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1997 ACTA UNIVERSITATIS CAROLINAE-MATHEMATICA ET PHYSICA VOL. 38, NO. I 

Groupoids and the Associative Law IX. 
(Associative Triples in Some Classes of Groupoids) 

A. DRAPAL, J. JEZEK and T. KEPKA 

Praha*) 

Received 16. September 1996 

The maximal and minimal numbers of associative triples in groupoids from various classes are 
enumerated. 

Maximalnf a minimalnf pocty asociativnich trojic v groupoidech ruznych trid jsou spocteny. 

This part is a continuation of [6] and [7]. Here, we find the maximal and 
minimal numbers of associative triples in the following classes of groupoids: All 
groupoids; commutative groupoids, commutative distributive groupoids; quasitri-
vial groupoids. 

IX.1 Introduction 

1.1 Let si be a class of groupoids. Then, for every positive integer n, we define 
two numbers maxas(.s/, n) and minas(j^/, n) in the following way: 

If there is no n-element groupoid in si, then maxas(j^, n) = —2 = minas(j/, n). 
If there are some n-element groupoids in si, but all of them are associative, then 

maxas(j?/, n) = — 1 = minas(.j^/, n). 
If the class sin of non-associative n-element groupoids from si is non-empty, 

then maxas(« /̂, n) = max(as(G); G e sin) and minas(j^, n) = min(as(G); G e si,). 

\.2 Proposition. Let si be a class of groupoids. Then: 
(i) —2< maxas(j^/, 1) = minas(si, 1) < — 1. 

(ii) —2< minas(j3/, n) < maxas(j3/, n) < n3 — 1 for every n > 1. 

Proof. Obvious. 

*) Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovská 83, Czech Republic 
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IX.2 Groupoids 

2.1 Let <3 denote the class of all groupoids. 

2.2 Theorem, (i) maxas(^, 1) = — 1 = minas(^, 1). 
(ii) maxas(^, 2) = 6 and minas(^, 2) = 0. 

(Hi) maxas(^, n) = n3 — 1 and minas(^, n) = 0 for every n > 3. 

Proof. See [6, 3.1,7.2]. 

IX.3 Commutative groupoids 

3.1 Let # denote the class of commutative groupoids. 

3.2 Lemma. Let G e # . Then: 
(i) (a, b, a) e As(G) for all a,beG. 

(ii) If G is finite and n = card(G), then as(G) > n2. 
(Hi) If G is not associative, then ns(G) > 2. 
(iv) If Ns(G) contains at least one triple (a, b, c) such that a #= b #- c, then 

ns(G) > 4. 

Proof, (i) Obvious. 
(ii) This follows immediately from (i). 

(iii) If (a, b, c) e Ns(G), then (c, b, a) e Ns(G) as well. The equality (a, b, c) = 
(c, b, a) implies a = c and (a, b, c) 6 Als(G), which is not true. 

(iv) We have (a, b, c), (c, b, a) e Ns(G). If (a, c, b) and (c, a, b) are in As(G), 
then a . be = a . cb = ac . b = ca . b = c . ab = ab . c, a contradiction. 

3.3 Lemma. Lel rc > 3. F/zen 1/zere cx/sls a commutative groupoid G such that 
as(G) = n3 — 2. 

Proof. We shall proceed by induction on n. If n = 3, then we can take the 
following groupoid. 

C, 0 1 2 

0 0 0 0 
1 0 0 2 
2 0 2 0 

It is easy to check that Ns(C{) = {(1,1, 2), (2, 1,1)}. 
Now, let n > 4 and let H be a commutative groupoid of order n — \ such that 

ns(H) = 2. Put G = H u {0}, where 0 $ H and 0 is an absorbing element of G. 
Clearly, Ns(G) = Ns(H). 

3.4 Lemma. Let n > 1. Fherz t/zere ex/sts a commutative groupoid of order n such 
that as(G) = n2. 
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Proof, (i) Let n be odd. Define a new operation * on the cyclic group Zn( + ) = 
(0,1,.. ., n — 1} of integers modulo n by a * b = —a — b. One checks readily that 
As(Zn(*)) = {(a,b,a);a,beZ,). 

(ii) Suppose that 4 divides n, i.e., n = 2km, where k > 2 and n > 1 is odd. Let 
F be a finite field of order 2k, let w e F be such that 0 + w + 1 and put 
a * b = \va -f wb for all a, b e F. Then F(*) is a commutative groupoid and 
Xs(F(*)) = {(a,b,a);a, beF). Finally, put G(*) = F(*) x Z,„(*) (see (i)). Then 
As(G(*)) = {(x,y, x); x, y e G). 

(iii) Let n = 2m, where m > 1 is odd. Then we put G(*) = C2(*) x Z,„(*), 
where 

ед 0 1 

0 
1 

1 0 
0 0 

Again, As(G(*)) = {[x,y, x); x, y e G}. 

3.5 Theorem, (i) maxas(#, 1) = — 1 = minas(^, 1). 
(ii) maxas(^, 2) = 4 = minas(^, 2). 

(iii) maxas(^, n) = M3 — 2 and minas(^, n) = n2 for every n > 3. 

Proof. Combine the preceeding results (use also [6, 3.1] for n = 2). 

IX.4 Commutative distributive groupoids 

4.1 A groupoid is said to be distributive if it satisfies the identities x . yz = 
xy . xz and zy . x = zx . yx. We denote by %{the class of commutative distributive 
groupoids. 

4.2 For a groupoid G, let Asx(G) = {(a,b,c) e As(G), a 4= c] and asx(G) = 
caxd(As{(G)). 

4.2 Lemma. Let G be a commutative distributive groupoid containing a sub-
quasigroup Q and an element a such that G = Q u {a} and aQ = Q. Then: 

(i) There is an element b e Q such that ax = bx for every xe Q and either 
b = aa or a = aa. 

(ii) If G is finite of order n and if a $ Q, then asx(G) > 2n. 

Proof, (i) Let q e Q. Then aq = bq for some b e Q, q . ax = qa . qx = qb . qx = 
q . bx and ax = bx. Moreover, b = b . bb = a . bb = a . ab = aa . ab = aa . b. 

If aa G Q, then aa = b. If aa <£ Q, then aa = a. 
(ii) By (i), (a, a, b), (b, a, a) e As^(G) and (a, x, b), (b, x, a) e As^G) for every 

x e Q. 
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4.3 Lemma. Let G be a finite commutative distributive groupoid such that G is 
not a quasigroup. Then as{(G) > 2/i, n = card(G). 

Proof, (i) Let G be idempotent. Define a relation r on G by (x, y) e r iff the 
ideal generated by x is the same as the ideal generated by y. Then r is a congruence 
of G, G/r is a semigroup and every block of r is a quasigroup (see [3]). 
Consequently, q = card(G/r) > 2 and we shall proceed by induction on q. 

First, let q = 2. Then G/r = {K,H}, where KH _= H. Put k = card(K) and 
m = card(H). By 4.2, as{(G) > 2km + 2k > 2n. 

Now, let q > 3 and let f: G -» G/r denote the natural projection. There is 
a block X of r such that f(K) is a maximal element of the semilattice G/r and we 
put H = G\K , k = card(K) and m = card(H). Then H is a subgroupoid of G and 
as{(G) > 2m + 4k > 2n (take into account that KL ^ L for any block L of r). 

(ii) Let G be not idempotent. Then I = Id(G) is a proper ideal of G and k > 1, 
m > 1, where k = card(G\I) and m = card(I). If I is a quasigroup, then as{(G) > 
2km + 2k > 2n by 4.2(H). If / is not a quasigroup, then asx(G) > 2m + 4k > 2n 
(take into account that GH ^ H, H being the intersection of all ideals of G). 

4.4 Lemma, (i) If Q is a finite commutative distributive quasigroup of order 
n, then n is odd, as{(Q) = 0 and as(Q) = n2. 

(ii) For every odd n > 1, the exists at least one commutative idempotent medial 
quasigroup of order n. 

Proof. Easy. 

4.5 Lemma. Let n > 4 be even. Then there exists a commutative idempotent 
medial groupoid of order n such that as{(G) = 2n. 

Proof. Let Q be a c i. m. quasigroup of order n — 1 and let b e Q and a$Q. 
Put G = Q u {a} and aa = a, ax = xa = bx for every x e Q. 

4.6 Lemma, (i) Let G be a non-associative commutative distributive groupoid. 
Then ns(G) > 18. 

(ii) For every n > 3, there exists a commutative idempotent medial groupoid 
G of order n such that ns(G) = 18. 

Proof, (i) We can assume that G is a quasigroup and the result then follows 
from 4.4. 

(ii) Put G = {0,1, . . . , n - 1} and define 0 * 0 = 1 * 2 = 2 * 1 = 0 , 1*1 = 
0 * 2 = 2 * 0 = 0 * 1 = 1*0 = 2, i*j = max(y) for all 0 < ij < n - 1 such 
that either 3 < / or 3 < j . 

4.7 Theorem. 
(i) maxas(^/, 1) = — 1 = minas(^,, 1). 

(ii) maxas(^, 2) = — 1 = minas(^, 2). 
(Hi) maxas(%, n) = n3 — 18 for every n > 3. 
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(iv) minas(%, n) = n2 for every odd n > 3. 
(v) minas(r^,, n) = n2 -f- 2/1 for every even n > 4. 

Proof. Combine the preceeding results (and take into account that every two-
element c. d. groupoid is a semigroup). 

4.8 Remark. The same result (4.7) is true for the classes of commutative 
distributive idempotent groupoids and commutative idempotent medial groupoids. 

IX.5 Groupoids with small semigroup distance 

5.1 Let y, denote the class of groupoids G such that sdist(G) = 1 (see [7, 1.1]). 

5.2 Theorem, (i) maxas(5^, 1) = — 2 = minas(/S^, 1). 
(ii) maxas(5^, 2) = 6 and minas(yb 2) = 4. 

(Hi) maxas(yb n) = n} — 1 for every n > 3. 
(iv) minas(5^b n) = n} — 2/r + 2n for every n > 2. 

Proof, (i) Every one-element groupoid is associative. 
(ii) See [6, 3.1]. 

(iii) The result follows from [8, 5.5(ii)] for n > 4, while the case n = 3 is 
settled down by the groupoid B26 from [6, 4.2]. 

(iv) See [7, 12.2]. 

IX.6 Quasitrivial groupoids — introduction 

6.1 In this section, by a graph we mean a finite non-empty set together with an 
antireflexive binary relation (possibly empty). 

Let K be a graph. Then V = V(K) will denote the set of vertices, E = E(K) 
that of edges and v(K) = card(V). Further, for every aeV, let f(a) = f(K, a) = 
card({be V; (a, b) e E, (b, a) $ £}),g(a) = card({be V; (a, b) $ E, (b, a) e E}), h(a) = 
card({be V; (a, b) e E, (b, a) e E}) and k(a) = card({be V; (a, b) $ E, (b, a) $ £}). 

Now, we put w(l) = vv(K, 1) = £ (f(a)2 - f(a))/2, vv(2) = £(g(a)2 - cj(a))/2, 

vv(3) = Yjh(a)2 - h(a))/2, vv(4) = £(k(a)2 - k(a))/2, vv(5) = Ydf(a)g(a), vv(6) = 
Z/(a)fc(a), vv(7) = X / ( a ) % ) , vv(8) = Jj,(a) h(a), vv(9) = Jj,(a) k(a) and 
vv(10) = XM*)fc(4 

6.2 We shall say that a graph K is commutative (anticommutative) if 
h(a) = k(a) = 0 (f(a) = g(a) = 0) for every aeV. 

6.3 Consider the following three-element graphs L(l),...,L(16), where V(L(i)) = 
{1, 2, 3} and E(L(l)) = {(1, 2), (1, 3), (2, 3)}, E(L(2)) = {(1, 2), (1, 3), (2, 3), (3, 2)}, 
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£(L(3))={(1,2),(1,3)},£(L(4)) = {(1,2),(2,1),(1,3),(2,3)},£(L(5))={(1,3),(2,3)}, 
£(L(6))= {(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)}, £(L(7)) = 0, £(L(8))= {(1,2),(2,3),(3,1)], 
W*)) = {(-.2), (2. 3)}, E(L(10)) = {(1,2), (2, 3), (1,3), (3, 1)}, £(L(11)) = 
{(1,2), (2,3), (3,2)}, £(L(12)) = {(1,2), (1,3), (3,1)}, £(L(13)) = {(1,2), (2,1), (2,3), (3,2)}, 
£(L(14)) = {(1,3), (3, 1)}, £(L(15)) = {(1,2), (2, 1), (2, 3), (3, 2), (3, 1)}, £(L(16)) = 

{(1.3)}-
These sixteen graphs are pair-wise non-isomorphic and every three element 

graph is isomorphic to one of them. 

6.4 Let K be a graph and 1 < i < 16. We denote by q(i) = q(K, i) the number 
of induced subgraphs of K isomorphic to L(i). 

Obviously, if v(K) > 3, then K is commutative (anticommutative) iff q(2) = 
... = q(l) = q(9) = ... = q(l6) = 0 (q(l) = ... = q(5) = a(8) = ... = q{l2) = 
q(15) = 9(16) = 0). 

Let p = (pb ..., p16)eZ(16), Z being the ring of integers. We put q(K, p) = 
16 

ZrVI(')-
/ = 1 

6.5 A groupoid G is said to be quasitrivial if ab e {a, b} for all a, b e G. 

6.6 Lemma. Let G be a quasitrivial groupoid. Then: 
(i) {(a, a, b), (a, b, a), (a, b, b)} = As(G) for all a, b e G. 

(ii) If G is finite and of order n, then as(G) > 3/r — 2rz. 

Proof. Easy. 

6.7 Let G be a finite quasitrivial groupoid. Define a graph L = L(G) as follows: 
V(L) = G and (a, b) e E(L) iff a 4= b and ab = a. 

Let K be a graph. Define a quasitrivial groupoid H = H(K) as follows: The 
underlying set of H is V(K) and, for all a, b e V(K), we have ab = a if 
(a, b) e E(K) and ab = b in the opposite case. 

The maps G -> L(G) and K —• H(K) are bijective correspondences between 
finite quasitrivial groupoids and graphs. 

6.8 For 1 < i < 16, let I> = 27 - as(H(L(/))) and P = (P). It is easy to check 
thatP = (0,..., 0,6,3,3,2,2,2,1,1). 

For a graph K, let q(K) = q(K, P). 

6.9 Proposition. Let G be a finite quasitrivial groupoid and n = card(G). Then 
as(G) = n3 - q(L(G)). 

Proof. Combine the preceding observations. 

IX.7 Quasitrivial groupoids — equalities 

7.1 Throughout this section, let K be a graph, n = v(K) and p = (p,) e Z(l6). 
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7.2 The following ten equalities are easy to check: 

w(l) = .7(1) + q(2) + q(3), 
w(2) = q(l) + .7(4) + q(5), 
vv(3) = 3.7(6) + q(\3) + q(15), 
w(4) = 3a(7) + q(l4) + q(l6), 
w(5) = q(l) + 3.j(8) + q(9) + q(\0), 
W(6) = 2q(4) + fl(10) + q(12) + q(l5), 
W(7) = 2q(5) + q(9) + q(ll) + q(l6), 
W(&) = 2q(2) + q(W) + q(\l) + q(15), 
w(9) = 2.7(3) + .7(9) + .7(12) + .7(16), 
»v(10) = .7(11)+ .7(12)+ .7(13)+ .7(14). 

Now, after easy combination, we get: 

(1) 2w(l) - 2u(2) + w(6) + u'(7) - vv(8) - \v(9) = 0. 

Moreover, 

.7(1) = w(l) - w(8)/2 - w(9)/2 + .7(9)/2 + «7(10)/2 + .7(ll)/2 + q(l2)/2 + 
q(15)/2 + q(\6)/2, 

q(2) = w(8)/2 - .7(10)/2 - q(ll)/2 - q(l5)/2, 
.7(3) = w(9)/2 - .7(9)/2 - g(12)/2 - q(l6)/2, 
q(4) = w(6)/2 - .7(10)/2 + .7(12)/2 - .7(15)/2, 
.7(5) = w(7)/2 - .7(9)/2 - q(ll)/2 - q(\6)/2, 
.7(6) = w(3)/2 - .7(13)/3 - q(l5)/3, 
q(l) = vv(4)/3 - w(10)/6 + q(ll)/6 + q(\2)/6 + .7(13)/3 - «7(16)/3, 
.7(8) = -w(l)/3 + w(5)/3 + w(8)/6 + w(9)/6 - q(9)/2 - q(10)/2 - q(ll)/6 

«7(12)/6 - «7(15)/6 - .7(16)/6, 
.7(14) = vv(10)/2 - .7(ll)/2 - .7(12)/2 - q(l3). 

From these equalities, we derive easily: 

(2) q(K,P) = W(l)(P] -p 8 /3 ) 
+ vv(3)p6/3 + w(4)p7/3 + vv(5)p8/3 + w(6)p4/2 + vv(7)p5/2 
+ vv(8)(-p,/2 + p2/2 + p8/6) 
+ w(9)(-p,/2 + p3/2 + p8/6) 
+ w(10)(-p7/6 + p14/2) 
+ .7(9) (p,/2 - p.,/2 - p5/2 - p8/2 + p9) 
+ .7(10) (p,/2 - p2/2 - p4/2 - p8/2 + p10) 
+ .7(11) (p,/2 - p2/2 - p5/2 + p7/6 + p n - pu/2) 
+ .7(12) (p,/2 - p3/2 - p4/2 + p7/6 + p l2 - pl4/2) 
+ q(n)(-P6/3 + p7/3 - p8/6 + p,3 - p14) 
+ €(15)(p,/2 - p2/2 - p4/2 - p6/3 - p8/6 + p15) 
+ .7(16) (p,/2 - Py/2 - p5/2 - p7/3 - p8/6 + p16). 
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7.3 Proposition, (i) q(K) = - 2w( l ) + 2w(5) + w(8) + vv(9) + w(10). 
(ii) q(K) = - vv(l) - q(2) + 2n<5) + u'(6)/2 + .v(7)/2 + n(8)/2 + n(9)/2 + n(10). 

(Hi) q(K) = — 2vv(l) + 2\v(5) if K is commutative, 
(iv) q(K) = iv(10) if K is anticommutative. 

Proof. Use (1) and (2). 

7.4 Proposition, (i) q(K) < (n3 - n)/4. 
f.'/j g(K) < (n3 — 4n)/4 // n iy eve/r. 

Proof. For a e V, let r(a) = ((f(a) + a(a))72) - 2f(a)a(a), s(a) = ((h(a) + 
k(a)f/2 - 2h(a)k(a) and f(a) = f(a) + a(a) + ((f(a) + 0( f l) + /j(a))72) -
(f(a) - a(a))2 - r(a) - s(a). Then t(a)/2 = 2f(a)a(a) + h(a)k(a) + (f(a)h(a)/2 + 
(f(a)k(a)/2) + (a(a)/i(a)/2) + (g(a)k(a))/2 - ((f(af-f(a))/2) - ((g(af - g(a))/2), 
and hence by 7.3(iii), q(K) = ^ t(a)/2. On the other hand, f(a) + g(a) = n — 1, 

f(a) + g(a) + h(a) + k(a) = n - 1, 0 = (f(a) - g(a))\ 0 = r(a), 0 ^ s(a) and 
t(a) = (n2 - l)/2. Consequently, q(K) ^ (n3 - n)/4. 

Now, suppose that n is even. If f(a) + g(a) is even, then h(a) + k(a) is odd, 
h(a) + k(a) and 1/2 = s(a). Moreover, f(a) + g(a) = n — 1, and so 
t(a) = (n2 - 4)/2. If f(a) + g(a) is odd, hen 1/2 = r(a\ 1 = (f(a) - g(a))2 and, 
again, t(a) = (n2 - 4)/2. 

7.5 Proposition. Let K be anticommutative. Then: 
(i) q(K) = (n3 - 2n2 + rz)/4. 

(ii) q(K) ^ (n3 — 2n2 + n — 4)/4 if n = 4m + 3 for some m = 0. 
(Hi) q(K) = (n3 — 2n2)/4 if n is even. 

Proof. By 7.3(iv), q(K) = ^]/i(a)k(a). Moreover, q(K) is even and the rest is 
clear. 

7.6 Proposition. Assume that q(K) + 0. Then: 

(i) 1 ^ q(K). 
(ii) 6 = q(K) if K is communicative. 

(Hi) 2n — 4 = q(K) if K is anticommunicative. 

Proof. Easy. 

IX.8 Quasitrivial groupoids - examples 

8.1 Example. Let G = G( + ) be a finite abelian group of order n and let M be 
a subset of G such that 0 $ M. Put m = card(M) and k = card ({a e M; —ae M}). 
Now, we define a graph / = J(G, M) by V(J) = G and (a, b) e £(J) iff 
a — b e M. Then a (J) = n2m — nm2 — nk and we have the following particular 
cases: 
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(1) n _ 3 is odd, G = Z„( + ) = {0,1,..., n - l jandM = {1,2,..., (n - l)/2}. 
Then J is commutative and q(J) = (n3 — n)/4. 

(2) n _ 4 is even, G = Z.,( + ) and M = {1, 2, ..., (n - 2)/2}. Then J is not 
commutative and q(J) = (n3 — 4n)/4. 

(3) n _ 5 is odd, n = 4r + 1, G = Zfl( + ) and M = {1, 2, ..., r, n - r, 
n — r + 1, ..., n — 2, n — 1}. Then J is anticommutative and q(J) = 
(n3 - 2n2 + n)/4. 

(4) n _ 6 is even, n = 4r + 2, G = Z,,(-f-) and M = {1, 2, ..., r, n — r, 
n — r + 1, ..., n — 2, n — l}. Then J is commutative and g(J) = 
(n3 - 2n2)/4. 

(5) n = 4 is even, n = 4r, G = Z„( + ) and M = {1,2,..., r, n — r, n — r + 1, 
..., n — 2, n — lj.Then J is anticommutative and q(J) = (n3 — 2n2)/4. 

8.2 Example. Let n = 4 be even and M = {1,2,..., (n — 2)/2}.Define a graph 
I = I(n) by V(I) = Zfl and (a, b) e £(/), iff either a - b e M or a e M u (0) and 
a — b = n/2. Then I is commutative and g(I) = (n3 — 4n)/4. 

8.3 Example. Let n _ 7 be odd, n = 4r -f 3, M = {1, 2, ..., r, « — r, 
n - r + 1, ..., n - 2, n - 1}. Define a graph R = R(n) by V(R) = Z„ and 
(a, b) e £(K) iff either a - b e M or 2r + 2 = a = n - 1 and a - b = 2r + 1 
or 1 ^ a ^ 2r + 1 and a — b = 2r -f 2. Then i? is anticommutative and 
q(R) = (n3 - 2n2 + n - 4)/2. 

8.4 Example. Let n ^ 3. Define a graph 5 = 5(n) by V(S) = Zfl and (a, 
b) e £(S) iff either 3 = a and b = 2 or a = 0 and b = 1. Then q(5) = 1. 

8.5 Example. Let n _ 3. Define a graph T = T(n) by V(T) = Z„ and (a, 
b) e £(T) iff either b < a and 3 ^ a or a = 0, b = I or a = 1, b = 2 or a = 2, 
b = 0. Then F is commutative and q(T) = 6. 

8.6 Example. Let n = 3. Define a graph Q = Q(n) by V(Q) = Z„ and (a, 
b) e E(Q) iff either a = 0, b = l o r a = 1, fe = 0. Then Q is anticommutative and 
q(Q) = 2n - 4. 

IX.9 Quasitrivial groupoids - summary 

9.1 Let _ (.2t., .5,,) denote the class of (commutative, anticommutative) quasitri­
vial groupoids). 

9.2 Theorem, (i) maxas(% 1) = maxas(2Lc, 1) = maxas(Qin 1) = minas(X l) = 
minas(£c, I) = minas(£a, 1) = —I. 

(ii) maxas(Q, 2) = maxas(Qc, 2) = maxas(£a, 2) = minas(£, J) = 
minas(2,c, 2) = minas(Qtn 2) = —J. 

(Hi) maxas(Q, n) = n3 — 1 for every n = ?>. 
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(iv) maxas(£c, n) = ri3 — 6 for every ri _ 3. 
(v) maxas(£(n n) = n3 — 2/7 + 4 for every n = 3. 

(vi) minas(Q, n) = minas(£lc, n) = (3ri3 + n)/4 for every odd n — 3. 
(vii) minas(£l, n) = minas(J2c, ri) = (3ri3 + 4n)/4 for every even n _ 4. 

(viii) minas(Qin n) = (3ri3 + 2rr — n)/4 for every odd n = 4m + 1, m _ 1. 
(ix) minas(2,cn n) = (3ri3 + 2rr — n + 4)/4for every odd n = 4m + 3, m _ 0. 
(x) minas(2,in n) = (3rz3 + 2n2)/4 for every even n _ 4. 

Proof. Combine 6.9, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6. 

IX.10 One special class of commutative groupoids 

10.1 For a set S, let R(S) denote the set of ordered triples (a, b, c) of elements 
from S such that either a = b + c or a + b = c. Now, let # , denote the class of 
commutative groupoids G such that Ns(G) = R(G). Further, let # 2 be the class of 
commutative groupoids G such that Ns(G) _ R(G). 

10.2 Example. Let G( + ) be a abelian group and 0 + w e G. We shall define 
a groupoid G(*) = G[ + , vv] as follows: 0 * 0 = vv, 0 * a = 0 = a * 0 and 
a * b = a + b for all a, b e G\{0}. Then G(*) is commutative and a tedious but 
easy checking shows that jN5(G(*)) = {(a, —a, b); a, b e G, a + b) u {(a, — b, b); 
a, b e G, a + b}. In particular, G ( * ) e ^ , if and only if the group G( + ) is 
2-elementary. 

10.3 Proposition. Let G(-\-)be a (non-trivial) 2-elementary abelian group and 
0 + vv e G. Then: 

(i) G[ + ,w]e^, . 
(ii) IfH( + ) is a 2-elementary abelian group and O + D G H , then the groupoids 

G[ + , w] and H[ + , vv] are isomorphic //fcard(G) = card(H). 

Proof, (i) See 10.2. 
(ii) If card(G) = card(H), the there is an isomorphism f:G( + ) - > / / ( + ) such 

that f(w) = v. 

10.4 For every cardinal a ^ 1 denote by Ra the groupoid Z?[ + , (1, 0, 0, ...)] 
(see 10.2). Then Ra e # , and card(i?,n) = 2'", provided that a = m is finite. 

10.5 Let G G ^ | be a non-trivial groupoid. 

10.5.1 Lemma. If a, b, c e G are such that a + b + c, a^c and a = be, then 
b = ac and c = ab. 

Proof. If c =)= ab, then aa . b = (be . a)b = (b . ca)b = b(ca . b) = b(c. ab) = 
be. ab = a . ab, a contradiction. Thus c = ab and, similarly, b = ac. 

10.5.2 Lemma. If a, b, c e G are such that a + b + e, 0 + c arzd a = be, therz 
a2 = b2 = c2 arid a2 <£ {a, b, c}. 
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Proof. We have c2 = ab . c = a . be = a2 by 10.5.1. Similarly, b2 = a2. Final­
ly, if a2 = a, then a . bb = a . aa = a = cb = ab . b, a contradiction. The rest is 
clear. 

10.5.3 Lemma. If ae G, then either a = a2 or a = a3 or a2 = a3. 

Proof. We have a3 = a . a2 and, if the elements a, a2, a3 are pair-wise different, 
then a2 $ {a, a2, a3} by 10.5.2, a contradiction. 

10.5.4 Lemma. If a, b, c e G are such that a4=b=t=c, a=|=c and a = be, then 
a . a2 = ba2 = ccc = a2 = b2 = c2. 

Proof. We have a =t= a2 by 10.5.2. Further, if a = a3, then a . bb = a . aa = 
a3 = a = cb = ab . b, a contradiction. Thus a2 = a3 by 10.5.3. Similarly, 
ba2 = b3 = b2 and ccc = c2. 

Now, define a relation < on G by a < b iff a =1= b and ab = b. 
If a < b and b < a, then b = ab = ba = a, a contradiction. 
If a < b < c, then a 4= c and ac = a. be = be = c. Hence a < c. 

10.5.5 Lemma. Let a, b, c, de G be such that a=|=b=|=c, a=t=c and a = be. 
(7) If d < a, then d < b and d < c. 

(ii) If a < d, then b < d and c < d. 

Proof, (i) We have db = d. ac = da . c = ac = b. If d = b, then a = da = 
ba = c, a contradiction. Thus d =1= b and d < b. Similarly, d < c. 

(ii) First, d =)= {a, b, c} (by 10.5.1), db = da .b = d. ab = dc and db . c = 
d .be = d. If db = c, then dc = c, d < c, and hence a < d < c implies a < c and 
ac = c. But ac = b =# c by 10.5.1. Consequently, db = dc ^ c. If db =t= d, then 
the elements d, c, dc are pair-wise different and now a < d implies a < c (by(i) 
for the triple d, c, dc), a contradiction. Thus db = d and b < d. Quite similarly, 
c < d. 

Now, define a relation r on G by (a, b) e r iff a =1= b and a =j= ab =# b, and denote 
by 5 the smallest equivalence (on G) containing r. Let E = G/s be the correspon­
ding factorset and let p: G -> E denote the natural projection. 

10.5.6 Lemma. Let a, b, de G be such that (a, b) e s. Then: 
(i) a < d iff b < d. 

(ii) d < a iff d < b. 

Proof. We can assume that a 4= b. Then there are au ..., an e G, n _ 2, such 
that aj = a, a„ = b and (a1? a2) e r, (a2, a3) e r, ..., (aw_i, a„) e r. Now, itt is clear 
that we can restrict ourselves to the case n = 2 (i.e., (a, b) e r) and the result then 
follows from 10.5.5. 

Taking into account 10.5.6, we can define a relation = on E by x = y iff either 
x = y or x = p(a), y = p(b) for some, a, b e G such that a < b. 
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10.5.7 Lemma. The relation < is a linear ordering of the set E. 

Proof. Clearly, < is an ordering. On the other hand, if a, b e G, then exactly 
one of the following cases takes place: a < b\b < a\ (a, b) e r. 

10.5.8 Lemma, (i) The linearly ordered set (E, ^ ) possesses a greatest 
element. 

(ii) If QeE is the greatest element, then Q = {q}is a one-element set. 

Proof, (i) Let a, b e G be such that a < b and a2 < b. Then b . a2 = b = ba = 
ba . a, a contradiction. 

(ii) Suppose, on the contrary, that card(Q) = 2. Then there are a, b e Q such 
that (a, b)er. Now, a, b, ab are pair-wise different elements and, by 10.5.1 and 
10.5.4, we have a + a2 and a2 = a. a2. Consequently, a < a2 and, since Q is 
maximal in (E, ^ ) , we have a2e Q. However, then a < a2 implies a2 < a2 (by 
10.5.6.(i)), a contradiction. 

10.5.9 Lemma, aq = q = qa for every a e G\{q}. 
(ii) a2 = qfor every a e G\{q}. 

(Hi) q2 + q. 

Proof, (i) This follows easily from 10.5.8. 
(ii) By (i), q = qa = qa . a + q . a2, and hence a2 = q (again by (i)). 

(iii) If a e G\{g},then, by (i) and (ii) q2 = a2. q + a . aq = q. 

10.5.10 Lemma, (i) The equivalence s possesses just two blocks. 
(ii) If a, b e G are such that a + q + b and a + b, then ab $ {a, b, q}. 

Proof, (i) Let, on the contrary, a, b e G be such that a < b < q. Then (by 
10.5.9), a . bb = aq = q = bb = ab . b, a contradiction. 

(ii) If a < b, then b e Q, and so b = q. Thus ab + b and, similarly, ab =t= a. 
Finally, if ab = q, then a = bq = b (10.5.1, 10.5.9(i)), a contradiction. 

Now, put 0 = q and define a binary operation + o n G b y a + 0 = a = 0 + a 
for every a e G and b + c = be for all b, c e G\{0}. 

10.5.11 Lemma. Gf + j is a 2-elementary abelian group. 

Proof. Clearly, G( + ) is a commutative groupoid with a neutral element 0. 
Moreover, by 10.5.9(ii), we have a + a = 0 for every a e G. It remains to show 
that G( + ) is associative. 

Let a, b, c e G, d = a + (b + c) and e = (a + b) + c. We are going to show 
that d = e and, to that purpose, we can certainly assume tat a + 0 + b and c + 0. 

If a = b + c, then the elements a, c, ac are pair-wise different and we have 
e = c = a.ac = d (by 10.5.1). 

Similarly, d = e if a + b = c and, trivially, d = e if a = c. 
Assume, finally, that the elements a, b, c are pair-wise different. 
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If c = ab, then b + c = b + ab = b.ab = a, d = a + a = 0 and 
e = ab + ab = 0. 

If c + ab, then d = a . be = ab . c = e. 

10.5.12 Lemma. G = G[ + , q2]. 

Proof. Easy (use the preceding lemmas). 

10.6 Theorem, (i) For every cardinal number a _̂  1, the groupoid Ra belongs 
to <€v Moreover, card(i?a) = a for a _ K0 and card(i?n) = 2mfor a = m finite. 

(ii) If G e #, is finite and non-trivial, then card(G) = 2'" for some m = 1 and 
G is isomorphic to Rm. 

(Hi) If G e #, is infinite, then G is isomorphic to Ra, where a = card(G). 

Proof. See 10.3, 10.4 and 10.5. 

10.7 Example. 

R2 0 1 2 3 

0 
1 
2 
3 

1 0 0 0 
0 0 3 2 
0 3 0 1 
0 2 1 0 

10.8 Remark, (i) It is very easy to check that maxas(^2,1) = — 1 = minas(#2,1) 
and maxas(^2, 2) = 4 = minas(#2, 2). 

(ii) maxas(#2, n) = n3 — 2 for every n = 3 (see 3.3 and its proof). 
(iii) It follows easily from 10.6 that minas(#2, n) = n3 — 2n2 + 2n for every 

n = 2'", m = 1 (cf. 5.2). 
(iv) Let n = 2m + k, where m = 1 and 1 = k < 2m. Then n3 - 2n2 + 2n + 

2 ^ minas(#2, n) ^ n3 — 2n2 + 2n + Ank — 2k2 — 2k. In particular, if k = 1, 
then n3 - 2n2 + 2n + 2 ^ minas(^2, n) *= n3 - 2n2 + 6M - 4. 

IX.11 Comments and open problems 

11.1 In this part, we are summarizing the results from [1], [4] and [5]. 

11.2 Find the numbers maxas(^/, n) and minas(j/, n) for the following classes 
f of groupoids: 

(i) Idempotent groupoids; 
(ii) Commutative idempotent groupoids; 

(iii) Groupoids with a neutral element; 
(iv) Diagonally non-associative groupoids (see [2]). 
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11.3 Find the numbers minas(^25 n) (see 10.8(iii), (iv)). 
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