Acta Universitatis Carolinae. Mathematica et Physica Tomáš Kepka; M. Trch Groupoids and the associative law VI. (Szász-Hájek groupoids of type (a, b, c)) Acta Universitatis Carolinae. Mathematica et Physica, Vol. 38 (1997), No. 1, 13-22 Persistent URL: http://dml.cz/dmlcz/142682 ## Terms of use: © Univerzita Karlova v Praze, 1997 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz # Groupoids and the Associative Law VI. (Szász-Hájek groupoids of type (a, b, c)) T. KEPKA and M. TRCH Praha*) Received 16. September 1996 The paper is concerned with groupoids possesing just one non-associative triple and this is of the form (a, b, c). Článek se zabývá grupoidy s jedinou neasociativní trojicí, která je tvaru (a, b, c). This paper is an immediate continuation of [3], [4] and [5]. Here, Szász-Hájek groupoids of type (a, b, c) are considered. #### VI.1. Basic arithmetic of SH-groupoids of type (a, b, c) - **1.1** In this section, G is an SH-groupoid of type (a, b, c) (see [3]) and a, b, $c \in G$ are pair-wise different such that $a \cdot bc \neq ab \cdot c$. We put d = ab, e = bc, $f = a \cdot bc$ and $g = ab \cdot c$. - **1.2 Proposition.** (i) If $x, y \in G$ are such that xy = a (resp. xy = b or xy = c), then either x = a (resp. x = b or x = c) or y = a (resp. y = b or y = c). - (ii) If M is a generator set of G, then $\{a, b, c\} \subseteq M$. - (iii) If H is a subgroupoid of G, then either $\{a, b, c\} \subseteq H$ and H is an SH-groupoid of type (a, b, c), or $\{a, b, c\} \subseteq H$ and H is a semigroup. - (iv) If r is a congruence of G, then either $(e, f) \notin r$ and G/r is an SH-groupoid of type (a, b, c), or $(e, f) \in r$ and G/r is a semigroup. Proof. See III.1.2. - **1.3 Lemma.** Let $x, y \in G$ be such that a + x + b and b + y + c. Then: - (i) ax = a iff xb = b. - (ii) by = b iff yc = c. ^{*)} Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovská 83, Czech Republic Department of Pedagogy, Charles University, 116 39 Praha 1, M. D. Rettigové 4, Czech Republic - **Proof.** (i) If ax = a and $xb \neq b$, then $f = a \cdot bc = ax \cdot bc = a(x \cdot bc) = a(xb \cdot c) = (ax \cdot b) c = ab \cdot c = g$, a contradiction. Similarly if $ax \neq a$ and xb = b. - (ii) Similar to (i). - **1.4 Lemma.** (i) $ac = a \ iff \ b = cb$. - (ii) ac = c iff ba = b. - (iii) Either $d \neq a$ or $e \neq c$. - (iv) Either $d \neq b$ or $e \neq b$. - (v) Either $ba \neq b$ or $cb \neq b$. **Proof.** (i) and (ii). See 1.3(i) and (ii), resp. - (iii) If d = a and e = c, then $f = a \cdot bc = ac = ab \cdot c = a$, a contradiction. - (iv) If d = b and e = b, then $f = a \cdot bc = ab = b = bc = ab \cdot c = g$, a contradiction. - (v) If ba = b and cb = b, then a = ac = c by (i) and (ii), a contradiction. - **1.5 Lemma.** (i) If $d \neq b$, then either $cb \neq b$ or $ca \neq c$. - (ii) If $ba \neq b$, then either $e \neq b$ or $ac \neq c$. - (iii) If $e \neq b$, then either $ba \neq b$ or $ca \neq a$. - (iv) If $cb \neq b$, then either $d \neq b$ or $ac \neq a$. - **Proof.** (i) Let cb = b and ca = a. Then cd = c. ab = cb = b and, by 1.2(i), d = b, a contradiction. - (ii), (iii) and (iv). Similar to (i). - **1.6 Lemma.** (i) If d = a and ba = b, then $a^2 = a$ and $b^2 = b$. - (ii) If d = b and ba = b, then $a^2 = a$ and $b^2 = b$. - (iii) If e = c and cb = b, then $b^2 = b$ and $c^2 = c$. - (iv) If e = b and cb = b, then $b^2 = b$ and $c^2 = c$. - **Proof.** (i) $a^2 = ab$. a = a. ba = a. b = a and $b^2 = ba$. b = b. ab = ba = b. The rest is similar. - **1.7 Lemma.** (i) If $b^2 = b$, then either d = a or e = c. - (ii) If either d = a or e = c, then $b^2 = b$. - (iii) If d = b, then either $a^2 = a$ or $a^3 = a$. - (iv) If e = b, then either $c^2 = c$ or $c^3 = c$. - **Proof.** (i) Suppose that $a \neq d$ and $e \neq c$. Then $f = a \cdot bc = a \cdot b^2c = a(b^2 \cdot c) = a(b \cdot bc) = ab \cdot bc = (ab \cdot b)c = ab^2 \cdot c = g$, a contradiction. - (ii) If d = a and $b^2 \neq b$, then $e \neq c$ by 1.4(iii) and $f = a \cdot bc = ab \cdot bc = a(b \cdot bc) = a \cdot b^2c = ab^2 \cdot c = (ab \cdot b)c = ab \cdot c = g$, a contradiction. The other case is similar. - (iii) $b = ab = a \cdot ab = a^2b$ and we can use 1.3(i). - (iv) Dual to (iii). - **1.8 Lemma.** (i) If $b^2 = b$ and d = b, then $a^2 = a$, ba = a, e = c. - (ii) If $b^2 = b$ and ba = b, then $a^2 = a$, d = a, ac = c. - (iii) If $b^2 = b$ and e = b, then $c^2 = c$, cb = c, d = a. - (iv) If $b^2 = b$ and cb = b, then $c^2 = c$, e = c, ac = a. - **Proof.** (i) We have $a \neq d = b$ and so, by 1.7(i), e = c. If $a \neq ba \neq b$, then b = bb = b. ab = ba. b. Now, by 1.3(i) a = a. ba = ab. a = ba, a contradiction. Further if ba = b, then, by 1.3(ii), ac = c and so f = a. bc = ac = c = bc = ab. c = g, a contradiction. Thus $ba \neq b$ and ba = a. Finally, $a^2 = a$. ba = ab. a = ba = a. - (ii) We have ac = c by 1.3(ii). Further by 1.7(i) either d = a or e = c. If $a \neq d = b$, then $g = ab \cdot c = bc = c = ac = a \cdot bc = f$, a contradiction. If $a \neq d \neq b$, then $b = bb = ba \cdot b = b \cdot ab$ and, by 1.3(ii), g = c and so $f = a \cdot bc = a \cdot c = c = ab \cdot c = g$, a contradition. Finally, $a^2 = ab \cdot a = a \cdot ba = ab = a$. - (iii) and (iv). Dual to (i) and (ii), resp. - **1.9 Lemma.** (i) If d = a, ba = b, e = b and cb = c, then $a^2 = a$, $b^2 = b$, $c^2 = c$ and ac = c. - (ii) If d = b, ba = a, e = c and cb = b, then $a^2 = a$, $b^2 = b$, $c^2 = c$ and ac = a. - (iii) If $a^2 = a$ and d = a, then either ba = a or ba = b. - (iv) If $c^2 = c$ and e = c, then either cb = b or cb = c. **Proof.** (i) Use 1.6(i), (iv) and 1.8(ii). - (ii) Dual to (i). - (iii) We have $a = a^2 = ab \cdot a = a \cdot ba$. Now, if $a \neq ba \neq b$, then $b = ba \cdot b = b \cdot ab = ba$ by 1.3(i), a contradiction. - (iv) Dual to (iii). - **1.10 Lemma.** (i) If $a^2 = a$ and d = b, then af = f and ag = f. - (ii) If $a^2 = a$ and $d \neq b$, then af = f and ag = g. - (iii) If $a^2 + a$ and d = b, then $a^3 + a$, $af = gf = a^2g$ and $ag = f = a^2f$. - (iv) If $a^2 \neq a$ and $d \neq b$, then $af = ag = a^2 \cdot bc$. - **Proof.** (i) $af = a(a \cdot bc) = a^2 \cdot bc = a \cdot bc = f$ and $ag = a(ab \cdot c) = a \cdot bc = f$. - (ii) $af = a(a \cdot bc) = a^2 \cdot bc = a \cdot bc = f$ and $ag = a(ab \cdot c) = (a \cdot ab) c = (a^2b) c = ab \cdot c = g$. - (iii) $af = a(a \cdot bc) = a^2 \cdot bc = (a \cdot ab) c = ab \cdot c = g$ and $ag = a(ab \cdot c) = a \cdot bc = f$. - (iv) $af = a(a \cdot bc) = a^2 \cdot bc = a^2b \cdot c = (a \cdot ab)c = a(ab \cdot c) = ag$. - **1.11 Lemma.** (i) If $c^2 = c$ and e = b, then fc = g and gc = g. - (ii) If $c^2 = c$ and $e \neq b$, then fc = f and gc = g. - (iii) If $c^2 \neq c$ and e = b, then $c^3 = c$, $fc = g = gc^2$ and $gc = f = fc^2$. - (iv) If $c^2 \neq c$ and $e \neq b$, then $fc = gc = ab \cdot c^2$. Proof. Dual to 1.10. - **1.12 Lemma.** Let $x, y \in G$ be such that $a \neq x$ and $y \neq c$. - (i) If xa = a, then xf = f and xg = g. - (ii) If $xa \neq a$, then $xf = xg (= xa \cdot bc)$. - (iii) If cy = c, then fy = f and gy = g. - (iv) If $cy \neq c$, then $fy = gy (= ab \cdot cy)$. **Proof.** (i) $xf = x(a \cdot bc) = xa \cdot bc = a \cdot bc = f$ and $xg = x(ab \cdot c) = (x \cdot ab)c = (xa \cdot b)c = ab \cdot c = g$. - (ii) $xf = x(a \cdot bc) = xa \cdot bc = (xa \cdot b)c = (x \cdot ab)c = x \cdot (ab \cdot c) = xg$. - (iii) and (iv). Dual tl (i) and (ii), resp. - **1.13 Lemma.** (i) If ca = a, then aca = a iff $a^2 = a$ and cac = c iff ac = c. - (ii) If ca = c, then aca = a iff ac = a and cac = c iff $c^2 = c$. **Proof.** (i) If aca = a, then $a = aca = a \cdot a = a^2$. If $a^2 = a$, then $a = aa = a \cdot ca = a$. - (ii) Similar to (i). - **1.14 Lemma.** (i) If d = a, then aba = a iff $a^2 = a$. - (ii) If ba = a, then aba = a iff $a^2 = a$. - (iii) If $a \neq ba \neq b$, then aba = a iff bab = b and iff g = c. **Proof.** Obvious. - **1.15 Lemma.** (i) If e = c, then cbc = c iff $c^2 = c$. - (ii) If cb = c, then cbc = c iff $c^2 = c$. - (iii) If $b \neq cb \neq c$, then cbc = c iff bcb = b and iff f = a. Proof. Obvious. - **1.16 Lemma.** (i) If bab = b and ab + b + ba, then aba = a and g = c. - (ii) If bcb = b and $cb \neq b \neq bc$, then cbc = c and f = a. **Proof.** Obvious. - **1.17 Lemma.** (i) If $a^n = a$ (resp. $c^n = c$) for some n > 1, then either $a^2 = a$ or $a^3 = a + a^2$ (resp. either $c^2 = c$ or $c^3 = c + c^2$). - (ii) If $b^n = b$ for some n > 1, then $b^2 = b$. - (iii) If $a^3 = a + a^2$, then ab = b and either $c^2 = c$ or $c^n + c$ for any n > 2. - (iv) If $c^3 = c \neq c^2$, then bc = b and either $c^2 = c$ or $c^n \neq c$ for any n > 2. - **Proof.** (i) Suppose that $a^2 \neq a \neq a^3$ and let n be the smallest such that $a^n = a$ (obviously, n > 3). Then $a = a^2$. a^{n-2} and, by 1.2(i) $a^2 = a$ or $a^{n-2} = a$, a contradiction. Similarly for b, c. - (ii) If $b^3 = b + b^2$, then $f = a \cdot bc = a(b^3 \cdot c) = a(b^2 \cdot bc) = a(b^2 \cdot bc)$. Now, either $ab^2 + a$ or bc + c, so $ab^2 \cdot bc = (ab^2 \cdot b)c = ab^3 \cdot c = ab \cdot c = g$, a contradiction. - (iii) and (iv) By 1.3(i), $a^2b = b$, and so by 1.4(iii), ab = b. If $c'' = c \neq c^2$, then $c^3 = c$ and $bc^2 = b$. Therefore bc = b, a contradiction with 1.4(ii). - **1.18 Lemma.** (i) If d = a, then either $a^2 = a$ or $a^n \neq a$ for any $n \geq 2$. - (ii) If e = c, then either $c^2 = c$ or $c^n \neq c$ for any $n \geq 2$. **Proof.** (i) If $a^n = a \neq a^2$, then, by 1.17(i), $a^3 = a \neq a^2$. Now, by 1.3(i), $b = a^2b = a \cdot ab = a \cdot d$ and so, by 1.2(i), b = d, a contradiction. (ii) Dual to (i). ### VI.2 Minimal SH-groupoids of type (a, b, c) - **2.1** In this section let W be an absolutely free groupoid generated by a three-element set $\{x, y, z\}$. Let G be a minimal SH-groupoid of type (a, b, c) and let $\phi: W \to G$ be a projective homomorphism such that $\phi(x) = a$, $\phi(y) = b$ and $\phi(z) = c$. For any $t \in W$ denote by I(t) the length of t. - **2.2 Lemma.** Let $a \notin \{a^2, ab, ac, a^3, aba, a.bc, aca\}$. Then $ax \neq a$ for every $x \in G$. - **Proof.** Let, on the contrary, $t \in W$ be such that $a = a\phi(t)$ and l(t) is minimal. Clearly, $l(t) \ge 2$ and we have t = uv. Now, $a = a \cdot \phi(u) \phi(v) = a\phi(u) \cdot \phi(v)$, so that $\phi(v) = a$ and $a = a\phi(u) \cdot a = a \cdot \phi(u) a$. Moreover, $l(u) \ge 2$, u = pq and $a = a(\phi(p) \phi(q) \cdot a) = a(\phi(p) \cdot \phi(q) a) = a\phi(p) \cdot \phi(q) a$ and $a\phi(p) + a + \phi(q) a$, a contradiction. **2.3 Lemma.** Let $a \notin \{a^2, ba, ca, a^3, aba, a.bc\}$ and let either $ca \neq c$ or $a \neq a$. bc. Then $xa \neq a$ for any $x \in G$. **Proof.** Similar to 2.2. **2.4 Proposition.** Let $a \notin \{a^2, ab, ac, ba, ca, a^3, aba, aca, a \cdot bc\}$. Then $xy \neq a$ for all $x, y \in G$. **Proof.** Use 2.2 and 2.3. **2.5 Proposition.** Let $c \notin \{c^2, ca, cb, ac, bc, c^3, cac, cbc, ab . c\}$. Then $xy \neq c$ for all $x, y \in G$. **Proof.** Dual to 2.4. **2.6 Proposition.** Let $b \notin \{b^2, ab, cb, ba, bc, bab, bcb\}$. Then $xy \neq b$ for all $x, y \in G$. **Proof.** We can proceed similarly as in the proof of 2.4 (use also 1.17(ii)). - **2.7** We shall say that G is of subtype - (a) if $b^2 = b$, $ab \neq b$, $b \neq bc$, bab = b, bcb = b: - (β) if $b^2 = b$, ab = b, $b \neq bc$, bcb = b, (and bab = b); - (γ) if $b^2 = b$, $ab \neq b$, b = bc, bab = b, (and bcb = b); - (δ) if $b^2 = b$, ab = b, $b \neq bc$, $bcb \neq b$, (and bab = b); - (ϵ) if $b^2 = b$, $ab \neq b$, b = bc, $bab \neq b$, (and bcb = b); - (ϕ) if $b^2 = b$, $ab \neq b$, $b \neq bc$, bab = b, $bcb \neq b$; - (ψ) if $b^2 = b$, $ab \neq b$, $b \neq bc$, $bab \neq b$, bcb = b; - (x) if $b^2 = b$, ab + b, bc + b, bab + b, bcb + b; - (λ) if $b^2 \neq b$, ab = b, $bc \neq b$, $bab \neq b$, bcb = b; - (μ) if $b^2 \neq b$, $ab \neq b$, bc = b, bab = b, $bcb \neq b$; - (v) if $b^2 \neq b$, ab = b, $bc \neq b$, $bab \neq b$, $bcb \neq b$; - (ω) if $b^2 \neq b$, $ab \neq b$, bc = b, $bab \neq b$, $bcb \neq b$; - (π) if $b^2 \neq b$, $ab \neq b \neq ba$, $bc \neq b \neq cb$, bab = b, bcb = b; - (g) if $b^2 \neq b$, $ab \neq b \neq ba$, $bc \neq b$, bab = b, $bcb \neq b$; - (σ) if $b^2 \neq b$, $ab \neq b$, $b \neq b \neq cb$, $bab \neq b$, bcb = b; - (τ) if $b^2 \neq b$, $ab \neq b$, $bc \neq b$, $bab \neq b$, $bcb \neq b$. - **2.8 Proposition.** G is of just one of the preceding sixteen subtypes. **Proof.** It follows immediately from 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.16, 1.17, 1.18, 2.6. #### VI.3 Minimal SH-groupoids of subtype (α) - **3.1** Let V be of subtype (α). Now, $b^2 = b$ implies that either ab = a or bc = c. - (i) Suppose that ab = a. Then bab = b implies ba = b, and so ac = c. Further, $a^2 = ab \cdot a = a \cdot ba = ab = a$. Obviously, e = bc + c, e = bc + b, e = bc + a and so V contains at least four elements a, b, c, e. Further, $a = a \cdot bc = ae$, c = cbc = ce and b = bcb = eb. Moreover, if cb = c, then ce = c, $c^2 = c$. Obviously, $ca \neq a$ (for ca = a we obtain ea = bc. a = b. ca = ba = b, a contradiction with 1.2(i)), and hence either ca = c or $z = ca \neq a$, b, c (and then we put w = ea = bca = bz). Now, V is one of following two groupoids: | V_1 | a | b | c | e | V_2 | а | b | с | e | Z | w | |-------|---|---|---|---|-------|---|---|---|---|---|------------------| | a | a | а | с | а | а | а | a | с | а | z | а | | b | | | | | b | b | b | e | b | w | w | | c | c | с | c | e | c | Z | c | c | c | Z | \boldsymbol{z} | | e | e | b | e | e | | | | | | W | | | | | | | | Z | z | z | С | Z | Z | Z | | | | | | | W | w | W | e | e | w | w | (ii) If bc = c, then bcb = b implies cb = b and ac = a. Further, it follows from bc = c and cb = c that $c^2 = c$ (and $a \neq ab \neq b$, $ab \neq c$). In both cases V contains at least four elements a, b, c, d. Further, $ca \neq c$ (for ca = c we have b = cb = ca. b = c. ab, a contradiction with 1.2(i)), and so ca = c or $v = ca \neq c$, a. Therefore, V is one of following two groupoids: | V_3 | a | b | c | d | V_4 | а | b | c | d | v | w | |--------|---|---|---|---|-------|---|---|---|-------------|---|---| | a
b | а | d | а | d | a | а | d | а | d | а | d | | b | b | b | С | b | b | а | b | c | d
b
w | v | w | | c
d | а | b | c | d | c | v | b | с | w | v | w | | d | d | d | С | d | d | d | d | с | d | v | W | | | | | | | | | | | w | | | | | | | | | w | w | w | С | W | v | w | # VI.4 Minimal SH-groupoids of subtype (β) and (γ) **4.1** Let V be of subtype (β). We have $b^2 = b$, ab = b, and so, by 1.8(ii) $a^2 = a$, ba = a. Further, bc = c (by 1.7(i), ab = a or bc = c, but $a \neq ab = b$), and so b = bc. b = cb. Obviously, $a \neq bc \neq b$ and, by 1.3(i), a = a. bc = ac implies cb = b. Finally, it follows from bc = c and $b^2 = b$ that $c^2 = c$ by 1.8(iii). Now, V is one of the following three groupoids V_5 , V_6 , V_7 : | V_5 | a | b | c | | V_6 | a | b | c | x | | V_7 | a | b | с | |-------|---|---|------------------|---|------------------|---|---|------------------|---|---|-------|---|---|---| | а | а | b | а | - | a | а | b | а | а | - | а | a | b | a | | b | а | b | \boldsymbol{c} | | | a | | | | | b | a | b | с | | c | a | b | С | | c | x | b | С | х | | c | c | b | c | | | | | | | \boldsymbol{x} | x | b | \boldsymbol{x} | x | | | | | | Moreover, V_5 , V_6 , V_7 are (up to isomorphism) the only minimal SH-groupoids of type (a, b, c) and of subtype (β). **4.2** Let V be of subtype (γ). Similarly as in 4.1 we have $b^2 = b$, bc = b and, by 1.8(iii), $c^2 = c$ and cb = c. Further, ab = a (by 1.6(iii) ab = a or bc = c, but $c \neq bc = b$) and so b = b. ab = ba. Now, by 1.8(ii), $a^2 = a$. Finally, $c \neq ab \neq b$ and by, 1.3(ii), it follows from b = b. ab that c = ab. c = ac. Now, V is one of the following three groupoids V_8 , V_9 , V_{10} : | V_8 | | | | V_9 | a | b | c | У | V_{10} | а | b | c | |-------|---|---|---|-------|---|---|---|---|----------|---|---|---| | a | a | а | c | a | a | а | с | у | а | a | а | с | | b | b | b | b | b | b | b | b | b | b | b | b | b | | C | a | с | c | С | y | c | c | у | C | c | С | c | | | | | | y | y | У | c | у | | | | | Moreover, V_8 , V_9 , V_{10} are (up to isomorphism) the only minimal SH-groupoids of type (a, b, c) and of subtype (γ). #### VI.5 Minimal SH-groupoids of subtypes (δ) **5.1** Let V be of subtype (δ) . Then it follows from $b^2 = b$, $b = ab \neq a$ and $bcb \neq b$ that bc = c, $cb \neq b$, and so $ac \neq a$. Suppose that ac = c, then we have c = a. c = a. $bc = f \neq g = ab$. c = b. c = c, a contradiction. Therefore, $a \neq ac = f \neq c$ and so, V contains at least four different elements a, b, c, f. For $a \neq ba \neq b$, we obtain $a = a \cdot ba = ab \cdot a = ba$, a contradiction. For ba = b, we have $b \cdot f = b \cdot ac = ba \cdot c = c$, a contradiction with 1.2(i). Therefore, ba = a. Now, $a^2 = a \cdot ba = ab \cdot a = ba = a$. Further, either ca = c or $a \neq ca \neq c$ (for ca = a, we have b = ab = ca. b = c. ab = ca = c, a contradiction). Suppose that $c^3 = c \neq c^2$, then $b = bc^2 = bc$. $c = c^2$, a contradiction with 1.2(i). Therefore either $c^2 = c$ or $c'' \neq c$ for any n > 2. If $c^2 = c$ then cb = c (for $cb \neq c$ we have c = c. c = c. bc = cb. c, hence $b \cdot cb = b$, a contradiction). **5.2** Example. Let $c^2 = c$ and ca = c. Then G is isomorphic to the following groupoid V_{11} : **5.3 Example.** Let $c^2 = c$, and $c \neq ca = x$. Denote $v_k = f^k \cdot a = a \cdot x^k$ and $w_k = x^k \cdot c = c \cdot f^k$ for any $k \geq 1$. Then G is isomorphic to the following groupoid V_{12} : | V_{12} | a | b | c | х | x^2 | | f | f^2 | ••• | v_1 | v_2 | | w_1 | w_2 | | |----------|--------------|------------------|----------------|-------|-------|---------|-------|----------------|-------|-------|-------|-------|----------------|----------------|---------| | а | а | b | f | v_1 | v_2 | | f | f^2 | | v_1 | v_2 | | f^2 | \int_{0}^{3} | | | b | а | b | С | X | x^2 | | f | f^2 | | v_1 | v_2 | | w_1 | w_2 | • • • • | | c | \mathbf{x} | c | С | X | x^2 | | w_1 | w_2 | | x^2 | x^3 | | w_1 | w_2 | ••• | | x | x | \boldsymbol{c} | w_1 | x^2 | x^3 | • • • • | w_1 | w_2 | | x^2 | x^3 | | w_2 | w_3 | ••• | | x^2 | x^2 | c | w_2 | x^3 | x^4 | | w_2 | w_3 | | x^3 | x^4 | | w_3 | w_4 | ••• | | : | : | : | : | : | : | ::: | : | : | ::: | : | : | ::: | : | : | ::: | | f | v_1 | f | f | v_1 | v_2 | | f^2 | \int_{0}^{3} | | v_2 | v_3 | | \int_{0}^{2} | \int_{0}^{3} | ••• | | f^2 | v_2 | f^2 | f^2 | v_2 | v_3 | | f^3 | f^4 | • • • | v_3 | v_4 | • • • | f^3 | \int_{0}^{4} | ••• | | : | : | : | : | : | : | ::: | : | : | ::: | : | : | ::: | : | : | ::: | | v_1 | v_1 | f | f^2 | v_2 | v_3 | | f^2 | f^3 | • • • | v_2 | v_3 | | f^3 | \int_{0}^{4} | • • • | | v_2 | v_2 | f^2 | \int_{0}^{3} | v_3 | v_4 | • • • | f^3 | \int_{0}^{4} | • • • | v_3 | v_4 | • • • | \int^4 | f^5 | ••• | | : | | ÷ | : | : | : | ::: | : | : | ::: | : | : | ::: | ÷ | : | ::: | | w_1 | x^2 | w_1 | w_1 | x^2 | x^3 | • • • | w_2 | w_3 | ••• | x^3 | x^4 | • • • | w_2 | w_3 | | | w_2 | x^3 | w_2 | w_2 | x^3 | x^4 | | w_3 | W_4 | ••• | x^4 | x^5 | ••• | w_3 | w_4 | ••• | | \vdots | : | : | : | : | : | ::: | ÷ | : | ::: | : | : | ::: | ÷ | ÷ | ::: | **5.4 Example.** Let $c^2 = c$, x = ca + a, c + ac = f, ba = a. Then $a^2 = a$, aca + a and cac + c (if aca = a, then we have $f \cdot x = ac \cdot ca = a(cc \cdot a) = a \cdot ca = a$, a contradiction. Similarly, if cac = c, then $x \cdot f = ca \cdot ac = c(aa \cdot c) = c \cdot ac = c$, a contradiction). Now, $xf = ca \cdot ac = cac$ and $fx = ac \cdot ca = aca$. If cac = aca = z, then $x \cdot x = cac \cdot a = aca \cdot a = aca = z = cac = c \cdot cac = c \cdot aca = f \cdot f$ and G is isomorphic to the following groupoid: **5.5 Remark.** The case of subtype (ε) is dual to (δ). VI.6 Minimal SH-groupoids of subtype (τ) **6.1 Example.** The following ten-element groupoid V_{14} is an SH-groupoid of subtype (τ) . One may check that $sdist(V_{14}) \ge 2$: | V_{14} | a | a^2 | b | b^2 | c | c^2 | d | f | g | 3 | |----------------------|-------|-------|---|-------|-------|-------|---|---|---|---| | a | a^2 | 3 | a^2 | 3 | d | f | g | 3 | 3 | 3 | | a^2 | 3 | 3 | 3 | 3 | g | 3 | 3 | 3 | 3 | 3 | | a a^2 b b^2 | a^2 | 3 | b^2 | 3 | c^2 | | g | 3 | 3 | 3 | | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | $c \\ c^2 \\ d \\ f$ | a^2 | 3 | a^{2} 3 b^{2} 3 c^{2} 3 f | 3 | c^2 | 3 | g | 3 | 3 | 3 | | c^2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | d | 3 | 3 | f | 3 | f | 3 | 3 | 3 | 3 | 3 | | f | 3 | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | | $\frac{g}{3}$ | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | **6.2 Example.** V_{14} is a homomorphic image of the following SH-groupoid V_{15} : | V ₁₅ | а | a^2 | h | h^2 | c | c^2 | d | f | g | 3 | 4 | 5 | | m | | |-----------------|----------------|-------|-------|-------|-------|-------|-----|-----|-----|-----|-----|-------|-----|-------|-----| | a | a^2 | 3 | a^2 | 3 | d | f | g | 4 | 4 | 4 | 5 | 6 | | m+1 | | | a^2 | 3 | 4 | 3 | 4 | g | 4 | 4 | 5 | 5 | 5 | 6 | 7 | | m+2 | | | h | a ² | 3 | b^2 | 3 | c^2 | 3 | g | 4 | 4 | 4 | 5 | 6 | | m+1 | | | b^2 | 3 | 4 | 3 | 4 | 3 | 4 | 4 | 5 | 5 | 5 | 6 | 7 | | m+2 | | | с | a ² | 3 | c^2 | 3 | c^2 | 3 | g | 4 | 4 | 4 | 5 | 6 | | m+1 | | | c^2 | 3 | 4 | 3 | 4 | 3 | 4 | 4 | 5 | 5 | 5 | 6 | 7 | | m+2 | | | d | 3 | 4 | f | 4 | f | 4 | 4 | 5 | 5 | 5 | 6 | 7 | | m+2 | | | f | 4 | 5 | 4 | 5 | 4 | 5 | 5 | 6 | 6 | 6 | 7 | 8 | | m+3 | | | g | 4 | 5 | 4 | 5 | 4 | 5 | 5 | 6 | 6 | 6 | 7 | 8 | | m+3 | | | 3 | 4 | 5 | 4 | 5 | 4 | 5 | 5 | 6 | 6 | 6 | 7 | 8 | | m+3 | | | 4 | 5 | 6 | 5 | 6 | 5 | 6 | 6 | 7 | 7 | 7 | 8 | 9 | | m+4 | | | : | : | ÷ | : | : | : | : | : | : | : | : | : | : | ::: | : | ::: | | m | m+1 | m+2 | m+1 | m+2 | m+1 | m+2 | m+2 | m+3 | m+3 | m+3 | m+4 | m + 5 | | m + m | | | ÷ | : | ÷ | ÷ | ÷ | : | : | : | ÷ | : | : | ÷ | : | ::: | : | ::: | #### VI.7 Comments nad open problems - **7.1** The structure of minimal SH-groupoids of type (a, b, c) seems to be rather complicated. Anyway, continue the description of these groupoids. - **7.2** Find the semigroup distance of the groupoids V_{14} , V_{15} from VI.6. #### References - [1] KEPKA T. and TRCH M., Groupoids and the associative law I. (Associative triples), Acta Univ. Carolinae Math. Phys. 33/1 (1992), 62-86. - [2] KEPKA T. and TRCH M., Groupoids and the associative law II. (Groupoids with small semigroup distance), Acta Univ. Carolinae Math. Phys. 34/1 (1993), 67-83. - [3] Kepka T. and Trch M., Groupoids and the associative law III. (Szász-Hájek groupoids), Acta Univ. Carlinae Math. Phys. 36/1 (1995), 17-30. - [4] KEPKA T. and TRCH M., Groupoids and the associative law IV. (Szász-Hájek groupoids of type (a, b, a)), Acta Univ. Carolinae Math. Phys. 35/1 (1994), 31-42. - [5] KEPKA T. and TRCH M., Groupoids and the associative law V. (Szász-Hájek groupoids of type (a, a, b)), Acta Univ. Carlinae Math. Phys. 36/1 (1995), 31-44.