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The paper is concerned with groupoids possesing just one non-associative triple and this is of the
form (a, b, ¢).

Clinek se zabyvd grupoidy s jedinou neasociativni trojici, kterd je tvaru (a, b, c).

This paper is an immediate continuation of [3], [4] and [S]. Here, Szédsz-Héjek
groupoids of type (a, b, c) are considered.

VI.1. Basic arithmetic of SH-groupoids of type (a, b, ¢)

1.1 In this section, G is an SH-groupoid of type (a, b, c¢) (see [3])and a, b,c€ G
are pair-wise different such that a . bc + ab.c. Weputd = ab,e = bc, f = a. bc
and g = ab.c.

1.2 Proposition. (i) If x, y € G are such that xy = a (resp. xy = b or xy = c),
then either x = a (resp. x = bor x =c)ory =a(resp. y =bory = c)

(ii) If M is a generator set of G, then {a, b, c} = M.

(iii) If H is a subgroupoid of G, then either {a, b, c} € H and H is an
SH-groupoid of type (a, b, c), or {a, b, c,} S H and H is a semigroup.

(iv) If r is a congruence of G, then either (e, f) ¢ r and G/r is an SH-groupoid
of type (a, b, ¢), or (e, f) € r and G/r is a semigroup.

Proof. See II1.1.2.

1.3 Lemma. Let x, y€ G be such that a = x + b and b %+ y + c. Then:
(i) ax = a iff xb = b.
(ii) by = b iff yc = c.

*) Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovskd 83, Czech Republic
Department of Pedagogy, Charles University, 116 39 Praha 1, M. D. Rettigové 4, Czech Republic

13



Proof. (i) If ax =a and xb + b, then [ = a.bc = ax.bc = a(x.bc) =
a(xb . c) = (ax . b) ¢ =ab.c =g, a contradiction. Similarly if ax # a and
xb = b.

(i1) Similar to (i).

1.4 Lemma. (i) ac = a iff b = cb.
(ii) ac = ¢ iff ba = b.

(iii) Either d + a or e * c.

(iv) Either d + b or e + b.

(v) Either ba £+ b or cb % b.

Proof. (i) and (ii). See 1.3(i) and (ii), resp.

(iii) If d = aand e = ¢, then f = a.bc = ac = ab.c = ¢, a contradiction.

(iv) fd =band e = b, then f =a.bc=ab =b =bc =ab.c =g, a con-
tradiction.

(v) If ba = b and ¢b = b, then a = ac = ¢ by (i) and (ii), a contradiction.

1.5 Lemma. (i) If d + b, then either cb & b or ca % c.
(ii) If ba =% b, then either e £ b or ac * c.
(iii) If e =+ b, then either ba %+ b or ca * a.
(iv) If cb * b, then either d + b or ac * a.

Proof. (i) Let ¢cb = b and ca = a. Then ¢d = ¢.ab = ¢b = b and, by 1.2(i),
d = b, a contradiction.
(ii), (iii) and (iv). Similar to (i).

1.6 Lemma. (i) If d = a and ba = b, then > = a and b* = b.
(ii) If d = b and ba = b, then a*> = a and b> = b.
(iii) If e = c and cb = b, then b*> = b and * = c.
(iv) If e = band cb = b, then b* = b and ¢* = c.

Proof. (i) a>=ab.a=a.ba=a.b=a and b’ =ba.b=b.ab = ba = b.
The rest is similar.

1.7 Lemma. (i) If b*> = b, then either d = a or e = c.
(ii) If either d = a or e = ¢, then b* = b.
(iii) If d = b, then either a*> = a or @’ = a.
(iv) If e = b, then either ¢* = c or ¢* = c.

Proof. (i) Suppose thata + d and e + ¢. Then f = a.bc = a.b’c = a(b*.c) =
a(b.bc) = ab.bc = (ab.b)c = ab®.c = g, a contradiction.

(ii) If d = a and b* + b, then e % ¢ by 1.4(iii) and f = a.bc = ab.bc =
alb.bc) =a.b’c =ab*.c = (ab.b)c = ab.c = g, a contradiction. The other
case is similar.

(iii) b = ab = a.ab = a’b and we can use 1.3(i).

(iv) Dual to (iii).
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1.8 Lemma. (i) If > = bandd = b, then > = a, ba = a, e = c.
(ii) If b> = b and ba = b, then «* = a,d = a, ac = c.
(iii) If > = bande = b, thenc* =c,cb =c¢ d = a.
(iv) If b* = band ch = b, then ¢* = c, e = ¢, ac = a.

Proof. (i) We have a + d = b and so, by 1.7(i), e = c. If a & ba #+ b, then
b=bb=>b.ab = ba.b. Now, by 1.3(1) a = a.ba = ab.a = ba, a contradic-
tion. Further if ba = b, then, by 1.3(ii), ac = c and so f = a.bc = ac = ¢ =
bc = ab . ¢ = g, a contradiction. Thus ba #+ b and ba = a. Finally, a* = a.ba =
ab.a = ba = a.

(i) We have ac = ¢ by 1.3(ii). Further by 1.7(i) either d = a or e = ¢. If
a+d=0>b, then g=ab.c =bc=c=ac =a.bc=f, a contradiction. If
a+d=+b, then b=bb=0ba.b=0>b.ab and, by 1.3(ii)), g =c and so
f=a.bc=a.c=c=ab.c=g¢g, a contradition. Finally, a* =ab.a =
a.ba=ab = a.

(iii) and (iv). Dual to (i) and (ii), resp.

1.9 Lemma. (i) If d = a, ba =b, e = b and cb = ¢, then a* = a, b> = b,
¢ =candac = c

(ii) If d = b, ba=a, e=c and cb = b, then a* = a, b> = b, ¢* = ¢ and
ac = a.

(iii) If a*> = a and d = a, then either ba = a or ba = b.

(iv) If ¢* = c and e = c, then either cb = b or ¢b = c.

Proof. (i) Use 1.6(i), (iv) and 1.8(ii).

(i1) Dual to (i).

(iii) We have a = a*>* = ab.a = a.ba. Now, if a = ba = b, then b = ba.b =
b .ab = ba by 1.3(i), a contradiction.

(iv) Dual to (iii).

1.10 Lemma. (i) If > = aandd = b, then af = fand ag = f.

(ii) If @ = aand d + b, then af = f and ag = g.

(iii) If @> + aand d = b, then @® * a, af = gf = a’g and ag = f = d*f.
(iv) If > + aand d # b, then af = ag = a*. bc.

Proof. (i) af =ala.bc) =a’>.bc =a.bc=f and ag = aab.c) =
a.bc=f. '

(i) af = ala.bc)=a’>.bc =a.bc=f and ag =alab.c) = (a.ab)c =
(a®b)c =ab.c =y.
(i) af = a(a.bc) = a’> . bc = (a.ab)c =ab.c =g and ag = alab.c) =

a.bc =f.
(iv) af = a(a.bc) = a’>.bc = a’b.c = (a.ab)c = alab . c) = ag.

1.11 Lemma. (i) If ¢* = cand e = b, then fc = g and gc = g
(ii) If ¢ = cand e # b, then fc = fand gc = g.
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(iii) If  + cand e = b, then ¢ = ¢, fc = g = gc*> and gc = f = fc.
(iv) If ¢+ cande % b, then fc = gc = ab . .

Proof. Dual to 1.10.

1.12 Lemma. Let x, y € G be such that a + x and y =+ c.
(i) If xa = a, then xf = f and xg = g.

(ii) If xa * a, then xf = xg (= xa . bc).

(iii) If ¢y =c, then fy = f and gy = ¢.

(v) If cy # ¢, then fy = gy (= ab.cy).

Proof. (i) xf = x(a.bc) = xa.bc = a.bc = f and xg = x(ab.c) = (x.ab)c =
(xa.b)c=ab.c=g.

(i) xf = x(a.bc) = xa.bc = (xa.b)c = (x.ab)c = x.(ab.c) = xy.

(iii) and (iv). Dual tl (i) and (ii), resp.

1.13 Lemma. (i) If ca = a, then aca = a iff @ = aand cac = ¢ iff ac = c.
(ii) If ca = ¢, thenaca:aiﬁ‘ac:aandcac=cjf]“(;2=c-

Proof. (i) If aca = a, then a = aca = a.a = a’.

a.ca = a.
(i) Similar to (i).
1.14 Lemma. (i) If d = a, then aba = a iff a* = a.
(ii) If ba = a, then aba = a iff a* = a.
(iii) If a & ba * b, then aba = a iff bab = b and iff g = c.

If > = a, then a = aa =

Proof. Obvious.

1.15 Lemma. (i) If e = ¢, then chbc = c iff ¢* = c.
(ii) If cb = c, then cbc = c iff ¢* = c.
(iii) If b # ¢b * c, then cbc = c iff bcb = b and iff f = a.

Proof. Obvious.

1.16 Lemma. (i) If bab = b and ab + b % ba, then aba = aand g = c.
(ii) If bcb = b and cb *+ b * bc, then cbc = c and [ = a.

Proof. Obvious.

1.17 Lemma. (i) If a" = a (resp. " = c) for some n > 1, then either a* = a
or @ = a + a* (resp. either > = cor c® = ¢ + ).

(ii) If b" = b for some n > 1, then b> = b.

(iii) If a®> = a + a? then ab = b and either ¢ = c or " # ¢ for any n > 2.

(iv) If ¢¢ = ¢ % ¢ then bc = b and either ¢* = c or ¢" # ¢ for any n > 2.

Proof. (i) Suppose that a> + a # a® and let n be the smallest such that " = a
(obviously, n > 3). Then a = a?.a""% and, by 1.2(i) a*> = a or a"~? = q, a con-
tradiction. Similarly for b, c.
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(i) If b*=b =+ b% then f=a.bc=alb’.c)=alb’h.c)= ab®. bc)=
ab® . bc. Now, either ab®* # a or bc # ¢, so ab®.bc = (ab®.b)c = ab*.c =
ab . ¢ = g, a contradiction.

(iii) and (iv) By 1.3(i), a*b = b, and so by 1.4(iii), ab = b. If ¢" = ¢ =+ ¢?, then
¢ = c and bc? = b. Therefore bc = b, a contradiction with 1.4(ii).

1.18 Lemma. (i) If d = a, then either a* = a or a" * a for any n > 2.

(ii) If e = c, then either ¢ = c or ¢" % ¢ for any n > 2.

Proof. (i) If a" = a + 4 then, by 1.17(1), a® = a + a*>. Now, by 1.3(i),
b=a’=a.ab = a.dand so, by 1.2(i), b = d, a contradiction.

(i1) Dual to (i).

VI.2 Minimal SH-groupoids of type (a, b, ¢)

2.1 In this section let W be an absolutely free groupoid generated by
a three-element set {x, ¥, z}. Let G be a minimal SH-groupoid of type (a, b, c) and
let ¢: W — G be a projective homomorphism such that ¢(x) = a, ¢(y) = b and
@(z) = c. For any t € W denote by I(t) the length of t.

2.2 Lemma. Let a ¢ {@, ab, ac, d*, aba, a . bc, aca}. Then ax + a for every
x€@q.

Proof. Let, on the contrary, t € W be such that a = a¢(t) and I(t) is minimal.
Clearly, 1(f) > 2 and we have ¢t = uv. Now, a = a. ¢(u) ¢(v) = ad(u). ¢(v), so
that ¢(v) = a and a = ad(u).a = a. ¢(u) a.

Moreover, 1(u) > 2, u=pq and a = a(¢(p) P(q).a) = a(¢(p). ¢(q) a) =
ad(p) . ¢(q) a and ag(p) + a + ¢(q) a, a contradiction.

2.3 Lemma. Let a¢ {a, ba, ca, @', aba, a.bc} and let either ca + c or
a #+ a.bc. Then xa + a for any x € G.

Proof. Similar to 2.2.

2.4 Proposition. Let a ¢ {@, ab, ac, ba, ca, a*, aba, aca, a. bc}. Then xy * a
Sforall x, ye G.

Proof. Use 2.2 and 2.3.

2.5 Proposition. Let c ¢ {¢, ca, cb, ac, be, ¢, cac, cbe, ab . c}. Then xy * ¢
for all x, yeG.

Proof. Dual to 2.4.

2.6 Proposition. Let b ¢ {I?, ab, cb, ba, bc, bab, bcb}. Then xy + b for all
x, y€G.

Proof. We can proceed similarly as in the proof of 2.4 (use also 1.17(ii)).



2.7 We shall say that G is of subtype

() if b> = b, ab + b, b % bc, bab = b, bch = b;

B) if > =b, ab=b, b % bc, bch = b, (and bab = b);
(y) if > =b, ab = b, b = bc, bab = b, (and bch = b);
(8) if b* = b, ab = b, b # bc, bch + b, (and bab = b);
() if >’ =0b, ab %+ b, b = bc, bab £+ b, (and bchb = b);
() if b> = b, ab £ b, b %+ bc, bab = b, bch + b;

) if B> =b, ab + b, b % bc, bab £ b, bch = b;

(x) if > =b, ab %+ b, bc + b, bab % b, bcb + b;

(M) if B>+ b, ab = b, bc + b, bab % b, bch = b;

(W) if b>+ b, ab = b, bc = b, bab = b, bcb + b;

(v) if b> % b, ab = b, bc £ b, bab % b, bcb * b;

(@) if b> # b, ab £ b, bc = b, bab % b, bch + b;

(m) if b*> & b, ab = b % ba, bc £ b % cb, bab = b, bcb = b;
(o) if b> % b, ab + b % ba, bc + b, bab = b, bcb * b;

(o) if b> &= b, ab £ b, b = b + ¢b, bab + b, bch = b;
(t) if *+ b, ab &+ b, bc £ b, bab £+ b, bcb + b.

2.8 Proposition. G is of just one of the preceding sixteen subtypes.

Proof. It follows immediately from 1.4,1.5,1.6,1.7,1.8,1.9,1.16, 1.17, 1.18, 2.6.

VI.3 Minimal SH-groupoids of subtype (a)

3.1 Let V be of subtype (o). Now, b* = b implies that either ab = a or bc = c.

(1) Suppose that ab = a. Then bab = b implies ba = b, and so ac = c. Further,
a’=ab.a = a.ba = ab = a. Obviously, e = bc + c,e = bc + b,e = bc + a
and so V contains at least four elements a, b, c, e.

Further, a = a.bc = ae, ¢ = cb¢c = ce and b = bcb = eb.

Moreover, if cb = c, then ce = ¢, ¢> = c¢. Obviously, ca #+ a (for ca = a we
obtain ea = bc.a = b.ca = ba = b, a contradiction with 1.2(i)), and hence
either ca = c or z = ca # a, b, ¢ (and then we put w = ea = bca = bz). Now,
V is one of following two groupoids:

Vila b ¢c e z w
ala a ¢caz a
blb bebww
clz cccz z
elwb e eww
z|lz z ¢c z z z
wiwwe eww

@ii) If bc = ¢, then bchb = b implies ¢b = b and ac = a. Further, it follows
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from bc = ¢ and ch = ¢ that ¢> = ¢ (and a =% ab # b, ab + ¢). In both cases
V contains at least four elements «, b, ¢, d.

Further, ca + ¢ (for ca = ¢ we have b = ¢b = ca.b = c. ab, a contradiction with
1.2(1)), and so ca = ¢ or v = ca * ¢, a. Therefore, V is one of following two groupoids:

w

W
w

SRS TR SN SURE SR
SEESTIR ST SRR SR
=

VI.4 Minimal SH-groupoids of subtype () and (y)

4.1 Let V be of subtype (B). We have b> = b, ab = b, and so, by 1.8(ii) a* = q,
ba = a. Further, bc = ¢ (by 1.7(i), ab = a or bc = ¢, but a + ab = b), and so
b = bc.b = cb. Obviously, a + bc + b and, by 1.3(i), a = a. bc = ac implies
cb = b. Finally, it follows from bc = ¢ and b*> = b that ¢* = ¢ by 1.8(iii). Now,
V is one of the following three groupoids Vi, Vg, Vi:

Moreover, Vs, Vg, V; are (up to isomorphism) the only minimal SH-groupoids of
type (a, b, ¢) and of subtype (J).

4.2 Let V be of subtype (y). Similarly as in 4.1 we have b*> = b, bc = b and,
by 1.8(iii), ¢ = c and cb = c. Further, ab = a (by 1.6(iii) ab = a or bc = ¢, but
c*bc=0>b) and so b=0b.ab = ba. Now, by 1.8(ii), a* = a. Finally,
¢ % ab =+ b and by, 1.3(ii), it follows from b = b . ab that ¢ = ab.c = ac. Now,
V is one of the following three groupoids V;, V;, Vo:

Moreover, V;, Vo, Vo are (up to isomorphism) the only minimal SH-groupoids
of type (a, b, ¢) and of subtype (y).
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VI.5 Minimal SH-groupoids of subtypes (3)

5.1 Let V be of subtype (8). Then it follows from b* = b, b = ab + a and
beb # b that bc = ¢, ¢cb + b, and so ac + a. Suppose that ac = ¢, then we have
c=a.c=a.bc=f+g=ab.c=b.c=c a contradiction. Therefore,
a % ac = f % c and so, V contains at least four different elements a, b, c, f.

For a &+ ba + b, we obtain a = a.ba = ab.a = ba, a contradiction. For
ba =0b, we have b.f =b.ac =ba.c =b.c = c a contradiction with 1.2(i).
Therefore, ba = a. Now, > = a.ba = ab.a = ba = a.

Further, either ca = ¢ or a % ca #+ ¢ (for ca = a, we have b = ab = ca.b =
c.ab = ca = ¢, a contradiction). Suppose that ¢’ = ¢ # ¢, then b = bc®> =
bc .c = ¢? a contradiction with 1.2(i). Therefore either ¢> = ¢ or ¢" % ¢ for any
n>2Ifc=cthench = c(forchb +# cwehavec = c.c = c.bc = cb. c, hence
b.cb = b, a contradiction).

5.2 Example. Let ¢’ = ¢ and ca = c¢. Then G is isomorphic to the following
groupoid V;:

5.3 Example. Let ¢ = ¢, and ¢ Denote v, = f*.a = a.x* and
wy, =x".c=c.f"forany k > 1.

Then G is isomorphic to the following groupoid V,:

Vola b ¢ x X .. f f2 . v vy .. ow o owy

2 2
ala b f v v /o v v, .. fP [
bla b ¢ x Xx? f v, Uy W, W,
cl|lx ¢ ¢ x X W, W, x? X W, W
x|x ¢ w x* X W, W, x* X} Wy Wy
2 2 3 4 y 3 4
x| x ¢ owy X x Vs

W T m e PP P
A A A L R A

=
A A R
f

2 3 3 re 4 s

Uy | Uy f U3 Uy ... f f U3 Uy ... f f

wilx2 owow X2 X wowy X X L w, wy
4

wy [ X3 wy, owy X Xt owy owy, XX L g owy
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5.4 Example. Let > =c¢, x =ca %+ a, ¢ + ac = f, ba = a. Then a’ = q,

aca # a and cac # ¢ (if aca = a, then we have [.x = ac.ca = dcc. a)
a.ca = a, a contradiction. Similarly, if cac = ¢, then x.f = ca.ac = c(aa.c) =
¢.ac = ¢, a contradiction). Now, xf = ca.ac = cac and fx = ac.ca = aca. If
cac =aca =z, then Xx.x=cac.a=aca.a=aca =2z = cac = c.cac =
c.aca = f.f and G is isomorphic to the following groupoid:

Vsla b ¢ x f z
alab falf:z
blabcx [z
clx ¢ccx z z
X|x czz zz
fla f fzzz
z\|z z z z z z

5.5 Remark. The case of subtype (€) is dual to (d).

VI.6 Minimal SH-groupoids of subtype (1)

6.1 Example. The following ten-element groupoid ¥}, is an SH-groupoid of
subtype (t). One may check that sdist(VM) > 2:

Vala a b b ¢ & d f g 3
al|la> 3 a 3 d f g 3 3 3
a3 3 3 3 g 3 3 3 3 3
b |a> 3 ¥ 3 3 g 3 3 3
{3 3 3 3 3 3 3 3 3 3
cla> 3 ¢ 3 ¢ 3 g 3 3 3
/3 3 3 3 3 3 3 3 3 3
dl3 3 £ 3 f 3 3 3 3 3
f13 3 3 3 3 3 3 3 3 3
g13 3 33 3 3 3 3 3 3
313 3 3 3 3 3 3 3 3 3

6.2 Example. V|, is a homomorphic image of the following SH-groupoid ¥s:

21



Vs a a* h b? ¢ ¢ d I g 3 4 5 m

a a* 3 o 3 d f g 4 4 4 b) 6 m+ 1
a? 3 4 3 4 g 4 4 5 5 5 6 7 m+2
b a? 3 3 ¢ 3 g 4 4 4 5 6 m+1
b? 3 4 3 4 3 4 4 5 5 5 6 7 m+2
¢ a? 3 ¢ 3 ¢? 3 g 4 4 4 5 6 m+1
|3 4 3 4 3 4 4 5 5 5 6 7 m+2
d 3 4 I 4 f 4 4 5 S 5 6 7 m+2
f 4 5 4 5 4 5 5 6 6 6 7 8 m+3
g 4 5 4 5 4 5 5 6 6 6 7 8 m+3
3 4 5 4 5 4 5 S 6 6 6 7 8 m+3
4 5 6 5 6 S 6 6 7 7 7 8 9 m+4
m (m+1 m+2m+1 m+2m+1 m+2 m+2 m+3 m+3 m+3 m+4 m+5 ... m+m

VI.7 Comments nad open problems

7.1 The structure of minimal SH-groupoids of type (a, b, c) seems to be rather
complicated. Anyway, continue the description of these groupoids.

7.2 Find the semigroup distance of the groupoids V,,, Vi5 from VL6.
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