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ACTA UNlVERSrTATIS CAROLINAE-MATHEMATICA ET PHYSICA VOL.36, NO. 1 

On Midpoints in Lattices 

LADISLAV BERAN 

Praha*) 

Received 6. Apríl 1994 

This paper introduces the notion of a midpoint in a lattice L having the zero element and the notion 
of a centred ideal in L. It is shown that the study of centred ideals in sectionally complemented lattices 
is facilitated by a congruence 0(1). The congruence 0(1) is compared with some other known 
congruences. A complete characterization of centred ideals in such lattices is given. 

1. I n t r o d u c t i o n 

Our aim in this note is to study midpoints in lattices. We try to get some insight 
as to the nature of centred ideals and we find a full description of these ideals in 
the class of all sectionally complemented lattices. As a byproduct we establish also 
a distributivity criterion in sectionally complemented lattices by means of mid­
points. 

2. Preliminaries 

Henceforth, L will denote an arbitrary lattice having the least element 0. If 
a,b,seL are such that 

s - = a v b & a A b = 0 , 

we write s = a ® b. 
If / is an ideal of L and if a, b, c e L are such that 

c < a 0 b & (c A a) v (c A b) e I, 

then we will write c e (a © ; b)/2 and we will say that c is a midpoint with respect 
to the ideal I in L. The set of all midpoints with respect to I in L will be denoted 
by (L 0 ; L)/2. 
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Istead of (a ®(0] fe)/2 or (L ©(0] L)/2 we will write just (a © fe)/2 or (L © L)/2. 
Similarly, an element c of L such that c e (a © fe)/2 for some a, fe e L is said to be 
a midpoint of L. 

An ideal I od L is called a centred ideal if every midpoint with respect to I in 
L belongs to I, i.e. if 

(L ©; L)/2 c / . 

Following Rav [8], we define an ideal I of L to be a semiprime ideal if for every 
a, fe, c £L, from a A b el and a A C e I it follows necessarily that a A (fe v c)6I . 
Note that characterizations of semiprime ideals are already given as well as in 
general lattices (see e.g. [3] and [4]) as in orthomodular lattices [5]. It is easy to 
see that any semiprime ideal of L is a centred ideal. 

The ideal (0] of the lattice shown in Figure 1 is a centred ideal but it is not 
a semiprime ideal. 

The set of all relative complements of a e L in the interval [0, fe] will be denoted 
by C[0, h](a). 

If I is an ideal of L and ae L, then we will denote by df the set of all fe e L 
such that a A fe el. 

For all other notation and terminology, we refer the reader to [6] or [1]. 

3. Ideals in sec t iona l ly complemented lattices 

Let I be an ideal of L and let 6(1) be a relation defined on L in such a way that 
(a, fe) e 6(1) if and only if I contains every element c e Crp,« v h](a A fe). Clearly, in 
the even that a < fe, (a, fe) e 6(1) if and only if any c e L satisfying 

c v a = f e & c л a = 0 

belongs to J. 
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Theorem l.IfL is a sectionally complemented lattice and if I is a centred ideal, 
then 9(1) is a congruence relation of L. 

Proof. It will be useful to prove first the following statement: 
(A) If a,b,ce L are such that 

a < c < b & (a9b)e 6(1), 

then (a, c) e 9(1) and (c, b) e 9(1). 
Indeed, let 

a+ eC[0./,](a), de C[0,,](a). 

Then a+eI and so a e ( a © 7 a + ) / 2 . Since I is a centred ideal, del. Hence 
M e 0(7). 

Let c + e C[0,/,](c). From a+ e I we have c+ e (a ®7 a+)/2 which yields c + e I. 
Therefore, (c, b) e 9(1). 

Now it remains to show that the Gratzer- Schmidt's Theorem [7] can be 
applied. 

First, suppose 

a < b < c & (a, b) e 9(1) & (b, c) e 9(1). 
Let 

a* e C[0,,](a), a+ e C[0,/,](a), b+ e C[0.£.](b). 

By hypothesis, a+,b+el. From (A) and (a,b)e9(I) we conclude that 
(a, a v (a* A b)) e 0(7). Since a* A be C[0, fl v («* A />)](A)>

 w e n a v e fl* A ^ e 7. From 
b+ e I it follows that a* A b+ e I, and, consequently, a* e (b © ; b+)/2 and so we 
obtain a* e I. Hence (a, c) e 9(1). 

Next, suppose 
a < b & (a, b) e 9(1) 

and let c be an element of L. 
Let u+ e C[0,/, Ac.](a A C). 
It follows from (A) that (a, a v (b A C)) e 0(7). Now we see that u+ e 

e C[o,av{bAc)](a), so that u+ e I which implies (a A C, b A C) e 0(7). 
Suppose now again that a < b, (a, b) e 0(7) and c e L . Let 

w = a v c, t = b A (a v c), w+ e C[0,/,Vr](fl v c)> ^+ 6 C[o,/>]M • 

It follows from (A) that (r, b) e 0(7). Thus t+ e I and 

w+
 A t+ e I & w+

 A w = 0 e 7 . 

Observe that 

W V £ + = b V C & W A £ + = 0 . 

Therefore w+ e(w ®j t+)/2. Consequently, w+ e I. We thus have (a v c, b v c) e 
e 0(7) which accomplishes the desired results. 
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Let I be an ideal of L and let <P(I) be defined on L by 

(a, b) e <2>(I) <=> (a A b)7* = (a v b)7*. 

Corollary 2. Let I be a centred ideal of a sectionally complemented lattice. Then 

9(1) =<*>(/). 

Proof. Suppose (a, b) e $(I) and let c e C[0< „ v b](a A °)- Then c e(a A b)* = 
= (a v b)f, and so c A (a v b) e I. From c < a v b it follows that c e I. 
Therefore (a A b, a v b) e 9(1). Since #(I) is a congruence relation, (a, b) e 6(1). 
Thus <£(I) c 69(I). 

Suppose now that (a, b) e 9(1). Observe that (a v b)f c ( a A b)* is always true. 
If y e (a A b)*, then put d = yAaAbeI and let c = (a v b) A J/. Since 9(1) is 
a congruence relation, (a A b, (a A b) v e) e 9(1). But the quotients (a A b) v c/a A b 
and c/d are transposed. Therefore (d, e) e 9(1). 

Let d+ e C[0,t.](d). Since (d, c) e #(I), d+ e I. Now it is evident that e = y A 
A (a v b) = d v d+ G I. Hence 0(I) c #(I) and this, in turn, gives 9(1) = #(/). 

Lemma 3. If L is a sectionally complemented lattice which contains a sublatice 
isomorphic to the pentagon N5, then there exists a sublattice N5 of L which is 
isomorphic to N5 and is such that the zero element 0 of L belongs to N5. 

Proof. Suppose N5 = [o,a, b, c, /} is a sublattice of L. (See Fig. 2.) 

a Q 

Let o+ e C[0/,](o). The proof is completed by noting that it is sufficient to put 
7V5 = {0,o+ ,a , 'c , /}. 

Lemma 4. If L is a sectionally complemented lattice which contains the 
pentagon N5 as a sublattice where the zero of L belongs to N5, then there exists 
a nonzero midpoint of L, i.e. 

( L 0 L ) / 2 * {0}. 
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Proof. Consider the sublattice IV5 = {0,a, b, c, i} as depicted in Figure 3. 

« Û 

Let 
d e C[o.ť](a), e e C [ a / ](d), p = a л e, fe C [ 0 t a](p). 

We will distinguish two cases. 
Case /: f #= 0. Then fE (d © e)/2. 
Case //: f = 0. Then a = p = aAe<e. Let q = b A e and let g e C[c. h](q). It 

follows readily that g e (d 0 e)/2. 
Suppose that g 4= 0 does not hold. Then b = b A e < e and e > av b = i, i.e. 

e = i. However, this leads to a contradiction, because we could then write 
0 = dAe = dA/ = d, obtaining a = c. 

Lemma 5. If L is a sectionally complemented lattice which contains as 

a sublattice the diamond M5, then there exists a nonzero midpoint of L. 

Proof. Consider the sublattice M 5 = (o,a, b, c, /} shown in Figure 4. 

Let 
deC[a/,](o), eeCro.,](o). 

Then e e (a 0 d)/2. Since o =# c, e = 0 is impossible. 
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Theorem 6. Let L be a sectionally complemented lattice. Then L is distributive 
if and only if 

( L 0 L ) / 2 = {O}. 

Proof. If L is not distributive, then (L ® L)/2 -# {0}by Lemmas 3, 4 and 5. 
If L is distributive and m e (a ® b)/2, then m < a v b and, by distributivity, 

m = m A (a v b) = (m A a) v (m A b) = 0 . 

Lemma 7. Let L be a sectionally complemented lattice and let I be a centred 
ideal of L. 

Let a/9(1), b/6(I) and c/8(l) be elements of the quotient lattice L/9(I) satisfying 

(1) a/9(I)e(b/6(l)®c/9(I))/2. 

Then there exist p, q e L such that 

ae(p@iq)/2. 

Proof. From a/0(1) < b/9(l) v c/0(l) we get (b v c)/0(l) = (avbv c)/0(l) and 
so 

(2) (b v c, a v b v c) e 0(7). 

Let r e C[0, u v H V <•](& v c). By (2) we have re I. Let p = r v b and let 
g e C[0,t](p v c). Then p A q = 0. 

Now 

p/fl(/) = (r v b)/0(7) = r/6(l) v b/9(l) = 0/0(1) v b/6(l) = b/6(l). 

From (1) we conclude that 

0/0(7) = a/0(l) A b/9(l) = a/9(1) A p/0(l) = a A p/9(l), 

so that a A pel. 
Using (1) we see that 

0/0(7) = a/0(7) A c/0(7) = a A c/0(7). 

Thus we have a A eel. 
But q < c, and, therefore, a A q < a Acel, that is a A q e I. 
Finally, 

pvq = pvrvbvq >(pAc)vqvbvr = cvbvr = avbvc>a 

and we are done. 

Theorem 8. Let L be a sectionally complemented lattice. 

Then an ideal I of L is semiprime if and only if it is a centred ideal. 

Proof. Let 7 be a centred ideal. If 

a/0(7)e(b/0(7)®c/0(7))/2 
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is true in the quotient lattice L/t?(I), then a e (L © L)/2 by Lemma 7. From this 
we conclude that a e I, whence we obtain a/9(l) = 0/6(1). It follows that 

(L/9(l)®L/6(I)) = {0/d(I)}. 

Applying Theorem 6 to the quotient lattice L/9(I), we conclude that L/6(l) is 
a distributive lattice. 

By [1; Theorem 1.10, p. 210] or [2; Theorem 2] we get C(L) c 9(1). Therefore 
0/C(L) cz 0/9(1) = I. An appeal to [3; Theorem 3.3, p. 226] shows that I is 
semiprime. 

The converse follows easily. 

Corollary 9. Let I be a centred ideal of a sectionally complemented lattice L. 
Then 9(1) = 4(1) where 4(1) (cf [8, p. 109]) is defined on L by 

(a,b)e4(I) o af= bf. 

Proof. Apply Theorem 8 and [4; Theorem 3], 
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