Acta Universitatis Carolinae. Mathematica et Physica

Tomáš Kepka; M. Trch Groupoids and the associative law VI. (Szász-Hájek groupoids of type (a, b, c))

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 38 (1997), No. 1, 13-22

Persistent URL: http://dml.cz/dmlcz/142682

Terms of use:

© Univerzita Karlova v Praze, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

Groupoids and the Associative Law VI. (Szász-Hájek groupoids of type (a, b, c))

T. KEPKA and M. TRCH

Praha*)

Received 16. September 1996

The paper is concerned with groupoids possesing just one non-associative triple and this is of the form (a, b, c).

Článek se zabývá grupoidy s jedinou neasociativní trojicí, která je tvaru (a, b, c).

This paper is an immediate continuation of [3], [4] and [5]. Here, Szász-Hájek groupoids of type (a, b, c) are considered.

VI.1. Basic arithmetic of SH-groupoids of type (a, b, c)

- **1.1** In this section, G is an SH-groupoid of type (a, b, c) (see [3]) and a, b, $c \in G$ are pair-wise different such that $a \cdot bc \neq ab \cdot c$. We put d = ab, e = bc, $f = a \cdot bc$ and $g = ab \cdot c$.
- **1.2 Proposition.** (i) If $x, y \in G$ are such that xy = a (resp. xy = b or xy = c), then either x = a (resp. x = b or x = c) or y = a (resp. y = b or y = c).
 - (ii) If M is a generator set of G, then $\{a, b, c\} \subseteq M$.
- (iii) If H is a subgroupoid of G, then either $\{a, b, c\} \subseteq H$ and H is an SH-groupoid of type (a, b, c), or $\{a, b, c\} \subseteq H$ and H is a semigroup.
- (iv) If r is a congruence of G, then either $(e, f) \notin r$ and G/r is an SH-groupoid of type (a, b, c), or $(e, f) \in r$ and G/r is a semigroup.

Proof. See III.1.2.

- **1.3 Lemma.** Let $x, y \in G$ be such that a + x + b and b + y + c. Then:
- (i) ax = a iff xb = b.
- (ii) by = b iff yc = c.

^{*)} Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovská 83, Czech Republic Department of Pedagogy, Charles University, 116 39 Praha 1, M. D. Rettigové 4, Czech Republic

- **Proof.** (i) If ax = a and $xb \neq b$, then $f = a \cdot bc = ax \cdot bc = a(x \cdot bc) = a(xb \cdot c) = (ax \cdot b) c = ab \cdot c = g$, a contradiction. Similarly if $ax \neq a$ and xb = b.
 - (ii) Similar to (i).
 - **1.4 Lemma.** (i) $ac = a \ iff \ b = cb$.
 - (ii) ac = c iff ba = b.
 - (iii) Either $d \neq a$ or $e \neq c$.
 - (iv) Either $d \neq b$ or $e \neq b$.
 - (v) Either $ba \neq b$ or $cb \neq b$.

Proof. (i) and (ii). See 1.3(i) and (ii), resp.

- (iii) If d = a and e = c, then $f = a \cdot bc = ac = ab \cdot c = a$, a contradiction.
- (iv) If d = b and e = b, then $f = a \cdot bc = ab = b = bc = ab \cdot c = g$, a contradiction.
 - (v) If ba = b and cb = b, then a = ac = c by (i) and (ii), a contradiction.
 - **1.5 Lemma.** (i) If $d \neq b$, then either $cb \neq b$ or $ca \neq c$.
 - (ii) If $ba \neq b$, then either $e \neq b$ or $ac \neq c$.
 - (iii) If $e \neq b$, then either $ba \neq b$ or $ca \neq a$.
 - (iv) If $cb \neq b$, then either $d \neq b$ or $ac \neq a$.
- **Proof.** (i) Let cb = b and ca = a. Then cd = c. ab = cb = b and, by 1.2(i), d = b, a contradiction.
 - (ii), (iii) and (iv). Similar to (i).
 - **1.6 Lemma.** (i) If d = a and ba = b, then $a^2 = a$ and $b^2 = b$.
 - (ii) If d = b and ba = b, then $a^2 = a$ and $b^2 = b$.
 - (iii) If e = c and cb = b, then $b^2 = b$ and $c^2 = c$.
 - (iv) If e = b and cb = b, then $b^2 = b$ and $c^2 = c$.
- **Proof.** (i) $a^2 = ab$. a = a. ba = a. b = a and $b^2 = ba$. b = b. ab = ba = b. The rest is similar.
 - **1.7 Lemma.** (i) If $b^2 = b$, then either d = a or e = c.
 - (ii) If either d = a or e = c, then $b^2 = b$.
 - (iii) If d = b, then either $a^2 = a$ or $a^3 = a$.
 - (iv) If e = b, then either $c^2 = c$ or $c^3 = c$.
- **Proof.** (i) Suppose that $a \neq d$ and $e \neq c$. Then $f = a \cdot bc = a \cdot b^2c = a(b^2 \cdot c) = a(b \cdot bc) = ab \cdot bc = (ab \cdot b)c = ab^2 \cdot c = g$, a contradiction.
- (ii) If d = a and $b^2 \neq b$, then $e \neq c$ by 1.4(iii) and $f = a \cdot bc = ab \cdot bc = a(b \cdot bc) = a \cdot b^2c = ab^2 \cdot c = (ab \cdot b)c = ab \cdot c = g$, a contradiction. The other case is similar.
 - (iii) $b = ab = a \cdot ab = a^2b$ and we can use 1.3(i).
 - (iv) Dual to (iii).

- **1.8 Lemma.** (i) If $b^2 = b$ and d = b, then $a^2 = a$, ba = a, e = c.
- (ii) If $b^2 = b$ and ba = b, then $a^2 = a$, d = a, ac = c.
- (iii) If $b^2 = b$ and e = b, then $c^2 = c$, cb = c, d = a.
- (iv) If $b^2 = b$ and cb = b, then $c^2 = c$, e = c, ac = a.
- **Proof.** (i) We have $a \neq d = b$ and so, by 1.7(i), e = c. If $a \neq ba \neq b$, then b = bb = b. ab = ba. b. Now, by 1.3(i) a = a. ba = ab. a = ba, a contradiction. Further if ba = b, then, by 1.3(ii), ac = c and so f = a. bc = ac = c = bc = ab. c = g, a contradiction. Thus $ba \neq b$ and ba = a. Finally, $a^2 = a$. ba = ab. a = ba = a.
- (ii) We have ac = c by 1.3(ii). Further by 1.7(i) either d = a or e = c. If $a \neq d = b$, then $g = ab \cdot c = bc = c = ac = a \cdot bc = f$, a contradiction. If $a \neq d \neq b$, then $b = bb = ba \cdot b = b \cdot ab$ and, by 1.3(ii), g = c and so $f = a \cdot bc = a \cdot c = c = ab \cdot c = g$, a contradition. Finally, $a^2 = ab \cdot a = a \cdot ba = ab = a$.
 - (iii) and (iv). Dual to (i) and (ii), resp.
- **1.9 Lemma.** (i) If d = a, ba = b, e = b and cb = c, then $a^2 = a$, $b^2 = b$, $c^2 = c$ and ac = c.
- (ii) If d = b, ba = a, e = c and cb = b, then $a^2 = a$, $b^2 = b$, $c^2 = c$ and ac = a.
 - (iii) If $a^2 = a$ and d = a, then either ba = a or ba = b.
 - (iv) If $c^2 = c$ and e = c, then either cb = b or cb = c.

Proof. (i) Use 1.6(i), (iv) and 1.8(ii).

- (ii) Dual to (i).
- (iii) We have $a = a^2 = ab \cdot a = a \cdot ba$. Now, if $a \neq ba \neq b$, then $b = ba \cdot b = b \cdot ab = ba$ by 1.3(i), a contradiction.
 - (iv) Dual to (iii).
 - **1.10 Lemma.** (i) If $a^2 = a$ and d = b, then af = f and ag = f.
 - (ii) If $a^2 = a$ and $d \neq b$, then af = f and ag = g.
 - (iii) If $a^2 + a$ and d = b, then $a^3 + a$, $af = gf = a^2g$ and $ag = f = a^2f$.
 - (iv) If $a^2 \neq a$ and $d \neq b$, then $af = ag = a^2 \cdot bc$.
- **Proof.** (i) $af = a(a \cdot bc) = a^2 \cdot bc = a \cdot bc = f$ and $ag = a(ab \cdot c) = a \cdot bc = f$.
- (ii) $af = a(a \cdot bc) = a^2 \cdot bc = a \cdot bc = f$ and $ag = a(ab \cdot c) = (a \cdot ab) c = (a^2b) c = ab \cdot c = g$.
- (iii) $af = a(a \cdot bc) = a^2 \cdot bc = (a \cdot ab) c = ab \cdot c = g$ and $ag = a(ab \cdot c) = a \cdot bc = f$.
 - (iv) $af = a(a \cdot bc) = a^2 \cdot bc = a^2b \cdot c = (a \cdot ab)c = a(ab \cdot c) = ag$.
 - **1.11 Lemma.** (i) If $c^2 = c$ and e = b, then fc = g and gc = g.
 - (ii) If $c^2 = c$ and $e \neq b$, then fc = f and gc = g.

- (iii) If $c^2 \neq c$ and e = b, then $c^3 = c$, $fc = g = gc^2$ and $gc = f = fc^2$.
- (iv) If $c^2 \neq c$ and $e \neq b$, then $fc = gc = ab \cdot c^2$.

Proof. Dual to 1.10.

- **1.12 Lemma.** Let $x, y \in G$ be such that $a \neq x$ and $y \neq c$.
- (i) If xa = a, then xf = f and xg = g.
- (ii) If $xa \neq a$, then $xf = xg (= xa \cdot bc)$.
- (iii) If cy = c, then fy = f and gy = g.
- (iv) If $cy \neq c$, then $fy = gy (= ab \cdot cy)$.

Proof. (i) $xf = x(a \cdot bc) = xa \cdot bc = a \cdot bc = f$ and $xg = x(ab \cdot c) = (x \cdot ab)c = (xa \cdot b)c = ab \cdot c = g$.

- (ii) $xf = x(a \cdot bc) = xa \cdot bc = (xa \cdot b)c = (x \cdot ab)c = x \cdot (ab \cdot c) = xg$.
- (iii) and (iv). Dual tl (i) and (ii), resp.
- **1.13 Lemma.** (i) If ca = a, then aca = a iff $a^2 = a$ and cac = c iff ac = c.
- (ii) If ca = c, then aca = a iff ac = a and cac = c iff $c^2 = c$.

Proof. (i) If aca = a, then $a = aca = a \cdot a = a^2$. If $a^2 = a$, then $a = aa = a \cdot ca = a$.

- (ii) Similar to (i).
- **1.14 Lemma.** (i) If d = a, then aba = a iff $a^2 = a$.
- (ii) If ba = a, then aba = a iff $a^2 = a$.
- (iii) If $a \neq ba \neq b$, then aba = a iff bab = b and iff g = c.

Proof. Obvious.

- **1.15 Lemma.** (i) If e = c, then cbc = c iff $c^2 = c$.
- (ii) If cb = c, then cbc = c iff $c^2 = c$.
- (iii) If $b \neq cb \neq c$, then cbc = c iff bcb = b and iff f = a.

Proof. Obvious.

- **1.16 Lemma.** (i) If bab = b and ab + b + ba, then aba = a and g = c.
- (ii) If bcb = b and $cb \neq b \neq bc$, then cbc = c and f = a.

Proof. Obvious.

- **1.17 Lemma.** (i) If $a^n = a$ (resp. $c^n = c$) for some n > 1, then either $a^2 = a$ or $a^3 = a + a^2$ (resp. either $c^2 = c$ or $c^3 = c + c^2$).
 - (ii) If $b^n = b$ for some n > 1, then $b^2 = b$.
 - (iii) If $a^3 = a + a^2$, then ab = b and either $c^2 = c$ or $c^n + c$ for any n > 2.
 - (iv) If $c^3 = c \neq c^2$, then bc = b and either $c^2 = c$ or $c^n \neq c$ for any n > 2.
- **Proof.** (i) Suppose that $a^2 \neq a \neq a^3$ and let n be the smallest such that $a^n = a$ (obviously, n > 3). Then $a = a^2$. a^{n-2} and, by 1.2(i) $a^2 = a$ or $a^{n-2} = a$, a contradiction. Similarly for b, c.

- (ii) If $b^3 = b + b^2$, then $f = a \cdot bc = a(b^3 \cdot c) = a(b^2 \cdot bc) = a(b^2 \cdot bc)$. Now, either $ab^2 + a$ or bc + c, so $ab^2 \cdot bc = (ab^2 \cdot b)c = ab^3 \cdot c = ab \cdot c = g$, a contradiction.
- (iii) and (iv) By 1.3(i), $a^2b = b$, and so by 1.4(iii), ab = b. If $c'' = c \neq c^2$, then $c^3 = c$ and $bc^2 = b$. Therefore bc = b, a contradiction with 1.4(ii).
 - **1.18 Lemma.** (i) If d = a, then either $a^2 = a$ or $a^n \neq a$ for any $n \geq 2$.
 - (ii) If e = c, then either $c^2 = c$ or $c^n \neq c$ for any $n \geq 2$.

Proof. (i) If $a^n = a \neq a^2$, then, by 1.17(i), $a^3 = a \neq a^2$. Now, by 1.3(i), $b = a^2b = a \cdot ab = a \cdot d$ and so, by 1.2(i), b = d, a contradiction.

(ii) Dual to (i).

VI.2 Minimal SH-groupoids of type (a, b, c)

- **2.1** In this section let W be an absolutely free groupoid generated by a three-element set $\{x, y, z\}$. Let G be a minimal SH-groupoid of type (a, b, c) and let $\phi: W \to G$ be a projective homomorphism such that $\phi(x) = a$, $\phi(y) = b$ and $\phi(z) = c$. For any $t \in W$ denote by I(t) the length of t.
- **2.2 Lemma.** Let $a \notin \{a^2, ab, ac, a^3, aba, a.bc, aca\}$. Then $ax \neq a$ for every $x \in G$.
- **Proof.** Let, on the contrary, $t \in W$ be such that $a = a\phi(t)$ and l(t) is minimal. Clearly, $l(t) \ge 2$ and we have t = uv. Now, $a = a \cdot \phi(u) \phi(v) = a\phi(u) \cdot \phi(v)$, so that $\phi(v) = a$ and $a = a\phi(u) \cdot a = a \cdot \phi(u) a$.

Moreover, $l(u) \ge 2$, u = pq and $a = a(\phi(p) \phi(q) \cdot a) = a(\phi(p) \cdot \phi(q) a) = a\phi(p) \cdot \phi(q) a$ and $a\phi(p) + a + \phi(q) a$, a contradiction.

2.3 Lemma. Let $a \notin \{a^2, ba, ca, a^3, aba, a.bc\}$ and let either $ca \neq c$ or $a \neq a$. bc. Then $xa \neq a$ for any $x \in G$.

Proof. Similar to 2.2.

2.4 Proposition. Let $a \notin \{a^2, ab, ac, ba, ca, a^3, aba, aca, a \cdot bc\}$. Then $xy \neq a$ for all $x, y \in G$.

Proof. Use 2.2 and 2.3.

2.5 Proposition. Let $c \notin \{c^2, ca, cb, ac, bc, c^3, cac, cbc, ab . c\}$. Then $xy \neq c$ for all $x, y \in G$.

Proof. Dual to 2.4.

2.6 Proposition. Let $b \notin \{b^2, ab, cb, ba, bc, bab, bcb\}$. Then $xy \neq b$ for all $x, y \in G$.

Proof. We can proceed similarly as in the proof of 2.4 (use also 1.17(ii)).

- **2.7** We shall say that G is of subtype
- (a) if $b^2 = b$, $ab \neq b$, $b \neq bc$, bab = b, bcb = b:
- (β) if $b^2 = b$, ab = b, $b \neq bc$, bcb = b, (and bab = b);
- (γ) if $b^2 = b$, $ab \neq b$, b = bc, bab = b, (and bcb = b);
- (δ) if $b^2 = b$, ab = b, $b \neq bc$, $bcb \neq b$, (and bab = b);
- (ϵ) if $b^2 = b$, $ab \neq b$, b = bc, $bab \neq b$, (and bcb = b);
- (ϕ) if $b^2 = b$, $ab \neq b$, $b \neq bc$, bab = b, $bcb \neq b$;
- (ψ) if $b^2 = b$, $ab \neq b$, $b \neq bc$, $bab \neq b$, bcb = b;
- (x) if $b^2 = b$, ab + b, bc + b, bab + b, bcb + b;
- (λ) if $b^2 \neq b$, ab = b, $bc \neq b$, $bab \neq b$, bcb = b;
- (μ) if $b^2 \neq b$, $ab \neq b$, bc = b, bab = b, $bcb \neq b$;
- (v) if $b^2 \neq b$, ab = b, $bc \neq b$, $bab \neq b$, $bcb \neq b$;
- (ω) if $b^2 \neq b$, $ab \neq b$, bc = b, $bab \neq b$, $bcb \neq b$;
- (π) if $b^2 \neq b$, $ab \neq b \neq ba$, $bc \neq b \neq cb$, bab = b, bcb = b;
- (g) if $b^2 \neq b$, $ab \neq b \neq ba$, $bc \neq b$, bab = b, $bcb \neq b$;
- (σ) if $b^2 \neq b$, $ab \neq b$, $b \neq b \neq cb$, $bab \neq b$, bcb = b;
- (τ) if $b^2 \neq b$, $ab \neq b$, $bc \neq b$, $bab \neq b$, $bcb \neq b$.
- **2.8 Proposition.** G is of just one of the preceding sixteen subtypes.

Proof. It follows immediately from 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.16, 1.17, 1.18, 2.6.

VI.3 Minimal SH-groupoids of subtype (α)

- **3.1** Let V be of subtype (α). Now, $b^2 = b$ implies that either ab = a or bc = c.
- (i) Suppose that ab = a. Then bab = b implies ba = b, and so ac = c. Further, $a^2 = ab \cdot a = a \cdot ba = ab = a$. Obviously, e = bc + c, e = bc + b, e = bc + a and so V contains at least four elements a, b, c, e.

Further, $a = a \cdot bc = ae$, c = cbc = ce and b = bcb = eb.

Moreover, if cb = c, then ce = c, $c^2 = c$. Obviously, $ca \neq a$ (for ca = a we obtain ea = bc. a = b. ca = ba = b, a contradiction with 1.2(i)), and hence either ca = c or $z = ca \neq a$, b, c (and then we put w = ea = bca = bz). Now, V is one of following two groupoids:

V_1	a	b	c	e	V_2	а	b	с	e	Z	w
a	a	а	с	а	а	а	a	с	а	z	а
b					b	b	b	e	b	w	w
c	c	с	c	e	c	Z	c	c	c	Z	\boldsymbol{z}
e	e	b	e	e						W	
					Z	z	z	С	Z	Z	Z
					W	w	W	e	e	w	w

(ii) If bc = c, then bcb = b implies cb = b and ac = a. Further, it follows

from bc = c and cb = c that $c^2 = c$ (and $a \neq ab \neq b$, $ab \neq c$). In both cases V contains at least four elements a, b, c, d.

Further, $ca \neq c$ (for ca = c we have b = cb = ca. b = c. ab, a contradiction with 1.2(i)), and so ca = c or $v = ca \neq c$, a. Therefore, V is one of following two groupoids:

V_3	a	b	c	d	V_4	а	b	c	d	v	w
a b	а	d	а	d	a	а	d	а	d	а	d
b	b	b	С	b	b	а	b	c	d b w	v	w
c d	а	b	c	d	c	v	b	с	w	v	w
d	d	d	С	d	d	d	d	с	d	v	W
									w		
					w	w	w	С	W	v	w

VI.4 Minimal SH-groupoids of subtype (β) and (γ)

4.1 Let V be of subtype (β). We have $b^2 = b$, ab = b, and so, by 1.8(ii) $a^2 = a$, ba = a. Further, bc = c (by 1.7(i), ab = a or bc = c, but $a \neq ab = b$), and so b = bc. b = cb. Obviously, $a \neq bc \neq b$ and, by 1.3(i), a = a. bc = ac implies cb = b. Finally, it follows from bc = c and $b^2 = b$ that $c^2 = c$ by 1.8(iii). Now, V is one of the following three groupoids V_5 , V_6 , V_7 :

V_5	a	b	c		V_6	a	b	c	x		V_7	a	b	с
а	а	b	а	-	a	а	b	а	а	-	а	a	b	a
b	а	b	\boldsymbol{c}			a					b	a	b	с
c	a	b	С		c	x	b	С	х		c	c	b	c
					\boldsymbol{x}	x	b	\boldsymbol{x}	x					

Moreover, V_5 , V_6 , V_7 are (up to isomorphism) the only minimal SH-groupoids of type (a, b, c) and of subtype (β).

4.2 Let V be of subtype (γ). Similarly as in 4.1 we have $b^2 = b$, bc = b and, by 1.8(iii), $c^2 = c$ and cb = c. Further, ab = a (by 1.6(iii) ab = a or bc = c, but $c \neq bc = b$) and so b = b. ab = ba. Now, by 1.8(ii), $a^2 = a$. Finally, $c \neq ab \neq b$ and by, 1.3(ii), it follows from b = b. ab that c = ab. c = ac. Now, V is one of the following three groupoids V_8 , V_9 , V_{10} :

V_8				V_9	a	b	c	У	V_{10}	а	b	c
a	a	а	c	a	a	а	с	у	а	a	а	с
b	b	b	b	b	b	b	b	b	b	b	b	b
C	a	с	c	С	y	c	c	у	C	c	С	c
				y	y	У	c	у				

Moreover, V_8 , V_9 , V_{10} are (up to isomorphism) the only minimal SH-groupoids of type (a, b, c) and of subtype (γ).

VI.5 Minimal SH-groupoids of subtypes (δ)

5.1 Let V be of subtype (δ) . Then it follows from $b^2 = b$, $b = ab \neq a$ and $bcb \neq b$ that bc = c, $cb \neq b$, and so $ac \neq a$. Suppose that ac = c, then we have c = a. c = a. $bc = f \neq g = ab$. c = b. c = c, a contradiction. Therefore, $a \neq ac = f \neq c$ and so, V contains at least four different elements a, b, c, f.

For $a \neq ba \neq b$, we obtain $a = a \cdot ba = ab \cdot a = ba$, a contradiction. For ba = b, we have $b \cdot f = b \cdot ac = ba \cdot c = c$, a contradiction with 1.2(i). Therefore, ba = a. Now, $a^2 = a \cdot ba = ab \cdot a = ba = a$.

Further, either ca = c or $a \neq ca \neq c$ (for ca = a, we have b = ab = ca. b = c. ab = ca = c, a contradiction). Suppose that $c^3 = c \neq c^2$, then $b = bc^2 = bc$. $c = c^2$, a contradiction with 1.2(i). Therefore either $c^2 = c$ or $c'' \neq c$ for any n > 2. If $c^2 = c$ then cb = c (for $cb \neq c$ we have c = c. c = c. bc = cb. c, hence $b \cdot cb = b$, a contradiction).

5.2 Example. Let $c^2 = c$ and ca = c. Then G is isomorphic to the following groupoid V_{11} :

5.3 Example. Let $c^2 = c$, and $c \neq ca = x$. Denote $v_k = f^k \cdot a = a \cdot x^k$ and $w_k = x^k \cdot c = c \cdot f^k$ for any $k \geq 1$.

Then G is isomorphic to the following groupoid V_{12} :

V_{12}	a	b	c	х	x^2		f	f^2	•••	v_1	v_2		w_1	w_2	
а	а	b	f	v_1	v_2		f	f^2		v_1	v_2		f^2	\int_{0}^{3}	
b	а	b	С	X	x^2		f	f^2		v_1	v_2		w_1	w_2	• • • •
c	\mathbf{x}	c	С	X	x^2		w_1	w_2		x^2	x^3		w_1	w_2	•••
x	x	\boldsymbol{c}	w_1	x^2	x^3	• • • •	w_1	w_2		x^2	x^3		w_2	w_3	•••
x^2	x^2	c	w_2	x^3	x^4		w_2	w_3		x^3	x^4		w_3	w_4	•••
:	:	:	:	:	:	:::	:	:	:::	:	:	:::	:	:	:::
f	v_1	f	f	v_1	v_2		f^2	\int_{0}^{3}		v_2	v_3		\int_{0}^{2}	\int_{0}^{3}	•••
f^2	v_2	f^2	f^2	v_2	v_3		f^3	f^4	• • •	v_3	v_4	• • •	f^3	\int_{0}^{4}	•••
:	:	:	:	:	:	:::	:	:	:::	:	:	:::	:	:	:::
v_1	v_1	f	f^2	v_2	v_3		f^2	f^3	• • •	v_2	v_3		f^3	\int_{0}^{4}	• • •
v_2	v_2	f^2	\int_{0}^{3}	v_3	v_4	• • •	f^3	\int_{0}^{4}	• • •	v_3	v_4	• • •	\int^4	f^5	•••
:		÷	:	:	:	:::	:	:	:::	:	:	:::	÷	:	:::
w_1	x^2	w_1	w_1	x^2	x^3	• • •	w_2	w_3	•••	x^3	x^4	• • •	w_2	w_3	
w_2	x^3	w_2	w_2	x^3	x^4		w_3	W_4	•••	x^4	x^5	•••	w_3	w_4	•••
\vdots	:	:	:	:	:	:::	÷	:	:::	:	:	:::	÷	÷	:::

5.4 Example. Let $c^2 = c$, x = ca + a, c + ac = f, ba = a. Then $a^2 = a$, aca + a and cac + c (if aca = a, then we have $f \cdot x = ac \cdot ca = a(cc \cdot a) = a \cdot ca = a$, a contradiction. Similarly, if cac = c, then $x \cdot f = ca \cdot ac = c(aa \cdot c) = c \cdot ac = c$, a contradiction). Now, $xf = ca \cdot ac = cac$ and $fx = ac \cdot ca = aca$. If cac = aca = z, then $x \cdot x = cac \cdot a = aca \cdot a = aca = z = cac = c \cdot cac = c \cdot aca = f \cdot f$ and G is isomorphic to the following groupoid:

5.5 Remark. The case of subtype (ε) is dual to (δ).

VI.6 Minimal SH-groupoids of subtype (τ)

6.1 Example. The following ten-element groupoid V_{14} is an SH-groupoid of subtype (τ) . One may check that $sdist(V_{14}) \ge 2$:

V_{14}	a	a^2	b	b^2	c	c^2	d	f	g	3
a	a^2	3	a^2	3	d	f	g	3	3	3
a^2	3	3	3	3	g	3	3	3	3	3
a a^2 b b^2	a^2	3	b^2	3	c^2		g	3	3	3
	3	3	3	3	3	3	3	3	3	
$c \\ c^2 \\ d \\ f$	a^2	3	a^{2} 3 b^{2} 3 c^{2} 3 f	3	c^2	3	g	3	3	3
c^2	3	3	3	3	3	3	3	3	3	
d	3	3	f	3	f	3	3	3	3	3
f	3		3	3	3	3	3	3	3	
$\frac{g}{3}$	3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3	3

6.2 Example. V_{14} is a homomorphic image of the following SH-groupoid V_{15} :

V ₁₅	а	a^2	h	h^2	c	c^2	d	f	g	3	4	5		m	
a	a^2	3	a^2	3	d	f	g	4	4	4	5	6		m+1	
a^2	3	4	3	4	g	4	4	5	5	5	6	7		m+2	
h	a ²	3	b^2	3	c^2	3	g	4	4	4	5	6		m+1	
b^2	3	4	3	4	3	4	4	5	5	5	6	7		m+2	
с	a ²	3	c^2	3	c^2	3	g	4	4	4	5	6		m+1	
c^2	3	4	3	4	3	4	4	5	5	5	6	7		m+2	
d	3	4	f	4	f	4	4	5	5	5	6	7		m+2	
f	4	5	4	5	4	5	5	6	6	6	7	8		m+3	
g	4	5	4	5	4	5	5	6	6	6	7	8		m+3	
3	4	5	4	5	4	5	5	6	6	6	7	8		m+3	
4	5	6	5	6	5	6	6	7	7	7	8	9		m+4	
:	:	÷	:	:	:	:	:	:	:	:	:	:	:::	:	:::
m	m+1	m+2	m+1	m+2	m+1	m+2	m+2	m+3	m+3	m+3	m+4	m + 5		m + m	
÷	:	÷	÷	÷	:	:	:	÷	:	:	÷	:	:::	:	:::

VI.7 Comments nad open problems

- **7.1** The structure of minimal SH-groupoids of type (a, b, c) seems to be rather complicated. Anyway, continue the description of these groupoids.
 - **7.2** Find the semigroup distance of the groupoids V_{14} , V_{15} from VI.6.

References

- [1] KEPKA T. and TRCH M., Groupoids and the associative law I. (Associative triples), Acta Univ. Carolinae Math. Phys. 33/1 (1992), 62-86.
- [2] KEPKA T. and TRCH M., Groupoids and the associative law II. (Groupoids with small semigroup distance), Acta Univ. Carolinae Math. Phys. 34/1 (1993), 67-83.
- [3] Kepka T. and Trch M., Groupoids and the associative law III. (Szász-Hájek groupoids), Acta Univ. Carlinae Math. Phys. 36/1 (1995), 17-30.
- [4] KEPKA T. and TRCH M., Groupoids and the associative law IV. (Szász-Hájek groupoids of type (a, b, a)), Acta Univ. Carolinae Math. Phys. 35/1 (1994), 31-42.
- [5] KEPKA T. and TRCH M., Groupoids and the associative law V. (Szász-Hájek groupoids of type (a, a, b)), Acta Univ. Carlinae Math. Phys. 36/1 (1995), 31-44.