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Groupoids and the Associative Law V. 
(Szasz-Hajek Groupoids of Type (A, A, B)) 

TOMAS KEPKA AND MILAN TRCH 

Praha*) 

Received 10. October 1994 

This páper deals with groupoids possessing just one non-associative triple of elements. The triple is 
of the form (a, a, b). 

Článek se zabývá grupoidy, které mají právě jednu neasociativní trojici prvků. Tato trojice je tvaru 
(a, a, b). 

The present paper is a direct continuation of [2] and [3]. 

IV. 1 Basic arithmetic of SH-groupoids of type (a, a, b). 

1.1 In this section, let G be an SH-groupoid of the type (a, a, b). Let a, b e G 
be such that a. ab 4= a2b and put c = ab, d = ba, e = ac, f = a2b. Then 
a 4= b and e 4= / 

1.2 Proposition, (i) If x, y e G are such that xy = a (resp. xy = b), then 
either x = a (resp. x = b) or y = a (resp. y = b). 
(ii) If M is a generator set of G, then {a, b) _= M. 
(iii) // M is a subgroupoid of G, then either {a, b] ^ H and H is an 
SH-subgroupoid of type (a, a, b) or {a, b} <£ H and His a semigroup. 
(iv) If r is a congruence of G, then either (e, f)£r and G/r is an SH-groupoid of 
type (a, a, b) or (e, f)er and G/r is a semigroup. 

Proof. See III. 1.2. 

1.3 Lemma, (i) ad = ca. 
(ii) If b =# d, then ea = fa. 
(iii) If b 4= c and a2 4= a, then ae = af. 
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Proof, (i) ad = a . ba = ah . a = ca. 
(ii) ea = (a . ah) a = a(ab . a) = a (a . ba) = a2. ba = a2b . a = fa. 
(iii) ae = a (a . ah) = a2. ah = a2 a . h = aa2. b = a . a2b = af 

1.4 Lemma, (i) If x e G, then ax = a iff xa = a. 
(ii) / / y e G such that a 4= y + b, then ay = a iff yb = b. 

Proof, (i) It is obvious for x = a. For x 4= a suppose that ax = a 
and xa 4= a. Then e = a . ah = ax . ah = a(x . ah) = a(xa . b) = (a . xa)b = 
= (ax . a)b = a2b = / a contradiction. 
Similarly, if x 4= a + ax and xa = a, then e = a . ah = a(xa . b) = a2b = / 
a contradiction. 
(ii) Suppose that a + y + b, ay = a and yb #= b. Then e = a . ah = 
= a(ay. b) = a(a. yb) = a2. yb = (a2y)b = (a . ay) b = a2b = / , a contradiction. 
Similarly, if ay + a, yb = b, then e = a . ah = a(a . yb) = a2b = / , a contra­
diction. 

1.5 Lemma. Suppose that a2 = a. Then: 
(i) a =t= c 4- b, and a 4= d. 
(ii) c = / and da = d. 
(iii) ae = e = af. 
(iv) ad = fa. 
(v) If b + -/, then ea = fa. 

Proof, (i) If a = c, then e = a . ah = aa = a = ah = aa . b = / , a contra­
diction. Thus a + c, and hence a 4= d by 1.4(i). Further, if b = c, then 
e = a . ab = ah = aa . h = / , again a contradiction, 
(ii) c = ab = aa . b = f and da = ba . a = b . aa = ba = d. 
(iii) ac = a(a . ab) = a2. ab = a . ab = c, since b 4= ab by (i). Further, af = 
= ac = a . ab = e. 
(iv) fa = ca = ad by (ii) and 1.3 (i). 
(v) ea = (a . ab)a = a(ah . a) = a(a . ba) = a2. ba = a . ba = ad. 

1.6 Lemma, (i) / / x e G such that x 4= a 4= xa, rhc/t xc = x/. 
(ii) If x e G is such that x + b 4= bx, then ex = /x. 

Proof, (i) xe = x(a . ab) = xa . ab = (xa . a)b = xa2. b = x . a2b = xf 
(ii) ex = (a . ab)x = a(ab . x) = a (a . bx) = a2. bx = a2b . x = fx. 

1.7 Lemma, (i) If x e G is such that x 4= a = xa, then xe = e and xf = / 
(ii) If xe G is such that x 4= b = bx, ex = e and fx = f. 

Proof, (i) xe = x(a . ab) = xa . ab = a . ab = e and xf = x . a2b = xa2. b = 
= (xa . a)b = a2b = / . 
(ii) ex = (a . ab)x = a(ab . x) = a(a . bx) = a . ab = e and fx = orb . x = 
= a2. bx = a2b = / 
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1.8 Lemma. Suppose that either a = c or a = d. Then: 
(i) a = c = d. 
(ii) a 4= a2 = e and a2 4= / 
(iii) ae = a* = af 
(iv) be = e and bf = f 
(v) ea = a2, = fa. 
(vi) eb = f e2 = a4 and ef = a4b. 
(vii) fb = a2. b2, f2 = a4 . b and fe = a4. 
(viii) If b2 4= b, then fb = e. 
(ix) / / b2 = b, then fb = f 

Proof, (i) It follows easily from 1.4(i). 
(ii) By 1.5(i), a + «2- But e = a. ab = a2 trivially. 
(iii) ae = a . a2 = 0s = a2. a = a2b . a = fa. 
(iv) be = bar = ba . a = a2 = a and bf = b . orb . ba2 . b = (ba . a)b = a2b = f 
(v) ea = a2. a = a3 = a2. a = a2ba = arb . a = fa. 
(vi) eb = a2b = f, e2 = a2a2 = a4 and ef = a2. a2b = a4b. 
(vii) fb = a2b.b = a2b\ f2 = a2b . a2b = (a2b . a2)b = (a2. ba2)b = (a2(ba. a))b = 
= ccar. b = a4b and fe = crb . a2 = a2. ba2 = a4. 
(viii) crb2 = a . ab2 = a(ab. b) = a . ab = a2 = e. 
(ix) orb2 = a2b = f 

1.9 Lemma. Suppose that c = a = d (see 1.8). Then: 
(i) b * e. 
(ii) If b = / then b2 = b = crb2 = a4b, a = a3 and e = a4. 

Proof, (i) If b = e, then e = be = b2 = eb = f (1.8(iv), (vi)), a contradic­
tion. 
(ii) See 1.8. 

1.10 Lemma. Suppose that-b = c. Then: 
(i) b = c = e and b =j= / 
(ii) a2 4= a #= c and a 4= d. 
(iii) ad = d and af = / 
(iv) bd = b2a and bf = b2. 
(v) da = ba2, db = b2 = df and dd = b2a. 
(vi) If b 4= d, then fa = d and ff = b2. 
(vii) / / f c * b2, then fb = b2 and fd = b2a. 
(viii) If b = d * b\ then ff = b2. 

Proof, (i) Obvious, 
(ii) Since b = c, we have a =1= c, and hence a =1= d by 1.8. Finally, ab = 
= b = e =t= / = arb yields a 4= a2. 
(iii) ad = a . ba = ab . a = ba = d and af = a . a2b = a*b = a2a . b = a2. ab = 
= crb = f (since a 4= a2). 
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(iv) bd = h . ba = b2a and bf = b . a2b = bd~. b = (ba . b)b = ba . ab = 
= ba . b = b . ah = b2 (we have ba 4= a by (ii)). 
(v) da = ba . a = ba2, db = ba . b = b . ab = b2, of = ba . a2b = (ba . a2)b = 
= ba3. b = (ba2. a) b = ba2. ab = (ba . a)b = ba . ab = ba . b = b . ab = b2 

and dd = ba . ba = (ba . b)a = b2a. 
(vi) fa = orb . a = a2. ba = a((a . ba) = a(ab . a) = a . ba = ab . a = ba = d 
and further ff= orb. orb = (a2b. cr)b = ((a2b. a)a)b = ((a2. ba)a)b = ((a(a. ba))a)b = 
= ((a(ab. a))a)b = ((a.ba)a)b) = ((ab.a)a)b = (ha . a)b = ba.ab = ba.b = b. ab = 
= b2 (we have ba 4= a). 
(vii) fb = a2b . b = a2b2 = a(a . b2) = a(ab . b) = ab2 = ab . b = b2 and fd = 
= a2b . ba = (a2b . b)a = a2b2. a = b2a. 
(viii) ff = orb . orb = (crb . ar)b = (a2. ba2)b = (a2(ba . a))b = (a2 . ba)b = 
= a2b . b = a2b2 = b2. 

1.11 Lemma Suppose that h = c = d and h #- b2. Then: 
(i) b2 = b2a and h = ha2. 
(ii) fa = f ff = b\ fd = f and fb2 = b\ 
(iii) f = df 

Proof, (i) b2a = h . ha = b2 and ba2 = ba . a = ba = b. 
(ii) fa = a2b . a = a2. ba = crh = f ff = b2 by 1.10(ix), fa2 = a2ba2 = 
= (a2b . a)a = (a2. ha)a = crh . a = a2 .ba = orb = f and fb2 = a2b . b2 = 
= a2b3 = a2b2. b = (a . ab2)b = (a(ab . b))b = ab2. b = (ab . b)b = b3. 
(iii) a2f = a.af = f by l.lO(iii). 

1.12 Lemma. Suppose that b2 = b = c. Then: 
(i) b = b2 = c = d = e = ha2. 
(ii) bf = b = ba2. 
(iii) fa = fb = ff = fa2 = f = orb (and so a =)= a2). 

Proof, (i) First, a2 4= a =# c,d by 1.10(ii). Now, if b = ba2,-Ahen b = bb = 
= b . ab = ba . b = (ba2. a)b = ba3 . b = (ba . a2)b = ba . a2b. 
Since a2b = f 4= e = b, we must have d = ba = b by 1.2(i). 

Now, let b 4= ba2. Then e = a . ah = ab = b = bb = b . ab = ba . b = 
= ba . ab = (ba . a)b = ba2 . b = (ab . a2)b = (a2 . ba2)b = (a2b . a2)b = 
= a2b . a2b = a2(b . a2b) = a2(ba2. b) = a2((ba . a)b) = a2(ba . ab) = a2(ba . b) = 
= a2((ba . a)b) = a2(ba . ab) = a2(ba . b) = a2(b . ab) = a2b2 = a2b = f a. con­
tradiction. 
(ii) bf = b . db = herb = bb = b by (i). 
(iii) fa = crb . a = a2. ba = orb = /', fb = a2b . b = a2b2 = a2b = f ff = 
= crb . db = (db . d)b = (d . hd)b = (d(ba . a))b = db . b = a2b2 = db = f 
and fa2 = crb . a2 = a2. ba2 = ar(ba . a) = crb = f. 
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1.13 Lemma. Suppose that b = d + c. Then: 
(i) a 4= c. 
(ii) bc = be = bf = b2 and ba2 = b. 
(iii) ca = ca2 = c. 
(iv) cb = cc = ce = cf = ab2. 
(v) ea = ca2 = c. 
(vi) eb = ec = ee = ef = a . ab2. 
(vii) fa = fa2 = f 
(viii) fb = fc = fe = ff = a2b2. 

Proof, (i) If a = c, then a = d = fc by a contradiction. 
(ii) be = b . ab = ba . b = b2, be = b(a . ab) = ba . ab = b . ab = ba . b = b2, 
bf=b.a2b = ba2 .b = bb = b2, ba2 = ba.a = b. 
(iii) ca = ab . a = a .ba = ab = c and ca2 = ca . a = c. 
(iv) cb = ab .b = ab2, cc = ab .ab = (ab.a)b = ab.b = ab2, ce = (ab)(a.ab) = 
= (ab. a) .ab = (ab)2 = (ab . a)b = ab2, cf = c. a2b = cb = ab2. 
(v) ea = (a . ab)a = a(ab . a) = a(a .ba) = a.ab = e and ea2 = ea . a = e. 
(vi) eb = ac .b = a. cb = a. ab2, ec = ac. c = a. c2 = a. ab2, ee = 
= e(a.ab) = ea.ab = e.ab = ec = a.ab2, ef =(a.ab)f = a(ab.f)a = (a.bf) = 
= a. ab2. 
(vii) fa = a2b. a = a2. ba = a2b = f and fa2 = fa .a = f 
(viii) fb = orb.b = a2b2, fc = a2b.c = a2.bc = a2b2, fe = f(a. ab) = 
= fa.ab = f .ab = fc = a2b2, ff = a2b . f = a2 .bf = a2b2. 

1.14 Lemma, (i) a =# ca = ab. a = a .ba = ad. 
(ii) a 4= e = a . ab. 

Proof. We have ab .a = a .ba. If a = a .ba, then a = ba . a = ba2 by 
1.4(i). If a = e, then a = ab. a = a .ba. However, if a = ba2, then a = a2 by 
1.2(i), and hence a = ba = d, a contradiction with 1.5(i). 

1.15 Lemma, a =f= f 

Proof. Let a = f = a2b. Then a = a2 by 1.2(i), and hence a = a2b = 
= ab = d, a contradiction with 1.5(i). 

1.16 Lemma, a $ {b, b1, e, f aba}. 

Proof. See 1.2(i), 1.14 and 1.15. 

1.17 Lemma. Let xeG and n > 2 and that xn = a. Then x = a and either 
a2 = a or a2 =1= a, a3 = a and f = a2b = b. 

Proof. By 1.2(i), x = a. Now, assume that n is the smallest integer with 
n > 2 and an = a. Using 1.2(i) again, we see that either n = 2 or n = 3. If 
n = 3, then a =j= a2 and b = a2b by 1.4(H). 
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1.18 Lemma. Let x e G and n > 2 be such that x" = b. Then x = b and 
either b2 = b or b2 4= b, b3 = b, a = c = d. 

Proof. Similar to that of 1.16 (use 1.4). 

1.19 Lemma, (i) b = c iff b = e. 
(ii) If b = f then a} = a and b 4= c. 

Proof, (i) If b = e = a . ab, then ab = b by 1.2(i). 
(ii) If b = f = crb, then either a2 = a (and hence a3 = a) or a3 = a by V4(ii). 
If, moreover, b = c, then e = a . ab = ab = c = b = f a contradiction. 

1.20 Lemma. If b = b . ab( = ba . b), then b = b2 = d. 

Proof. If ba = a, then a = ab by 1.4(i). But b = ba. b = ab, a contradic­
tion. Thus ba + a. If ba = b, then b = ba . b = b2. Now, assume that ba 4= b. 
Then, by 1.4(H), a = a . ba, a contradiction with 1.16. 

1.21 Lemma. Suppose that b = b . a2b( = ba2. b). 
(i) b = d (then b = ba = ba2 = b2). 
(ii) b = f (then bar = a2 and a = c = d). 

Proof. First, assume that bar = a. Then a = a2, a = ba, a = ab and 
ba2 = ba. a = a2 = a, b = bar . b = ab = a, a contradiction. 

Now, let ba2 = b. Then ba . a = b, ba = b, bar = ba = b, b = ba2. b = b2. 
Finally, let a 4= ba2 41 b. Then, by 1.4(H), a = ba2. a = ba . a2. If a = a2, 

then a = ba = ba2 and b = ba2. b = ab = a, a contradiction. Thus a 4= a2, 
and hence a = ba = ab and bar = ba .a = a2. 

1.22 Lemma. Suppose that b = f = b3 41 b2. Then b2ar = a2. 

Proof. We have b2cr . b = b2. a2b = b2. f = b} = b. If b2a2 = b, then 
b2a . a = b, b2a = b, ba = b and b2ar = b2a . a = (b . ba) a = b2a = b . ba = b2, 
a contradiction. If b2a2 = a, then a2 = a, b2a = a, b . ba = a, ba = a. Finally, 
if a 41 b2a2 + b, then a = Ira2. a = b2. a\ a = a\ a = b2a = b . ba, a = ba 
and b2a2 = (b . ba)a = a2. 

V . 2 M i n i m a l S H - g r o u p o i d s of type (a, a, b) 

2.1 In this section, let G be a minimal SH-groupoid of type (a, a, b). Let 
a,b e G be such that a . ab 4= orb and put c = ab, d = ba, e = a . ab and 
f=a~b. 

2.2 Lemma. Suppose that a $ {c, d, a2, a3}. Then a + xy for all x,y e G. 
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Proof. Let, on the contrary a = xy and let W denote an absolutely free 
groupoid over {u, v}. Then we have a projective homomorphism (j>:W-^ G such 
that $(u) = a and <f)(v) = b. 

Now, according to 1.2(i) we can consider a term teW such that l(t) is minimal 
with the respect to a = a$(t) (or a = (f>(t)a — see 1.4(i)). Clearly, l(t) > 2, and 
hence t = rs. Then a = a. (j>(r) (f)(s). But a + e = a . ab, so that (</>(/*), (/)(s)) 4= 
4= (a, b) and a = a . (j)(r) 0(s) = a$( r ) . 4>(s). Due to the minimality of t, we have 
a 4= a0(r), and therefore a = (f)(s) and a = a(f)(r). a = a .a(f)(r) = a2(f)(r) 
(again, (j)(r) 4= b and we can use 1.41(i)). Since a 4= a2, we must have a = (j)(r), 
and hence a = a<fi(r). (j)(s) = aa .a = a3, a contradiction. 

2.3 Lemma. Suppose that a = c = d (see 1.8). If x, y = G are such that 
xy = a, then (x, y) e {(a, a2), (a2, a), (a, b"), (b", a), n > 1}. 

Proof. We sail proceed similarly as in the proof of 2.2. 
Let t e W be such that \(t) is minimal with respect to (f)(t) £ {cr, b", n > 1} and 

a = acj)(t). Since a + a1 by 1.8(ii), we have t = rs and a = a. (f)(r) (f)(s) = 
= a0(r).</>(s). 

First, assume that a = a(p(r) and </>(r) = b". Then a = a</>(s) and either 
(f)(s) = bm and (f)(t) = b" + w, a contradiction, or <j)(s) = a2 and (j)(t) = bna2 = 
= b"a . a = (b"~ * . ba) a = b"" !a . a = ... = a2, a contradiction. 

Next, let a = a^(r) and </>(r) = a2. Then a = a3 and a = acf)(r). (j)(s) = 
= a(f)(s). If (j)(s) = a2, then </>(f) = a4 = a3 . a = a2, a contradiction. Thus 
</>(s) = b" and 0(t) = a2b" = a2, again a contradiction. 

Finally, let </>(s) = a. Then a = acf)(r). a = a . acf)(r) = a2(j)(r), <f)(r) = a and 
(f)(t) = (j)(r) (f)(s) = a2, a contradiction. 

2.4 Lemma. Suppose that a = a2. Then xy 4= a for all x, y 4= G, (x, y) =t= 
+ (a, a). 

Proof. We can proceed similarly as in the proof of 2.2 (take teW minimal 
with respect to <j)(t) 4= a and a = a(f)(t)). 

2.5 Lemma. Suppose that c 4= a 4= a2 and a = a3. Then xy 4= a for a/7 
x, y e G, (x, v) $ {(a,a2), (a2, a)}. 

Proof. We can proceed similarly as in the proof of 2.2. 

2.6 Proposition. Let x, y e G be such that xy = a. Then just one of the 
following cases takes place: 
(i) a = c = d and (x, y) e {(a, a2), (a2, a), (a, bn), (btl, a),n > 1}. 
(ii) a = a2 and (x, y) = (a, a). 
(iii) c 4= a 4= a2, a = a3, and (x, y) e {(a, a2), (a2, a)}. 

Proof. Combine 2.2, 2.3, 2.4 and 2.5. 
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2.7 Lemma. Suppose that b $ {c,b, b2, b3]. Then xb ^ b for every xeG. 

Proof. We shall proceed similarly as in the proof of 2.2. 
Let teW be such that \(t) is minimal respect to b = (j)(t) b. Then t = rs and 

b = (f)(r)(j)(s).b. 
Further by 1.4(H), a = (j>(r) (j)(s). a = (f)(r). (f)(s) a. If (j)(r) = a = 0(s), then 

b = a2b = f a contradiction. If (j)(r) = a #- (f)(s), then b = a . (j)(s)b and 
b = (j)(s)b, again a contradiction. If 0(r) 4= a, then (j)(s) a = a and 
a = (j)(r). <l)(s)a = (j)(r) a. Since <fi(r) + a and (j)(r) b 4r b, we have <p(r) = b 
by 1.4. 

Now, a = c = d, a = (f)(s) a, and hence (f)(s) e {a2, b", n > 1} by 2.3. If 
(j)(s) = a2, then b = ba2. b = (ba. a) b = crb = f, a contradiction. If </>(s) = bn, 
then b = b" + 1, and hence either b = b2 or b = b3 (by 1.18), the final contra­
diction. 

2.8 Lemma. Suppose that b = c 4= b2. If x e G is such that xb = b, then 
x = a. 

Proof. We have b = c = e, and hence b 4= f Furter, b 4= b3 by VI8. 
Now, let teW be such that 1(f) is minimal with respect to (f)(t) 4= a and 

b = (\)(t) b. Then t = rs and b = <j>(r) (f)(s). b = (j)(r). cp(s) b (since b * f ) . If 
</>(s) b = b, then 0(s) = a, b = <p(r). ah = (j)(r) b, (f)(r) = a and (f)(t) = a2, 
b = crb = f, a contradiction. Thus 4>(s)b 4= b, and hence (f)(s) 4= a and 
</.(,•) = t. 

Now, b = b</>(s). b and b</>(s) 4= a, b. By V4(ii), c/ = a . b</>(s) = ab . </>(s) = 
= bcj)(s), a contradiction. 

2.9 Lemma. Suppose that b £ {/r, b3] and h = f. If x e G is such that 
xb = b, then x = a2. 

Proof. We shall proceed similarly as in the proof of 2.8 (if b = f, then b 4= c). 
Let t e Wbt such that 1(f) is minimal with respect to (j)(t) 4= a1 and b = 0(f)b. 

Then f = rs, b = (p(r) (j)(s). b, (cj)(r), (j)(s)) 4= (a, b) and b = (j)(r). (j)s)b. If 
</>(s) b = b, then </;(*) = a2, b = (p(r). <t>(s) b = </>(/<) b, 0(r) = a2 and 0(f) = 
= 4>(r)(l)(s) = a4 = a\ a = a2 (by V 19(H)), a contradiction. Thus (j)(s) b 4= b, 
and hence </>(r) = b. Now, b = b</>(s). b. 

If b(j)(s) = a, then b = ba.b, a contradiction with V20. If b</>(s) = b, then 
b = b2, again a contradiction. Thus b(j)(s) 4= a, b, and hence a = b(j)(s). a = 
= b . </>(s) a and a = a . b<l>(s) = ab . <j>(s) by 1.4(H). Now, by V2(i) and V4(i), 
cj)(s) = a = acj)(s). Clearly, </>(s) 4= CJ, b (by 1.20 and 1.18) and consequently 
b = (j)(s)b by 1.4(H). It follows that (j)(s) = a2 and we have b = ba2. b = 
= b . crb = bh, a contradiction. 

2.10 Lemma. Suppose that b£{c,f) and b = b2. If x e G is such that 
h = xb, then x = b. 
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Proof. Let te W be such that \(t) is minimal with respect to (j)(t) 4= b and 
b = (j)(t) b. Then t = rs, b = <j>(r) <t>(s). b = <j)(r). (j>(s) b. Then (since <j>(t) 4= 
* b = b2\ cj)(r) = b and b = b<\)(s) b. 

Clearly, (j)(s) #= b 4= b4>(s) and b(j)(s) 4= a. Then a = b(j)(s). a = b . (f)(s) a = 
= ba, <j)(s)a = a. Since b = b$(s). b and a = ba, we must have 0(s) 4= a, and 
hence b = cj)(s)b. Thus (j)(s) = b, a contradiction. 

2.11 Lemma. Suppose that b$ {c,f b2} and b = b*. IfxeG is such that 
b = xb, then x = b2. 

Proof. We can proceed similarly as in the proof of 2.10. 

2.12 Lemma. Suppose that b = c = b2. If xeG is such that b = xb, then 
xe {a,b}. 

Proof. We can proceed similarly as in the proof of 2.10. 

2.13 Lemma. Suppose that b = f = b2. If xe G is such that b = xb, then 
x e {cr, b}. 

Proof. We can proceed similarly as in the proof of 2.10. 

2.14 Lemma. Suppose that b = f = b} 4= b2. IfxeG is such that b = xb, 
then xe {cr, b2}. 

Proof. We can proceed similarly as in the proof of 2.10 (use V22). 

2.15 Proposition. Let xeG be such that xb = b. Then just one of the 
following cases takes place: 

(i) b = c 4= b2 and x = a. 
(ii) b = c = b2 and x e {a,b}. 
(iii) b = f${lr,b}} and x = a2. 
(iv) b = b2 $ {c, /} and x = b. 
(v) b = b3£{c,fb2} and x = b2. 
(vi) b = f = b2 and x e {crb}. 
(vii) b = f = b} 4= b2 and xe {cr, b2}. 

Proof. See 2.7, . . . ,2.14. 

2.16 Lemma. Suppose that b $ {c,d, b2, b\ / } . Then b 4= xy for all x, y e G. 

Proof. Let, on the contrary, b = xy. By 2.7, x = b 4= y. Now, let te W 
be such that 1(f) is minimal with respect to b = b(j)(t). Then t = rs, 
b = b . (j)(r) (f)(s) = b<f)(r). cj)(s). Since b(j)(r) 4= b, we have </>(s) = b and b = 
= b(f)(r). b, a contradiction with 2.7. 
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2.17 Lemma. Suppose that b = c $ {d,b2}.If x, y e G are such that b = xy, 
then (x, y) = (a, b). 

Proof. Similar to that of 2A6 (use 2.8). 

2.18 Lemma. Suppose that b = d<£ {c,b2, b\ / } . If x,yeG are such that 
b = xy, then (x, y) e {(b,a"}; n > 1}. 

Proof. Similar to that of 2A6 (use 2.7). 

2.19 Lemma. Suppose that b = b2 £ {c,d, / } . If x, y e G are such that 
b = xy, then (x, y) = (b, b). 

Proof. Similar to that of 2A6 (use 2A0). 

2.20 Lemma. Suppose that b = b3 <£ {f, b2}. If x, y e G are such that b = xy, 
then (x,y)e{(b,b2),{lr,b)}. 

Proof. We have b 4= c,d. Similar to that of 2.16 (use 2.11; if (j)(s) = b and 
b(j)(r) = b2, then b = b3 = b . b<f>(r) = b20(r), </>(r) = b and 0(t) = 4>(r) <f>(s) = 
= b2, a contradiction). 

2.21 Lemma. Suppose that b = f £ {d,b2, b3}. If x, y e G are such that 
b = xy, then (x, y) = (a2, b). 

Proof. Similar to that of 2.16 (use 2.9, 2.6(i) and 2.18; if </>(s) = b and 
b(f)(r) = a2, then a = a3 = b(j)(r). a = b . (j)(r) a, a = (f)(r) a = c = d, (f)(r) = 
= a2, (f)(t) = (j)(r) (f)(s) = a2b = b and b = b2, a contradiction). 

2.22 Lemma. Suppose that b = c = d $ {b2, b3}. If x, y e G are such that 
b = xy, then (x, y) e {(a,b), (b, a"); n > l} . 

Proof. Similar to that of 2A6 (use 2.8). 

2.23 Lemma. Suppose that b = c = b2. If x, y e G are such that xy = b, 
then (x, y) e {(a, b), (b, b), (b, f), (b, a"), n > 1}. 

Proof. By 1.12, b = c = d = e = b2 + f Further, a 4= a2, af = f = bf = 
= fb = ff. Now, we can proceed similarly as in the proof of 2.16. 

2.24 Lemma. Suppose that b = d = b2 <£ {c, / } . If x,yeG are such that 
b = xy, then (x, y) e {(b,b), (b, e), (b, a11), (b, a"b), n > 1}. 

Proof. Similar to that of 2A6 (use 2.10). 

2.25 Lemma. Suppose that b = d = f 4= b2. / / x, y e G are such that 
b = xy then (x, y) e {(a2, b), (b, a'1), n > 1}. 

Proof. Similar to that of 2A6 (b = / implies a3 = a and if b = ba . b, then 
ba = a2 by 2.9, and hence a = bu . a = b .ua, ua = au = a, a = ba = d = b, 
a contradiction). 

40 



2.26 Lemma. Suppose that b = f = b2. If x, y e G are such that b = xy, 
then (x, y) e {(b,b), (a2, b)}. 

Proof. We have b 4= c, d. Now, using 2.13, we can proceed similarly as in the 
proof of 2.16. 

2.27 Lemma. Suppose that b = f = b3 4= b2. If x, y e G are such that 
b = xy9 then (x, y) e {(b,b2), (b2, b), (a2, b)}. 

Proof. Similar to that of 2.16 (if b</>(r) = b2, then b = b3 = b.b(p(r) = 
= b2(f>(r), (f)(r) = b and (j)(t) = (f)(r) cf)(s) = b2, a contradiction). 

2.28 Proposition. Let x, y e G be such that xy = b. TTicn just one of the 
following cases takes places: 

(i) b = c £ {d, b2} and (x, y) = (a, b). 
(h) b = c = d <£ {b2, b3} and (x, y) G {(a, b), (b, a"), n > 1}. 
(iii) b = c = b2 and (x, j,) e {(a, b), (b, b), (b, f ) , (b, a"), * > 1}. 
(iv) b = d £ {c,f b2, b3} and (x, y) e {(b,a"), n > 1}. 
(v) b = d = b2i (c,fj and (x, y) e {(b,b), (b, c), (b, a"), n > 1}. 
(vi) b = d = f + b2 and (x, y) e {(a2, b), (b, a"), n > 1}. 
(vii) b = ft {d,b2, b3} and (x, y) = (a2, b). 
(viii) b = f = b2 and (x, >>) e {(b,b), (a2, b)}. 
(ix) b = b2 ^ {c, d, f} and (x, y) = (b, b). 
(x) b = b3 ^ {f b2} and (x, y) e {(b, b2), (b2, b)}. 

Proof. Combine 2.16, ..., 2.27. 

2.29 In the sequel, we shall say that G is of subtype 

(a) if a = c and b = f\ 
(P) if a = c, f = a3 and b = b2\ 
(y) if a = c, a3 #- f and f 4= b = b2; 
(5) if a = c and f #- b #- b2; 
(e) if a = a2 and d = b = b2; 
(({)) if a = a2 and d = b 4= b2; 
(i|/) if a = a2, b 4= d and b = b2; 
(Q) if a = a2 and d 4= b 4= fc2; 
(r|) if c 4= ^ 4= a2, a = a3 and b = b3; 
(|i) if c 4= a 4= a2, a = a3 and b 4= b2; 
(v) if c 4= a 4= a2, a 4= a3 and b = b2; 
(K) if c 4= aba2, a 4= a3 and b 4= b2. 

Using the preceeding results, one. can show easily that G is just one of the 
preceeding twelve subtypes (a), (p), ..., (k). 
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V.3 Minimal SH-groupoids of type (a, a, b) and subtype (a) 

3.1 Consider the following three-element groupoid TJ(o): 

ад a b e 

a e a a 
b a b e 
e a b e 

It is easy to check that T,(o) is a minimal SH-groupoid of type (a, a, b) and subtype 
(a). Clearly, sdist(T|(o)) == 1 (put a * a = a). 

3.2 Proposition. Tj(o) is (up to isomorphism) the only minimal SH-groupoid of 

type (a, a, b) and subtype (a). 

Proof. Let G a minimal SH-groupoid of type (a, a, b) and subtype (a) (see 1.8). 
Then a = c = d, a 4= a2 = e, b = f b2bf = b . a~b = bar . b = (ba . a) b = 
= orb = f = b and a = ab = af = a . a2b = a}b = a2. ab = a3. The rest is 
clear. 

V.4 Minimal SH-groupoids of type (a, a, b) and subtype (p) 

4.1 Consider the following four-element groupoid T2(o): 

Цo) a b e f 

a e a f f 
b a b e f 
e f f f f 
f f f f f 

Then T2(o) is (up to isomorphism) the only minimal SH-groupoid of type (a, a, b) 

and subtype ((3). 

V.5 Minimal SH-groupoid of type (a, a, b) and subtype (y) 

5.1 Let G be a minimal SH-groupoid of type (a, a, b) and subtype (y). Then the 
elements a, b, / a2 = e, a2 = e, a~ are pair-wise different, and hence G contains 
at least five elements (if a~ = a\ then / = a2b = ayb = a\ a contradiction). 
Further, a 4- an + b for every n > 1 (see 1.2(i) and 1.17). 

If / = an for some n, then n > 4, or = an+\ a4 = a'l + 2, 
a'1 = f and we see that G is finite. 
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If a1 = an for some n -# 2, then n > 4 and f =-= a2b = a"b = a" ! . ab 
i a',-1a = an = a2, a contradiction. 

5.2 Example. Consider the following infinite groupoid T}(o): 

ЭД a b f 
1 

a~ a3 . a" ... 

a 
-> 

ar a a3 a} a 4 . .. a " + l ... 

b a b f ar a3 . a" ... 

f a3 

f a4 a4 a5 . . a" + 1 ... 
i 

ar a3 

f a4 a4 a5 . . an + 1 ... 

a3 a4 a3 a5 
as a6 . . ď + 3 ... 

a" a в + l ď ď + 1 a" + 2 ď + 3 . ". a2" '.'.'. 

Then 7̂ (o) is (up to isomorphism) the only infinite minimal SH-groupoid of type 
(a, a, b) and subtype (Y). 

V.6 Minimal SH-groupoids of type (a, a, b) and subtypes (e), (())), (\|/) 

6.1 The following groupoid T4(o) is (up to isomorphism) the only minimal 
S-groupoid of type (a, a, b) and subtype '(e): 

ВД a b c e 

a a c e e 

b b b b b 
c c c c c 

e e e e e 

6.2 Example. The following groupoid F5(o) is a minimal SH-groupoid of type 
(a, a, b) and subtype (<)>)•' 

ВД a b c e 9 

a a c e e 9 
b b 9 9 9 9 
c c 9 9 9 9 
e e 9 9 9 9 
9 9 9 9 9 9 
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6.3 Exemple. The following groupoid T6(o) is a minimal SH-groupoid of type 
(a, a, b) and subtype (v|/): 

ЭД a b c d 

Й a c d d 
b d b d d 
c d c d d 
d d d d d 

V.7 Comnments and open problems 

7.1 The methods developed in the preeceding part IV are used here to obtain 
a description of several minimal SH-groupoids of type (a, a, b). Among others, 
some results from [1] are reformulated. 

7.2 Continue the description of minimal SH-Groupoids of type (a, a, b) and find 
their semigroup distances. 
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