesian products and closed subgroupoids and that &
contains trivial groupoids. Then every groupoid G possesses a reflexion ¢ : G — L
such that ¢(G) is a dense subgroupoid of L. Moreover, if G is cancellative, then
@ is an epimorphism in the category of cancellative groupoids.

Proof. Quite similar to that of 3.4 A

4.2 Remark. Let . be an abstract class of quasigroups closed under cartesian
products and subquasigroups and containing trivial groupoids. By 4.1, every
groupoid G has a reflexion ¢:G— L in & such that K = L whenever
¢(G) < K < L and K is a subquasigroup of L.

4.3 Remark. Let Z be an abstract class of cancellative groupoids as in 4.1 and
Let G be a sense subgroupoid of a groupoid L € & such that the imbedding G — L
is a reflexion of G in .%. Finally, let ¢ be an endomorphism of G. Then there exists
an endomorphism ¢ of L with ¢ [ G = ¢.
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(i) If ¢ is projective, then G < Y(L) = L. Now, if L is a quasigroup, then
Y(L) = L. Thus ¥ is projective.

(ii) If ¢ is injective and G satisfies (C1), (C2), (C3), (C4) in L, then ¢ is
injective.

(iii) If @ is an automorphism of G, G satisfies (C1), (C2), (C3), (C4) in L and
L is a quasigroup, then y is an automorphism of L.

4.4 Remark. Let ¥~ be a variety of groupoids, o the class of cancellative
groupoids from ¥, ¥ the class of quasigroups from ¥~ and Jf; the class of
subgroupoids of quasigroups from %.

(i) ¥ = A, < A < ¥ and all the four classes are abstract and closed under
cartesian products. Moreover, ¥, A and 4] are closed under subgroupoids and
% under closed subgroupoids.

(ii) By 4.1, every groupoid G has a reflexion ¢ : G — Q in ¢ such that ¢(G) is
dense in Q; ¢ is injective if and only if G € ;.

(iii) Now, suppose that (C1), (C2), (C3) and (C4) are satisfied everywhere in .

Let Q€% and let G be a dense subgroupoid of Q. From the existence of
a reflexion of Ge % and from 2.5 it follows that the imbedding G — Q is
a reflexion of G € ¢; in particular, Q is determined uniquely up to G-isomorphism.
Moreover, if Pe% and G is a subgroupoid of P, then {(G)., and Q are
G-isomorphic.

By 1.6.6(ii), # is closed under cancellative homomorphic images. In particular,
K = A, provided that J-free groupoids belong to %;.

I1.5 Comments

Still being of introductory character, the results of this chapter are based on [7],
[22], [23] and [24].

III. Imbeddings of (left/right) cancellative groupoids into (left/right)
quasigroups

II1.1 Imbeddings into (left/right) quasigroups in some classes

1.1 Consider the following three conditions defined for an abstract class /" of
groupoids:
(UCH) If G is a groupoid such that G = UGi, where I is a non-empty linearly
iel

ordered index set, G, € 4~ are subgroupoids of G and G; = G; for i < j,
then G € X,

(LDE) If Ge A and a, b € G, then there exist K e A, ue K and an injective
homomorphism ¢ : G — K such that ¢(a) u = ¢(b);
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(RDE) If Ge X and a, b € G, then there exist K € #, ve K and an injective
homomorphism ¢ : G - K such that vp(a) = ¢(b).

1.2 Proposition. Let A~ be an abstract class of left cancellative groupoids
satisfying the conditions (UCH) and (LDE). Then every groupoid from A" can be
imbedded into a left quasigroup from A.

Proof. Let Ge 4. Put I = G? and suppose that I is well ordered. Further,
define a chain G;, i €1, of groupoids from " such that G; is a subgroupoid of G; for
i < j. First, let iy = (aq, bo) be the smallest element of I. We choose a groupoid
K = G, in X that G is a subgroupoid of K and agu = b, for some u e K (by
(LDE)).

Now, let i > iy, i = (a, b), and let H = | JG;. Then H is a groupoid, all G; are

j<i
subgroupoids of H € " (by (UCH)) for i limit and H = G;_, € & for i non-limit.
Again, H is a subgroupoid of a groupoid G; € /" such that au = b for some u € G..
Put ¢(G) = ( JG.. Then ¢(G) € #; G is a subgroupoid of ¢(G) and, if a, b € G, then
iel
au = b for some u € &G). Repeating the operator ¢, we come by a countable chain

0

G < ¢G) < €(G) < ... of groupoids and we put L = | J¢(G). Then L € #" and
n=0
L is a left quasigroup. A

1.3 Remark. Let ¢ be an abstract class of left cancellative groupoids closed
under left closed subgroupoids and satisfying (UCH), (LDE). Using a slightly
different method, we show the same as in 1.2.

Let Ge A If G is finite, then G is a left quasigroup itself, and hence assume
that G is infinite and that G is a subset of a set S such that card(G) < card(S).
Denote by U the set of ordered pairs (R, ), where R is a subset of S with G = R
and = is a binary operation defined on R such that R(x) € " and G is a left strongly
dense subgroupoid of R(x). Then the set U is non-empty and is ordered by
(R, %) < (Ry, ) if and only if R(x,) is a subgroupoid of Ry(x).

Now, let (R, %), i €I, be a chain of elements from A and let R(x) =  JR(x)).

iel
Then R(x)e # and G is left strongly dense in R(*), so that R(x)e U and
A contains maximal elements.

Let (T, ) be maximal in . We show that T(x) is a left quasigroup. First,
card(T) = card(G) by 1.8. Now, take a,be T. By (LDE) there are a groupoid
K € A, an injective homomorphism ¢ : T(*) — K and an element u € K such that
@(a)u = @(b). Put L = {¢(T)D x; then L € X, u € L, ¢(T) is left strongly dense
in L and card(L) < card(S). Consequently, taking a copy of L in S, we get
a groupoid P(O)e A such that T< P < S, T(x) is a left strongly dense
subgroupoid of P(C) and a O v = b for some ve P. Then (P,0)e U, (T, %) <

(P, 0), hence (T, %) = (P, ©). Thus we have proved that T'(*) is a left quasigroup.
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1.4 Proposition. Letr " be an abstract class of cancellative groupoids
satisfying the conditions (UCH), (LDE) and (RDE). Then every groupoid from
A" can be imbedded into a quasigroup from A .

Proof. By 1.2 and its dual, there are groupoids ¢(G) and t(G) in " such that
G is a subgroupoid of both ¢(G) and 7(G) and for all a,be G there are u € o(G)
and v € 7(G) with au = b = va. Repeating these operators, we get the following
countable chain:

G < o(6) < el6) < efr(elG)) < -...

Let Q be the union of the chain. Then Q € /', G is a subgroupoid of Q and Q is
a quasigroup. A

1.5 Remark. Let %" be an abstract class of cancellative groupoids closed under
closed subgroupoids and satisfying (UCH), (LDE) and (RDE). Using 2.7 and
proceeding similarly as in 1.3 we may show the same as in 1.4.

1.6 Remark. Let ¥ be an abstract class of (left, right) cancellative groupoids
closed under subgroupoids and filtered products and such that every finitely
generated groupoid from ¢ can be imbedded into a (left, right) quasigroup ficin
A. We show that then every groupoid from " can be imbedded into a (left, right)
quasigroup from .

Let G € /. Denote by ./ the set of non-empty finite subsets of G and for every
A e G put G4 = {A); and choose w, € A. Now, there is a (left, right) quasigroup
Q. in X such that G, is a subgroupoid of Q4 and we put Q = [] Q,. Define

Aed

a relation r on Q by ((x4), (v4) € r if and only if there is 4, € o/ such that x; = yj
whenever Be &/ and A, < B. Then r is a congruence of Q, P = Q/r is again
a (left, right) quasigroup from S and we denote by m:Q — P the natural
projection. Finally, define 6 : G — Q by o(x) = (x,) € Q where x, = x if x€ G4
and x, = w, otherwise. Then ¢ = no : G — P is an injective homomorphism.

1.7 Remark. Let ¥ be a variety of groupoids, £~ the class of left cancellative
groupoids from ¥~ and ¥ the class of left quasigroups from 77 we have
L cH v

(i) If Q € &, then we can define a binary operation, say *, on Q by x(x * y) =y
for all x, y € Q. The algebra Q = Q(-, ) with two binary operations satisfies the
equations x(x * y) = y = x = (xy) and the class & = {0, Q € £} is a variety of
algebras with two binary operations; the correspondence Q « Q is an equivalence
between ¥ and 2.

(ii) Let F € ¥~ be a free groupoid over a (non-empty) set X of free generators.
Suppose that F is left cancellative and that F is a subgroupoid of a left quasigroup
Qe . Let E e 2 be a free algebra in £ over X. Denote by G the subgroupoid
of E € ¥ generated by X; we have G € . There exists a homomorphism ¢ : E — Q
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such that ¢ | X = idy. Then Y(G) = F, ¥ = ¢ | G, and, since F is free in ¥ there
is a homomorphism 5 : F — G with n [ X = idy. Now, g = idg, Y = id; and
we see that both ¥ and # are isomorphisms. Thus G is free over X in ¥

1.8 Remark. Let ¥~ be a variety of groupoids, £ the class of cancellative
groupoids from ¥~ and ¥ the class of quasigroups from ¥ we have ¥ < A" < ¥

(i) If Q € A, then we can define binary operations * and O on Q by x(x * y) =
y=(yox)x for all x,yeQ. The algebra Q = Q(, *,O) with three binary
operations satisfies the equations x(x *y) = y = x x(xy) and (yOx)x = y =
(yx) © x and the class = {Q; Q € ¥} is a variety of algebras with three binary
operations; the correspondence Q <« Q is an equivalence between ¥ and %.

(ii) Let F e ¥~ be a free groupoid over a (non-empty) set X of free generators.
Suppose that F is a subgroupoid of a quasigroup Q € 4. Let E € 4 be a free algebra
over X. Then the subgroupoid G = (X ); € X is free over X in ¥

1.9 Lemma. Let A" be an abstract class of groupoids closed under cartesian
products. Suppose that for all a,be€ G, a + b, there exist Ke A and a homo-
morphism ¢ : G — K such that ¢(a) + ¢@(b). Then G can be imbedded into
a groupoid from A.

Proof. For each i € GA\idg, i = (a, b), choose K, € & and ¢,: G - K, ¢{a) +
@{b). Now, put K = [[K; and ¢(x) = (¢(x))eK, xeG. A

II1.2 Minimal imbeddings of left cancellative groupoids into left quasigroups

2.1 Let G be a left cancellative groupoid. For a € G, we put (M,(G) =)M, =
{(a,b); b € G\aG};clearly, M, = ¥if and only if a € C(G), i.e., the left translation
L, is bijective.

The sets M,, a€ G, are pair-wise disjoint and we put (M(G) =)M = (JM,.

aeG
Further, we put (N(G) =)N, =M\M, = (JM, for every aeG. (Clearly,
b+a
M = ¢¥if and only if G is a left quasigroup.)

Finally, let (P(G) =) P denote the set of ae G such that card(N,) < card(M);
clearly, P n C(G) = &.

2.1.1 Lemma. If M is finite, then P = G\C|(G) is finite.
Proof. Obvious. A

2.1.2 Lemma. If M is infinite, then either P = & or card(P) = 1. If the latter
is true and P = {a}, then cardM) = card(M,) and card(C,(G)) = card(G).

Proof. Assume that a € P. Then card(N,) < card(M), M is the disjoint union of
N, and M, and M is infinite; hence card(M,) = card(M). Further, for b + a, we
have M, € N,, cardM,) < card(M), and so card(N;) = cardM\M,) = card(M).
Consequently, P = {a}.
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Now, put R = G\C|(G). If beR, b + a, then card(M,) < card(M). On the other
hand, card(M,) < card(G), card(R) — 1 < card(N,) and card(R) < card(M). It
follows that card(C,(G)) = card(G). A

2.1.3 Lemma. P is a finite set. Moreover, if either card(C(G)) < card(G) or
C\(G) is finite, then P = (.

Proof. With respect to 2.1.2, we may assume that M is finite and G infinite (if
G is finite, then G is a left quasigroup and P = ). By 2.1.1, P = G\C|(G) is
finite, and therefore card(C,(G)) = card(G), a contradiction. A

2.2 Example. (i) P(N(+)) = & = C(N(+)), where N(+) is the additive semi-
group of positive integers.

(ii) Define an operation xon Nby 1 *j=2j,2*j=j+ landi*j = ]forall
i,jeN,i > 3. Then N(x) is a left cancellative groupoid, M(N(+)) = {(1,2k
k> 0} U {(2,1)}, C(N(¥)) = N\{1,2} and P(N(+)) = {1},

(iii) Define an operation Oon Nby 10j=j+ 1,20j=j+ landiOj =
for all i,jeN, i > 3. Then N(O) is a left cancellative groupoid, M(N(0)) =
{(1,1), (2, 1)}, C(N(©) = N\{1,2} and P(N(0)) = {1,2).

2.3 Theorem. The following conditions are equivalent for a left cancellative
groupoid G:

(i) P(G) = &.

(ii) There exists a left quasigroup Q such that G is a subgroupoid of Q and
0= al,Q(G) (i.e., for every x € G there exists a € G with ax € G).

If these conditions are satisfied, then Q may be choosen in such a way that every
element from Q\G is left neutral in Q and G is strongly dense in Q.

Proof. (i) implies (ii). Assume that G "M = J and put Q = G U M. Since
P = (7, for every a€ G there is a bijective mapping f, :N, - M. Now, define
a binary operation * on Q as follows:

(1) x*xy = xy for all x, y € G;

2) uxb=vforallueM and v e Q;

(3) ax(a,b)=bforall a,beG, (a,b)eM

4) a*u = ffu) forall ae G, ueN,.

One sees easily that Q(x) is a left quasigroup satisfying the conditions from (ii).

(ii) implies (i). Suppose, on the contrary, that P(G) + Jand put R = Q\G. If
(a, b) e M (= M(G)), then ax = b for suitable x € R, and hence we have a mapping
6:M > R, o(a, b) = x. With regard to (ii), (M) = R and o [ M, is injective,
a € G. In particular, card(M,) < card(R) < card(M).

Now, assume that M is infinite. By 2.1.2, P = {4}; we have cardM,) =
card(M), and therefore card(R) = card(M). On the other hand, M = M,, U N,,,
card(N, ) < cardM) and R = S U T, where S = ¢(M,,), card(S) = card(R), and
T = a(N,,), card(T) < card(R). But Q = a,Q = ayG U aS U qoT, 4G < G and
a)S = G. Thus R < q,T and card(R) < card(T), a contradiction.
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Next, assume that M is finite. By 2.1.1, P = G\C|(G) is finite. For a, € P, put
S = 6(M,,) and T = R\S. Similarly as above, we have Q = a,Q = a,G U a,S U
aoT, 4G U S = G and R < q,T, which yields card(R) = card(T). But R is finite
and T < R. Consequently, T = R, S = Jand M,, = (J,a contradiction. A

2.4 Theorem. Let G be a left cancellative groupoid. Then there exists a left
quasigroup Q such that G is a strongly dense subgroupoid of Q, Q = &, o(G) (i.e.,
for every x € Q there are a, b € G with a(bx) € G) and every element from Q\G is
left neutral in Q.

Proof. First, assume that M is infinite. Let K be a set with card(K) = card(M);
we also assume that the sets G, M, K are pair-wise disjoint and we putL = M u K
and Q = G v L. Furher, there are bijective mappings f,: N, U K = L, a € G, such
that f,(K) = N, if a ¢ P. Now, define a binary operation * on Q as follows:

(1) x*y =xy forall x,yeG;

2) uxv=v forallueL and ve Q;

(3) ax(a,b) =b forall a,be G, (a,b) e M,;

(4) axu = f[u) forallae G,ueN, UK.

Clearly, Q(x) is a left quasigroup and G is a subgroupoid of Q(x). Finally, by
2.12,P # G, and if ae G\P, then a * K = N, = M. Thus K < o, 4.(G).

Now, assume that M is finite and non-empty. By 2.1.1, P = G\C(G) is finite
and also non-empty. Put Q = G U M U N (we assume that G, M, N are pair-wise
disjoint) and, for every a€ G, let f,: N, U N - M U N be a bijection.

Finally, let a, € P. We may assume that for every i€ N there is b € C(G) with
fii) € M,,. Now, define * similarly as above. Then Q(x) is a left quasigroup, G is
a subgroupoid of Q(x) and for every ieN there is beC(G) such that
ao * (b * i) € G. The rest is clear. A

II1.3 Free imbeddings of (left/right) cancellative groupoids into (left/right)
quasigroups

3.1 By a partial groupoid we mean a non-empty set together with a partial
binary operation (possibly empty).

3.2 Let G be a partial groupoid. We put N(G) = {(a,b); a, b € G, ab is defined}.
Now, G is said to be left (right) cancellative if b = ¢ whenever (a, b),(a,c) e
N(G) (b, a), (¢, a) e N(G)) and ab = ac (ba = ca). G is said to be cancellative if it
is both left and right cancellative.

3.3 A partial groupoid H(x) is said to be a partial subgroupoid of a partial
groupoid G(O) if H = G, N(H(x)) = N(G(C)) and a*b =a0Ob for each
(a, b) € N(H(*)).

3.4 Lemma. Let G be a left cancellative partial groupoid. Then there exists

a left cancellative partial groupoid K such that G is a partial subgroupoid of
K and G® = N(K). Moreover, K is cancellative if and only if G is so.
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Proof. Put K = G U 4, 4 = GP\N(G) (we assume K n A = (¥)and define
a partial multiplication on K in such a way that G is a partial subgroupoid of K and
ab = (a, b) € N(G) for each (a, b) e N(G). A

3.5 Lemma. Let G be a left cancellative partial groupoid. Then there exists
a left cancellative groupoid L such that G is a partial subgroupoid of L. Moreover,
L is cancellative if and only if G is so.

Proof. L is the union of the countable chain of partial groupoids constructed in
34. A

3.6 Lemma. Let G be a left cancellative groupoid. Then there exists a left
cancellative partial groupoid P such that G is a (partial) subgroupoid of P and
G = aP for every a € G. Moreover, P is cancellative if and only if G is so.

Proof. Put P = G U G? (again, assume G N G? = (¥)and define a(a, b) = b
foralla,be G. A

3.7 Theorem. Let G be a (left, right) cancellative groupoid. Then there exists
a (left, right) quasigroup Q such that G is (left, strongly, right strongly) dense
subgroupoid of Q.

Proof. Just combine 3.5 and 3.6 (and the dual of 3.6) in the countable chain. A

3.8 Remark. Let G be a (left strongly, right strongly) dense subgroupoid of
a (left, right) quasigroup Q. Clearly, id, € .4, where A" is the set of (left, right)
cancellative congruence r of Q such that r [ G = idg, and the set A" is upwords
inductive. Consequently, the set .# of maximal elements of /" is non-empty and,
given s € ./, G imbeds as a (left strongly, right strongly) dense subgroupoid into
the (left, right) quasigroup Q/s. Moreover, if t is a (left, right) cancellative
congruence of Q/s such that t [ G = idg, then t = idy. In this respect, Q/s is
a minimal (left, right) quasigroup envelope of G.

3.9 Remark. Let G be a (left strongly, right strongly) dense subgroupoid of
a (left, right) quasigroup Q such that Q is a minimal (left, right) quasigroup
envelope of G (see 3.8). That is, r = id; whenever r is a (left, right) cancellative
congruence of Q such that r [ G = idg. Now, assume that id; and G x G are the
only (left, right) cancellative congruences of G. If s is a (left, right) cancellative
congruence of Q such that s % idy, then s [ G # idg, s [ G = G x G and, finally,

s=0QxQ.
II11.4 Comments and open problem

The first and the last sections of the chapter are folklore more or less and the
second section is an improved version of [23, § 9]. The following problems remain
open:
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Characterize the cancellative groupoids G such that G is a subgroupoid of
a quasigroup Q and the following condition (1) ((2), (3), (4), resp.) is satisfied:

(1) For every x € Q there is a € G with ax € G.

(2) For every x € Q there are a, be G with a- bx € G.

(3) For every x € Q there are a, b€ G with ax - b e G.

(4) For every x € Q there is a € G such that at least one of the elements ax, xa

isin G.

For which (left, right) cancellative groupoids G are the minimal (left, right)

quasigroup envelopes (see 3.8) determined uniquely up to a G-isomorphism?

IV. Cancellative selfdistributive groupoids

IV.1 Dense subgroupoids of left distributive groupoids

1.1 A groupoid is said to be left (right) distributive if it satisfies the equation
x'yz = xy-xz(zy-x = zx- yx). A groupoid is said to be (bi-) distributive if it
is both left and right distributive.

Notice that, if G is (left, right) distributive, then (Mul(G) < End(G), Mul(G) =
End(G)) Mul(G) < End(G).

1.2 Lemma. Let H be a subgroupoid of a left distributive groupoid G. Then:
(i) For all f,geMul(G, H) there exists h € Mul(G, H) such that fg = hf.
(ii) Mul(G, H) = Mul,(G, H) - Mul(G, H).

(iii) If G is left divisible, then Mul(G, H) = Mul(G, H) - Mul(G, H).

Proof. (i) We have g =L, ... L,, n >0, a,e H and since f is an endo-
morphism of G and f(H) = H, we can put h = Ly, ... Ly, € Mul(G, H).

(i1) and (iii). The asertions follow easily from the fact that L .R, = R, L, for all
a,beG. A

1.3 Corollary. Let G be a left distributive groupoid. Then:

(i) For all f, g € Mul(G) there exists h € Mul(G) such that fg = hf.
(ii) Mul(G) = Mul(G) - Muly(G).
(iii) If G is left divisible, then Mul(G) = Mul,(G) . Mul,(g).

1.4 Proposition. Let H be a subgroupoid of a left distributive groupoid. Then:
(i) The condition (Al), ..., (A9) and (A1l) (see 1.4.1) are satisfied for H in G.
(ii) {H).s = [H],¢ = {x€ G; f(x)€ H for some f € Mul(G, H)} = ag(H).

(iii) y6(H) < Bo(ote(H))-

(iv) If G is left divisible, then ys(H) < ag(Bo(H)).

Proof. (i) Immediately clear from the fact that Mul(G, H) < End(G).
(i) If f(x),g(y)e H, then fg(y)e H and fg = hf for some he Mul(G, H).
Now, fg(xy) = fg(x) fg(y) = hf(x) fg(y) € H. Similarly, if f(x), g(xy)e H, then
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hf(x) fg(y) = f9(x) fg(y) = fg(xy) € H; then k(y)e H, where k = Ly;yfge
Mul(G, H). We have shown that ag(H) is a left closed subgroupoid of G and the
rest is clear.

(iii) and (iv). Use 1.2(ii) and (iii)). A

1.5 Proposition. Let H be a subgroupoid of a left distributive groupoid G and
K = {(H).¢. If r is a left cancellative congruence of H, then r can be extended
in a unique way to a left cancellative congruence s of K; s is cancellative if and
only if r is so.

Proof. Define s by (x,y)es if and only if (f(x), f(y)er for some
f € Mul(G, H). Then s is an equivalence extending r (use 1.2(i)) and if (x, y) € s,
ze K, (f(x), f(y) er, then gf(x), gf (y), 9f(z) € H for some g € Mul(G, H) and
we have gf(zx) = gf(2) 9f(x). 9f(zy) = 9/ (z) af (¥). (9 (zx), gf (zy)) er and
(zx, zy) € 5. Quite similarly, (xz, yz) € s.

Finally, let x,y,ze K, feMul(G, H) and (f(zx), f(zy)) er. Again, gf(x),
gf(y), 9f(z)e H, (9f(2) af (x). 9f () gf (W) er, (9f(x).gf(y)€r and (x,y)€s.

The rest is similar.

1.6 Proposition. Let H be a subgroupoid of a left cancellative left distributive
groupoid G and K = (H) ;. Then the groupoids H and K are equationally
equivalent.

Proof. Let W denote an absolutely free groupoid over an infinite countable set
X of variables and let u, v € Wbe such that u = v holds in H. Now, let ¢ : W - K
be a homomorphism. Then fo¢(x)e H for each xevar(uv) and some
f € Mul(G, H) and there is a homomorphism y : W — H such that y(x) = f¢(x)
for each x e var(uv). Now, fo(u) = ¥(u) = ¥(v) = f¢(v) and, since f is injective,
we have ¢(u) = ¢(v). A

1.7 Theorem. Let H be a left strongly dense subgroupoid of a left distributive

groupoid G. Then
(i) For every x € G there exists f € Mul(G, H) such that f(x)€ H.

(ii) Every (left) cancellative congruence of H can uniquely be extended to
a (left) cancellative congruence of G.

(iii) If H is cancellative and G is left cancellative, then G is cancellative.

(iv) If H is right divisible and G is a left quasigroup, then G is right divisible.

(v) If G is left cancellative, then the groupoids H and G are equationally equivalent.

Proof. (i), (ii) and (iii). See 1.4 and 1.5.

(iv) Let x, y € G. Then f(x), f(y) € H for some f € Mul(G, H) and, since H is
right divisible, af(x) = f(y) for some a € H. Further, since G is left divisible f is
a projective transformation of G and a = f(z) for suitable ze G. Now,
f) = af(x) = f(z) f(x) = f(zx) and y = zx, f being injective.

(v) See 1.6. A
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1V.2 Imbeddings of left cancellative left distributive groupoids into left
distributive left quasigroups

2.1 Proposition. Let G be a left distributive groupoid. Put A(G) = {a€ G;
L, injective} and A~1(G) = {ae A(G); aa = aa - a}. Then:
(i) A(G) is either empty or a left closed subgroupoid of G.
(ii) A(G) is either empty or a left closed subgroupoid of G.
(iii) A(G)\A\(G) is either empty or a left ideal of A(G).
(iv) ax = aa- x for all a€ A;(G) and x € G.

Proof. (i) It suffices to take into account that L,L, = L,L, = L,,..L,, for all
a,beG.

(ii) and (iii). If a, b€ A((G), then ab- ab = a- bb = a(bb - b) = (ab - ab) (ab),
and so ab € A(G) by (i). Similarly, if a,beG, a € A(G) and ab € A(G), then
a-bb = (ab- ab) (ab) = a(bb - b) implies b € A,(G).

(iv) aa- ax = (aa- a)(aa - x) = (aa) (aa- x), and so ax = aa-x. A

2.2 Proposition. Let G be a left distributive groupoid. Then:
(i) If G is left cancellative and satisfies the equation xx = xX ' X, then the
monoid Mul|(G) is cancellative.
(ii) If Mul|(G) is right cancellative, then G satisfies xx = xx - x, the equival-
ence pg (see 1.1.11) is a congruence of G and the factor G/pg is idempotent.
(iii) If Mul(G) is cancellative, then the factor G/pg; is left cancellative.

Proof. (i) Since G is left cancellative, the monoid Mul(G) is left cancellative as
well. Let f, g, h € Mul|(G) be such that fh = gh. Proceeding by induction on n > 0,
h=L,... L,, we are going to show that f = g. The result is clear for n = 0, and
henceletn > 1,k = L,, ... L,_, and a = a,. We have fk(ax) = gk(ax) for each
x € G. Consequently, b = fk(aa) = gk(aa) and bfk(x) = fk(aa- x) = fk(ax) =
gk(ax) = bgk(x). Thus fk(x) = gk(x), fk = gk and, finally, f = g by induction.

(i) We have L,L, =L, L, for every ae G, and so L, = L,,. Further, if
(a,b)e pg and ce G, then L, L, =LL,=LL, =L,L, so that L, = L, and
(ca, cb) € pg. Since (ac, bc)€ pg by the definition of p;, we see that pg is
a congruence of G.

(iii) If (ca, cb) € pg, then L L, = L L. = LL,, and therefore L, = L,. A

2.3 Theorem. Let G be left cancellative left distributive groupoid. Then G can
be imbedded into a left distributive left quasigroup if and only if G satisfies the
equation xx = xx - X.

Proof. (i) Let Q be a left distributive left quasigroup. If a, b € Q, then b = ac
for some ceQ and ab = a-ac = aa-ac = aa-b. Thus Q (and so every sub-
groupoid of Q) satisfies xy = xx - y.

(i) Let K be the quasivariety of left cancellative left distributive groupoids
satisfying xx = xx - y, see 2.1 (iv)). By (i), every left distributive left quasigroup
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is in K. Clearly, K is an abstract class and K satisfies (UCH) (see III.1.1). We
show that K satisfies also (LDE).

Let GeK and a,be G. Put ¢ =L, , so that ¢ is an injective endomorphism
of G and @(a)b = aa-b = ab = ¢(b).

We have checked both (UCH) and (LDE) and the result now follows from
n.1.2. A

2.4 Theorem. Let G be a left cancellative left distributive groupoid satisfying
xx = xXx - x. Then there exists a left distributive left quasigroup Q such that:
(i) G is a left strongly dense subgroupoid of Q (i.e., P = Q whenever P is
a left subgroupoid of Q, G < P).
(ii) For every xeQ there are n > 0 and a,, ..., a,€ G such that ay(...(a,x))€ G.
(iii) Every (left) cancellative congruence of G can uniquely be extended to
a (left) cancellative congruence of Q.
(iv) If G is cancellative, then Q is cancellative.
(v) If G is right divisible, then Q is right divisible.
(vi) If G is a right quasigroup, then Q is a right quasigroup.
(vii) The groupouds G and Q are equationally equivalent.
(viii) The imbedding G < Q is a reflexion of G in the class of left distributive
left quasigroups.

Proof. Combine 2.3, 1.7 and I1.3.7(iii). A

2.5 Example. ([4]) Let .# denote the set of injective transformations f of the
set N of positive integers such that f(N) + N. Define an operation * on .# by
f *g = h, where h(i) = fgf (i) for i € f(N) and h(i) = i for i e N\ f(N). Then
J(*) is a left cancellative left distributive groupoid and f * f = (f * f) * f for
every f € ..

2.6 Remark. Let 7~ denote the variety of left distributive groupoids, .# the
class of left cancellative left distributive groupoids, ¢ the class of left distributive
left quasigroup and £ the class of subgroupoids of left quasigroups from 4. Then
goHclcV, H={Ge; xx =2xx-xis true in G} and ¥ + A +
L *+ ¥V (see 2.5).

2.7 Remark. Let G be a left distributive groupoid and a € Kl(G) According to
the proof of 2.3, there exists a left distributive groupoid ;1(G) = H and an element
b e H such that G is a subgroupoid of H, b€ A|(H), a = bb and G = aH = bH.
The mapping L, 4 = L x is an isomorphism of H onto G, G is left strongly dense
in H and A(G) = A(H), A,(G) < A,(H).

New, we get a chain G < G, € G, < G, < ..., where G;,, = ua(G,), and .there
are elements a; € G, such that ay = a, @/, = g;and G; = a;,,G;,, = a(,,,. Thus
L%, 6(G) = G, = G. All the groupoids G; are isomorphic to G.

30



Put K = UGi. Then G is left strongly dense subgroupoid of K, K = aKk,
i=0 ~ ~
A(G) = A(K) and A;(G) = A|(K).
Using the operator y, and standard transfinite construction, we imbed G as a left
strongly dense subgroupoid into a left distributive groupoid P such that A(G) =
C](P) = A] (P).

2.8 Remark. Let G be a left cancellative left distributive groupoid satisfying
xx = xx - x and suppose that G is countably lc-generated, i.e., there exists a subset
S of G such that G = (S) ¢ and 1 < card(S) < N,.

There is a bijective mapping f:S x N — N, N being the set of positive
integers, and f ~'(i) = (g(i), h(i)), g(i) € S, h(i) € N, i € N. Now, consider the chain
G=G, G, cG,< ..., where G| = ug(,-)(Gi) for each i > 0 (see 2.7) and put

Q = | JG.. Then each of the groupoids G; is isomorphic to G, Q is a left
i=0

cancellative left distributive groupoid and G is a left strongly dense subgroupoid

of Q. We are going to show that Q is a left quasigroup (cf. 2.4).

Let ae S and x € Q. Then x € G; for some i > 0 and, of course, there is j > 1
sich that f(a,j) = k > i. We have g(k) = a, and so aG,,; = G,. But xe G,,
ay = x for some y € G,,; and we have checked that a € C(Q). Now, S = C(Q)
and G = (SHeg S (SHeg < C(Q), since C(Q) is a left closed subgroupoid of
Q (see the proof of 2.1). On the other hand, G is left strongly dense in Q. Thus
Q = C(Q) and it means that Q is a left quasigroup.

2.9 Remark. Let G be a left strongly dense subgroupoid of a left distributive
left quasigroup Q and let n > 1 and x,, ..., x, € Q. Then f(x,),..., f(x,) € G for
some fe€Mul(Q,G) and we put K = f~Y(G) = {x€; f(x)e G}. Then K is
a subgroupoid of @, G < K and xi, ..., x, € K; hence {G,xy, ..., x,)o & K. We
have f(K) = G (since Q is a left quasigroup), and so K = G. In particular, we
have shown that every finitely generated subgroupoid of Q is isomorphic to
a subgroupoid of G. Consequently, by II1.1.6, Q can be imbedded into a filtered
product of (finitely generated) subgroupoids of G.

2.10 Remark. Let G be a left cancellative left distributive groupoid. Con-
sidering finitely generated subgroupoids of G and combining 2.8 and II1.1.6 we get
another proof of 2.3.

IV.3 Imbeddings of cancellative left distributive groupoids into divisible left
distributive left quasigroups

3.1 Theorem. Let G be a cancellative left distributive groupoid. Then G is
a dense subgroupoid of a left distributive left quasigroup Q such that Q is
a divisible groupoid.

31



Proof. Since G is right cancellative, G is idempotent (x‘xx = XX XX),
Pc = idg and, in view of 2.4, we can assume that G is already a left quasigroup.
Now, denote by R the set of rational numbers of the form n/2™, neZ, me Z,
m > 0, and define an operation O on R by x O y = (x + y)/2. Obviously, R(O)
is a commutative idempotent distributive quasigroup, and so P = G x R(O) is an
idempotent left distributive groupoid and a left quasigroup. Furthermore, pp = idp
and L* , + idp for all xe P and k > 1.

Let ¢ be the permutation group generated by all L, p, x € P, and let ¢(x) =
L, pe ¥ for every x € P. Define an operation * on ¥ by f*g = fgf ' for all
f,9€%. Then ¥(«) is a left distributive left quasigroup and ¢ : P — %(x) is an
injective (groupoid) homomorphism. Now, ¥ is a subgroup of a simple group
S such that any two elements of the same order are conjugate in J#. Consequen-
tly, ¢(P) = X(*) is a subgroupoid on #(x) and any two elements from " are
conjugate in #; in particular ¥~ < H#(x) * f for every fe A . Further, since 5 is
simple, we have py() = idy.

We have proved that G is a subgroupoid of an idempotent left distributive left
quasigroup H such that py; = idy and G = Hx for every x € G. Now, we put

Go=G G, cHandQ = (JG. A

i=0

IV.4 Dense subgroupoids of distributive groupoids

4.1 Let G be a distributive groupoid. Then Mul(G) < End(G).

4.2 Lemma. Let H be a subgroupoid of a distributive groupoid G. Then:
(i) For all f, g € Mul(G, H) there exists h e Mul(G, H) such that fg = hf.
(ii) Mul(G, H) = Mul(G, H) - Mul(G, H) = Mul(G, H) - Mul(G, H).

Proof. (i) Use the fact that Mul(G) = End(G).
(i) Apply 1.2(ii) and its dual. A

4.3 Corollary. Let G be a distributive groupoid. Then:

(i) For all f, g € Mul(G) there exists h € Mul(G) such that fg = hf.

(i) Mul(G) = Mul(G) - Mul{(G) = Mul(G) - Mul,(G).

4.4 Proposition. Let H be a subgroupoid of a distributive groupoid G. Then:

(i) The conditions (Al), ..., (All), (Bl), ...,(B1l) and (CI),...,(C7) are

satisfied for H in G (see 1.4.1, 1.4.5 and 1.5.1).

(ii) <H).¢ = [H]c = {x€G; f(x) € H for some f € Mul(G, H)} = y5(H).

(i) y6(H) < ag(Bo(H)) N Po(ots(H))-

Proof. We can proceed similarly as in 1.4 (the conditions (A10) and (B10)
follow from [11, Theorem IV.2.2]).

4.5 Theorem. Let H be a dense subgroupoid of a distributive groupoid G. Then:
(i) For every x € G there exists f € Mul(G, H) such that f(x)e H.
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(ii) Every cancellative congruence of H can uniquely be extended to a cancel-
lative congruence of G.
(iii) If G is cancellative, then the groupoids H and G are equationally equivalent.

Proof. Using 4.4, we can proceed similarly as in the proof of 1.7. A

IV.5 Imbeddings of cancellative distributive groupoids into distributive
quasigroups

5.1 Proposition. Let G be a distributive groupoid. Then:
(i) If A(G) + H(A(G) + &), then A(G) (A(G)) is a left (right) closed sub-

groupoid of G.

(i) If A(G) + &+ A(G) (e.g.. A(G) + &), then A(G) = A(G) = A(G) is
a closed subgroupoid of G.

(iii) If C(G) + & (C{G) = @), then C(G)(C{G)) is a left (rihgt closed sub-
groupoid of G.

(iv) If C(G) £ & + C{G), then C(G) = C(G) = C(G) is a closed subgroupoid
of G.

Proof. (i) We have L,.L, = Ly,L, = Ly, .Lu LR, = RyL, = Ly R RR, =
RiuR, = R, Ry RL, = LR, = Ly, Ly, for all a, b € G. Now, it follows easily
that A((G) (A{G)) is either empty or a left (right) closed subgroupoid of G.

(ii) Let a€ A(G) and be A(G). Since L,R, = L, Rz, Ry is injective and
ab € A(G). But A(G) is right closed, and hence a € A(G). Thus A(G) = A/(G) and,
quite similarly, A(G) = A(G).

(iii) and (iv). We can proceed similarly as above. A

5.2 Proposition. Letr G be a cancellative distributive groupoid. Then G is
idempotent and the moniod Mul(G) is cancellative.

Proof. First, a - aa = aa - aa, and therefore a = aa for each a € G. Further, the
transformations from Mul(G) are injective and it follows that Mul(G) is left
cancellative.

Let f, g, he Mul(G), fh = gh. Then h =T, ,,* T, ,,n > 0, a,€ G, T,e {L,R}
and we proceed by induction on n. Nothing has to be proved for n = 0, and so let
n>1, k=T, T, 1,_, a=a,; we assume T, =L, the other case being
similar. Now, fk(ax) = gk(ax) for every xe€ G, fk(a) = gk(a), fk = gk and
f = g by induction. A

5.3 Theorem. Every cancellative distributive groupoid can be imbedded into
a distributive quasigroup.

Proof. Let " designate the class of cancellative distributive groupoids. Then
A is an abstract class satisfying (UCH) (see III.1.1) and we show that J¢ satisfies
also (LDE) and (RDE).
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Let Ge X and a,be G. Put ¢ =L,; and Yy = R, . Then ¢, ¥ are injective
endomorphism of G and ¢(a) b = aa- b = ab = ¢(b), by(a) = b - aa = ba = Y(b).
Now, our results follow from I11.1.4. A

5.4 Theorem. Let G be a cancellative distributive groupoid. Then there exists

a distributive quasigroup Q such that:
(i) G is a dense subgroupoid of Q (i.e., P = Q whenever P is a quasigroup of

0,G c P)

(ii) Every cancellative congruence of G can uniquely be extended to a cancel-
lative congruence of Q.

(iii) The groupoids G and Q are equationally equivalent.

(iv) The imbedding G < Q is a reflexion of G in the class of distributive
quasigroups.

Proof. Combine 5.3, 4.5 and 11.4.4(iii)). A

5.5 Remark. Let G be a distributive groupoid and a € A(G). Then aa € A(G)
and a - aa = aa - aa implies a = aa. The transformation f = L, ; is an injective
endomorphism of G and f(a) = a, f(G) = a(G). Moreover, G = f(G) and there
exists a distributive groupoid H = p,(G) such that G is a subgroupoid of
H,G=aH, G= H and L,y is an isomorphism of H onto G. Clearly,
A(G) = A(H).

Dually, there exists a distributive groupoid K = v,(G) such that G is a sub-
groupoid of K, G = K,, G = K,R, ¢ is an isomorphism of K onto G and
A(G) = A(K).

Now, we get the chain G = G, = G, = G, < ..., where G, = u,(G,) for

G.Put P = UG,-. Then P is
i=0

a distributive groupoid, G is a dense subgroupoid of P, A(G) = A(P) and a € C(P).

Using the operators p,, v, and standard transfinite construction we can show that

G is a dense subgroupoid of a distributive groupoid R such that A(G) =

A(R) = C(R).

112

i >0 even and G, = v,(G) for i > 1 odd; G;

5.6 Remark. Let G be a countably c-generated distributive groupoid, i.e.,
G = (S) ¢ for asubset S = G, 1 < card(S) < N,.

There is a bijective mapping f:S x Z — N, Z being the set of integers and
N that of positive integers. We have f ~'(i) = (g(i), h(i)), g(i) € S, h(i) € Z for every
i € N. Now, consider the chain G = Gy S G, € G, € ..., where G, = py(G)
for i >0 and h()) > 0 and G, = v,)(G) for i > 0 and h(i) < 0 (see 5.5);

G, =G Put Q= UG,-. Then Q is a cancellative distributive groupoid and G is
i=0

dense subgroupoid of H. Proceeding similarly as in 2.8, we can show, that

S = C(Q). By 5.1, C(Q) is a closed subgroupoid of Q and G = (8.6 = (S).n S
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C(H). Since G is dense in Q, we have Q = C(Q), i.e.,, Q is a quasigroup. As we
have shown, Q is the union of countable chain of subgroupoids isomorphic to G.

5.7 Remark. Let G be a dense subgroupoid of a distributive quasigroup Q. If
X1, ... X, €Q, n > 1, then there exists a subgroupoid K of @ such that
{G,X, ..., X,99 S K and K = G. Consequently, every finitely generated sub-
groupoid of Q is isomorphic to a subgroupoid of G and Q can be imbedded into
a filtered product of (finitely) generated subgroupoid of G (see III.1.6).

5.8 Remark. Let G be a cancellative distributive groupoid. Considering finitely
generated subgroupoids of G and combining 5.6 and III.1.6, we get another proof
of 5.3.

5.9 Let G be a cancellative distributive groupoid. Define a relation u; on G by
(a, b) € ug if and only if ab - xy = ax - by for all x,y € G. By [11, § IV.3], yg is
a cancellative congruence of G and, if (a,b)€ g, then the subgroupoid
{a,b, x, y)¢ is medial for all x, y € G.

(i) Assume that G is a dense subgroupoid of a cancellative distributive groupoid
H. Clearly, uy [ G < ug and we are going to show that, in fact, ug = uy [ G. For,
let (a, b) € ug and x, y € H. Then f(x), f(y)€ G for some f e Mul(G, H) and we
have f(a), f(b) € pg. Thus the subgroupoid {f(a), f(b), f(x), f(y)>¢ is medial and,
in particular, f(ab-xy) = f(ax - by).

(ii) Let ¢ be an endomorphism of H such that ¢(G) = G and (a, ¢(a)) € p; for
each aeG. Put K = {xe H;(x, ¢(x)) € uy}. Then G < K and, since py is
a cancellative congruence of H, we see easily that K is a closed subgroupoid of
H. Then K = H and we have checked that (x, ¢(x)) € uy for each x € H.

IV.6 Comments and open problems

The first proof of the basic Theorem 5.3 may be found in [1] (see also [28] and
[11]). Theorem 2.3 was proved in [18] and Theorem 3.1 in [20]. The important
Example 2.5 is taken from [4]. It remains an open question whether every
cancellative left distributive groupoid can be imbedded into a left distributive
quasigroup.

V. Cancellative semigroups
(and also groupoids satisfying short linear equations)

V.1 Dense uniform subsemigroups

1.1 A semigroup S is said to be left (right) uniform if San Sh + &
(aS N bS + @) for all a, b € S and S is said to be (bi-)uniform if it is both left and
right uniform.
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1.2 Proposition. Let S be a subsemigroup of a semigroup R. Then:

(i) OCI,R(S) = OtR(S) and BI,R(S) = ﬁR(S)‘

(ii) If S is left uniform, then T = ag(S) = [S].x = (S)c & and the semigroup
T is again left uniform.

Proof. (i) The equalities follow immediately from the associative law.

(i) Put T = ag(S). If x,ye T,a,b,c,de S, ax = b, cy = d, then eb = fc for
some e, f € S and we have eaxy = eby = fcy = fde S. Thus xye T and T is
a subsemigroup of R.

Now, let u,ve T, x€R, ux =v,a,b,c,deS and au = b, cv = d. Again,
ea = fc for some e, f € S and we have ebx = eaux = eav = fcv = fde S and
x € T. We have shown that T is left closed in R.

Finally, let u,ve T,a,b,c,d€S, au=b, cv =d,e, f€ S, eb = fd. Then
eau =¢eb = fd= fco,SunSv+ Fand Tun To + J. A

1.3 Proposition. Let S be a subsemigroup of a right cancellative semigroup R.
If S is left uniform, then og(S) = (Sher = <{S).r and Bg(S) = y&(S) = ax(S).

Proof. With respect to 1.2, it is enough to show that o(S) is right closed in R.
For, let u,v e a(S), x € R, xu = v. By the proof of 1.2, au = bv for some a,be S
and we have bxu = bv = au and bx = a. Thus xe ofS). A

1.4 Corollary. Let S be a subsemigroup of a cancellative semigroup R. If S

is uniform, then cxl,R(S) = ,BLR(S) = fo(S) = ﬁR(S) = VR(S) = [S]I,R = [S],‘R =
[S]k = SDer = {8k = {S)e.r = T and the semigroup T is again uniform.

1.5 Corollary. Let S be a left strongly dense subsemigroup of a semigroup R.
If S is left uniform, then R is left uniform and for every x € R there exists a€ S
such that ax € S.

1.6 Corollary. Let S be a dense semigroup of a cancellative semigroup R. If
S is uniform, then R is uniform and for every x € R there exist a, b € S such that
axe€ S and xb € S.

1.7 Proposition. Let S be a subsemigroup of a group G such that S generates
G as a group (i.e., G = {S). ). Then:
(i) S < ag(S) = {a'b;a,beS}.
(ii) S < Be(S) = {ab ' a,be S}.
(iii) G = {S)c.6 = {SDc.c = {S)  (i.e., S is strongly dense in G).

1.8 Proposition. Let S be a subsemigroup of a group G such that {S). ¢z = G.
The following conditions are equivalent:
(i) ag(S)(Be(S)) is a subsemigroup of G.
(ii) Bo(S) < ac(S) (2c(S) = PalS))
(iii) S is left (right) uniform.
If these conditions are satisfied, then G = a4(S) (G = Bg(S)).
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1.9 Example. ([3, § 1.10] and [29]) Let S be the set of ordered pairs (n, m) of
non-negative integers together with a binary operation (n, m) * (k, l) =
(n + k, 2" + m). Then S(x) is a cancellative semigroup possesing a neutral
element and S(x) is left uniform but not right uniform.

1.10 Example. Let F be a free semigroup of rank at least 2. Then F is
cancellative and F can be imbedded into a group (in fact, a free group). On the
other hand, F is neither left nor right uniform.

1.11 Example. Let F denote the free monoid of words over an eight-element
alphabet 4 = {a,b,c, d, e, f, g, h} and let S be the set of all the words w € F such
that neither cd or cf or hf is a subword of w. Now, define a binary operation * on
S according to the following rules:

Letu,veS. If

(1) uve S, then u * v = uy;

(2) u = u,c and v = dv,, then u * v = u,abv,;

(3) u = u,c and v = fv,, then u * v = uaev;;

4) u = uhand v = fv,, then u x v = ugev,.

It is easy to check that S(*) is a cancellative monoid, A = S, g*b + h*d,
cxd=axb, cx f=axe and h* f = g *e. Consequently, if ¢ is a homo-
morphism of S(*) into a group G, then the equalities ¢(c) @(d) = ¢(a) (b),
olc) o(f) = o(a) ple) and ¢(h) o(f) = ¢(g) ¢(e) yield the equality ¢(g) ¢(b) =
@(h) @(d). In particular, S(x) cannot be imbedded into a group.

V.2 The Ore’s construction

2.1 Throughout this section, let S be a cancellative semigroup such that S is left
uniform. We put H = S x S and ¢(a, b) = {(u,v) € H; ua = vb} for all (a, b) € H;
since S is left uniform, g(a, b) + .

2.2 Lemma. If (a,b),(c,d)e H are such that o(a,b) N olc,d) + &, then
o(a, b) = elc, d).

Proof. There are u, v € S with ua = vb and uc = vd. If w, z € S, wa = zb, then
xu = yw for some x, y € S and we have xvb = xua = ywa = yzb, xv = yz, and
ywe = xuc = xvd = yzd, we = zd. Thus g(a, b) < ¢(c, d) and, quite similarly,
olc,d) = ga, b). A

2.3 We define a relation ~ on H by (a, b) ~ (c, d) if and only if g(a, ¢) = o(b, d)
(or g(a, ¢) M g(b, d) + &, i.e., there exist u, v-€ S with ua = vc and ub = vd).

2.4 Lemma. The relation ~ is an equivalence on H.

Proof. (i) For each x € S, ¢(x, x) = {(y,y); y € S} = ids. Thus, for all a,be€ S,
o(a, a) = (b, b), which means (a, b) ~ (a, b). It follows that ~ is reflexive.

(ii) For all a,b€ S, o(b, a) = {(v,u); (u, v) € o(a, b)}. Now, it is clear that ~ is
symmetric.
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(iil) Let (a, b) ~ (c,d) ~ (e, f) and let ua = vc, ub = vd, rc = se, rd = sf.
Then pv = gqr for some p, g and we have pua = pvc = gse, pub = pvd = qrd =
gsf. Thus g(a, e) N g(b, f) + & and (a, b) ~ (e, f). We have shown that ~ is
transitive. A

2.5 Lemma. (i) (a,a) ~ (b,b) forall a,b€eS.
(ii) (a, a*) ~ (b, b?) for and only if a = b.

2.6 Define a binary multioperation * on H by (a, b) * (¢, d) = ¢(b, ¢) (a, b) =
{(ua,vd); ub = vc}.

2.7 Lemma. If (a, b), (c, d) € H, then the set (a, b) x (c, d) is contained in one of
the blocks of ~.

Proof. Let ub = vc, wb = zc. If ru = sw, then rvc = rub = swb = szc and
rv = sz. Consequently, (ua, vd) ~ (wa, zd). A

2.8 Lemma. Let (a,b),(c, d), (e, f) € H. Then the set (a,b) * ((c,d) x (e, f)) U
((a, ) * (c, d) (e, ) is contained one of the blocks of ~.

Proof. We have (a, b) * (¢, d) = {(ua,vd); ub = vc}, (c,d) * (e, f) = {(xc, yf);
xd = ye}, (ua, vd) * (e, ) = {(wua,zf); wod = ze}, (a, b) * (xc, yf) = {(pa,qyf);
pb = qxc}. Further, rz = sqy, ax = fwv and yr = 6 for some r, s, o, §, 7,6 € S.
Now, aye = axd = fwvd = fze, and so ay = fz. Consequently, day = 0fz =
yrz = ysqy and da = ysq. Finally, yspb = ysqxc = daxc = dfwvc = Sfwub =
yrwub and sp = rwu. Thus g(z, gy) N ¢(wu, p) + . But then also g(zf, gyf) N
o(wua, pa) + ¥ and it follows (wua, zf) ~ (pa, qyf). A

29 Lemma. Let (a,b),(c,d), (e, f)€ H, (a,b) ~ (c,d). Then the set ((a,b) *
(e, f) U ((c. d) % (e, f)) is contained in one of the blocks of ~.

Proof. Let au = vc, ub = vd, rb = se and pd = qe. We have to show that
o(ra, pc) N o(sf, qf) + . For this purpose, let xs = ygq and wxr = zu. Then
zvd = zub = wxrb = wxse = wyqe = wypd, and so zv = wyp and wypc =
zvc = zua = wxza and ypc = xza. A

2.10 Lemma. Let (a,b),(c,d), (e, f)€ H,(a, b) ~ (c,d). Then the set ((e, f)*
(a, b)) U (e, f) * (c, d)) is contained in one of the blocks of ~.

Proof. Let ua = vc, ub = vd, rf = sa, pf = qc, xr = yp and wxs = zu. Then
zvc = zua = wxsa = wxrf = wypf = wyqc, zv = wyq, wyqd = zvd = zub =
wxsb, ygd = xsb and (x, y) € g(re, pe) N o(sb, qd). A

2.11 Lemma. Let a, b, c € S. Then ((a, b) x (c, ¢) U ((c, ¢) * (a, b)) is a subset of
the block of ~ that contains (a, b).

Proof. First, let ub = vc and pua = qa. Then pu = q, pvc = pub = gb and
(ua, vc) ~ (ab); (ua, vc) € (a, b) * (c, c).
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Now, let r¢c = sa and xsb = yb. Then xs = y, xrc = xsa = ya and (rc, sb) ~
(a, b); (rc, sb) e (c, c) * (a, b). A

2.12 Lemma. Let a,b,c€S. Then (a,b)* (b, a) is a subset of the block of
~ that contains (c, c).

2.13 Lemma. Let a, b € S. Then the set ((a, a°) * (b, b?)) is a subset of the block
of ~ that contains (ab, (ab)?).

Proof. Let ua®> = vb, rob*> = s(ab)>. Then rua®* = rvb = saba, rua = sab and
(r, s) € o(ua, ab) N g(vb? (ab)). A

2.14. Lemma. Let a, b e S. Then the set (a?, a) * (b, b%) is a subset of the block
of ~ that contains (a, b).

Proof. Let ua = vb and ra = sua®. Then r = sua and rb = suab = svb®. Thus
(r, s) € o(a, ua®) N o(b, vb?) and (a, b) ~ (ua’, vb?). A

2.15 It follows from 2.9 and 2.10 that the equivalence ~ is a congruence of the
multigroupoid H(x). Now, denote by G the corresponding factor-multigroupoid, the
(multi)operation of G being denoted multiplicatively. Let n: H(*) > G be the
natural projection. With respect to 2.7, the operation of G is single-valued, so that
G becomes a groupoid; by 2.8, G is a semigroup and, by 2.5(1) and 2.11, G is
a monoid. In fact, by 2.11, G is a group. Now, define a mapping ¢ : S — G by
¢(a) = n(a, a®) for each aeS. Then, by 2.5(ii) and 2.13, ¢ is an injective
homomorphism. Moreover, by 2.12 and 2.14, G = o, 5(¢(S)).

Finally, let Y be an endomorphism of S. Define a transformation ¢ of H by
c(a, b) = (¥(a), Y(b)). 1t is easy to see that, for all (a, b), (c, d) € H, the intersection
<((a, b) * (¢, d)) N (a, b) * ¢(c, d)) is non-empty and that (a,b) ~ (c,d) implies
¢(a, b) ~ ¢(c, d). Consequently, ¢ induces an endomorphism ¢ of G. If a € S, then

Eola) = Enla, @) = o(Y(a), Y(af) = @¥(a), ie., S = Y.
2.16 Theorem. The following conditions are equivalent for a semigroup S:
(i) S is cancellative and (left, right) uniform.
(ii) There exists a group G such that S is a subsemigroup of G and (G = aG(S),
G = B4(S) G = ag(S) = Bs(S).

Proof. Combine 1.8 and 2.15. A

V.3 Cancellative permutable groupoids

3.1 A groupoid G is said to be

— left permutable if it satisfies the equation x - yz = y - xz;

— right permutable if it satisfies the equation zy - x = zx - y;

— permutable (or bi-permutable) if it is both left and right permutable.

3.2 Let G be a left permutable groupoid. Then the monoid Mul,(G) is com-
mutative and, if G is left cancellative, then Mul(G) is cancellative.
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3.3 Theorem. Let G be a left cancellative left permutable groupoid. Then there
exists a left permutable left quasigroup Q such that G is a subgroupoid of Q and
for every x € Q there exists f € Mul|(Q, G) with f(x) € G (so that G is left strongly
dense in Q).

Proof. To avoid confusion, we denote the operation of the groupoid G by =*.
Now, let S = Mul,(G()). By 3.2, S is a cancellative commutative monoid and we
denote by T the (abelian) group of fractions of S. Further, we can define a structure
of a cancellative S-semimodule on G by setting ax = a(x) for all ae S and x € G
and we also put A(x) = L, g € S for each x € G. Then 4 is a mapping of G into
Sand x *y = Ax) y for all x,yeG.

Now, define a relation r on S X G by ((a, x), (b, y)) € r if and only if ay = bx.
Then r is on equivalence on S X G and we denote by Q the corresponding
factor-set (S x G)/r.

If ((a,x), (b, y))er and ¢,d € S, then ay = bx, dacy = dbcx and ((da, cx), (db, cy))er.

Ifc,d,e,feS,cd™' = ef ',aeSand x € G, then cf = de, daex = facx and
((da, cx), (fa, ex)) e r.

Using the above observations, we can define a T-scalar multiplication on Q by
cd~Y(a, x)/r = (da, cx)/r and so Q becomes a T-module. If a, b € S and x € G, then
(@, ax), (b, bx))er and we put ¢(x) = (a, axd)/r. For c€ S, we have ¢(cx) =
(acx)/r = c(a, ax)/r = c@(x). Thus ¢ is an S-semimodule homomorphism of G into
Q. If x, y € G are such that ¢(x) = ¢(y), then ((a, ax), (a, ay)) €r, so that a’>x = @’y
and x = y. This means that ¢ is injective and we will identify G and ¢(G).

Let 9: Q — T be a mapping such that ¢ [ G = 4. Define a binary operation
Oon Q by uOv =g(u)v for all u,ve Q. We immediately see that G(x) is
a subgroupoid of Q(0) and we have u O (v O w) = g(u) g(v) w = o(v) o(u) w =
v O (u O w), so that Q(O) is left permutable. Since T is a group, Q(O) is a left
quasigroup

If ueQ, then y = aue G for some aeS, u =a"'y. On the other hand,
a = Axy)... Ax,) for some n > 0 and X, ..., x,€ G. Consequently, y = au =
Mx1) oo Axp)u =%, 0 (x,0(.c.(x,0u))). A

3.4 Example. Define a permutation p on Z(+) (the additive group of integers)
by p(n)=n+1 for n< -2,p(—1)=1, pln)=n+2 for n>1 odd and
p(n) = n for n > 0 even. Further, put x* y = p(x) + y for all x, ye Z. Then
Q = Z(«) is a left permutable left quasigroup and the set G of non-negative even
numbers is a subgroupoid of Q; G is a left cancellative left permutable groupoid.
Clearly, 0y(G) = a;,0(G) is just the set of even integers. We have —2 € ay(G),
0eG and —2%0 = —1¢0yG), and so ay(G) is not a subgroupoid of Q.
On the other hand, «y(G) = o, o(G) * 0f o(G) = [G]io = (GDcp = Q, the
condition (A2) is satisfied and the condition (Al) not (see 1.4.1). Notice also
that Mul(Q) = Z(+), Mul(Q, G) = G(+) and that both (A7) and (A8) arte
satisfied.
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3.5 Remark. Let % denote the class of left cancellative left permutable
groupoids and ¥ the class of left quasigroups from J¢. By 3.4, there exists Q € 4
and a left strongly dense subgroupoid G of Q such that Q + «y(G). By 3.3, G is
a subgroupoid of P € & such that P = a(G). Finally, let G ¢ R be a reflexion of
G in % (G is left strongly dense in R). Then there are projective homomorphism
@:R > Q and y : R - P extending ids. Of course, ¢(ag) (G)) = #y(G) + Q, and
therefore ag(G) + R. From this, it follows that the imbedding G < P is not
a reflexion of G in %. Finally, ¥ is not an isomorphism and ker(y), idg are two
different left cancellative congruences of R, each of them extending idg.

3.6 Remark. (i) Let G(x) be a left permutable left quasigroup. The group
S generated by L,, x € G, is abelian and G is an S-module. We have x * y = A(x) y
for all x,ye G, A(x) = L,€S.

(ii) Let S be an abelian group, G an S-module, A: G — S a mapping and
x *xy = A(x) y for all x, y € G. Then G(*) is a left permutable left quasigroup.

(iii) Let G(+) be an abelian group and ¢ a transformation of G. Setting
xy = t(x) + y for all x, y € G, we get a left permutable left quasigroup G; G is
right cancellative (right divisible) if and only if ¢ is injective (projective).

3.7 Remark. Let G be a left permutable left quasigroup, ae G, f =L,
and x * y = f~!(xy) for all x,ye G. Then G(x) is a left permutable left quasi-
group, a is a left neutral element of G(x) and xy = f(x * y) = x * f(y) for all
x,yeq.

3.8 Lemma. Let G be a left permutable groupoid.

(i) If a,b € G, ab = b and R, is projective, then a is a left neutral element of G.

(ii) If G is right divisible (right quasigroup), then G is divisible (quasigroup)
and G contains at least one left neutral element.

Proof. (i) We have a- xb = x-ab = sb.
(ii)) We have LR, =R, forall x,ye G. A

3.9 Proposition. The following conditions are equivalent for a groupoid G:
(i) G is left permutable and there exist elements a, b € G such that ab = b and

both R, and R, are projective.

(ii) G is left permutable and there exists a left neutral element e € G such that
R, is projective.

(iii) There exist a commutative semigroup G(+) with a neutral element 0 and
a projective transformation f of G such that f(0) = 0 and xy = f(x) + y for all
x,yeG.

Proof. (i) implies (ii). See 3.8(i).
(ii) implies (iii). There is a transformation g of G such that g(e) = e and

g(x) e = x for every ce G. Put x + y = g(x) y for all x,y€ G and O = e. Then
x+0=g(x)e=x,0+ x =g(e)x =ex =x and 0 is a neutral element of
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G(+). Further, one may check easily that G(+) is again left permutable.
Consequently, x + y=x + (y + 0) =y + (x + 0) = y'+ x and we see that
G(+) is a commutative semigroup. Moreover, g(xe) - ye = y(g(xe) e) = y - xe =
x-ye for all x,yeG. Thus, for f = R,s we have f(x)+ y =g(xe)y =
g(xe)- g(y)e = x- g(y)e = xy forall x, ye G.

(iii) implies (i). Clearly, G is left permutable and it remainstoputa =0=b>b. A

3.10 Proposition. The following conditions are equivalent for a groupoid G:
(i) G is a right divisible left permutable groupoid.
(ii) G is left permutable left quasigroup and G is divisible.
(iii) There exist an abelian G(+) and a projective transformation f of G such
that f(0) = 0 and xy = f(x) + y for all x,y €G.

Proof. (i) implies (ii). The condition 3.9(i) is satisfied, and hence, by 3.9(iii),
there exist a commutative semigroup G(+) with a neutral element 0 and a pro-
jective transformation f of G such f(0) = 0 and xy = f(x) + y. since G is right
divisible, G(+) is so, and therefore G(+) is a group. A

3.11 Corollary. Every right divisible left permutable groupoid is a left quasi-
group.

3.12 Proposition. The following conditions are equivalent for a groupoid G:
(i) G is a left permutable right quasigroup.
(ii) G is a left permutable quasigroup.
(iii) There exist an abelian group G(+) and a permutation f of G such that
f(0) =0and xy = f(x) + y forall x,yeG.

Proof. Use 3.10. A

3.13 Remark. (i) In [8], there is constructed a cancellative left permutable
groupoid G such that G cannot be imbedded into a left permutable quasigroup.
According to 3.12, G cannot be imbedded into a left permutable right quasigroup
(with respect to 3.10 and [8, Lemma 5.4], G cannot be imbedded into a right
divisible left permutable groupoid either).

(i) Every free left permutable groupoid is cancellative and can be imbedded into
a left permutable quasigroup (see [8]).

3.14 Remark. (i) Let G be a permutable groupoid. Then xy - uv = u(xy - v) =
u(xv-y) = xv-uy = (x-uy)v=(u-xy)v =wuv-xy for all x,y,uveG. Con-
sequently, if G = GG, then G is a commutative semigroup.

(ii) Let F be a free permutable groupoid. By [8], F is cancellative and not
commutative. Consequently, F' cannot be imbedded into a permutable groupoid
G satisfying G = GG. In particular, F cannot be imbedded into a permutable (left,
right) quasigroup.
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V.4 Cancellative groupoids satisfying some short linear equations

4.1 Proposition. (i) Every left cancellative groupoid satisfying x - yz = x - zy
is commutative.

(ii) Every left (right) cancellative groupoid satisfying x - yz = zy - x is com-
mutative.

(iii) Every groupoid G satisfying x - yz = yz-x and G = GG is commutative.

(iv) Every left (right) cancellative groupoid satisfying x - yz = y - zx is com-
mutative.

(v) Every left (right) cancellative groupoid satisfying x - yz = zx -y is com-
mutative.

4.2 Remark. (i) Every free groupoid satisfying x - yz = x - zy is right can-
cellative ([10, 3.3]).

(ii) Every free groupoid satisfying x * yz = yz - x is cancellative and cannot be
imbedded into a (left, right) quasigroup satisfying the same equation (4.1(iii) and
[10, 7.1]).

4.3 Proposition. Every left (right) cancellative groupoid satisfying x - yz =
yX * z is a semigroup.

Proof. Let G be a groupoid satisfying x - yz = yx - z. Then, for all x, y, z,u € G,
we have z(xy-u)=z(y-xu)=yz-xu=(x-yz)u=(yx-z)u=z(yx-u) =
z(x - yu) = xz - yu = (y- xz) u = (xy - z) u. In particular, z(xy - u) = z(x - yu) and
(x-yz)u = (xy- z) u. Now, if G is either left or right cancellative, then G is
a semigroup.

4.4 Remark. Let G be a semigroup satisfying xyz = yxz. If G is right
cancellative, then G is commutative (and hence it can be imbedded into abelian
group). If G is left cancellative, then G/p; is a cancellative commutative semigroup.

(i) Now, assume that G is a left quasigroup. Then G/p; is an abelian group.
Moreover, for every x € G, there is a uniquely determined element ¢(x) € G such
that xe(e) = x. Of course, e(xy) = e(x) e(y) and e(x)/pg = Og,,,. Consequently,
(ze(x), z) € pg for every z € G and it follows that ze(x)u = zu and e(x)u = u for
every u€ G, i.e., e(x) is a left neutral element of G. That set Id(G) of idempotents
is a subsemigroup of G, Id(G) is a semigroup of left units (ef = f for all,
e, f €1d(G)) and the mapping x — (x/pg, €(x)) is an isomorphism of G onto the
product G/p; x Id(G) (if x € G and e € Id(G), then xe- e = xe and (x, xe) € p;).
Notice also that e(x) = e(y) if and only if x* = y* (or xy = yx).

(ii)) Assume that G is left cancellative and define relations r and s on G by
(x,y)er if and only if xy = yx and (x, y) € s if and only if x> = )°. Then both
r and s are congruences of G and G/r is a semigroup of left units (we have
(x,xyx)er for all x,yeG). Moreover, if (x,y)ernpg then )’ =x>=
xx = yx, and therefore x = y (since G is left cancellative). Thus r N p; = idg
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and G can be imbedded into the product G/p; x G/r. On the other hand, G/p; is
a cancellative commutative semigroup, it can be imbedded into an abelian group
and consequently G can be imbedded into a left quasigroup Q such that Q is
associative and satisfies xyz = yxz (see (i)).

4.5 Remark. (i) A groupoid satisfies x - yz = z - xy if and only if it satisfies
x:yz = y-zx (see 4.1(iv)).

(i) Every groupoid satisfying x - yz = z - yx is medial (see VIIL.2).

(iii) Groupoids satisfying x - yz = xz - y are dual to those satisfying x - yz =
yx - z (see 4.3 and 4.4).

V.5 Comments

The idea of the well known Ore’s construction goes back to [25] (but see also
[5], [6] and [26]). Permutable groupoids are studied in [8] and groupoids satisfying
short linear equations in [9] and [10].

VI. Cancellative semimedial groupoids

VI.1 Introduction

1.1 A groupoid G is said to be

— medial if it satisfies the equation xy - uv = xu - yv;

— left (right) semimedial if it satisfies the equations xx:yz = xy:xz
(zy - xx = zx - yx);

— semimedial if it is both left and right semimedial;

— middle semimedial if it satisfies the equation xy ‘- zx = xz - yx;

— strongly semimedial if it is both semimedial and middle semimedial.

1.2 Lemma. Let G be a left semimedial groupoid and a, b € G. Then:

(I) LaaLb = LabLa;

(2) LuaRb = RabLa;

(3) Laz . aszz = Lab‘ azLab'

Proof. L, L,(x) = aa-bx = ab - ax = L,L,(x), L, Ry(x) =aa xb=ax-ab =
RL4(X), L. a2Ly(x) = (a’d?) (b*x) = (a?b?) (a’x) = (ab)* - a’>x = (ab - @°) (ab - x) =
Lab~ azLab(x). A

1.3 Lemma. Let G be a right semimedial groupoid and a, b € G. Then:

(I ) RaaRb = RbaRa;

(2) RaaLb = LbaRa;

(3) Raz.aszz = Raz‘baRba'

Proof. Dual to that of 1.2. A
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14 Lemma. Let G be a middle semimedial groupoid and a,be G. Then
LabRa = RabLa'

Proof. L,R,(x) = ab- xa = ax - ba = R,L(x). A

1.5 Lemma. Let G be a semimedial groupoid and a, b € G. Then:
(]) sz‘bZLaz = Rab~b2Lab;
(2) Lbz. bzRaz = Lbz. baRba'

Proof. R, ,.L,(x) = (a’x) (b*b?) = (a’b?) (xb?) = (ab)* - xb* = (ab - x) (ab - b?) =
Ry 12Le(x) and Lz 2R 2(x) = (b%b7) (xa?) = (b%x) (b*a®) = b*x - (ba)* = (b*- ba) (x - ba) =
Lbz.baRba(x). A

1.6 Lemma. Let H be a subgroupoid of a groupoid G. Then Mul(G, H) =
Mul(G, H) - Mul(G, H) (Mul(G, H) = Mul,(G, H) - Mul(G, H)) in each of the fol-
lowing three cases:

(1) G is left (right) semimedial and H is left (right) divisible;

(2) G is right (left) semimedial and oy(H) = H;

(3) G is middle semimedial and H is right (left) divisible.

Proof. The assertions follow easily from 1.2(2), 1.3(2) and 1.4, resp. A

1.7 Lemma. Let H be a subgroupoid of a groupoid G. Then Mul(G, H) =
Mul(G, H) - Mul(G, H) = Mul(G, H) - Mul(G, H) in each of the following
cases:

(1) G is semimedial and oy(H) = H;

(2) G is middle semimedial and H is divisible;

(3) G is left semimedial, H is left divisible and o,(H) = H;

(4) G is right semimedial, H is right divisible and oy(H) = H;

(5) G is both left and middle semimedial and H is left divisible;

(6) G is both right and middle semimedial and H is right divisible;

(7) G is both left and middle semimedial, H is right divisible and O'H(H) = H;

(8) G is both right and middle semimedial, H is left divisible and o4(H) = H

Proof. Use 1.7. A

’

1.8 Lemma. Let G be a left semimedial groupoid such that Id(G) . {ae G;
aa = a} is non-empty. Then:

(i) Id(G) is a subgroupoid of G, L, ¢ is an endomorphism of G and L, R, ¢ =
R, GL. G for every e € 1d(G).

(ii) If G is (left) cancellative, then 1d(G) is left closed in G.

Proof. (i) If a,beld(G), then ab-ab = aa-bb = ab, a*xa = ax-a and
a-xy = ax-ay for all x,yeG.

(ii) If a, b € G, a, ab € 1d(G), then we have ab = ab - ab = aa- bb = a- bb und
b=0bb. A
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1.9 Remark. Let G be a left semimedial groupoid and let e € Id(G) be such that
L. ¢ is injective. Proceeding similarly as in IV.2.7, we can show that there exists
a left semimedial groupoid K such that G is a left strongly dense subgroupoid of
K, L, x is an automorphism of K and K is the union of a countable chain of
subgroupoids isomorphic to G. Moreover, if R,  is injective (resp. projective), then
the same is true for R, k.

1.10 Remark. Let G be a semimedial groupoid and let e € Id(G) be such that
L. and R, ; are injective. Proceeding similarly as in IV.5.5, we can show that
there exists a semimedial groupoid K such that G is a dense subgroupoid of K,
L, x and R, x are automorphisms of K and K is the union of a countable chain of
subgroupoids isomorphic to G.

V1.2 Dense subgroupoids of left semimedial groupoids

2.1 Lemma. Let G be a left semimedial groupoid and f € Mul(G). Then there
exists g € Mul((G) such that g(xy) = f(x) f(y) for all x,y + G. Moreover:

(i) If G = GG, then g is determined uniquely by f.

(i) If H is a subgroupoid of G and f € Mul(G, H), then g € Mul|(G, H).

Proof. There are n > 0 and ay, ..., a,€ G such that f =L, ... L, and we put

g=Lgz..La Then g(xy)=ai(.. (a xy) = ai.. (@_i(a.x"ay) =..=
(ai(-.. (@x))) (ai.- (any))) = f(x) f(y) for all x, y € G. The rest is clear. A

2.2 Corollary. Let H be a subgroupoid of a left semimedial groupoid G. Then
all the conditions (Al), ..., (A9) (see 1.4.1) are satisfied for H in G. In particular,
the monoid Mul(G, H) is right uniform.

2.3 Corollary. Let G be a left semimedial groupoid. Then the monoid Mul|(G)
is right uniform.

2.4 Remark. Let H be a subgroupoid of a left semimedial groupoid G. By 2.1,
for each feMul(G, H) there is a transformation f’eMul(G, H) such that
f(xy) = f(x) f(y) for all x,yeG; we will also use the notation f© = f,
f(l) — fr, . f(i+l) — (f(i))’.

Now, suppose that G = GG. Then the transformation f” is determined uniquely
by f and we have g'f'(xy) = ¢'(f(x) f(¥) = gf(x) gf(y) and g'f" = (9f). The
mapping f — f’ is an endomorphism of the monoid Mul,(G, H); this endomorphism
is projective, provided that o4(H) = {x¥; xe H} = H.

2.5 Remark. Let H be a subgroupoid of a left semimedial groupoid G and let
f,geMul(G,H), g=L,..L,, n>0, a,..,a,eH Then [fU%(x)=

f(")gal(...(a,,x)))= 10 Yay): £ Nay... (ax)) = ... —f‘" Nar) (f"~Har) (... (f N an-1)
(fNa,) f(x)) = hf(x), h e Mul|(G, ) we have fg = hf.
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2.6 Proposition. Let H be a subgroupoid of a left semimedial groupoid G and
K = {H) . Then:

(i) K = [H).¢ = a6(H) (i.e., xe K if and only if ay(... (a.x)) € H for some
n>0and ay,..., a, € H).

(ii) Every left cancellative congruence r of H can be extended in unique way to
a left cancellative congruence s of K; s is cancellative if and only if r is so.

Proof. Combine 2.2, 1.4.3(1) and 1.6.2. A

2.7 Let W be an absolutely free groupoid over an infinite countable set X of
variables. By induction, we define quasisymmetric terms from W: Each variable is
a quasisymmetric term; if u, v € W are quasisymmetric terms of the same length,
then uv is quasisymmetric.

A (groupoid) equation u = v, u,v e W, will be caled quasisymmetric if both
u and v are quasisymmetric of the same length.

2.8 Proposition. Let H be a subgroupoid of a left cancellative left semimedial
groupoid G. Then the groupoids H and K = {H)\ ¢ satisfy the same quasisym-
metric equations.

Proof. Let ¢ : W — K be a homomorphism and let u = v be quasisymmetric
equation that is true in H. We have to show that ¢(u) = ¢(v).

First, let {x, ..., x,} = var(uv). Then f(x,),..., f(x,) are all in H for some
f € Mul(G, H) and we consider any homomorphism y : W — H such that y(x,) =
fo(x), i =1,..., n. Now, by induction on l(w) = 2", m > 0, we show that
Y(w) = f™¢p(w), whenever we W is quasisymmetric and var(w) < {x,, ..., X,}.
This is clear for m = 0 and, if m > 1, then w = pq, where both p and q are
quasisymmetric and of length 2"~!. Then y(w)= ¥(p)¥(q) = f" Yo(p)-
" o(q) = f™(o(p) ola) = f™e(pq) = f™p(w)

Now, fWe(u) = Y(u) = Y(v) = fWo(v), u) = 2* = 1(v), and, since ¥ is an
injective transformation, we have ¢(u) = ¢(v). A

2.9 Theorem. Let H be a left strongly dense subgroupoid of a left semimedial

groupoid G. Then:
(i) For every x € G there exist n > 0 and a,, ..., a, € H such that ay(... (a,)) € H.

(ii) Every left cancellative congruence r of H can uniquely be extended to a left
cancellative congruence s of G; s is cancellative if and only if r is so.

(iii) If H is cancellative and G is left cancellative, then G is concellative.

(iv) If H is right divisible and G is a left quasigroup, then G is right divisible.

(v) If G is left cancellative, then the groupoids H and G satisfy the same
quasisymmetric groupoid equations.

(vi) If G is left cancellative, then G is right semimedial (middle semimedial) if
and only if H is so.

Proof. (i) and (ii). See 2.6.

47



(iii) Since G is left cancellative, id is a left cancellative congruence extending
idy. But idy is cancellative, and therefore id; is cancellative by (ii).

(iv) Let x, y € G. Since G is left divisible, we have y = yu for some ueG.
Further, there are n >0 and ay,..., a,€ H such that f(x), f(y), f(u) € H,
f=L,..L,. Now, f'(y) = ai(... (a2y)) = f(y) f(u) € H and, since H is right
divisible, we have af(x) = f'(y) for some a € H. Further, we can also find ze G
with f(z) = a and thus we have f'(y) = af(x) = f(z) f(x) = f'(zx). But the
transformation f' is injective and consequently y = zx.

(v) See 2.8.

(vi) All the envolved equations are quasisymmetric. A

2.10 Lemma. Let H be a right closed subgroupoid of a left semimedial
groupoid G such that K = KK, where K = (H).¢. Then K = (H), ¢ (i.e., K is
closed in G).

Proof. It sufficies to show that K is right closed. For, let x, y € G, xy, y € K.
We have xy =uv for some u,veK and there is feMul(G, H) with
f(u), f(v), f(y) e H. Now, f'(xy) = f'(uv) = f(u) f(v)e H, and hence also
f(x) f(y) = f'(xy) e H. But f(y)e H and H is right closed in G. Thus f(x)e H
andxeK. A

2.11 Lemma. Let H be a subgroupoid of a left semimedial groupoid G such
that KK = K, where K = ag (CH) ). Then K = {H) .

Proof. The groupoid L = {H), ¢ is right closed in G and the result follows
from 2.10. A

2.12 Proposition. Let G be a left semimedial groupoid such that for every x e G
there exists y € G with xy = x. If H is a subgroupoid of G, then {H). ¢ = dag
(<H>rc, G)'

Proof. Let xe K = a5 ((H). ), ¥y = G and xy = x. Since K is left closed in
G, we have y € K and it follows that K = KK. Now, we can use 2.11. A

2.13 Corollary. Let G be a left semimedial groupoid such that for every x € G
there exists y € G with xy = x. If H is a dense subgroupoid of G, then G = ag

(<H>rc G)'

2.14 Lemma. Let H be a left strongly dense subgroupoid of a left cancellative
left semimedial groupoid G. Then:

(i) If oy is injective, then o is injective.

(ii) If G is a left quasigroup and ay is projective, then o is projective.

Proof. (i) Let x, y € G be such that xx = yy. We have f(x), f(y) € H for some
S €Mul(G, H) and f(x) f(x) = f'(xx) = f'(yy) = f(y) f(»), f(x) = f(y)- Since

G is left cancellative, we have also x = y.

48



(ii) Let x € G, f e Mul(G, H), f(x)e H. Then f = g’ for some g € Mul(G, H),

f(x) =aa, ae H and a = ¢(y), y € G. Now, f(x) = g'(x) = aa = g(y) 9(y) = g'(yy)-
But g’ is injective, and so x = yy. A

VI.3 Dense subgroupoids of semimedial groupoids

3.1 Lemma. Let G be a semimedial groupoid and f € Mul(G). Then there exists
g € Mul(G) such that g(xy) = f(x) f(y) for all x,y € G. Moreover:

(i) If G = GG, then g is determined uniquely by f.

(ii) If H is a subgroupoid of G and f € Mul(G, H), then g € Mul(G, H).

Proof. We have f =T,,, .. T,,,n >0, a,€eH, T;e {L,R} and we put g =
Tl,a% Tn'ai. A

3.2 Corollary. Let H be a subgroupoid of a semimedial groupoid G. Then all
the conditions (Al), ..., (A9), (B1), ..., B(9) and (C1), ..., (C7) are satisfied for H in
G (see 1.4.1, 1.4.5 and 1.5.1). In particular, the monoid Mul(G, H) is right uniform.

3.3 Corollary. Let G be a semimedial groupoid. Then the monoid Mul(G) is
right uniform.

3.4 Remark. Let H be a subgroupoid of a semimedial groupoid G. By 3.1, for
each f € Mul(G, H), there is a transformation f’ € Mul(G, H) such that f’(xy) =
f(x) f(y) for all x,ye G; we will also use the notation f© = f, f) = f', .,
fi+0 = (f(i))"

Now, suppose that G = GG. Then the transformation f” is determined uniquely
by f and the mapping / — f* is an endomorphism of Mul(G, H); this endomor-
phism is projective, provided that o,4(H) = H.

3.5 Remark. Let H be a subgroupoid of a semimedial groupoid G and let
f,9eMul(G, H),g = T, ... Tooon = 0,a,€ H T,e {L,R}. Then f"g = hf for
h =Ty, ... Top, € Mul(G, H), b, = f=a).

3.6 Proposition. Let H be a subgroupoid of semimedial groupoid G and
K = (H). ;. Then:
(i) K = [H]g = vo(H).
(ii) Every cancellative congruence of H can be extended in unique way to
a cancellative congruence of K.
(iii) If G is cancellative, then the groupoids H and K satisfy the same
quasisymmetric groupoid equations.

Proof. (i) and (ii). Combine 3.2 and 1.5.4, 1.6.6(ii).
(iii) We can proceed similarly as in the proof of 2.8 (or, we can use (i), 2.8 and
its dual). A

3.7 Theorem. Let H be a dense subgroupoid of a semimedial groupoid G.
Then:
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(i) For every x € G, there exists f € Mul(G, H) such that f(x)e H.
(ii) Every cancellative congruence of H can uniquely be extended to a can-
cellative congruence of G.
(iii) If G is cancellative, then the groupoids H and G satisfy the same
quasisymmetric groupoid equations.

Proof. The theorem follows immediately from 3.6. A

3.8 Remark. Let H be a dense subgroupoid of a semimedial groupoid G and
let x € G. By 3.7(i), f(x)e H for some f e Mul(G, H). Now, assume that either
H is left divisible or o4(H) = H. Then, by 1.6, we have f = pq for some
peMul(G, H) and qeMul(G, H), and hence there are a,...,a,€ H and
by, ..., b, € H such that a(... (a,(((xb,)...) b)) € H.

3.9 Proposition. Let H be a dense subgroupoid of a semimedial groupoid
G such that at least one of the following conditions is satisfied:

(1) H is divisible;

(2) oy(H) = H;

(3) For every x € G there exist y,z€ G with yx = x = Xxz.

Then G = o4(s(H)) = Bs(xs(H))-

Proof. See 2.13, 3.8 and their duals. A

3.10 Remark. Let H be a subgroupoid of a semimedial groupoid G such that
G = og(L), L = Bs(H) (see 3.9). If x € G, then there are u,, ..., u, € L such that
y = ulg... (u,x)) € L. Futher, there is f; € Mul(G, H) such that fi(u,)€ H and we
have f{"y) = fi'~ ") (... (fi(us) fi(x))), etc. Now, we find f, g € Mul(G, H) and
aj, ..., a,€ H such that g(y) = a,(... (a,f(x))). Of course, g(y)e L, and conse-
quently there exist by, ..., b, € H and c,, ..., ¢, € H such that (((ay(-.. (a.(((xby)

) b)) c)...) cue H.

3.11 Lemma. Let H be a dense subgroupoid of a cancellative semimedial
groupoid G. Then:

(i) If oy is injective, then ag is injective.

(ii) If G is a quasigroup and oy is projective, then a6 is projective.

Proof. We can proceed similarly as in 2.14. A

VI.4 Cancellative semimedial groupoids without irreducible elements

4.1 Lemma. Let G be a left semimedial groupoid.
(i) If Mul(G) is right cancellative, then pg is a congruence of G.
(i) If Mul(G) is left cancellative, then pg is left cancellative.

Proof. Both assertions are clear from the fact that L L, = L,L, for all
a,beG. A
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4.2 Proposition. Let G be a left cancellative left semimedial groupoid such that
GG = G. Then the monoid Mul,(G) is cancellative.

Proof. Since G is left cancellative, Mul,(G) is also left cancellative. Now, let
f, 9, h e Mul(G) be such that fh = gh. Wehaveh =L, ... L,,n > 0,4,€ G and
we proceed by induction on n to show f = g.

The result is clear for n = 0, and so let n = 1 and a = a;. Then f(ax) = g(ax)
for each xeG and, in particular, f(aa) = y(aa). Further, f(aa)f(xy) =
f'(aa- xy) = f'(ax - ay) = f(ax) f(ay) = g(ax) glay) = g'(ax - ay) = ¢'(aa " xy) =
g(aa) g(xy). Since f(aa) = g(aa) and G is left cancellative, we have f(xy) = g(xy)
for all x, y € G. Since G = GG, we have also f = g.

Now,letn > 2andp=1L, ...L, _,.Then fpL, = fh=gh=gpL,, fp = gp
by the preceding part of the proof and, finally, f = g by induction. A

4.3 Proposition. Let G be a left cancellative left semimedial groupoid such that
G = GG. Then pg is a left cancellative congruence of G.

Proof. Combine 4.1 and 4.2. A

4.4 Remark. Let ¢ be an endomorphism of a group G. Define a binary
operation * on G by x x y = ¢(x) yx~! for all x, y € G. Then:
(i) G(*)is a left semimedial left quasigroup and OGw) = @-
(i) (a, b) € pg) if and only if a~'b € Z(G) (the centre) and ¢(a~'b) = a™'b.
(i) If G(*) is right (or middle) semimedial, then ¢ [ G' = ids (G’ denotes the
commutator subgroup).

4.5 Proposition. Let G be a left cancellative left semimedial groupoid such that
G = GG and p; = idg. Then there exists a left semimedial left quasigroup Q with
the following properties: .

(1) G is a left strongly dense subgroupoid of Q (for every x € Q there exist
n>0and ay,..., a,€ G such that ay(... (a,x)) € G);

(2) Q is cancellative if and only if G is so;

(3) Q is right divisible, provided that G is right divisible;

(4) The groupoids G and Q satisfy the same quasisymmetric groupoid equations;

(5) Q is right semimedial (middle semimedial) if and only if G is so.

Proof. By 4.2, the monoid S = Mul,(G) is cancellative and, by 2.3, S is right
uniform. Now, due to V.2.15, there is a group R such that S is a subsemigroup of
RandR = {f'g; f,g € S}.

By 2.4, the mapping @ : f — f’ is an endomorphism of S and, by V.2.15, ® can
be extended to an endomorphism ¥ of R. Now, define a binary operation * on
R by x*y="¥(x)yx~"' for all x,yeR. According to 4.4, R(x) is a left
semimedial left quasigroup.

For ae G, put ¢pa) =L,c€S = R. Then ¢(aa) = L,, = ®L,) = ¥(L,) =
¥(¢(a)) and W(¢p(a)) - @(b) = ¢(aa)- @(b) = L,L, = LyL, = ¢(ab) - ¢(a) for all
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a, b e G. Consequently, ¢(ab) = ¥(¢p(a))- ¢(b) @(a)~" = ¢(a) * @(b). Thus ¢ is
a homomorphism of the groupoid G into the groupoid R(*) Clearly, ker(w)
P = idg, and so ¢ is injective.

Finally, we identify G and ¢(G), we put Q = {G), r(+) and we take into account
29. A

4.6 Theorem. Let G be a cancellative semimedial groupoid such that G = GG.
Then there exists a semimedial quasigroup Q with the following properties:

(1) G is a dense subgroupoid of Q and Q = ay(Bo(G)) = Po(2e(G)) (cf. 3.10);

(2) The groupoids G and Q satisfy the same quasisymmetric groupoid equations.

Proof. By 4.5, G is a left strongly dense subgroupoid of a semimedial left
quasigroup P such that P = ap(G) and P is cancellative. By the right hand form
of 4.5, P is a right strongly dense subgroupoid of a semimedial quasigroup
Q = Bo(P). The rest is clear. A

4.7 Remark. Let G be a groupoid such that G is isomorphic to a subgroupoid
of GG. Then there exists a groupoid H isomorphic to G such that G is
a subgroupoid of H and G = HH. Now, it is clear that there exists a chain G =
Gy € G, € G, < ... of groupoids such that G; < G,,,G;,; and G; = G. Setting
K = UG,- we get a groupoid such that G is a subgroupoid of K and K = KK.
Notice that the groupoids G and K are equationally equivalent and that K is (left,
right) cancellative if and only if G is so.

4.8 Proposition. Let G be a left cancellative left semimedial groupoid such that
D¢ = idg and at least one of the following conditions is satisfied:

(1) o¢ is injective (or projective);

(2) G contains at least one idempotent element.

Then G can be imbedded into a left semimedial left quasigroup.

Proof. If o is injective, then o is an injective endomorphism of G and we
have 04(G) = GG < G and 64(G) = G. Now, the result follows from 4.7 and 4.5.
Similarly, if ee = e for some e € G, then ¢ = L, ¢, is an injective endomorphism
of G and again, ¢(G) = GG = G, ¢(G) = G. A

4.9 Theorem. Let G be a cancellative semimedial groupoid such that at least
one of the following conditions is satisfied:

(1) og is injective (or projective);

(2) G contains at least one idempotent element.

Then G can be imbedded into a semimedial quasigroup.

Proof. Similar to that of 4.8. A

4.10 Remark. Let G be a left semimedial groupoid containing a neutral
element e.
(i) We have xx 'y = xx-ye = Xy -xe =Xy X, XX*y = Xx-ey = x-XxJ,
and so xy-x = x-xy forall x,y = G.
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(i) If G is left divisible, then G is commutative.

(iii) If (a, b) € ps, then a = ae = be = e, so that p; = idg.

(iv) Assume that G is left cancellative. By 4.5, G is a left strongly dense
subgroupoid of a left semimedial left quasigroup Q. If x € Q, then ay(... (a,x)) =
beG for some n>0 and a,€G and we have b =eb = €(q, ... (a,x)) =
(ea)) (e(ay ... (ad(x)) = ai(e(a... (@.x))) = ... =ay(... (a, ex)). Consequently x =ex
and we have shown that e is a left neutral element of Q.

Finally, if G is also right semimedial, then Q is so and e is a neutral element of
0 (a(-.. (ax)) = b = be = ay(... (a," xe))). By (ii), Q is commutative and con-
sequently Q is a commutative Moufang loop and G is also commutative.

VI.5 Cancellative unipotent semimedial groupoids

5.1 A groupoid G is said to be unipotent if aa = 0 = bb for all a, b€ G.

5.2 Lemma. Let G be a unipotent left semimedial groupoid. Then:
(i) L2 = R2and L,R, = R,L,.
(ii) L, is injective (resp. projective) if and only if R, is so.

Proof. We have 0- 0x = (xx) (xx- x) = (x" xx) (xx) = xo0- o forevery xe G. A

5.3 Theorem. The following conditions are equivalent for a groupoid G:

(i) G is unipotent and left semimedial and at least one of the transformations
L,.c R, ¢ is injective and at least one of them is projective.

(ii) There exist a group G(O) and an automorphism ¢ of G(O) such that
xy = @(x~'0y)forall x,yeG.

Moreover, if these conditions are satisfied, then G is a quasigroup and G is right
semimedial if and only if G is middle semimedial (equivalently, G(O) is abelian).

Proof. First, we show that (i) implies (ii). By 5.2, both the translations L, and
R, are bijections L2 =R2 LR,=R,L, ¥ =LR;'=L;'R,=R;'L,=R,L;! =
Y~'. Moreover, L, is an automorphism of the groupoid G. Now, define a binary
operation O on G by x O y = R, '(x)- L;(y) for all x, y € G. Clearly, o is a neutral
element of the groupoid G(O) and xy = R,(x) O L,(y) = (x0) O (0y) for all
x, y € G. Since G is left semimedial, we have R,(R,(x) O L,(x)) O L,(R,(y) © L,(z)) =
xx - yz = xy- xz = Ry(R,(x) O L,(y)) O LyR,(x) OL,(z)) for all x,y,ze G and
consequently R (x O /(x)) O Ly O z) = R,(x O y(y)) O L(x O z) forall x, y, z € G.
Further, L,(u O v) = LR, '(u) - L3'(v)) = LR, '(u) - v = y(u) v = Ry(u) O L (v) =
L,(u) O L,(v) showing that L, is an automorphism of G(O). Now, y(x O y(x)) 0
(yoz) =LJ(RfxO0¥(x)) OL(y0z)) =L (R(xOy(y)) OLx"z)) =
Y(x O Y(y)) ©(x ©z2) for all x,y,zeG. Substituting y = z = o into the latter
equality, we get Y(x O y(x)) = y(x) O x, and therefore (Y(x) O x)O(yOz) =
Y(x OY(y) O(x ©z). On the other hand, ¥(x)O x = R;'(R,L;'(x)) L;' =
L;'(x)-L3'(x) = 0 and x O y(x) = R;'(x) L (LR, '(x)) = R, '(x)- R, (%) = o.

53



Thus y Oz =00 (y O z) = (Y(x) © x) O (y © z) = Y(x O Y(y)) © (x O z). We have
proved that

(*) yoz =y(xOy(y)o(x 0z
for all x,y,z€ G.

Setting y = o in (x), we get the equality y(x) O (x O z) = zforall x, z € G. Then
also x O (Y(x) O z) = z and we see that G(O) is a left quasigroup. However, then
G is a left quasigroup as well.

Setting z = 0 in (%), we get the equality y = y(x O Y(y)) O x. Then y =
Y(x O Y(y)) © x = Y(Y(x) O Y(y)) O Y(x) = Y(x) © (x © y) = x O (Y(x) O y) for all
x,y € G. Moreover, Y(y) = y(x O y) O x = Y(Y(x) O y) O Y(x) = Y(x) O (x O Y(y)) =
X 0 () 0 Y{y).

Now, (x 0 y) 0 Y(y) = Y (x 0 y) O (Y(x © y) O x) = x for all x,ye G. Con-
sequently, (x Oy(y)) Oy = x and we see that both G(O) and G are right
quasigroups. Thus G(O) is a loop and G is a quasigroup. Since Y(x)O x = 0 =
x O Y(x), we have y(x) = x~' (the inverse of x in G(O)) and we have already
proved that x™' O (x O y) = xO(x~'0y)=(yox)ox'=(yox")ox =y,
(xoy ) 'ox=yand yoz=(x0y')"'O(xOz). From this, yOx~' =
(xoy™)'ox)ox!'=(x0y ') for all x,ye G and this equality can also
be written as (x O y)~' = y~' O x~'. That is, the permutation x — x~' is an
antiautomorphism of the loop G(O). Now, (%) can be rewritten as

(*¥) yoz=(yox~")O(x02)
for all x, y,ze G.

For y=uOx, we get (uOx)Oz=y0z=(y0x"')0(x0z)=(wox)0x~')0
(x0z) =u0(x 0z for all x,z,ue G. This means that G(O) is a group. The
permutation ¢ = L, ¢ is an automorphism of G(0O) and R, ¢(x) = @y(x) = ¢(x~').
Thus xy = ¢(x~' 0 y) for all x,y € G.

If G is right semimedial, then R, ; and y are automorphisms of both G and G(0),
and therefore G(O) is an abelian group and G is medial. Similarly, if G is middle
semimedial, then G(O) is abelian.

Finally, if (ii) is true, then xx = o, o being the unit element of G(O), L, ¢ = ¢ and
xx-yz=@(p(x '0x)'Og(ytOz)) =@}y 'Oz) =gy 'Ox0Ox"'0z) =
plp(x~'oy)tog(x'0z) =xy-xzforallx,y,zeG. A

5.4 Theorem. Let G be a unipotent left semimedial groupoid such that at least
one of the translations L, ¢ and R, ¢ is injective. Then G is cancellative and, if
G is right (middle) semimedial, then G is medial.

Proof. By 5.2(ii), both L, ; and R, ; are injective. Now, by 1.9, there exists
a unipotent left semimedial groupoid K such that G is a (strongly dense) subgroupoid
of K and L, g is an automorphism of K. Now, the result follows from 5.2. A

5.5 Corollary. Let G be a unipotent left semimedial groupoid such that G is
either left or right cancellative. Then G is cancellative and can be imbedded into
a (unipotent) left semimedial quasigroup.
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VI.6 Cancellative semimedial groupoids with injective o

6.1 Proposition. Let ¢ be an endomorphism of a groupoid G. Define a new

binary operation * on G by x x y = ¢(xy) for all x, y € G. Then:
(i) (x * ) * (uxv) = @*(xy - wv) for all x,y,u,veQG.

(ii) G(*) is (left, right, middle) semimedial, provided that G(*) is so.

(iii) G(x) is medial, provided that G is so.

(iv) G(x) is (left, right) cancellative, provided that G is so and ¢ is injective.

(v) G(x) is (left, right) divisible, provided that G is so and ¢ is projective.

(vi) @ is endomorphism of G(x).

6.2 Proposition. Let G be a left semimedial groupoid such that ¢ = o is
a bijection (then ¢ is an automorphism of G). Define a new binary operation * on
G by x*y = ¢~ (xy) for all x,y € G. Then:

(i) G(*) is an idempotent left distributive groupoid.

(ii) @ is an automorphism of G(*) and xy = @(x * y).

(iii) G(*) is right distributive (resp. middle semimedial, medial) if and only if
G is right semimedial (middle semimedial, medial).

(iv) G(*) is (left, right) cancellative if and only if G is so.

(v) G(*) is (left, right) divisible if and only if G is so.

6.3 Corollary. The following conditions are equivalent for a groupoid G:

(i) G is left semimedial and o is bijective.

(ii) There exist an idempotent left distributive groupoid G(x) and an auto-
morphism ¢ of G(x) such that xy = ¢(x  y) for all x, y € G.

If these conditions are satisfied, then ¢ = o5, G is right semimedial (middle
semimedial, medial) if and only if G(*) is right distributive (middle semimedial,
medial) and G is (left, right) cancellative (or divisible) if and only if G() is so.

6.4 Theorem. Let G be a left cancellative left semimedial groupoid such that
o is injective. Then these exists a left semimedial left quasigroup Q with the
following properties:

(i) G is a left strongly dense subgroupoid of Q.

(ii) o4 is injective.

(iii) 64 is projective, provided that o is so.

(iv) Q is right (middle) semimedial if and only if G is so.

(v) Q is cancellative if and only if G is so.

(vi) Q is right divisible, provided that G is so.

Proof. By 1.1.13, G can be imbedded into a groupoid K such that K is left
cancellative left semimedial, ¢ = ok is an automorphism of K, etc. Put x x y =
@~ !(xy) for all x, y e K (see 6.2); then K(x) is a left cancellative idempotent left
distributive groupoid and ¢ is an automorphism of K(*). By IV.2.4, there exists an
idempotent left distributive left quasigroup P(x) such that K(x) is a left strongly
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dense subgroupoid of P(x) and the imbedding K(x) &, P(x) is a reflexion of K() in
the class of left distributive left quasigroups. Now, by I1.3.6, ¢ can be extended to an
automorphism  of K(x). Again, put xy = y(x * y) for all x, y€ K. Then K, together
with this multiplication, becomes a left semimedial left quasigroup. Of course, G and
K are subgroupoids of P, and hence G is left strongly dense subgroupoid of
Q = <(G.p; Q is a left semimedial left quasigroup. For x € P, gp(x) = xx =
Y(x * x) = Y(x), and therefore o} is bijective. Consequently, o, is injective and we
have proved (i) and (ii). The asertions (iv), (v) and (vi) are proved in 2.9.

Finally, assume that o; is projective (i.e., bijective). Then G = K and it is
enough to show that Q = P. If x € P, then a, * (a, * (... (a, * X)) € G, a,;€ G, and
it follows that y~'(a,) (¥ ~"(a2) (... (¥ (@) ¥ "™(x)))) € G. But Y = o, is bijective
and § | G = g is also bijective. Consequently, Y ~'(a) € G, Y "(a) € G,y ~"(x) e Q
and x = Yy "(x)eQ. A

6.5 Theorem. Let G be a cancellative semimedial groupoid such that o is
injective. Then there exists a semimedial quasigroup Q with the following properties:

(i) G is a dense subgroupoid of Q.

(ii) o is injective.

(iii) o¢ is projective, provided that o is so.

(iv) Q is medial if and only if Q is so.

Proof. We can proceed similarly as in the proof of 6.4 (using I.1.13, 6.2, IV.5.4
and II.4.3) or we can simply use 4.9 and 3.11. A

VI.7 Cancellative semimedial groupoids with projective g,

7.1 Proposition. Let G be a left semimedial groupoid such that o is projective.
Then there exists a left semimedial groupoid K with the following properties:
(i) G is a homomorphic image of K.
(ii) ok is a bijection (and hence an automorphism of K).
(iii) The groupoids G and K are equationally equivalent.
(iv) K is (left, right) cancellative, provided that G is so.

Proof. K will be the set of sequences (xo, X;, X, ...) € G™° such that x7,, = x;
for every i > 0. Then K is a subgroupoid of the power G and G is a homo-
morphic image of K ((x,-) — X,). Also the remaining assertions are clear. A

7.2 Proposition. Let G be a left cancellative left semimedial groupoid such that
o is projective. Then G can be imbedded into a left semimedial left quasigroup.

Proof. By 7.1, there exists a projective homomorphism ¢ : K — G, where K is
a left cancellative left semimedial groupoid and ok is an automorphism of K.
Further, by 6.4, K is a left strongly dense subgroupoid of a left semimedial left
quasigroup P (such that ¢, is an automorphism of P). Now, the congruence
r = ker(p) of K is left cancellative and it can be extended to a left cancellative
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congruence s of P (see 2.9). Then the factor Q = P/s is again a left quasigroup
and G can be imbedded into Q. A

7.3 Theorem. Let G be a cancellative semimedial groupoid such that o is
projective. Then G can be imbedded into a semimedial quasigroup.

Proof. We can proceed similarly as in the proof of 7.2 (using 7.1, 6.5 and 3.7)
or we can just use 4.9. A

VI.8 Cancellative semimedial groupoids where 7 (¢;) is an endomorphism

8.1 Proposition. Let G be a left cancellative groupoid such that the trans-
formations o; and g are endomorphisms of G. Then there exist groupoids H and
K with the following properties:

(i) Both H and K are left cancellative, oy is an automorphism of H and g is
an automorphism of K (see 1.1.12).
(ii) There exists an injective homomorphism G - H x K.
(iii) The groupoids G and H x K are equationally equivalent.

Proof. With respect 1.1.15, we can assume that G is non-trivial and subdirectly
Ic-irreducible. If (a, b) € ker(a) N ker(gg), then aa = bb and aa- a = bb - b. Since
G is left cancellative, we have a = b, and so ker(o) N ker{gg) = idg. Since o and
0 are endomorphism of G, both ker(d) and ker{g) are left cancellative congruences
of G. But G is subdirectly lc-irreducible. Thus either ker(og) = idg and o is
injective or ker(gs) = idg and o is injective. The rest is clear from 1.1.13. A

8.2 Proposition. Let G be a cancellative groupoid such that both o and g are
endomorphisms of G. Then there exist groupoids H and K with the following
properties:

(i) Both H and K are cancellative, oy is an automorphism of H and gk of K.

(ii) There exists an injective homomorphism G — H x K.

(iii) The groupoids G and H x K are equationally equivalent.

Proof. Similar to that of 8.1. A

8.3 Theorem. Let G be a cancellative semimedial groupoid such that either
Qg or tg is an endomorphism of G (see 1.1.12). Then G can be imbedded into
a semimedial quasigroup.

Proof. Combine 8.2 and 4.6. A

VI.9 Imbeddings of cancellative semimedial groupoids into semimedial
quasigroups

9.1 Theorem. Let G be a left cancellative left semimedial groupoid such that
at least one of the following conditions is satisfied:
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(1) G = GG;

(2) og is injective;

(3) og is projective;

(4) o is constant (i.e., G is unipotent);

(5) G contains at least one idempotent element.

Then G can be imbedded into a left semimedial left quasigroup.

Proof. (i) With respect to 1.1.15, we can assume that G is subdirectly cl-ir-
reducible. By 4.3, pg is a left cancellative congruence of G. Now, if (a, b) € pg N
ker(og), then aa = bb and ax = bx for every x € G. Hence ab = bb = aa and
a = b, since G is left cancellative. Thus p; N ker(aG) = id; and either p; = idg
or o is injective. If p; = idg, then we can use 4.5. If o is injective, then 6.4
shows the result.

(ii) See 6.4.

(iti) See 7.2.

(iv) See 5.4.

(v) Combine (i) and 4.7. A

9.2 Theorem. Let G be a left cancellative left semimedial groupoid satisfying
at least one of the conditions (1), ...,(5) from 9.1. Then there exists a left
semimedial left quasigroup Q with the following properties:

(i) G is a strongly dense subgroupoid of Q and for every x € Q there exist
n>0andb,a,,.., a,eG such that ay... (a,x)) = beG.

(ii) Q is right cancellative if and only if G is so.

(iii) Q is right divisible, provided that G is so.

(iv) The groupoids G and Q satisfy the same quasisymmetric groupoid equations.

Proof. Combine 9.1 and 29. A

9.3 Theorem. Let G be a cancellative semimedial groupoid such that at least
one of the following conditions is satisfied:

(1) G = GG;

(2) o is injective;

(3) og is projective;

(4) ag is constant;

(5) 16 is an endomorphism of G;

(6) o¢ is an endomorphism of G;

(7) G contains at least one idempotent element.

Then G can be imbedded into a semimedial quasigroup.

Proof. Use 4.6, 4.9, 6.5, 7.3 and 8.3. A

9.4 Theorem. Let G be a cancellative semimedial groupoid satisfying at least
one of the conditions (1), ...,(7) from 9.3. Then there exists a semimedial
quasigroup Q with the following properties:
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(i) G is a dense subgroupoid of Q and for every x € Q there exist n > 0, b,
ay, ..., 4,€ Gand Ty, ..., T,€ {L,R} such that T, ,, ... T, .(x) = beG.
(i) The groupoids G and Q satisfy the same quasisymmetric groupoid equations.

Proof. Combine 9.3 and 3.7. A

9.5 Remark. Let G be a (left) cancellative (left) semimedial groupoid that can
be imbedded into a (left) semimedial quasigroup (see 9.1, 9.2, 9.4 and 9.4). Then
G is a (left strongly) dense subgroupoid of a (left) semimedial (left) quasigroup Q,
Q is determined uniquely up to G-isomorphism, G and Q satisfy the same
quasisymmetric groupoid equations (Q is right cancellative or divisible, provided
that G is so) and the imbedding G ¢ Q is a reflexion of G in the class of (left)
semimedial (left) quasigroups (cf. I1.3.5, I1.3.6 and 11.4.4).

VI.10 When semimedial groupoids are strongly semimedial

10.1 Theorem. A semimedial groupoid G is strongly semimedial, provided that
at least one of the following conditions is satisfied:

(1) G is cancellative;

(2) og is injective;

(3) og is projective;

(4) G is commutative.

Proof. (i) If a,b,ce G, then we have ((cc - ca) (ba - ba)) ((ac - ba) (aa - ba)) =
((cc - ca) (ba - ba)) ((ac - aa) (ba - ba)) = ((cc- ca)(ba- ba))((aa - ca)(ba- ba)) =
((cc - ca) (aa- ca))((ba - ba) (ba- ba)) = ((cc- aa)(ca- ca))((ba- ba)(ba- ba)) =
((ca- ca)(ca- ca))((ba- ba)(ba- ba)) = ((ca- ca)(ca- ca))((bb- aa)(ba- ba)) =
((ca ca)(ca- ca))((bb- aa)(bb- aa)) = ((ca- ca)(ca- ca))((bb- bb)(aa- aa)) =
((ca - ca) (bb - bb)) ((ca- ca)(aa- aa)) = ((ca- bb)(ca- bb))((ca- ca)(aa- aa)) =
((ca- bb)(ca- bb))((ca- aa)(ca-aa)) = ((cb- ab)(ca- bb))((ca- aa)(ca- aa)) =
((cb - ab) (cb - ab)) ((ca- aa)(ca-aa)) = ((cb- cb)(ab- ab))((ca- aa)(ca aa)) =
((cb - cb) (ca - aa))((ab - ab)(ca- aa)) = ((cb- ca)(cb- aa))((ab - ab)(ca- aa)) =
((cc - ba) (cb - aa))((ab - ab)(ca-aa)) = ((cc- ba)(ca- ba))((ab - ab)(ca- aa)) =
((cc - ca) (ba - ba)) ((ab - ab)(ca- aa)) = ((cc- ca)(ba- ba))((ab - ca)(ab - aa)) =
((cc - ca) (ba - ba))((ab - ca) (aa - ba)).

(ii) With respect to 1.1.13, we can assume that ¢ = g is an automorphism of G.
Now, consider the idempotent distributive groupoid G(x) constructed in 6.2. By [11,
IV.14], G(*) is middle semimedial, and therefore G is middle semimedial by 6.2(iii).

(iii) Combine (ii) and 7.1.

(iv) Obvious. A

10.2 Remark. Let F be a free semimedial groupoid. Then F is neither left nor
right cancelative. In fact, it is easy to see that F is not middle semimedial (e.g.,
(x - xx) ((x - xx) x) # (x(x - xx)) (xx - x) for every free generator x € F) and con-
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sequently F is not cancellative (by 10.1). However, F is isomorphic to its opposite
groupoid and it follows that F is neither left nor right cancellative.

VI.11 Cancellable (injective) elements of semimedial groupoids

11.1 Let G be a groupoid. An element a € G is said to be left (resp. right)
injective (or cancellable) if the left (resp. right) translation L, (resp. R, ) is
injective.

We denote by A,(G) (resp. A(G)) the set of left (resp. right) injective elements
and we put A(G) = A(G) n A(G).

11.2 Lemma. Let G be a left semimedial groupoid and a,b € G.
(i) If a, ab € A(G), then b € A(G).

(ii) If aa, b € A(G), then a € A(G).

(iii) If a€ A(G) and ab € A(G), then b e A(G).

(iv) If aa € A(G) and b € A(G), then a € A(G).

Proof. By 1.2,L,L, = L,L, and L, R, = R, L,. Now, it sufficies to use these
equalities and the following well known observation: Let f, g be transformations
of G. If f, g are injective, then fg is so. If fg is injective, then g is so. A

11.3 Proposition. Let G be a left semimedial groupoid. Then:

(i) A(G) is a left closed subset of G; if ae G and a¢(a) = aa € A(G), then
a € A(G).

(ii) A(G) is a left closed subset of G; if a€ G and a¢(a) € A(G), then a e A(G).

Proof. (i) The assertion follows immediately from 11.2(i), (ii).

(ii) Let, a, b € G, a, ab € A(G). Then a, ab € A(G) and b € A(G) by (i). Further,
a € A(G), ab € A(G) and b € A(G) by 11.2(iii). Thus b € A(G) and we have proved
that A(G) is left closed. Finally, let a € G and aa € A(G). Then aa = A(G), and
hence a € A(G) by (i). Consequently, a € A(G), aa € A(G), and so a € A(G) by
11.2(iii). Thus a € A(G). A

11.4 Proposition. Let G be a left cancellative left semimedial groupoid.
(i) A(G) = A(G) and if a,b e G and ab € A(G), then b € A(G).

(ii) If A(G) * G, then G\A(G) is a left ideal of G.

Proof. We have G = AI(G) and it is enough to use 11.2(iii). A

11.5 Proposition. Let G be a semimedial groupoid.

(i) A(G) is a closed subset of G.

(ii) If G is left (resp. right) cancellative and if a, b € G are such that ab € A(G),
then a, b € A(G). In other words, G\A(G) is either empty or an ideal of G.

Proof. (i) This follows from 11.3(ii) and its right hand form.
(ii) Let ab € A(G). By 11.4 (i), b € A(G). However, by the dual of 11.3(ii), A(G)
is right closed. Hence a € A(G) as well. A
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11.6 Proposition. Ler G be a left (right) quasigroup such that A(G) + &
(A(G) *+ Q).

(i) If G is left semimedial, then A(G) is a left ideal of G. If, moreover,
A(G) # G, then G\A(G) is a left ideal.

(ii) If G is semimedial, then G is cancellative.

Proof. (i) We have A(G) = A(G) + & and, by 11.4, G\A(G) is either empty
or a left ideal of G. Now, let ae G and b € A(G). We have LR, = R,L,, and so
R, = L R,L;" is injective. Thus ab € A(G) = A(G).

(ii) Let a€ G, b€ A(G). By (i), ab € A(G). However, then a € A(G) by 11.5(ii).
Therefore G = A(G). A

11.7 Remark. Let G be an ideal-simple left (right) cancellative semimedial
groupoid. Put I = G\A(G). If I = (, then G is cancellative. If I = G, then
A(G) = & and hence A(G) = & (A(G) = ). The last possibility is I + ,G.
Since G is ideal-simple, I = {e}is then a one-element set. Then, of course, e is an
absorbing element of G and, since G is left (right) cancellative, G = {e} and
I = G, a contradiction.

11.8 Let G be a groupoid. Denote by AXG) the set of ae G such that
ot{a) € A(G) for each n > 0. The set AX(G) is defined dually and A*(G) = A¥G) N
AXG) = {ae G; ai(a) e A(G) for each n > 0}. Clearly, A{G) = A(G), A¥G) <
A(G), A*(G) = A(G) and the sets A¥(G), A¥G), A*(G) are closed under o

11.9 Propeosition. Let G be a left semimedial groupoid. Then Al*(G) is either
empty or a left closed subgroupoid of G (in that case, A,*(G) is a left cancellative
groupoid). Moreover, if a € G and aa € AXG) then a € AYG).

Proof. First, let a,be AXG). By 1.2, Lp.,2Lyz = Ly 2L, We have a?- d?,
b*e€ A(G), and so L, is injective and abe A(G). Now, for every n >0,
o(a), o(b) € AXG), and so o%(ab) = 6¢(a) o%(b) € A(G). Consequently, ab € AXG)
and we have proved that AXG) is a subgroupoid (if non-empty).

Next, let a,beG and a,abe AYG). Then, for each n >0, o%(ab) =
oi(a) o&(b) € A(G) and o%(a)e A(G). But A(G) is left closed, and hence
o%(b) € A(G) and b € AXG).

Finally, let aa € AXG). Then ¢%(aa) = o%{a) o%(a) € A(G) for each n > 0. By
11.33), o%(a) € A(G), i.e. ac ANG). A

11.10 Lemma. Let G be a left semimedial groupoid. Then A*(G) is a left closed
subset of G.

Proof. Let a,ab e A*(G). Then o%(a), 6%(a) o%(b) € A(G) for each n > 0. By
11.3(ii), o&(b) € A(G) and we see that b e A¥G). A

11.11 Lemma. Let G be a semimedial groupoid. If aa € A(G) and bb - bb €
A(G), then ab € A(G) and b € A(G).
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Proof. By 11.3(ii) and its dual, ae A(G) and be A(G). Further, by 1.3,
Rj2. 52l = Ry p2Llp, and hence L, is injective and ab € A((G). Since A(G) is left
closed, we have also b € A(G). Then, of course, b € A(G). A

11.12 Theorem. Let G be a semimedial groupoid. Then:

(i) A(G) is a closed subset of G. .

(ii) A*(G) is either empty or a closed subgroupoid of G (in that case, A*(G) is
a cancellative groupoid).

(iii) If ANG) + & + AXG) (e.g. if AX(G) + &), then AXG) = AXG) = A*(G).

(iv) If a€ G and aa € A(G) (resp. aa € A*(G)), then a € A(G) (resp. a € A¥(G)).

Proof. (i) See 11.5(i).

(ii) By 11.10 and its dual, A*(G) is a closed subset of G. Let A*(G) + & we
have A*(G) = AXG) n AXG) and A*(G) is a subgroupoid of G by 12.9 and its
right hand form.

(iii) This assertion follows easily from 12.11 and its dual.

(iv) See 11.3(ii) and 11.9 and its right hand form. A

VI.12 Divisible (projective) elements of semimedial groupoids

12.1 Let G be a groupoid. An element a € G is said to be left (resp. right)
projective (or divisible) if the left (resp. right) translation L,; (resp. R, ) is
projective.

We denote by B,(G) (resp. B(G)) the set of left (resp. right) projective elements
and we put B(G) = B|(G) n B/(G).

12.2 Lemma. Let G be a left semimedial groupoid and a,b € G.
(i) If a, ab € B(G), then aa € B|(G).

(ii) If aa, b € B(G), then ab € B(G).

(iii) If a € B(G) and ab € B,(G), then aa € B|(G).

(iv) If aa € B(G) and b € B(G), then ab € B(G).

Proof. Use 1.2 and the following simple fact: Let f, g be transformation of G.
If f, g are projective, then fg is so. If fg is projective, then f is so. A

12.3 Proposition. Let G be a left semimedial groupoid.
(i) B(G) is either empty or a subgroupoid of G.
(ii) If G is left divisible, then B(G) is either empty or a left ideal of G.
(iii) If G is a left quasigroup, then G\B(G) is either empty or a left ideal of G.

Proof. (i) Let a € B(G) and x € G. There are y, z, v € G such that ay = a,az = v
and av =x. Now, aa'yz =ay-az =av =x and we have proved that
aa e B.(G). The result now follows from 12.2(ii).

(ii) We have B(G) = B/(G) and 12.2(iv) applies.

(iii) Let a,be G and ab e B(G). We have R, = L;R,L,, and hence R, is

projective and b € B(G). A
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12.4 Corollary. Let G be a semimedial groupoid. Then B(G) is either empty or
a subgroupoid of G.

VI.13 Bijective elements of semimedial groupoids

13.1 Let G be a groupoid. An element a € G is said to be left (resp. right)
bijective if the left (resp. right) translation L, ; (resp. R, ¢) is bijective. We denote
by C(G) (resp. C(G)) the set of left (resp. right) bijective elements and we put
C(G) = C(G) n C(G).

13.2 Lemma. Let G be a left semimedial groupoid and a, b € G.
(i) If a, aa, ab € C(G), then b e C(G).
(i) If aa, b, ab € C(G), then a € C(G).
(iii) If a, aa, b € C(G), then ab e C(G).
(iv) If a, b, ab € C(G), then aa € C(G).
(v) If a, aa € C(G) and ab € C(G), then b e C(G)
(vi) If a, aa € C(G) and b € C(G), then ab € C(G).
(vii) If aa € C(G) and b, ab € C(G), then a € C(G)
(viii) If a € C(G) and b, ab € C(G), then aa € C|(G)

Proof. We have L,,L, = L,L, and L,,R, = R, L,.

13.3 Let G be a groupoid. Put CG) = {ae G; o¥(a) € C(G) for each n > 0},
CXG) = {ae G; of(a) e C(G) for each n > 0} and C*(G) = CKG) n CXG) =
{ae G; o%(a) € C(G) for each n > 0}.

13.4 Proposition. Let G be a left semimedial groupoid. Then:

(i) CXG) is either empty or a left closed subgroupoid of G (in that case, C{G)
is a left quasigroup).

(ii) C*(G) is either empty or a left closed subgroupoid of G (in that case, C*(G)
IS a quasigroup).

Proof. (i) Use 13.2(i), (iii).
(i1) Use (i) and 13.2(v), (vi). A

13.5 Corollary. Let G be a semimedial groupoid. Then C*(G) is either empty
or a closed subgroupoid of G (in that case, C*(G) is a quasigroup).

VI.14 Comments and open problems

Many results of this chapter are new and some other results on semimedial
groupoids and quasigroups can be found in [7], [14] and [16]. The main open
problem is whether every cancellative semimedial groupoid is a subgroupoid of
a semimedial quasigroup.
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VII. Cancellative trimedial groupoids

VII.1 Introduction

1.1 A groupoid G is said to be

— monomedial if every one-generated subgroupoid of G is medial;

— dimedial if every subgroupoid generated by at most two elements is
medial;

— trimedial if every subgroupoid generated by at most three elements is
medial;

— left near-trimedial if ab-xy = ax-by for all a,b,x,ye G such that
a, b € {c)q for some c € G;

— right near-trimedial if xy- ab = xa - yb for a, b, x, y€ G such that a, b € {c)g
for some c € G;

— near-trimedial if G is both left and right near-trimedial.

1.2 In the sequel, we will consider the following groupoid equations:

(GED)  (x- xx)(yz) = (xy) (xx - 2);
(GE2) (zy)( xx - x) = (z- xx) (yx);
(GE3) (xx-x)(yz) = (xxy)(xz);
(GE4) (zy)(x - xx) = (zx) (y - xx);
(GE5) (yx)(xx-z) = (y- xx)(xz);
(GE6) (xy)(xy-z) = (x- xy)(yz);
(GET) (z* xy)(xy) = (zx) (xy - y);
(GEB) (xy)(z - xy) = (x2) (v xy);
(GE9) (xy- z) (xy) = (xy - x) (zy);
(GE10) ((xy- xy) (x - xy)) ((xy - ) (xy~ 2)) = ((xy - xy) (xy- y)) (x - xy) (xy - 2));

(GE11) ((z- XY) (- xy) (v ) (xy - xy) = (2 xp) (xy - ) ((x - xy) (ey - xy));

1.3 Proposition. Let G be a left (right) near-trimedial groupoid. Then:
(i) G is left (right) semimedial.
(ii) Both s and 9; are endomorphisms of G.
(iii) G satisfies (GE1) and (GE3) ((GE2) and (GE4)).
(iv) G is monomedial.
(v) The condition (A10) ((B10)) is satisfied for any subgroupoid H of G (see
14.1 and 14.5).

1.4 Proposition. Let G be a trimedial groupoid. Then:
(i) G is near-trimedial and strongly semimedial.
(ii) G satisfies all the equations (GEIl), ..., (GE11).

1.5 Lemma. Let G be a groupoid and a, b € G.
(i) If G satisfies (GE6), then L%, = L,. ,L,.
(ii) If G satisfies (GE7), then R, = R, ,R,.



(iii) If G satisfies (GES8), then LR, = R,. L.

(iv) If G satisfies (GE9), then R, L, = L. R,

(v) If G satisfies (GE6), (GE10) and G is left semimedial, then L%, =
L.L,. oL where ¢ = (ab)’ - (ab)* and d = (ab)* - (ab - b).

(vi) If G satisfies (GE7), (GEl1) and G is right semimedial, then RR2, =
RR..:R 4, Wwhere ¢ = (ab)*- (ab)* and d = (a - ab) - (ab)™.

Proof. (v) Put e=ab. Then (€¢%)(e" ex) = (ee" ee)((ab)(ab- x))=(ee" ee) (a- ab) (bx))
(ee- ee)(ae - bx)=(ee- ae)(ee- bx)=(ee" ae)(eb- ex)=((ab- ab)(a- ab))((ab- b)(ab- x)) =
((ab- ab)(ab- b))((a- ab)(ab- x))=(ee" eb)(ae- ex). A

1.6 We will say that a groupoid G is

— a left (right) F-groupoid if a-bc = ab-ec (cb-a = ce' ba) whenever
a,b,c,e€ G and ae = a (ea = a);

— an F-groupoid if it is both a left and right F-groupoid;

— a left (right) E-groupoid if a-bc = eb-ac (cb-a = ca-be) whenever
a,b,c,ee G and ea = a (ae = a);

— an E-groupoid if it is both a left and right E-groupoid.

1.7 Proposition. (i) Every left cancellative left semimedial groupoid satisfying
(GE1) is a left F-groupoid.

(i) Every left cancellative semimedial groupoid satisfying (GE3) and (GES) is
a right E-groupoid.

Proof. If a,b.c,e€ G, a=ea, then (a- aa)(a- bc)=(aa)(aa- bc)=(aa) (ab- ac)=
(a 'bab) (a 'bac) = (a- ab)(ae- ac) = (a- ab)(aa - ec) = (a- aa)(ab - ec), and hence

(ii) If a,b,c,e € G, a = ae, then (aa - a)(cb- a) = (aa - cb)(aa) = (ac - ab)(aa) =
(ac - a)(ab - a) = (ac - a) (ab = ae) = (ac - a) (aa - be) and (aa- a)(ca - be) =
(aa - ca)(a- be)=(ac - aa)(a- be)=(ac- a)(aa - be). Consequently, (aa - a)(cb-a)=
(aa- a)(ca- be)and cb-a = ca- be.

1.8 Corollary. Let G be a cancellative semimedial groupoid.
(i) If G satisfies (GE1) and (GE2), then G is an F-groupoid.
(ii) If G satisfies (GE3), (GE4) and (GES), then G is an E-groupoid.

1.9 Remark. Let F be a free monomedial (resp., dimedial, trimedial, medial)
groupoid. Then F is neither left nor right cancellative. Indeed, if xe F is a free
generator and y =xx, then ((x-xy)(yx))((x yx)(xy-x)) = ((x" xy) (yx)) ((x* xy)(yx - x) =
(6 320 (x3) (7)) = (00) e X)) (2) ) = (00 (xx- v (0) ) =
(- y) (Gex - x)(yx - x) = (oy - yp)) ((ex - yx) (xx)) = (y - yy)) (xy - xx) (xx)) =
(oxy 29 (v-99)65) = (68) (o) (0 7)) = (- x9) - 3 () ) =
((x - xy) (vx)) ((x - xx) (vy - x)) = ((x - xy) (yx)) ((xy) (vy * x))- On the other hand, it
is easy to see that (x - yx)(xy - x) % (xy) (yy - x).
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VII.2 Dense subgroupoids of cancellative trimedial groupoids

2.1 Let H be a subgroupoid of a left near-trimedial groupoid G and let a e H
and a = {a)y. Put 6,(H) = 6,(H) = {xe G; bx € H for some b e A}.

(i) If b,ce A and bx,cye H, then bc- xy = bx - cy e H, which shows that
d,(H) is a subgroupoid of G; clearly, H < ,(H).

(ii)) Assume that for all be A and u € H, there exists a uniquely determined
x € G with bx = u (e.g., if G is a left quasigroup). Then the mapping ¢ : (b, u) — x
is a projective homomorphism of A x H onto ,(H). If (b, u), (c, v)) € ker(¢), then
bx = u, cx = v for some x € 6,(H), and therefore db - v=db- cx =dc-bx =dc- u
for every de A. Conversely, if b,ce 4, u,ve H, eb-v =ec-u, ec A and if
bx =u, cy =v,x,y€d,(H), then ec-bx =ec-u=-eb-v=-eb-cy = ecby.
But ec-bx = ec-ue H and ece A. Thus bx = u = by and x = y. We have
proved that ((b, u), (c, v)) € ker(¢) if and only if db - v = dc - u for some (and then
for each) d € A.

(iii) Now, assume that L,; is injective for every be A and put K =
{(b,u) € A x H; bx = u for some x € H}. Then K is a subgroupoid of A x H and
¢ : K = 6,H), o(b, u) = x, is a projective homomorphism of K onto ,(H). Again,
(b, u), (c, v) e ker(e) if and only if db- v = dc- u for some (and then for each)
de A.

2.2 Let H be a subgroupoid of a left near-trimedial groupoid G, let a € H and
A = {ady. Put ¢(H) = ¢, 4(H) = {x€ G; f(x) € H for some f € Mul(G, A)}.

(i) First, we check that ¢,(H) is a subgroupoid of G. If n,m > 0, a,€ A4, b; € A,
x, y € (H), ay(... (a,x)) € H and b(... (b,)) € H, then we may assume n = m and
we get (a;by) (... (@b, xY)) = (a(-.. (ax))) (bs(... (by))) € H. Thus xy € &,(H) and
we have proved that ¢,(H) is a subgroupoid of G; clearly, H < ¢, 6(H) < og(H).

(i) Put Hy = H and H,,, = ¢, ¢(H,) for every i > 0 (see 2.1). Then H, =
H, < H, < ... is a countable chain of subgroupoids of ¢, ;(H) and it is easy to

see that ¢, o(H) = | JH.
i=0

(iii) Now, assume that the left translation L, is injective for every b e A.
According to 2.1(iii), there exist subgroupoids K; of A x H (here, A’ = A x A x
.. X A i-times) and projective homomorphisms ¢ : K; - H, In particular, the
groupoids H and ¢, ¢(H) are equationally equivalent.

(iv) We have L = (H).¢ = [H).¢ = a(H) (see 14.3). If xeL, then
ay(... (a,x)) € H for some n > 0 and a,, ..., a, € H and we have also ay(... (a.x)) €
8a(H), ay-.. (anx)) € 80y(04,(H))s ..., X € 8y, (0,(H))). Now, it is clear that L is
just the union of subgroupoids of the form &, ¢(Op, ql--- (s, 6(H))) m =0,
by, ..., b, € H. Moreover, if all the left translations L, s, b € H, are injective, than
the subgroupoid dy,(0s,(-.. (J5,(H)))) is a homomorphic image of a subgroupoid of
the (m + 1)-th power H™*Y_In particular, the groupoids H and L are equationally
equivalent.
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2.3 Lemma. Let H be a left strongly dense subgroupoid of a left cancellative
left near-trimedial groupoid G and let n > 1 and x,, ..., x, € G. Then there is
k > 1 such that the subgroupoid {H,x, ..., X,>¢ i a homomorphism image of
a subgroupoid of the k-th power H),

Proof. Use 2.2(iv). A

2.4 Proposition. Let H be a left strongly dense subgroupoid of a left cancella-
tive left near-trimedial groupoid G. Then the groupoids H and G are equationally
equivalent.

Proof. See 2.2(iv) (or combine 1.3(v) and I1.1.10). A

2.5 Proposition. Let G be a left cancellative trimedial groupoid. Then:
(i) The subgroupoid {a,b, c) ; is medial for all a, b, c € G.

(ii) If a, b € G and a = ab, then the subgroupouid {a,b, x, y) ¢ is medial for all
x,y€@G.

(iii) G is a left F-groupoid and a right E-groupoid.

Proof. (i) H = {a,b, c)¢ is medial, and hence K = (H) ¢ = {a,b, c)|. ¢ is
medial by 2.4.

(ii) <a,b,x,y)s = {a,x, y)..c and (i) applies.

(iii) This follows immediately from (ii) (or see also 1.7). A

2.6 Let H be a subgroupoid of a near-trimedial groupoid G. Then (H ), ¢ is just
the union of subgroupoids of the form K = K, 4, 6(K2 a5, 6(-+ (Kn,a, (H))))» Where
n>0,a,..,a,€Hand i, ..., k, € {6,0) (J, is the operator dual to & — see 2.1
and 2.2).

If all the translations L, ; and R, 6, a € H, are injective, then each of the above
subgroupoids K is a homomorphic image of a finite cartesian power of H.

2.7 Proposition. Let H be a dense subgroupoid of a cancellative near-trimedial
groupoid G. Then the groupoids H and G are equationally equivalent.

Proof. See 2.6 (or I1.2.8). A

2.8 Proposition. Let G be a cancellative trimedial groupoid. Then:
(i) The subgroupoid {a,b, c). ¢ is medial for all a, b, c € G.
(ii) G is both an F-groupoid and an E-groupoid.

Proof. Similar to that of 2.5. A

VII.3 When cancellative semimedial groupoids are trimedial

3.1 Proposition. The following conditions are equivalent for a quasigroup Q:
(i) Q is semimedial and satisfies (GEI).

(ii) Q is semimedial and satisfies (GE2).

(iii) Q satisfies ((xx - yz) (vw - uu)) ((p - pp)(st)) = ((xy - xz) (vu - wu)) ((ps) (pp - t))-
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Proof. See [17, Theorem 6].

3.2 Proposition. Let G be a cancellative semimedial groupoid satisfying (GEI)
(or (GE2)) and such that o is injective. Then G is trimedial.

Proof. With respect to I.1.13, we can assume that ¢ = g is an automorphism
of G. Now, put x x y = ¢~ '(xy) for all x, y € G. Then G(*) becomes a cancellative
idempotent distributive groupoid, ¢ is an automorphism of G(*) becomes a can-
cellative idempotent distributive groupoid, ¢ is an automorphism of G(*) and
xy = @(x = y) for all x,yeG. Further, ¢*((x * ¢(x)) % (y * z) = (x - xx) (yz) =
(xy) (xx - 2) = @*((x * y) * (¢(x) x z)), and hence (x * @(x)) * (y*z) = (x * y) *
(@(x) * z) for all x, y, z € G; equivalently, (x, ¢(x)) € g (see IV.5.9).

By IV.5.4, G(x) is a dense subgroupoid of a distributive quasigroup Q(*) and
¢ extends to an automorphism ¥ of Q(x). By IV.5.9, (v, Y/(v)) € pg.) for every v e Q.
Now, define a multiplication on Q by uv = y(u x v). Then Q is a semimedial
quasigroup and G is a subgroupoid of Q. For u, v, w € Q, we have (u - uu) (vw) =
Y((u = () * (v % w)) = Y*((u * v) * (Y(u) * v)) = (uv) (uu- w). We have shown
that Q satisfies (GE1). It remains to apply 3.1. A

3.3 Proposition. Let G be a cancellative semimedial groupoid satisfying (GE1)
(or (GE2)) and containing at least one idempotent element. Then G is trimedial.

Proof. Since G satisfies (GE1), the transformation 7; is an endomorphism of
G and then, by VI.8.3, G is a subgroupoid of a semimedial quasigroup Q. Now,
let e € Id(G). Then ¢ =R, , and Y = R, , are automorphism of Q, ¢(e) = e = Y(e)
and oY = Y. Put x + y = ¢~ '(x) Yy~ !(y) for all x, y € Q. Then Q(+) is a loop
(e = 0 is the neutral element), ¢,y are automorphisms of Q(+) and xy =
@(x) + Y(y) for all x, ye Q.

By VL10.1, Q is strongly semimedial. Consequently, y(x) ¢(y) = ex - ye =
ey - xe = Y(y) ¢(x) for all x, y e Q and it follows that x + y = ¢~ '(x) Yy~ '(y) =
¢~ (W(x) 0(y) = 0¥ (U(y) o(x)) = 97 '(y) ¥'(x) = y + x. We have proved
that Q(+) is a commutative loop. Now, Q(+ ) is a commutative Moufang loop and
@(x) — ¥(x) € Z(Q(+)) (the centre) for every x € Q.

If H is a subgroupoid of Q such that O e H, then Y(H) =0-H < H and
¢(H)=H-0 < H. Thus H < y(H) n ¢ '(H). But, ¢, y are automorphism of
Q, and so both Y (H) and ¢~'(H) are subgroupoids of Q and, of course,
Yy~ '(H) =~ H =~ ¢~ '(H).

Wehave 0eGand G < ¢ (G) Sy "o (G) =¥ 'o H(G) = ¥y 2o HG) < ...
is a countable chain of subgroupoids isomorphic to H; denote by K the union of
this chain. Then K is a subgroupoid of Q, K satisfies (GE1) and y(K) = K = ¢(K).

Now,put L = {a+ u;ae K, ue Z(Q(+))}.ff a + ue L and b + ve L, then
(@ + 1)(b -+ 0) = (o) + plu) + ({b) + (o) = (ola) + W(B) + () + vi0) =
ab + w, w = @(u) + Y(v) € Z(Q(+)) and ab € K. We see that L is a subgroupoid
of Q; clearly K < L. Further, ¢(L) = ¢(K) + ¢(Z(Q(+))) = K + Z(Q(+)) = L
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and, similarly (L) = L. Consequently, if x, y € L, then ¢~(x), ¥ '(y) € L and
x+y=¢ (x)y~Yy)eL, and so L(+) is a subgroupoid of Q(+). On the other
hand, —3xe Z(Q(+)) = L, —2x = x + (—3x)eL and —x = x + (—2x)eL
for every x € L. This means that L(+) is a subloop of Q(+) and L a subquasigroup
of Q.

Finally, let a,b,c€ K and u,o,we Z(Q(+)), x=a+u,y=b+v,z=c+ w.
Then (x - xx) (yz) = (¢*(x) + (Vo’(x) + ¥o(x)) + (bo(y) + ¥(z)) = (¢*(a) +
(Vo¥(a) + ¥?0(a)) + (Yo(b) + ¥*(c)) + t = ((a- aa) (bc) + t, where t = @*(u) +

Yo (u) + YPo(u) + Yo(v) + y3(w)e Z(Q(+)). Quite similarly, (xy)(xx-z) =
(ab)(aa- o) +5. where s — g7(u) + o{o)-+ Wo(u) + Wp(u) + W) Z(2(+),
However, (a - aa) (bc) = (ab) (aa- c), and therefore ¢ = s. Thus (x - xx)(yz) =
(xy) (xx - z) and the quasigroup L satisfies (GE1). By 3.1, L (and hence G) is
trimedial. A

3.4 Proposition. Let G be a cancellative semimedial groupoid satisfying (GEI)
(or (GE2)) and containing at least one element e such that both L, , and R, , are
bijections. Then G is trimedial.

Proof. By IV.4.6, G is a subgroupoid of a semimedial quasigroup Q. Now, by
[17, Theorem 3], there exist a commutative Moufang loop Q(+ ), automorphisms
7, ¥ of Q(+) and an element g € Q such that oy = Yo, ¢(x) — Y(x) e Z(Q(+))
and xy = (@(x) + ¢@(y)) + ¢ for all x, y € Q. Without loss of generality, we may
assume that e = 0 is the neutral element of Q(+).

Since Ly ¢ and Ry ; are bijections of G, we have ¢~ '(x — g), ¥ "(x — g)€ G
for every x € G (use the fact that 0- Y ~'(x — q) = x = ¢~ '(x — g)- 0). Now, if
x,y€G, then (x+y)—q=(x—q)+(y—9q)+9=0"(x—q) ¥y '(y—9)eG.

Put L = {a + u; a € G, u € Z(Q(+))}. Proceding similarly as in the proof of 3.3,
we can show that L is a subgroupoid of Q and that L satisfies (GE1). If a, b € G,
then (a + b) — g€ G. In particular, since 0e G, we have a — qe G and
b—qeG. Thus (a + b) — 3q = ((a — q) + (b — 9)) — g€ G. But 3ge Z(Q(+)),
so that a + b € L. Now, it is easy to see that L(+) is a subgroupoid of Q(+) and,
since Z(Q(+)) = L, in fact a subloop of Q(+) (see the proof of 3.3).

If xeL, then ¢(x) + g =x-0€L, and so ¢(x)e L (9 =0:0eG < L) and
¢(L) = L. Similarly, (L) and, further, ¢~ (a — q)€ G for each ae G. Thus
¢ (—q)eG, o (a) =9 '(a—g) — ¢"'(—g)e L and ¢~}(G) = L. From this,
¢ (L) < L and ¢(L) = L; similarly, (L) = L. It follows that L is a subquasi-
group of Q and L is trimedial by 3.1. A

3.5 Theorem. Let G be a cancellative semimedial groupoid satisfying (GEI)
(or (GE2)). Then G is trimedial (and can be imbedded into a trimedial quasigroup)
in each of the following cases: -

(i) The transformation o is injective.

(ii) The transformation o is projective.
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(iii) G contains at least one idempotent element.
(iv) G contains at least one element e such that both L, ; and R, ; are bijections
of G.

Proof. See 3.2,3.3,3.4 and VL7.1. A

3.6 Remark. Let G be a cancellative semimedial groupoid satisfying (GE1). By
VI.8.2 (in fact, the dual form of VI.8.2), there exist cancellative semimedial
groupoids H and K satisfying (GE1) such that oy is an automorphism of H, tx of
K and G can be imbedded into the product H x K. Now, by 3.5, H is trimedial.
In particular, G is trimedial if and only if K is so.

3.7 Remark. Let G be a cancellative semimedial groupoid satisfying (GE1)
and such that ¢ = 7, is an automorphism of G (cf. 3.6). Put x * y = ¢~ '(xy) for
all x, x € G. Then G(*) is a cancellative semimedial groupoid, x * (xx) = x for
every x € G and G(*) is a left F-groupoid (see 1.6).

3.8 Remark. Let G be a groupoid such that ¢ = t; and Y = g are auto-
morphisms of G (see 1.1.12, 1.1.13). Then ¢y = y¢ (we have ¢y = @(xx - x) =
o(x) (x) - ¢(x) = Yo(x)) and we will define a binary operation * on G by
x*y =@ (x)y~'(y) for all x,yeG. Then G(x) is a groupoid, ¢, Y are auto-
morphism of G(x) and xy = ¢(x) * y(y) for all x, y € G.

(i) For every x € G, we have x * Y(¢ ™ '(x) ¢ !(x)) = ¢ (x) 07 !(x) ¢~ '(x) =
09~ (x) = xand o~ (5) Y~ (x) +x = ¥~ ()00 - ¥ (x) = Py () =

(ii) G(*) is left (right) semimedial if and only if G satisfies the equation
() - 08) () 2 (0ox- ) 9) (- 0)2) () (x-3) - xx) = (e (o 1),

(iii) If G satisfies (GE1) ((GE2)), then G(x) is a left (right) F -groupoid. Indeed,
xx(yxz) = 7'(x)- (Yo" (y) 0 7H2) = @~((x - xx) (Yo (y) ¥ 9?(2)) =
0~ () (xx- ¥ =29~2)) = (% 1) = (Wlo~'(x) 0~ (x) # ) (see (). The
other case is similar.

@iv) G(*) is left (right) near-trimedial, provided that G is so.

(v) G(x) is medial if and only if G is so.

(vi) Let H be a subgroupoid of G. Then ¢(H) < H and H < K = ¢~ '(H).
Clearly, K is a subgroupoid of G and ¢ | K is an isomorphism of K onto H.
Similarly, H < L = ¢ ~'(H) and | L is an isomorphism of L onto H. Now, we
get a countable chain of subgroupoids H = Hy < H, < H, < ..., where H; =
H; = ¢~ (+92. y=(=U2(H) for i > 1 odd and H; = ¢ =" ~"*(H) for i > 0 even.

IfP = UH ;» then P is a subgroupoid of G, P and G are equaationally equivalent

i=0
¢(P) = P, Y(P) = P and P(x) is a subgroupoid of G(x).

(vii) Suppose that G is trimedial, let x,y,ze G and H = {(x,), z)s. Now,
consider the subgroupoid P constructed in (vi). Then P is medial, and hence P(x)
is also medial. But {x,y, z)g. S P. We have shown that the groupoid G(x) is
trimedial.
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(viii) G(*) is (left, right) cancellative if and only if G is so.
(ix) G(*) is (left, right) divisible if and only if G is so.

VII.4 Imbeddings of cancellative trimedial groupoids into trimedial
quasigroups (the Sholander’s construction)

4.1 Let G be a groupoid and let A be a subgroupoid of G such that L, ; is injective
for each ae A and that ab- xy = ax- by for all a,b € A and x, y € G (it follows that
A is a left cancellative medial groupoid). Now, put H = A x G and define a relation
r on H by ((a, u), (b, v) e r if and only if ca-v = cb - u for every c € A.

4.1.1 Lemma. Let a,be A and u, v € G. The following conditions are equivalent:
(i) (@, u), (b,v)er

(ii) aa-v = ab - u.

(iii) ba-v = bb - u.

(iv) da-v = db - u for some d € A.

Proof. It is enough to show that (iv) implies (i). If ¢ € A, then (dd - d) (ca - v) =
(dd - ca) (dv) = (dc - da)(dv) = (dc- d)(da - v) = (dc- d)(db - u) = (dc - db) (du) =
(dd - cb) (du) = (dd - d) (cb - u), and hence ca“ v = cb - u.

4.1.2 Lemma. r is an equivalence.

Proof. Clearly, r is reflexive and symmetric. Now, let ((a, u), (b,v)) e r and
((b,v),(c,w))er. Then ba-v =>bb-u, bc-v=>bb-w and (bb-bb)(aa-w) =
(bb aa) (bb - w) = (bb - aa) (bc - v) = (ba - ba) (bc - v) = (ba- bc)(ba-v) =
(ba - bc) (bb - u) = (bb - ac) (bb - u) = (bb - bb) (ac - u), and so aa* w = ac- u. By
3.1.1, (@ u),(c,w)er. A

4.1.3 Lemma. r is a congruence of the groupoid H.

Proof. Let ((a,u), (b,v))er and ((c,w), (d,z))er. Then (ac- ac)(vz) =
(aa - cc)(vz) = (aa-v)(cc - z) = (aa- v)(cd - w) = (ab - u)(cd - w) = (ab - cd) (uw) =
(ac - bd) (uw) and it follows that ((ac, uw), (bd, vz)) er. A

4.1.4 Lemma. Let a,be A and u,v € G. Then ((a, au), (b, bv)) € r if and only if

u = v.

Proof. If ((a, au),(b,bv))er, then aa-bv = ab-au = aa-bu, bv = bu and
u = v. Conversely, if u = v, thenaa-bu = ab-au. A

Now, denote by K the factor-groupoid H/r and define a mapping ¢ : G — K by
¢(u) = (a, au)/r e K, a € A. According to 3.1.4, ¢ is an injective mapping.

4.1.5 Lemma. ¢ is an injective groupoid homomorphism.
Proof. For u,0€G, ¢(u) ¢(v) = (a,au)(a,av)/r =(aa,aa- uv)/r, and @(uv)(a,a- uv)/r =
(aa, aa - wv)ir,ac A. A
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4.1.6 Lemma. For all ae A and u € G, ¢(a) - (a, u)/r = ¢(u).
Proof. ¢(a)- (a, u)/r = (a, aa)(a, u)/r = (aa, aa- u)/r = @(u). A
4.1.7 Lemma. The translation L  is injective for every a € A.

Proof. Let ¢(a) - (b, u)/r = @(a) - (c, v)/r. Then (ab, aa - u)/r = (ac, aa - v)/r and
this means that (ab - ab) (aa - v)=(ab - ac) (aa - u), (ab - aa) (ab - v) =(ab - aa) (ac - u),
ab-v =ac-uand (b,u)/r = (c,v)/r. A

4.1.8 Lemma. If G is left cancellative, then K is left cancellative.

Proof. Let (a,u)(b,v)/r = (a,u)(c,z)/r. Then, for de A, (du)(ab-z)=
(d - ab) (uz) = (d - ac) (uv) = (du) (ac - v) (since ((ab, uv), (ac, uz)) er), and hence
ab-z =ac-vand (bv)/r=(cz)r A

4.2 Proposition. Let G be a left cancellative left near-trimedial groupoid, let

a€ G and A = {a);. Then there exists a groupoid K with the following properties:
(i) G is a left strongly dense subgroupoid of K and K = o, (G) (in fact, for

every x € K there exists b € A with bx € G).

(ii) G < bK for every b e A.

(iii) K is left cancellative.

(iv) K is right cancellative if and only if G is so.

(v) K is a homomorphic image of the product A x G.

(vi) K is left near-trimedial.

Proof. See 4.1 and VI.29. A

4.3 Proposition. Let G be a left cancellative left near-trimedial groupoid, a € G
and A = {a). Then there exists a groupoid P with the following properties:
(i) G is a left strongly dense subgroupoid of G.
(ii) For every b€ A, the left translation L, p is a bijection of P.
(iii) P is a left cancellative left near-trimedial groupoid.
(iv) P is right cancellative if and only if G is so.

Proof. The result follows from 3.2; we get P as the union of countable chain
G = G, € G, € G, < ... of subgroupoids constructed by means of 4.2. Notice
that G; is a homomorphic image of A7 x G. A

4.4 Theorem. Let G be a left cancellative left near-trimedial groupoid. Then

there exists a left near-trimedial left quasigroup Q with the following properties:
(i) G is a left strongly dense subgroupoid of Q (cf. 2.1, 2.2 and 2.3) and Q is

determined uniquely up to G-isomorphism.

(ii) Q is right cancellative if and only if G is so.

(iii) Q is right divisible, provided that G is so.

(iv) The groupoids G and Q are equationally equivalent.

(v) Q is trimedial if and only if G is so.
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(vi) The imbedding G < Q is a reflexion of G in the class of left near-trimedial
left quasigroups.

Proof. Let " denote the class of left cancellative left near-trimedial groupoids.
Then 2 is an abstract class and ¢ satisfies the condition (UCH) from III.1.1.
Moreover, by 4.4, A" satisfies (LDE) as well and the result follows from III.1.2
(see also III1.1.3), VI.29 and 24. A

4.5 Theorem. Let G be a cancellative near-trimedial groupoid. Then G is
trimedial and G is a dense subgroupoid of a trimedial quasigroup Q (cf. 2.6); the
groupoids G and Q are equationally equivalent. Moreover Q is determined
uniquely up to G-isomorphism and the imbedding G < Q is a reflexion of G in the
class of trimedial quasigroup.

Proof. Using 4.4 and its dual (see also III.1.4), we can imbed G into
a near-trimedial quasigroup Q. Now, by 3.1, Q is trimedial. A

4.6 Remark. Let G be a trimedial groupoid such that G is a dense subgroupoid
of a cancellative semimedial groupoid H with H = HH. By V1.9.3, H is a dense
subgroupoid of a semimedial quasigroup @, and hence G is a dense subgroupoid
of Q and the imbedding G < Q is a reflexion of G in the class of semimedial
quasigroups (II.4.4(iii)). On the other hand, by 4.5, G is a dense subgroupoid of
a trimedial quasigroup P and consequently, the quasigroups Q and P are
G-isomorphic (IL4.4). In particular, Q and H are trimedial.

VII.5 Cancellable (injective) elements of trimedial groupoids

5.1 Lemma. Let G be groupoid.

(i) If G satisfies (GE6), then G\A,(G) is either empty or a left ideal of G (or,
equivalently, if a, b € G and ab € A(G), then b € A(G)).

(ii) If G satisfies (GE8) and if a, b € G, ab € A(G), then a € A(G).

Proof. (i) Let ab € A(G). By 1.5(i), L%, = L,.,Ls, and hence L, is injective and
b e A(G).
(ii) By 1.5(@iv), L,;R,, = R,. L., and hence L, is injective and a € A.(G). A

5.2 Proposition. Let G be a semimedial groupoid satisfying the equations
(GE6) and (GE9) (resp. (GE7) and (GES8)). Then:
(i) G\A(G) is either empty or an ideal of G (or, equivalently, if a,be G and
ab € A(G), then a, b € A(G)).
(ii) G\A*(G) is either empty or an ideal of G (or, equivalently, if a,be G and
ab € A*(G), then a, b e A*(G)).
(iii) G\A(G) = G\A*(G).

Proof. (i) Let a, b € G and ab € A(G). By VL.11.13(i), b € A(G) and, by the dual
of VI.11.14(ii), b € A(G), so that b € A(G). However, A(G) is closed by VI.11.12(i),
and therefore a € A(G) as well.
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(i) Using the endomorphism ¢, we can proceed similarly as in (i).
(iii) This is obvious. A

5.3 Proposition. Let G be a semimedial groupoid satisfying the equations
(GE6) and (GE7) (resp. (GE8) and (GE9)). Then G\A*(G) is either empty or an
ideal of G.

Proof. Let a, b € G and ab € A*(G). Then, for each n > 0, o%(a) o%(b) € A(G),
and hence o§(b) € A(G) by VI.11.13(i) and o%(a) € A(G) by the dual of VI.11.13(j).
From this, be A¥(G) and ae A¥G). However, A¥G) = A¥G) = A*(G) by
VI.11.12(ii).

Similarly the other case (use VI.11.13(ii) and its dual).

VII.6 Divisible (projective) elements of trimedial groupoids

6.1 Lemma. Let G a groupoid.
(i) If G satisfies (GE6) and if A(G) #+ &, then B(G) = A(G).
(ii) If G satisfies (GE7) and if A(G) + &, then B|(G) = A(G).

Proof. (i) Let beB/(G). Then ab e A(G) for some ae G. By 1.5(), L%, =
L,.,L;, and hence L, is injective and b € Al(G).
(ii) Dual to (i). A

6.2 Lemma. Let G be a groupoid.
(i) If G satisfies (GE8) and if A(G) + &, then B(G) = A(G).
(ii) If G satisfies (GE9) and if A(G) + &, then B,(G) = A(G).

Proof. (i) Let a € B|(G). Then ab € A(G) for some b € G. By 1.5(iii), LR, =
R,. sl L, is injective and a € A(G).
(ii) This is dual to (i). A

6.3 Corollary. Let G be a groupoid satisfying (GE6), (GE7), (GES8) and (GE9)
and such that A(G) + . Then B|(G) u B(G) = A(G).

6.4 Proposition. Let G be a semimedial groupoid.
(i) If G satisfies (GE6) and A(G) + &, then B(G) = A¥G).
(ii) If G satisfies (GE8) and A(G) + &, then B(G) = AXG).

Proof. Combine VI1.12.3(i), its dual and 6.1, 6.2. A

6.5 Proposition. Let G be a semimedial groupoid satisfying (GE6). If A(G) +
@ + AX(G). then B(G) = AX(G).

Proof. By 6.4(i), B(G) = A¥(G). However, A¥(G) = A*(G) by VL11.12(iii). A

6.6 Proposition. Let G be a semimedial groupoid satisfying (GE6) and (GE9)
(resp. (GE7) and (GES8)). If A(G) + & then B(G) L B(G) = A*(G).
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Proof. By 5.2(i), B(G) u B{(G) = A(G). However, B|(G) (resp. B(G)) is either
empty or a subgroupoid. A

6.7 Proposition. Let G be a semimedial groupoid satisfying (GE6) and (GE7)
and such that A(G) + & + A(G) and B(G) + & + B(G). Then B(G) U B,(G) =
A*G) + &

Proof. By 6.1(i), (i) and VI.12.3 (and its dual), B,(G) U B|(G) = A¥G). Now,
the result follows from VI.11.12. A

VII.7 Bijective elements of trimedial groupoids

7.1 Proposition. Let G be a left semimedial groupoid satisfying (GE6) and
(GEIO). Then G\C}(G) is either empty or a left ideal of G (equivalently, if a,b € G
and ab € C¥(G), then b € C¥(G)).

Proof. We have d%(ab) = o¥¥(a) a%(b) € C¥G) for each n > 0. Further, by
(GE6), L%, = L,.L;, and hence b e A(G) and a- ab € B(G). Put ¢ = ab. By
1.5(v), La.2L, = Le. 4L, and so ac € A(G). But ac € B((G), and therefore ac =
a-abeC(G). Since L% = L,L;, L, is bijective and b € C(G). Quite similarly,
0%(G) € C|(G) for each n > 1 and we have proved that b e C¥(G). A

7.2 Proposition. Let G be a left semimedial groupoid satisfying (GE6) and
(GEI0). If CXG) * &, then B(G) = C¥G).

Proof. If b € B(G), then ab € C¥(G) for some a€ G. By 7.1, be C¥G). A

7.3 Theorem. Let G be a semimedial groupoid satisfying the equations (GEG),
(GE7) and such that each of the sets A(G), A(G), B(G) and B/G) is non-empty.
Then:

(i) BI(G) = C,(G) = C,*(G) < A%(G), Cl(G) is a left closed subgroupoid of
G and it is a cancellative left quasigroup.

(ii) B{G) = C(G) = C¥G) = A*(G), C{G) is a right closed subgroupoid of
G and it is a cancellative right quasigroup.

(iii) B(G) = C(G) = C*G) = A*(G) and C(G) is either empty or a closed
subgroupoid of G (in that case, C(G) is a quasigroup).

(vi) If G satisfies the equation (GEI0), then C(G) = C(G) = C(G) and G\C(G)
is either empty or a left ideal.

(v) If G satisfies the equation (GEI11), then C(G) = C(G) = C{G) and G\C{(G)
is either empty or a right ideal.

(vi) If G satisfies the equations (GE10) and (GE1l), then C{(G) = C(G) =
C(G) + s a closed subgroupoid of G and G\C(G) is either empty or an ideal.

(vii) A¥G) = AXG) = AX(G) + &, A*(G) is a closed subgroupoid of G and
G\A*(G) is either empty or an ideal of G.
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Proof. Clearly, C¥G) = C(G) = B|(G). By 6.7 B(G) = A*(G). Consequently,
B/(G) = C(G). However, by VI. 12.3(i), B(G) is a subgroupoid of G. Thus
B|(G) = C}¥G). Finally, C(G) is left closed by VI.13.4().

(ii) This is dual to (i).

(iii) B(G) = B(G) n B(G) = C(G) n C(G) = C(G) = CXG) n C*(G) =
C*(G) = A*(G) by (i) and (ii). By VIL.13.5, C(G) is either empty or a closed
subgroupoid.

(vi) Use (i1) and 7.2.

(v) This is dual to (iv).

(vi) Use (iii), (iv) and (v).

(vii) See VI.11.12 and 5.3. A

7.4 Corollary. Let G be a trimedial groupoid such that each of the sets A|(G),
A(G), B{(G) and B,(G) is non-empty. Then & + B(G) = B(G) = B(G) = C|(G) =
C(G) = C(G) = C¥(G) = CX(G) = C*(G) = AX(G) = AXG) = AX(G). both C(G)
and A*(G) are closed subgroupoids of G, G\C(G) is either empty or an ideal and
G\A*(G) is either empty or an ideal of G.

VII.8 Comments

The main portion of the results in this chapter is new and further results on
trimedial quasigroups may be seen in [15]. In VII.4, a generalization of the
Sholander’s construction (see [27]) is used to show that every cancellative
trimedial groupoid imbeds into a trimedial quasigroup.

VIII. Cancellative medial and paramedial groupoids

VIII.1 Dense subgroupoids of medial groupoids

1.1 (See VI.2 and VIL.2.) Let H be a subgroupoid of a medial groupoid G.

(i) o, 6(H) = {xe G;Hx n H *+ J} is a subgroupoid of G and H < o, (H).
Moreover, if all the left translations L,; a€ H, are injective (e.g., G left
cancellative), then o, ¢(H) is a homomorphic image of a subgroupoid of the product
H x H.

(ii) H= o) ¢(H) = o ¢(H) = &} ¢(H) < ... is a countable chain of subgroupoids
of G and the union is just the closure {H ) ;.

(i) H < o,,6(H) = Br.cou.o(H) S a1,6B1,6%.6(H) S ..., is a countable chain of
subgroupoids of G and the union is just the closure {H), ;.

(iv) Forevery n > 0, o, o(H) (see 1.2.1) is a subgroupoid of G and o, (0, o(H)) =
%, , . c(H). Consequently, of o(H) S aym_; (H) for every m > 0. Now, it is clear
that H = o9 6(H) < o, ¢(H) < o, 6(H) < ... and the union of this chain is just
<H>lc G-
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1.2 Lemma. Let H be a subgroupoid of a medial groupoid G such that
H = HH. Define a relation r on G by (x, y) er if and only if xH = yH. Then:
(i) ¥ is a congruence of G.
(i) If H is right closed in G and H is a left divisible groupoid, then H is
a block of r.
(iii) If G is cancellative and aH = H = Hb for some a,be H, then r is
cancellative.

Proof. (i) Obviously, r is an equivalence. Now, let xH = yH and let z€ G. If
a € H, then a = bc for some b, c € H and xc = yd for some d € H. Consequently,
zx-a=zx"bc=1zb-xc=1zb-yd =zy-bd and zxH < zyH. Similarly, the
converse inclusion, and so zxH = zyH, i.e., (zx, zy) € r. Similarly, (xz, yz) er.

(i) Since H is left divisible, aH = H for each ae H, and therefore H is
contained in a block of r. If xH = H for some x € G, then x € H, since H is right
closed in G.

(iii) Let zxH = zyH. Then, for every ue H there is ve H with za- xu =
zZx-au = zy-av = za- yv,i.e., xu = yvand xH < yH. Similarly, yH < xH and
(x,y)er. We have proved that r is left cancellative. Similarly, r is right
cancellative. A

1.3 Corollary. Let H be a subquasigroup of a cancellative medial groupoid G.
Then H is a block of a cancellative congruence of G.

1.4 Proposition. Let H be a subquasigroup of a cancellative medial groupoid
G. Then every cancellative congruence of H can be extended to a cancellative
congruence of G.

Proof. G is a subgroupoid of a medial quasigroup P (see VII.4.5). Now, let r be
a cancellative congruence of H and Q = {H). p. By 1.6.6(ii), r can be extended
to a cancellative congruence s of Q and, by [7, 5.5.2], s can be extended to
a cancellative congruence ¢t of P. Then t [ G extends r. A

VIII.2 Imbeddings of cancellative medial groupoids into medial quasigroups

2.1 Let G be a left cancellative medial groupoid. Put H = G® and define
a relation r on H by ((x, y), (4, v)) € r if and only wx - v = wu - y for every w e G.
Then (see VIL.4.1) r is a left cancellative congruence of the groupoid H and the
factor-groupoid K = H/r is a left cancellative medial groupoid. The maping
¢ :x > (y,yx)/re K, ye G, is an injective (groupoid) homomorphism of G into
K and ¢(G) is a left strongly dense subgroupoid of K. Moreover, ¢(u) - (u, v)/r =
@(v) for all u, v e G. Thus ¢(G) < ¢(u) K.

Now, repeating this process, we imbed G as a left strongly dense subgroupoid
into a medial left quasigroup P such that P is the union of a countable chain
G =Gy < G, € G, < ... of subgroupoids where each G; is a homomorphic
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image of G?). The groupoids G and P are equationally equivalent, P is right
cancellative if and only if G is so and P is right divisible, provided that G is so.

2.2 Every cancellative medial groupoid can be imbedded into a medial quasi-
group. To show this, we can use the following methods:

(1) According to 2.1, we imbed G as a left strongly dense subgroupoid into
a medial left quasigroup P which is also right cancellative. Now, applying the right
hand form of 2.1, we find a medial right quasigroup such that P is a right strongly
dense subgroupoid of Q. Then, however, G is a dense subgroupoid of Q and Q is
a quasigroup.

(2) Using VIIL4.1 and its right hand form, we construct a chain G = G, =
G; € G, < ... of groupoids such that G; is a left (for i > 0 even) or right (for i > 1
odd) strongly dense subgroupoid of G;,, and G; < aG;,, or G; < G, a for each
a € G. Each of the groupoids G; is cancellative and a homomorphic image of G?.
Now, Q = UGi is a medial quasigroup and G is a dense subgroupoid of Q.

(3) By VI.9.4, G can be imbedded into a semimedial quasigroup Q such that
G and Q satisfy the same quasi-symmetric groupoid equations. Consequently, Q is
medial.

(4) There exist a free cancellative medial groupoid F and a projective homo-
morphism ¢ : F — G. Using the equational theory of cancellative medial groupoids,
one can show that F imbeds into a medial quasigroup P (see [7, Theorem 5.3.1]).
Further, the cancellative congruence ker(g) can be extended to a cancellative
congruence r of P, and so Q = P/r is a medial quasigroup and G can be imbedded
into it.

VIII.3 Bijective elements of medial groupoids

3.1 Lemma. Let G be a medial groupoid such that CHG) + & + A(G). Then
A(G) = A(G).

Proof. Let ae CXG), be A(G) and ceA(G). First, L, L,L;' =L, and
aa € C¥(G) implies bc € A(G). But A(G) is right closed by the dual of VI.1.13().
Therefore b e A(G). A

3.2 Lemma. Let G be a medial groupoid such that C¥G) # . Then
A(G)- A(G) = A(G).

Proof. Let ae C¥G), be A(G) and c € A(G). Further, let x,ye G, x = au,
y=av.Ifab-x = ab- y, thenaa - bu = aa- bv, and hence u = vand x = y. We
have proved that ab € Al(G). Similarly, if x - bc = y - bc, then ab - uc = au - bc =
av-be = ab- vc, uc = vc,u = vand x = y. We have proved that bc € A(G). A

3.3 Theorem. Let G be a medial groupoid such that each of the sets A(G),
A(G), B(G) and B(G) is non-empty. Then A(G) = A(G) = A(G) = A*(G) =
B|(G) = B(G) = C(G) = C*(G).

78



Proof. By VIL7.4, C¥G) + . Now, by 3.1 and its dual, A(G) = A(G) =
A(G). Further, by 3.2, A(G) is a subgroupoid. Hence A(G) = A*(G). A

3.4 Remark. The foregoing result can also be proved by means of a semigroup
representation:

Let G be a medial groupoid with non-empty C(G). By [7, Proposition 3.1.3],
there exist a commutative semigroup G(+) with a neutral element 0, commuting
automorphisms ¢, ¥ of G(+) and invertible element e € G(+) such that xy =
®(x) + Y(y) + eforall x, y € G. Now, it follows immediately that B(G) = B/(G) =
B(G(+)), A(G) = A(G) = A(G(+)) and C(G)= C(G) = C(G(+)). But
B(G(+)) = C(G(+)) is the subgroup of invertible elements and A(G(+)) is
a subsemigroup of G(+). Moreover, e € A(G(+)) and A(G(+)) is closed under
¢ and Y. Consequently, A(G) is a subgroupoid of G.

3.5 Example. Let G(+) be the quasicyclic Priifer 2-group. Put xy = 2x — y
for all x, y € G. Then G becomes a divisible idempotent medial groupoid which is
a left quasigroup and we have A(G) = A¥G) = B(G) = C(G) = C¥G) = G =
B(G) = B(G), A(G) = C(G) = &

3.6 Example. Let G be the free medial groupoid with one free generator x. Put
y = xx. It is easy to see that both x and y belong to A(G). However, by VIL1.9,
(x - xy) (yx) ¢ A(G), A*(G) + A(G). Similarly, (xy) (yx - x) ¢ A(G), x ¢ A¥(G) and
AX(G) + A{G).

VIII.4 Paramedial groupoids

4.1 A groupoid G is said to be paramedial if it satisfies the equation xu - vy =
yu - vX.

4.2 Lemma. Let G be a paramedial groupoid, n-> 1 and x, y, a,, ..., a,, by, ..
b, € G. Then:

(i) (a(-.. (a:x)) (bs(-.. (Buy))) = (%) (0a@n)) (@1-1s_1)) ) (1)) and  (((v]s)
) bi) ((xa) ) al)( = (@b1) (. (Bu_130—1) ((@:by) (xy)) for n odd.
)

‘s

-
<=
—_—
(N
=
S

3
T—
=

o
=

S
=
<

) = (<) (@:5.) (ba—18,_1)) ) (1) and((xa,)

.) by) ='(.c'11b1) (- (@n_1bn_s "(( ) (X)) for n even.
Proof. Easy. A

4.3 Lemma. Let H be a subgroupoid of a paramedial groupoid G. Put
A, = a,(H) and B, = B, ¢(H) for every n > 0. Then:
(i) A,A, < B, and B,B, < A,.
(ii) Ay € A, n B,and B; < A, N B,.
(iii) A;B, U BjA, < A, N B,.
(iv) (41U B))(4, U B)) € A, U B,.
(v) a;6(4)) < As and B, ¢(B)) < Bs.
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Proof. (i) Use 4.2(i), (ii).

(ii) Clearly, A; S A, and, ifax =beH,ac H, xe G, then xa-aa = aa- ax =
aa-be H. Thus x € B,.

(iii) By (i) and (ii), A;B, < A,A, < B,. Similarly the other inclusions.

(iv) Combine (i), (ii) and (iii).

(v) Let ux = v,u,ve A;,, xe€G. Then au = ¢, bv = d, a,b,c,d e H, and we
have (fc)(b-ex) = (ex-c)(bf) = (ex-au)(bf) = (ux-ae)(bf) = (v-ae)(bf) =
(f-ae)(bv) =(f-ae)de H for all e, fe H. Thus x€ A;. A

4.4 Theorem. ([13]) Every cancellative paramedial groupoid can be imbedded
into a paramedial quasigroup.

VIII.5S Comments and open problems

The fundamental construction of the medial quasigroup of fractions for a can-
cellative medial groupoid (2.1, 2.2) was discovered by M. Sholander in [27].

The existence of the paramedial quasigroup of fractions for a cancellative
paramedial groupoid is proved in [13] (see also [2] and [12]). To find a direct
construction of this quasigroup (mimicking the Sholander’s approach) is the main
task to be done.
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