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(Representable Cardinal Functions)

JAROSLAV JEZEK and TOMAS KEPKA

Praha*)

Received 10. October 1995

In this paper we investigate under what conditions is a mapping f of a semigroup S into the class
of cardinals representable by a groupoid G and a homomorphism g of G onto S such that ker (g) is the
associativity congruence of G and Card (g~ '(x)) = f(x) for every x € S.

V tomto ¢ldnku vySetfujeme, za jakych podminek lze zobrazeni f pologrupy S do tfidy viech
kardindlnich &isel reprezentovat grupoidem G a zobrazenim ¢:G — S tak, Ze f(G) = S, ker(g) je
kongruence asociativity grupoidu G a Card (9~'(x)) = f(x) pro viechna x € S.

XII.1 Introduction

For a groupoid G, we denote by s; the least congruence of G such that the
corresponding factor of G is a semigroup. Clearly, s¢ is just the congruence of
G generated by the pairs (xy - z, x - yz) with x, , z € G arbitrary.

Let S be a semigroup. By a cardinal function on S we mean a mapping of S into
the class of nonzero cardinal numbers. We say that a cardinal function f on S is
representable (by a groupoid) if there exist a groupoid G and a homomorphism
g of G onto S such that ker (g) = s and Card (9~ '(x)) = f(x) for every x € S. We
also say that the pair (G, g) represents the pair (S, f). ‘

In this paper we are going to investigate under what conditions is a cardinal
function on a semigroup representable by a groupoid. Let us start with some
definitions, observations and remarks.

A groupoid G is said to be counterassociative if s; = G x G. Among counter-
associative groupoids we find all non-associative simple groupoids. These form
a very large class; in particular, every groupoid can be embedded into a counter-
associative groupoid.

Let S be a semigroup. We put S = SS = {xy:x, ye S} and S" = SS"~! for
n > 3. Also, put §' = S. Put

Id(S) = {ae S:a = a’},
*) MFF UK, Sokolovskd 83, 186 00 Praha 8, Czech Republic
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Lu(S) = {ae S:a€ Sa},

Ru(S) = {aeS:aeaS},

Li(S) = {ae S:a€1d(S) a},

Ri(S) = {ae S:aeald(S)},

K(S) = (=S

A semigroup S is called nilpotent of class at most n if S contains an annihilating
element O (usually also called zero element) and S" = {0}.

1.1 Lemma. Let S be a semigroup. Then:

(1) Lu(S) is either empty or a right ideal of S; Ru(S) is either empty or a left
ideal of S;

(2) Li(S) is either empty or a right ideal of S; Ri(S) is either empty or a left ideal
of S;

(3) K(S) is either empty or an ideal of S;

(4) 1d(S) <= Li(S) = Lu(S) = K(S) and 1d(S) <= Ri(S) < Ru(S) = K(S).

Proof. It is obvious. [

1.2 Lemma. Let S be a finite semigroup. Then 1d(S) is non-empty, Li(S) = Lu(S),
Ri(S) = Ru(S) and Lu(S) u Ru(S) = Ru(S) Lu(S).

Proof. It is easy. []

1.3 Lemma. Let S be a finite semigroup with S = S*. then S = Ru(S) Lu(S). In
particular, S = Lu(S), provided that S is commutative.

Proof. Put I = Ru(S) Lu(S) and define a relation r on S by (a, b) € r if and only
if ae bS. Clearly, I is an ideal of S, r is a transitive relation and a € Ru(S) if and
only if (a, a) e r.

Suppose that there exists an element ae S — I. Since S = S?, there exists an
infinite sequence ag, a,, a,, ... of elements of S such that a, = a and a; = a;, b;
for some b, € S, whenever i > 0. We have (a, a,,,) € r; by transitivity, (a; a)€r
whenever 0 < i < j. Since I is an ideal and a, ¢ I, we conclude that none of the
elements aq, a,, a,, ... belongs to I. Since S is finite, it follows that a; = a; for some
0 < i <j. Thus (a, a) € r, a;€ Ru(S) and, since Ru(S) = I by 1.2, we get a;€1,
a contradiction. [

1.4 Example. Let T be the five-element semigroup with the following multi-
plication table:

T|0 a b ¢ d
0|0 00O0O
al0 00 0O
b|0 0 0 ab
cl00 00O
di0 00 ¢cd
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We have T = T? and a ¢ Lu(T) u Ru(T).

1.5 Lemma. Let S be a semigroup with at most five elements, such that S = S*
and Lu(S) U Ru(S) =% S. Then S is isomorphic to the semigroup T from Example 1.4.

Proof. Take an element ae S — (Lu(T) u Ru(T)). By 1.3, we have a = bc for
some elements b e Ru(S) and c eLu(S). Clearly, b¢Lu(S) and ¢ ¢ Ru(S). Put
0 = d’ Itis easy to see that the four elements 0, a, b, c are pairwise different. Since
b € Ru(S), we have b € bd for some element d.

Let us prove that d ¢ {O, a, b, c}. Clearly, d & b and d =+ c. If either d = a or
d = 0 = a? then either b = ba or b = ba? then it follows from a = bc that for
any n > 1 we can write a = b"x for some element x; but b" is an idempotent for
some n > 1 and we get a € Lu(S), a contradiction.

Hence Card (S) = 5 and S = {0,qa, b, ¢, d}.

Quite similarly, there is an element d’ with ¢ = d'c, and d' ¢ {0,q, b, c}. Hence
d =d and we get dc = c. Now we shall try to compute the rest of the
multiplication table for S.

It is easy to see that ab + a, b, ¢, d, and hence ab = 0. We also have, by similar
arguments, bb = cc = ba = ac = ac = ca = 0.

Clearly, ad #+ a and ad + b. If ad = c, then a = bc = bad = b%ad = ...,
a contradiction. If ad = d, then b = bd = bad and a = bc = badc = b*a(dc)’ = ...,
again a contradiction. Consequently, ad = 0 and, similarly, da = 0. Since
a ¢ Ru(S) U Lu(S), b ¢ Lu(S) and ¢ ¢ Ru(S), we have cb = c¢d = db = 0. Clearly,
a® # a,b,c. If a* = d, then a = bc = bdc = ba’c, which is not possible. Thus
a® = 0 and it follows that 00 = b0 = 0b = c0 = Oc = d0 = 0d = 0. Finally,
dd = d, since S = S [J

An element a of a semigroup S is said to be of height n if a e S" but a ¢ $"*';
a is said to be of infinite height if a € K(S). Clearly, if S contains only elements
of finite height, then S is infinite.

1.6 Proposition. Let G be a division groupoid. Then G/s¢ is a group and the
blocks of s are all of the same cardinality.

Proof. G/s; is a division semigroup, and hence a group. Let A4 and B be two
blocks of sg; take two elements ae A and b € B. We have ca = b for some ce G
and cA < B. On the other hand, if de B, e€ G and ce = d, then (ca, ce) € s,
(a, €) € sg, e € A and we see that cA = B. Consequently, Card (4) > Card (B) and
the rest is clear. [

Let G be a division groupoid. We put ¢(G) = Card (4), where A is a block of sg.
By 1.6, o'(G) does not depend on the choice of the block A.

Let G be a groupoid. One can define a binary hyperoperation © on G by
x Oy = {ze G:(xy, z) € s¢}. It is easy to check that G(O) is then a semihypergroup
(called the associativity semihypergroup of the groupoid G). This semihypergroup
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is complete and it is a hypergroup if and only if G/s¢ is a group. In particular, G(O)
is a hypergroup, provided G is a division groupoid.

XIL2 A necessary condition

2.1 Lemma. Let f be a representable cardinal function on a semigroup S. Then
f(a) = 1 for every ae S — S°.

Proof. Let (G, g) be a pair representing the pair (S,f). Let ae S — S* and
suppose f(a) > 2. Then the set A = g~'(a) is the disjoint union of two non-empty
subsets, say A = B U C, and the relation r = (s¢ — (4 x A)) U (Bx B) u (C x C)
is an equivalence on G properly contained in sg.

If x, y, z are three elements of G, then the elements x - yz and xy -z do not
belong to A and (x - yz, xy - z) € sg; hence (x - yz, xy - z) € r. Now, to get a contra-
diction, it suffices to show that r is a congruence of G. This is clear if a ¢ S. So,
let ae S% We shall prove, for example, that (x, y)er implies (zx,zy)er. Of
course, we have (zx, zy) € sg. If zx ¢ A, then (zx, zy) € r follows. If zx € A, then
a = g(zx) = g(z) g(x), g(x) =g(y)eS — S* and therefore x =y (we have
f(g(x)) = 1); then zx = zy and (zx,zy)er. O

2.2 Lemma. Let I be a non-empty set and A" be a non-empty system of pairwise
disjoint non-empty sets. The following two conditions are equivalent:

(1) There exists a mapping h of \JA onto I such that 1x1 is the only
equivalence on I containing all the relations h(K) x h(K) with K € K.
(2) Card(I) < 1 + Yc(Card K — 1).

Proof. Let us start with the direct implication. Let us construct, by transfinite
induction, for an ordinal number i an element K; of ¢ and an element g, € K; as
follows. K, is any element of ", and q, is any element of K,. Now let i be an
ordinal number such that K; and a; have been defined for all j <i. Put
A ={K;:j<i}.If A" = A, we stop the construction, so that i is the first
ordinal number for which K; is not defined. Otherwise, it follows easily from (1)
that there is a set K € #~ — A" such that h(K) has a non-empty intersection with
h(K;) for some j < i. Put K; = K let g, be an element of K; with h(a) = h(b) for
some be K. It is easy to see that h maps the set {a} U Y (K; — {a}) onto I.
Consequently, Card (I) cannot be bigger than the cardinality of the set, which is
just the right side of the inequality (2).

It remains to prove the converse. For every K € " take an element ax € K
arbitrarily. Moreover, take an element b € I. It follows from (2) that there exists
a mapping ho of ( Jxes(K — {ax})onto I — {b}.Let h be the extension of h, with
h(ax) = b for all K € . It is easy to see that h has the desired property. []
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Let S be a semigroup and a be an element of S. We denote M, =
{(b,c) € S x S:bc = a}.Further, we denote by E, the equivalence on M, generated
by the pairs ((bc,c), (b, cd)) where b,c,deS are such that bcd = a. Put
e, = Card (M,,/E,,), so that e, is the number of blocks of E,,.

Let f be a cardinal function on a semigroup S. We introduce the following
condition:

®R fl@<i+ Y (( ) f(c))—l) for every acS.

BeM,/E,\ (b,c)eB

2.3 Theorem. Let [ be a cardinal function on a semigroup S. If f is
representable, then the condition (R) is satisfied.

Proof. Let G be a groupoid and g be a homomorphism of G onto S such that
(G, g) represents S, f). For an element a € S such that f(a) = 1, the inequality in
(R) is trivially true; with respect to 2.1, we can assume that a € S* and f(a) > 2.
Put I = g~'(a), so that Card (I) > 2.

Define a binary relation s on G by (u, v) € s if and only if (u, v) € ker (g) = s
and if u,vel, then either u = v or u,ve GG. One can easily see that s is
a congruence of G, s < ker(g) and G/s is a semigroup. Consequently,
s=ker(g) =s; and we have proved that I = GG (use the fact that
Card (I) > 2).

Further, define a binary relation r on G as follows: (4, v)€r if and only if
u,veker(g) and if u, ve [ then there exists a finite sequence u, ..., 4y, k = 0,
elements of I such that uy = u, u, = v and such that for each i = 1, ..., k there
exist elements x, y, z, t € G with u;,_, = xy, u; = zt and ((g(x), g()), (9(2), 9(?))) € E...
Again, it is easy to see that r is an equivalence on G. It is a congruence, as well,
since if (4, v) € r and w € G, then in the case uw, vw € I we can put k = 1, uy = uw,
u=vw,x=uy=w,z=uvand t = wto get (uw, vw) € r (we have (g(x), g(y)) =
(9(2), g(t)); similarly, (wu, wo)er. In order to be able to assert that G/r is
a semigroup, we have to prove (uv - w, u- vw)er for all u, v, w e G. We have, of
course, (uv - w, u- vw) € ker (g). Let both uv-w and u- vw belong to I. Then we
canput k=1L uyy=uv-w, uyy=u-vw, x=uv, y=w, z=u, t = vw to get
(uv-w,u-vw)er. We have proved that G/r is a semigroup, and therefore
r = ker (g) = sg. This means that for any two elements u, v in I, there exists
a finite sequence uy, ..., U4, as above.

For every block B of E,, let K denote the set of the elements x € I such that
x = yz for some y,ze G with (g(y), g(z)) € B. From what we have proved it
follows that the system " of the sets K, Be M,/E,, has the following properties:
(J# =1, and I x I is the only equivalence on I containing all the relations
Kp x Kp. The system £ need not be, in general, a system of pairwise disjoint sets,
but in such a case we can take a system " of pairwise disjoint copies of the sets
K instead, and the natural projection h: Uth "> I. By 2.2, we get
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Card(I) <1+ ) (Card(Kg) —1).

BeM,/E,

However, Card (I) = f(a) and, as it is easy to see,

Card(Kp) < ), f(b)f(c). O

(h,c)eB

2.4 Corollary. Let f be a cardinal function on a semigroup S. If f is representable,

then
flag< Y f(b)f()

(b, c)eM,,

for everyae S*. [

2.5 Theorem. Let S be a semigroup (which may but need not contain a zero)
in which every nonzero element is of finite height. A cardinal function f on S is
representable if and only if the condition (R) is satisfied.

Proof. The necessity of (R) was proved in Theorem 2.3. Let (R) be satisfied.

For uvery element a € S take a set A, of cardinality f(a) and denote by G the
disjoint union of the sets A,, a € S. Define a mapping g of G onto S by g(x) = a
for all ae S and x € A,. We are going to define a binary operation (multiplication)
on G.

Let a be a nonzero element of SS. For every Be M/E, let K= |, ges(As X A.).
From (R) we get that condition (2) of 2.2 is satisfied for the system %~ of the sets
Kp, Be M,/E,. Consequently, by Lemma 2.2, there exists a mapping h, of
U(,,, Jem, Onto A, such that 4, x A4, is the only equivalence on A4, containing the
relation | s, ge sh(A, x A,) for any block B of E,. Now, if (b, c)€ M,, x € A, and
y € A,, and we put xy = h,(x, y).

So far, we have defined the product xy for all x, y e G such that x € 4, and
y € A,, where bc % 0. If § has no zero, the multiplication on G is well defined. In
the opposite case, we need to complete the definition by considering the pairs
x€ A, y€ A., where bc = 0. Then, take a fixed element o0 € A, and put xo = x
if x € Ay and xy = o in the remaining cases. Now, we have obtained a groupoid G.

Clearly, g is homomorphism of G onto S and it remains to show that
ker (g) = s¢. For, let r be a congruence of G such that G/r is a semigroup. We
have to prove that A, x A, < r for any element a € S. If S contains a zhero, then
Ay X Ay S r is easily seen: for any element x € A, — {o} we have xo0* x = x, so
that (o, x} € r.

Now, we have to show that 4, x 4, < r for every O & a € S. This will be done
by induction on the height of a. If the height is at most 2, then f(a) = 1 and
everything is clear. Let a € S’. By induction we can suppose that A, x 4, = r
whenever b has smaller height than a.

According to the construction of h,, it is enough to prove that if B is a block of
E, and if (b, ¢) and (d, e) are two elements of B, then (xy, zu) e r for all x € 4,,
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yeA, ze Ay, and ue A,. In other words, to prove that the equivalence E, is
contained in the binary relation E on M, defined as follows: E is the set of the
ordered pairs ((b, c), (d, e)) € M, x M, such that (xy, zu) e r for all x€ A}, y € A,
zeAjand ue A,.

By the definition of E,, it suffices to show that E is an equivalence relation
containing all the pairs ((bc, d), (b, cd)) where b, c, d € S are such that bed = a. The
reflexivity of E can be verified easily: if (b,c)e M, and x€ 4,, y€ A,, € A,
u € A,, then (x, z) € r and (y, u) € r (since both b and ¢ have smaller height than a),
so that (xy, zu) € r, which yields ((b, c), (b, ¢)) € E. The symmetry and the transiti-
vity of E are easily seen, as well. Now, let b, c,d € S and bcd = a. Take x € Ay,
yeAy, ze A,, ue A, and ve A.. Since the elements bc and cd are of smaller
height than a, we have (zv, x) € r and (vy, u) € r. Further, (zv- y,z- vy)er by the
definition of r, and hence, since r is a congruence, (xy,zy)er. From this,
((bc, d), (b, cd)) € r, which concludes the proof. [J

2.6 Corollary. Let S be a nilpotent semigroup. A cardinal function f on S is
representable if and only if the condition (R) is satisfied. []

(R) f(a) =1 forevery aeS — §° and
fla)+e. <1+ ) f(b)f(c) forevery aeS’.
(h,c)eM,

2.7 Proposition. Let S be a semigroup and let f be a cardinal function on S. then:

(1) (R) implies (R'). (In particular, (R) implies that f(a) =1 whenever
aeS—5%)

(2) If M, is finite for every a€ S (in particular, if S is finite), then also (R')
implies (R).

Proof. It is easy. []

2.8 Theorem. Let S be a free semigroup (or, more generally, a subsemigroup
of a free semigroup) and let f be a cardinal function on S. Then f is representable
if and only if it satisfied the condition (R').

Proof. It follows from theorems 2.3, 2.5 and 2.7(2). O

2.9 Example. Let S be a semigroup nilpotent of class at most 3. According to
2.6, a cardinal function f on S is representable if and only if f(a) = 1 for every
aeS — {0}.

2.10 Example. Let S = {0,1,...} U ({2,3,...} x {2,3,...}). Define a binary
operation  on S as follows: for i, j,k > 2,i*j = (i,j) and (i, j) x k = k = (i, j) = 1;
all the remaining products are 0. It is easy to check that S(x) is a semigroup

nilpotent of class 4. By 2.6, a cardinal function f on this semigroup is representable
if and only if f(i) = f(i,j) = 1 for all ,j > 2 and f(1) < N,.
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2.11 Example. Let S = {O,l, 2,3, } Define a binary operation * on S as
follows: 33 =2, 2x3=3%2=1, i*j=1 for all i,j > 4; and all the
remaining products are 0. By 2.6, a cardinal function on this semigroup is
representable if and only if f(i) = 1 for all i > 2 and f(1) € {1,2}.

This example shows that condition (R’) is not strong enough (even for semi-
groups nilpotent of class 4) to characterize the representable cardinal functions:
here, (R') is satisfied if f(i) = 1 for all i > 2 and f(1) < N,.

2.12 Example. Let S = {0, ab,c,def g hiz,z,..} and let a multiplica-
tion on S be given as follows: bc =di=hf =a, dz, = b, ef = ¢, z,e = g,
be = dg = h, gf = z,c = i, and the remaining products are all equal to 0. It needs
just a tedious checking to show that S is a semigroup nilpotent of class 4, S* =
{0,a,b,¢,9,h,i},S* = {0,a,h,i},and e, = e, = ¢; = 1. By Theorem 2.5, a cardi-
nal function F on § is representable if and only if F(b) = F(c) = F(d) = F(e) =
F(f) = F(g) = F(z) = 1, F(h) < 2, F(i) <X, and F(a) < 3 + F(i). Hence, if
F(i) = R, we can take F(a) = N,, as well.

XII3 Catalan numbers and representability
of cardinal functions on free semigroups

Let 0! = I and n! = 1-2... (n — 1)- n for every positive integer n.
In the following, we shall make use of the numbers (,,), n and m being arbitrary
integers. These are defined as follows: () = 0 if n < 0; (§) = 1 and (,) = O for

every m + 0; if n> 0, then (,) are defined by induction on n, namely,
(m) = (m=}) + ("»")- For any integers n and m, the following are clearly true:

(1) (») is a nonnegative integer and (,) = 0 if and only if eithern < Oorm < 0
orn < m.

() If n < 0, then (g) = () = 1.

(3) If 0 < m < n, then (,) = n!/m!(n — m)!

(4) If n >0, then () is just the number of the m-clement subsets of an
n-element set and 2" = ) »_o(»)-

For any rational number ¢ and any nonnegative integer n, define ¢ as follows:
g9 =1; g"*) = ¢"- (g — n). Obviously, ¢ =g(qg —1)... (g —n + 1) for
n>0and 1” = 0 forn > 2.

3.1 Lemma. We have

(r + s)(ll) — Z (::l) r(m)s(n—m)

m=0
for all rational numbers r, s and nonnegative integers n.

Proof. It is easy by induction on n. []
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3.2 Lemma. (1/2)"=(—1)y"""-(1/2)"-(2n—3)!/(2" 2 (n — 2)!) for every n>2.
Proof. It follows easily from
1-3-5..2m+ 1) =(2m + 1)!/2" - m!),
which is easy to prove for any m > 0. [J

The Catalan numbers c,, n > 1, are defined by c, = 1 and ¢, = c,c,_; + cC,_> +
v + Cy_s€3 + ¢, for n > 2. Clearly,

. = {2c,c,,_l + oo+ 2C0_ 1)ty for n > 3 odd,
"l 2¢cchy + ... + 2C(_ 2y Cus2)2 + ¢z, for n > 2 even.

In particular, we have
c=1c=1,¢c=2,¢c,=05, cs =14, ¢ = 42, c; = 132, cy = 429,
cy = 1430, c,, = 4862.
For any nonnegative integter n, let v, = (1/2)"/n! By 3.2,
Vo=1,v,=12and v, =(—1)""(2n - 3)}/2>2-(n — 2)!-n! for n > 2.

Let Q{x}denote the integral domain of formal power series in one indeterminate
xover Q. Put f = Y= ,vix* € Q{x}and let f* = Y 2 u,x*. Then, forevery n > 0,

n

u, = ivmv,,_,,, =Y (1/2)m - (1/2)"="/m! - (n — m)!

(1/nl) zo(;) (1/2)™ (12§~ = (1/n1) - 10

by Lemma 3.1. Thus y, = 1, u; = 1 and u, = O for n > 2. We have proved that
fi=1+x

Now, put g = Y c,x* € Q{x}, where ¢, = 0 and the other coefficients are
Catalan numbers. Let g*> = ) ?_odix*. Then dy = c§ =0 =c¢y, d, = 2c,c, =0
and d, = cc, + ¢y + ... +¢,_¢; +¢,y=c¢, for each n > 2. Hence
9> =g — xand g>.— g + x = 0in Q{x}.On the other hand, it follows from what
was proved above that h*> = 1 — 4x, where h = )% ,v,(—4x)* € Q{x}. Hence
(9 — 1/2)* = h*/4. From this, either g = (h + 1)/2 or g = (1 — h)/2. The first
case is not possible, since ¢, = 0 and v, = 1. Consequently, g = (1 — h)/2. We
get ¢, = (—1)+' 2%y, = (2k — 2)//(k — 1)! - k! for k > 2. The result is also
true for k = 1. So, we have proved the following

3.3 Proposition. ¢, = (2n — 2)l/n!(n — 1)! foreveryn > 1. 0O

3.4 Remark. From 3.3 it follows that c,/c,_, = (4n — 6?/n for every n > 2 and
o — Cuey = 3(2n — 4)!/n!(n—3)! Since n! = n and () = n)/m for all 0<m <n,
we have c, = (2n — 2)"=)/n®,
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3.5 Theorem. A cardinal function f on the additive semigroup of positive
integers is representable if and only if f(1)=f(2) =1 and f(n) < Y=\ f(i) f(n — i)
for all n > 3.

Proof. The semigroup is a free semigroup with one generator. By Theorem 2.8,
f is representable if and only if (R') is satisfied. Now, (R’) is equivalent to the above
condition, since evidently e, = 1 for every n > 3. [

Let us call an infinite sequence a,, a,, ... representable, if the cardinal function
f, where f(n) = a,, is representable on the additive semigroup of positive integers.
It follows from Theorem 3.5 and Proposition 3.3 that if a,, a,, ... is representable,
then a, < ¢, = (2n — 2)!/n!(n — 1)! for every positive integer n. On the other
hand, the sequence c,, c,, ... is representable by Theorem 3.5. Consequently, the
sequence of Catalan numbers is the best upper bound for representable sequences
of positive integers.

3.6 Exemple. It follows easily from Theorem 3.5 that any sequence ay, a,, ...
of positive integers, such that a, = 1 and a, < n(n — 1)/2 for all n > 2, is
representable. In particular, there are uncountably many representable sequences
of positive integers.

3.7 Theorem. Let S be a free semigroup with free generating set X. A cardinal
function f on S is representable if and only if f(x) =1 for all xe X and
S(xp e %) < 05 (%0 x) f(Xigy oo X)) foralln > 2 and x,, ..., x,€ X. If fis
representable, then f(u) < cy, for every u€ S, where A(u) denotes the length of u.

Proof. It follows from Theorem 2.8; note that ¢, = 1 for all elements u € S of
length > 2. O

3.8 Example. Let S be a free semigroup with free generating set X. The
cardinal function f on S, defined by f(u) = c,,), is representable. In fact, if G is
the absolutely free groupoid over X and g: G — S is the natural projection, then
ker (g) = sg and Card (9~ '(u)) = ¢y, for every ue .

XII4 A representation criterion

Let f be a cardinal function on a semigroup S. For every ae S we define
a cardinal function f, on S by f,(a) = f(a) and f,(b) = 1 for every b€ S, b * a.

4.1 Theorem. Let [ be a cardinal function on a semigroup S. If f, is
representable for any a € S, then f is also representable.

Proof. There exist pairwise disjoint groupoids G, (a € S) and projective homo-
morphism ¢,:G, —> S such that ker(g,) = sg, and Card (g, '(a)) = f(a) and
Card (g, '(b)) = 1 for b + a. The operations of the groupoids G, will be denoted
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by *. We put H, = g;'(a) and G = ( J,.sH, We shall make G a groupoid by
defining its operation in the following way.

(1) If x,ye H,and a = aa, then xy = x*ye H,.

(2) IfxeH, ye H,and ab = c, where a % ¢ + b, then xy = g '(a) *g. '(b) e H..
(3)If xeH, yeH,,a + band ab = a, then xy = x xg;'(b)e H,.

4) If xeH, ye H,,a % b and ab = b, then xy = g; '(a) * y € H,.

It is obvious that the mapping g: G — S, defined by g(H,) = a for all a € S, is
a homomorphism of G onto S. We still have to show that s = ker (g). Clearly,
s¢ < ker (g) For every a € S define an equivalence ¢, on G by

= (ker (9) — (H,x H,)) v (s¢ n (H, x H,))
and an equivalence r, on G, by
ro = {(x,x):xeG,}u(s¢ n(H,x H,)).

We are going to show that ¢, is a congruence of G and r, is a congruence of G,.

In order to prove that (x, y) € t, implies (zx, zy) € t, for any elements x, y,z € G,
we will distinguish two cases.

Case 1: x, ye H, for some b + a. Then (zx, zy) e ker (g) and (zx, zy) € t,, if
zx¢ H, If zxe H,, then zye H,, too, and there is an element ¢ € S such that
zeH, and a=cbh. If a=+c, then zx =g;'(c)*g,'(b) = zy, and hence
(zx,zy) e t,. If a = c, then zx = z * g;'(b) = zy and again (zx, zy) € ¢,

Case 2: x,y€ H, and (x, y) € s¢. If zx ¢ H, and zy ¢ H,, then (zx, zy) € ker (g)
and (zx,zy)et, If zx,zyeH, then (zx,zy)esgn (H,x H,), and hence
(zx, zy) € t,.

One can prove similarly that (x, y) € t, implies (xz, yz) € t,. We conclude that
t, is a congruence of G.

Now let x, y, z be three elements of G, with (x, y) er,. We have to take into
account the following three cases.

Case 1: x¢ H,. Then y¢ H,, x = yand (z* x,z x y)€r,.

Case 2: xe H, and z x x € H,. We have ye H,, (x,y)eker(g,), (z*x,z * y) e
ker (g,) and thus z * x = z * y, which implies (z * x, z * y) € r,.

Case3: xe H,and z * x€ H,. Then y € H,, z * y € H, and, naturally, (x, y) € Sg.
Put b = g,(z), so that a = ba. If b + a (this means z ¢ H,), then, for any u € H,,
(ux,uy)ess and, moreover, ux =zx*x and wuy =z=*y, consequently
(zxx,zxy)er, If b =a (then ze H,), we have (zx, zy) € sg, zx = z * x and
zy = z * y; once again, (z * x,z * y) € r,.

Since (x * z, y * z) € r, could be proved similarly, we see that r, is a congruence
of G,.

Since s S ¢t, < ker (g), there exist natural projections p: G — G/sg, q: G/s¢ — G/t,
and a homomorphism k: G/t, — S such that g = kqp. Since r, < ker(g,), we also
have the natural projection w: G, — G,/r, and a homomorphism v:G,/r, — S such
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that g, = vw. Finally, define a mapping h:G — G, by h(x) = x for x € H, and
h(x) = g;'(b) for x € H, with b # a. This mapping h is a homomorphism of
G onto G, and we have the following commutative diagram:

G/s¢ — G/t,—> S

b r

G —— G, == Gyr,

It is easy to verify that ker(wh) = t, = ker(gp), from which it follows that the
groupoids G/t, and G,/r, are isomorphic. Since G/t, is a homomorphic image of
G/sg, it is a semigroup and it implies that G,/r, is a semigroup, too. Moreover, we
get r,=sg, =ker(g,) and then s; N (H,x H,)= H,x H,. This yields H,x H, < s¢
for every a € S and therefore s; = ker(g), completing the proof. [J

XIL.5 Semigroups with local units

5.1 Lemma. Let M be a non-empty set. Then there exists a maping t of M onto
M such that for all x, y, € M there are positive integers m, n with t"(x) = t'(y).

Proof. If M if finite, we can take a full cycle on M. Now let M be infinite.
Denote by B the set of the mappings f of M into the set of positive integers, such
that f(x) = 1 for all but finitely many elements x € M. Define a mapping t: B — B
by {(f) (x) = 1if f(x) = 1and (f) (x) = f(x) — 1if f(x) = 2. Clearly, t has the
desired property with respect to the set B, which has the same cardinality as M. []

5.2 Lemma. Let S be a semigroup, a € Lu(S) and let f be a cardinal function
on S such that f(b) = 1 for every be S — {a}.Then [ is representable.

Proof. Let M be a set with Card(M) = f(a) and SN M = §; let t be
a mapping of M onto M as given in 5.1. Put R=S — {a}and G = RU M.
Define a mapping g of G onto S by g(x) = x for x € R and g(x) = a for xe M.

Consider first the case aa #+ a. Since a € Lu(S), we have a = ea for some e € §.
Define a binary operation * on G as follows.

(1) ex x = (ee) * x = t(x) for every x € M;

(2) b * ¢ = bc for all b, c € R with bc + a;

(3) b *cis any element of M if b,ce R and bc = a;

@) bxx =baif beR, xe M and ba * q;

(5) b *x is any element of M if be R, x e M, b ¢ {e,ee} and ba = a;
6) xxb=abif be R, xe M and ab * q;

(7) x * b is any element of M if be R, xe M and ab = g;

(8) x*y = aae R for any x, y e M.
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This makes G a groupoid. Evidently, g is a homomorphism of G onto S. It remains
to show that ker(g) = sg. Put s = s N (M x M). If (x, y) € s, then (¢(x), ¢(y)) =
(e * x, e * y) € 5, which means that s is a congruence of the algebra (M, t) with one
unary operation ¢. If x € M then, by the definition of s, (e * (€ * x), (¢ * €) * x) € s¢.
But ex(exx)=t¥x) and (exe)*x = t(x), hence (£(x),t(x))es. In fact,
(£"(x), f(x)) € s for any positive integer n. Let (4, v) € M x M. There exist w,ze M
such that u = t(w) and v = t(z). By 5.1, there also exist positive integers m, n with
t"(w) = t'(z). On the other hand, (¢"(w), t(w)) € s and (¢"(z), (z)) € 5. Consequently,
(¢(w), Hz)) = (u, v) € s. We have proved that s = M x M and then M x M < sg
and s, = ker(g).

Now consider the case aa = a. Choose an element w € M and define a binary
operation * on G as follows.

(1) x*y=w forall x,ye M with y + w;

(2) x*w = x for every x € M;

(3) b *c = bc for all b, c € R with bc * q;

(4) bxc=w forall b, ce R with bc = a;

(5) b* x =ba for all be R and x € M with ba # a;
(6) bx x =w forall be R and x € M with ba = q;
(7) x*b =ab for all be R and x e M with ab # a;
(8) x*b =w forall be R and x € M with ab = a.

This makes G a groupoid. Evidently, g is a homomorphism of G onto S. Let
(x,y)e M x M. Then (x *(w xx),(x * w)* x)€sg, ie., (x,w)€sg Similarly,
(v, w) e s and hence (x, y) € se. We have proved ker(g) = s also in this case,
completing thus the proof. []

5.3 Theorem. Let S be a semigroup. The following two conditions are equiva-
lent:

(1) Every cardinal function on S is representable.
(2) S = Lu(S) u Ru(S).

Proof. Suppose that (1) is satisfied but there exists an element ae S — (Lu(S) u
Ru(S)). By 2.1, S = S% Put x = Card(M,) and take a cardinal function f on S such
that f(a) > % and f(b) = 1 for every be S — {a}. By 2.4, we have x < f(a) <
Ybgem. S (b) f(c) = Y.m,1, a contradiction.

For the converse implication, just combine Theorem 4.1 with Lemma 5.2 and
its dual. O

5.4 Remark. The following semigroups belong to the class of semigroups
S satisfying S = Lu(S) u Ru(S):

(1) semigroups with a left (or right) neutral element:
(2) groups;
(3) regular semigroups;
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(4) idempotent semigroups;
(5) finite commutative semigroups S with § = S (see 1.3);
(6) at most four-element semigroups S with S = S? (see L.5).

XI.L6 An example

6.1 Example. Consider the five-element semigroup T with elements O, a, b, ¢, d
from Example 1.4. We will see that a cardinal function f on T is representable if
and only if (R) is satisfied, i.e., if and only if f(a) < f(b) f(c).

The necessity is settled by 2.6. Let f(a) < f(b) f(c). Put G=PuAUBuU
C u D where P, A, B, C, D are five pairwise disjoint sets with Card (P) = f(0),
Card (A4) = f(a), Card(B) = f(b), Card(C) = f(c) and Card (D) = f(d). By 5.1,
there exist a mapping p of B onto B and a mapping ¢ of C onto C such that for
all x, y € B there are positive integers m, n with p”(x) = p"(y) and for all x, ye C
there are positive integers m, n with g"(x) = ¢"(y). From f(a) < f(b) it follows that
there exists a mapping h of B x C onto A. Take two elements ze P and we D
arbitrarily. Define a multiplication on G as follows.

(1) xy=yx =2z forall xe Pand ye Au Bu Cu D;
(2) xy =z forall x,ye A U B;

(B) xy=yx =z forall xe A and ye C v D;
(4) xy =2z forall xeCand ye Bu Cu D;
(5) xy =z for all xe D and y € B;

(6) xy = z for all x, ye P with y £ z;

(7) xz = x for all xe P;

8) xy =wforall x,ye D with y + w;

(9) xw = x for all x € D;

(10) xy = p(x) for all xe B and y € D;

(11) xy = g(y) for all xe D and y € C;

(12) xy = h(x, y) for all xe B and y e C.

Define a mapping g:G — T by g(P) = 0, g(4) = a, g(B) = b, ¢g(C) = ¢ and
g(D) = d. 1t is easy to check that g is a homomorphism. Now, we have to show
that ker(g) = sq.

We have (x-xx,xx-x)esg for any x€P, so that x-xx = xz = x and
xx - x = zx = z yield (x, z) € s we get P x P < sg. The inclusion D x D € s¢
can be proved in the same way. The inclusions B x B < s and C x C < s can
be proved as in 5.2, with p and g, respectively, playing the role of t. Finally, if
(x,y)eBxB and (4,v)eCxC, then (x,y)es; and (u,v)esg so that
(h(x, u), h(y, v)) = (xu, yv)esg; we see that A x A = sg. We conclude that
ker(g) = sg.
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XIL7 Representability of “small” cardinal functions

7.1 Proposition. Let S be a semigroup, a be an element of S and f be
the cardinal function on S with f(a) = 2 and f(b) = 1 for every be S — {a}.Then
f is representable if and only if at least one of the following two conditions is
satisfied:

(1) a€Lu(S) U Ru(S);
(2) there exist elements x, y, z €S such that xyz = a and either Xy * x or yz # z.

Proof. If (1) is satisfied, the result follows from 5.2 and its dual. Let
a¢Lu(S)URu(S) and a = xyz, where xy #+ x. Take an element e¢S, put
G = S U {e}and define a binary operation * on G in the following way.

(1) uxv = uv for all u,ve S with uv #+ q;

(i) uxv = a for all u,ve S with uv = a and either u + x or v + yz;
(i) x * (yz) = e;

(iv) exu =axuand uxe = u xa for every uesS;

(V) exe = a=x*a.

Clearly, the mapping g:G — S, defined by g(e) = a and g(x) = x for every x € S,
is a homomorphism of G onto S and ker(g) = sg. We can proceed similarly if
a = xyz and xy * z.

Now, we are going to prove the converse. Suppose that neither (1) nor (2) is
satisfied, but there exists a groupoid G and a homomorphism g of G onto S such
that ker(g) = sg, Card(g9~'(a)) = 2 and Card(g~'(b)) = 1 for every b + a. Let
u,v,we G;put x = uv and y = vw. If g(uy) =+ a, then also g(xw) * a, and hence
uy = xw. Let g(uy) = a. Then g(xw) = a and we have a = g(u) g(v) g(w). Since
(2) is not satisfied, g(u) = g(u) g(v) = g(x) and g(w) = g(v) g(w) = g(y). Since (1)
is not satisfied, g(u) + a + g(w), yielding u = x and w = y. But then u - vw =
uy = uw = xw = uv - w. We see that G is a semigroup, a contradiction. []

7.2 Proposition. Let S be a semigroup such that for every element
ae S’ — (Lu(S) U Ru(S)) there exist elements x,y,z€S with a= xyz and
(x, yz) =% (x, 2). (In the notation introduced in Section 2, this can be expressed by
saying that the equivalence E, on M, is not identical.) If f is a cardinal function
on S such that f(a) < 2 for all a€ S, then f is representable if and only if f(b) = 1
for everybe S — S°.

Proof. Just combine 2.1, 4.1 and 7.1. []

7.3 Corollary. Let S be a commutative semigroup and f be a cardinal function
on S such that f(a) < 2 for all a€ S. Then f is representable if and only if f(a) = 1
foreveryaeS — S°. [
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XIL.8 Some constructions of quasigroups and loops

Let G be a group, H be an abelian group and g a mapping of G x G into H.
Then Q(G, H, g) denotes the groupoid Q(*) with the underlying set Q = G x H and
the operation * defined by (x, a) * (y, b) = (xy,a + b + g(x, y)) for all x,ye G
and a, b € H. Further, define a relation ¢t on Q by ((x, a), (y, b)) € t if and only if
x = y. For a subset L of H, define a relation t,, on Q by ((x, a), (y, b)) € t,, if and
only if x = yand a — b € L. Denote by K the subgroup of H generated by all the
elements g(y, z) + g(x, yz) — g(x, y) — g(xy, 2), for x, y, z€ G.

8.1 Lemma.

(1) Q(+) is a quasigroup, t is a congruence of Q() the factor Q(x)/t is
isomorphic to G and every block of t has the same cardinality, equal to
Card (H).

(2) The quasigroup Q(*) is commutative if and only if G is commutative and
g(x, y) = g(y, x) for all x, ye G.

(3) Q() is a loop if and only if g(1, x) = g(y, 1) for all x, y € G.

(4) Q(*) is a group if and only if g(x, y) + g(xy, 2) = g(y, 2) + 9(x, yz) for all
x,y,z€G.

(5) t. is an equivalence if and only if L is a subgroup of H. In that case, t, is
a cancellative congruence of Q(*).

(6) If L is a subgroup of H, then Q(*)/t, is a group if and only if K < L.

(7) If r is a congruence of Q(x) with r < t, then r = t, for a subgroup L of H.

(8) t = sy if and only if K = H. In that case, o(Q(*)) = Card (H).

(9) If G contains at least three elements and H is cyclic, then the mapping g can
be chosen in such a way that K =H and ¢g(x,y) = g(y,x) and
g(1, x) = g(y, 1) for all x, y € G.

Proof. (1) through (6) are easy. (7) Let ((x,a),(x,b))er, yeG, c,deH,
c—d=a—>b. Then (yx~', g(yx~", x)) *(x, a) = (y, b) and (yx~"', g(yx~", x)) * (x, b) =
(v, b), so that ((y, ), (y, b)) € r. Further, (1,c — a — ¢(1, x)) * (x, a) = (x, ¢) and
(1,c—a—g(1, x))*(x,b) = (1,d — b — g(1, x)) *(x, b) = (x, d), so that ((x, c), (x,d))er
and then also ((y, ¢), (y, d)) € r. From this we see that r = t,, where L = {a — b:
((x, @), (x, b)) € r}. By (5), L is a subgroup of H.

(8) This follows easily from (6) and (7).

(9) Let u, v e G be such that the elements 1, u, v are pairwise different and let
a be a generator of H. It is easy to see that we can define ¢ in such a way that
g(x, x) = g(y, x), 9(1, x) = g(y, 1), g(u, v) = a, g(u, uv) = g(v? v) and g(u, u) = 0.
Then g(u, v) + g(u, uv) — g(u, u) — g(u’,v) = a,and so K = H. [J

8.2 Proposition. Let G be a group containing at least three elements and let
1 < % < Ny be a cardinal number. Then there exists a loop Q such that 6(Q) = x
and Q/sq is isomorphic to G. Moreover, Q can be chosen commutative, provided
that G is commutative.
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Proof. Some of the assertions in Lemma 8.1 may turn out to be useful. []

8.3 Remark. Let P be a loop such that o(P) = 2. Put G = P/sp and, for every
x € G, choose an element w, € x; the choice should be such that w, = 1. Let { l,a}
be the block of s, containing the unit of P. Then, clearly, G = {{w, aw,}:x € G};
the element a belongs to the center of P and a> = 1. Further, define a mapping
g of GxG into the two-element cyclic group Z, = {0,1} by g(x, y) = 0 if
w,w, = w,, and g(x, y) = 1 otherwise. Then g(x, 1) = g(l,y) for all x,yeG.
Moreover, if P is commutative, then g(x, y) = g(y, x) for all x, y € G. Finally,
define a mapping f:P — Q(G, Z,, g) by f(w,) = (x,0) and f(aw,) = (x,1) for
every x € G. It is easy to check that f is an isomorphism of P onto Q(G, Z, g).

8.4 Remark. There exists no loop P with o(P) =2 and Card(P/sp) = 2.
Indeed, every four-element loop is a group. On the other hand, consider the
four-element commutative quasigroup Q with the following multiplication table:

2
2
1
0
3

0
0
1
2
3
=2

One can easily check that o(Q) and Q/s, is isomorphic to Z,.

8.5 Lemma. Let G(+) be an abelian group of order n > 5 such that the
transformations x —2x and x +— 3x are permutations of G (i.e., G is uniquely 2-
and 3-divisible). Take an element e ¢ G, put P = G U {e}and define multiplication
on P by

(x +y)/2 for x,yeG, x * y,

o for x =y,
y x for y =e,
y or x =e.

Then P is a simple, commutative and nonassociative loop of order n + 1.

Proof. It is easy to check that P is a commutative loop of order n + 1; it is
nonassociative, because n > 5. Let r be a congruence of P and put K = {xe P:
(x,e)er}. If K = {e}, then r = idp. Assume K + {e} and take an element
ae K — {e}. Then for every element be G — {a} we have ((a + b)/2,b)er and
((a + 3b)/4, ) r, so that (a + 3b)/4 € K. From this it is easy to see that K = P
andr=PxP. [

8.6 Lemma. For every cardinal number » >1, » % 4, there exists a simple
commutative loop P of order x. If x > 6, then P can be chosen nonassociative.
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Proof. It follows from Griffin [8] and Lemma 8.5. []

8.7 Proposition. Let G be a group and x > 6 be a cardinal number. Then there

exists a loop Q such that 6(Q) = x and Q/s, is isomorphic to G. Moreover, if G is
abelian, then Q can be chosen commutative.

Proof. By 8.6, there is a simple commutative and nonassociative loop P of
order ». It sufficestoput Q = Gx P. [J

XIL9 Quasigroups with subquasigroups of index 2

Let P be a non-empty set and *, O, A, V be four quasigroup operations on P.
Put @ = P x {0,1} and define multiplication on Q as follows:

(x,0)(» 0) = (x * y,0);
(x: 1) (5, 1) = (x 03, 0);
(x, 0 (» 1) = (x Ay 1);
(x, 1) (»0) = (xVy1)

for all x, y € P. The groupoid just obtained will be denoted by Q(P, *, O, A, V).
Put R = {(x,0):x € P}.

9.1 Lemma.

(1) Q is a quasigroup, R is a normal subquasigroup of Q, R is isomorphic to
P(*) and Q/R is a two-element group.

(2) Q is commutative if and only if the operations * and O are commutative and
xAy=yVxforall x,yeP.

(3) Let ec P and a€ {0,1}. Then (e, a) is a unit of Q if and only of a = 0, e is
a unit of P(x), e is a left unit of P(A\) and e is a right unit of P(V).

(4) Q is a group if and only if P(x) is a group and x A (y A z) = (x * y) A z,
xA(yVz)= (xAY)Vz xV(yxz)=(xVy)Vz, xx(y0z)=(x Ay)Oz
xO(yVz)=(x0y)*z, xO(y Az)=(xVy 0Oz and xV(yoOz)=
(x0y) Az forall x,y,zeP.

Proof. It is easy. []

Define a relation ¢t on Q by ((x, a),(y, b)) €t if and only if a = b. Then ¢ is
a normal congruence of Q and Q/t is isomorphic to Z,.

Let r, s be two equivalences defined on P. Then we define a relation ¢(r, s) on
0 by ((x, a), (y, b)) € t(r, s) if and only if either a = b = 0 and (x, y) er or else
a = b = 1and (x, y) € s. Consider the following two conditions:

(P1) If x, y,ze P and (x,y)er, then (zV x,zV y)esand (x Az, y Az)€Es;

(P2) If x,y,zeP and (x,y)es, then (zOx,zOy)er, (xOz,yOz)er,

(zAx,zAy)esand (xVz,yVz)es.
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9.2 Lemma.

(1) r, s) is an equivalence contained in t and tr, s) is a congruence of Q if and
only if r is a congruence of P(x) and the conditions (P1) and (P2) are satisfied.

(2) Suppose that (P1) is satisfied and either P(A\) (resp. P(V)) possesses a right
(resp. left) unit or s is a right (resp. left) cancellative relation on P(A) (resp.
P(V)). Thenr < s.

(3) Suppose that (P2) is satisfied and that r is a left or a right cancellative
relation on P(O). Then s < r.

(4) Suppose that (P2) is satisfied and r < s. Then both r and s are congruences
of P(0).

(5) Suppose that (P2) is satisfied and P(A\) (resp. P(V)) is commutative. Then
s is a congruence of P(A) (resp. P(V)).

Proof. It is easy. [

9.3 Lemma. Suppose that t(r, s) is a congruence of Q. Then the corresponding
factor of Q is a group if and only if P(x)/r is a group and ((x *y) Az,
xA(yAz)es, (xAY)Vz xA(yVz)es (xVy)Vz, xV(y*z)es,
(xoy)Az, xV(yoz)es, (xVyoz, xo(yAz)er, (xAy Oz
xx(yoz)er,(x0y)*xz, x0(yVz)erforall x,yzeP.

Proof. It is easy. [

9.4 Lemma. Suppose that t(r,s) is a congruence of Q and the corresponding
factor is a group. Let e € P.

(1) If e is a right unit of P(A), then (x * x,x A y) € s for all x,x € P.

(2) If e is a left unit of P(V), then (x x y, x V y)e s for all x, y€ P.

() If e is a right unit of both P(x) and P(A) and a left unit of P(V), and if
eOe=ce then (x*y,xOy)er forall x,yeP.

Proof. Use 9.3. [

9.5 Lemma. Suppose that t(r, 1) is a congruence of Q, the corresponding factor
is a group and P(x), P(A), P(V) are commutative loops with the same unit
e =eOe. Then r = s is a cancellative congruence of all the four quasigroups
P(x), P(0), P(A) and P(V) and (x x y,x O y)er and (x A\ y,x V y)€r for all
x,y€P.

Proof. Apply the preceding lemmas. []

9.6 Lemma. Let p be a congruence of Q with p < t. Then there exist
a congruence r of P(x) and an equivalence s on P such that the conditions (P1)
and (P2) are satisfied and p = tr, s).

Proof. Define r and s as follows: (x, y) € r if and only if ((x, 0), (v, 0)) € p and
(x, y) e s if and only if ((x, 1), (y, 1)) ep. O
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9.7 Lemma. Suppose that Q is not associative and that the quasigroup P(*) is
simple. Then t = s, and o(Q) = Card (P).

Proof. We have p=s, <t and p =t(r,s) by 9.6. If r = P x P, then
s = P x P by (P1), and therefore p = t. If r = idp, then s = idp by (P2) and Q is
a group, a contradiction. []

9.8 Lemma. Let P be a finite set with n > 4 elements and let O € P. Then there
exist two cyclic groups P(x) and P(O) such that 0 is the neutral element of both
P(*) and P(O) and x * y % x O y for some x, y € P. Moreover, 0 and P are the
only common subgroups of P(x) and P(O).

Proof. Let n = pf' ... pk» where m, k,, ..., k,, > 1 and p, < p, < ... < p,, are
primes. Further, let P(x) be an arbitrary cyclic group such that 0 is its zero element.
If n is a prime, then the result is clear. Suppose that n is composed and let
ay, ..., a, € P(x) be some elements of orders p,, ..., p,, respectively. It is easy to
construct a cyclic group P(O) such that O is its zero and each of the elements
ay, ..., a, is a generator of P(O). Now, if R is a nonzero subgroup of both P(x) and
P(0), then a;€ R for at least one 1 < i < m, and hence R = P. Finally, P(x)
contains a nonzero proper subgroup, and so P(x) + P(0). O

9.9 Remark. Let Q(*) be a quasigroup containing a normal sugquasigroup P(x)
of index 2. Let ae Q, a ¢ P. Then Q is formed by the elements x and x * x, with
x running over P, and we can define three binary operations O, A and V on P as
follows:

xOy=(axx)x(axy);
XxAy=z wherex*(axy)=axz;
xVy=rz where(axx)*y =ax*z

for all x, y € P. It is easy to see that P(O), P(A) and P(V) are quasigroups and that
Q(*) is isomorphic to Q(P, x, O, A, V) (define f:Q(P, *, O, A, V) — Q(*) by
f(x,0) = x and f(x, 1) = a = x).

9.10 Proposition. Let x > 1, x % 2 be a cardinal number. Then there exists
a commutative loop Q such that 6(Q) = » and Q/s, is isomorphic to Z,.

Proof. Let4 < x < N,. By 9.8, there exist two different cyclic group P(x) and
P(0) with the same underlying set P, Card (P) = x, with the same zero element
0 and without nontrivial common subgroups. Consider the quasigroup
Q = Q(P, *, O, *, *). By 9.1, Q is a commutative loop. Put s = s,. We have s < ¢
and s = ¢(r, r) for a congruence r of both P(O) and P(x) (see 9.5 and 9.6) such that
(x*y,x0O y)erforall x,ye P.Put K = {xe P:(x,0) € r}. Then K is a subgroup
of both P(x) and P(O). If K = P, then r = Px P and s = t. If K = {0}, then
r =1idp and x * y = x O y for all x, y € P, a contradiction.
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Let ¥ + 2,4 and let P(*) be an abelian group of order » and with a zero element
0. It is easy to see that there exists a simple commutative quasigroup P(O) such
that 000 =0 and either » =1 or P(O) is not associative. Now, put
Q = Q(P, *, 0, *, %) and s = s,. Then s = t(r, r) for a congruence r of both P(x)
and P(O) such that (x * y,x O y)er for all x,ye P.If r = P x P, then s = t. If
r £ P x P, then x > 3, r = idp and P(x) = P(O), a contradiction. []

XIL.10 Representations of cardinal functions
on groups by quasigroups and loops

10.1 Proposition. Let G be a group of order B and let « > 1 be a cardinal
number. Then, except for the cases listed below, there exists a loop Q such that
o(Q) = « and Q/s, is isomorphic to G. The exceptional cases for (o, p) are (2, 1),
(2,2),(3,1) and (4, 1).

Proof. If o > 6, then the result is settled by 8.7. If o + 2 and f = 2, then 9.10
applies. If « < ¥, and > 3, then 8.2 takes place. The five-element loop Q with
the multiplication table

Q0|1 2345
112345
2123451
313512 4
4141532
5154213

is simple and nonassociative, solving the question for (a, ) = (5, 1). The four
cases for («, ) are excluded by the fact that every at most four-element loop is
associative. []

10.2 Proposition. Let G be an abelian group of order B and let o > 1 be
a cardinal number. Then, except for the cases listed below, there exists a commu-
tative loop Q such that a(Q) = « and Qfs, is isomorphic to G. The exceptional
cases for (o, p) are (2, 1), (2,2), (3,1), (4, 1) and (5, 1).

Proof. Similar to that of 10.1. (Every commutative loop of order 5 is
a group.) [

10.3 Proposition. Let G be a (commutative) group of order f and o. > 1 be
a cardinal number. Then, in all cases except for (o, ) = (2,1), there exists
a (commutative) quasigroup Q such that 6(Q) = a and Q/s, is isomorphic to G.

Proof. Similar to that of 10.1. (See 8.4; it is easy to construct simple
nonassociative and commutative quasigroups of orders 3, 4 and 5.) [J
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XII.11 Comments and open problems

The investigation of representability of cardinal-valued functions on semigroups
by groupoids was initiated by P. Corsini in [3] (see also [S] and [6]). His results
were generalized and completed in [7], [9] and [14]. The case of cardinal functions
on groups was studied in [12].

According to Theorem 2.3, the condition (R) in necessary for a cardinal function
f on a given semigroup S to be representable. We have seen that for some classes
of semigroups, the condition is also sufficient. However, we do not know if this is
true in general. The idea to Section 2 came from [9], where condition (R") was
formulated. Section 2 is a correction to [9].
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