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This paper introduces the notion of a midpoint in a lattice L having the zero element and the notion
of a centred ideal in L. It is shown that the study of centred ideals in sectionally complemented lattices
is facilitated by a congruence O(I). The congruence 6(I) is compared with some other known
congruences. A complete characterization of centred ideals in such lattices is given.

1. Introduction

Our aim in this note is to study midpoints in lattices. We try to get some insight
as to the nature of centred ideals and we find a full description of these ideals in
the class of all sectionally complemented lattices. As a byproduct we establish also
a distributivity criterion in sectionally complemented lattices by means of mid-
points.

2. Preliminaries

Henceforth, L will denote an arbitrary lattice having the least element 0. If
a, b, s e L are such that

s=avb&anb=0,
we write s = a @ b.
If I is an ideal of L and if a, b, c € L are such that
c<a®@b & (crna)vcnabel,

then we will write ¢ € (a @, b)/2 and we will say that c¢ is a midpoint with respect
to the ideal I in L. The set of all midpoints with respect to I in L will be denoted
by (L @, L)/2.
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Istead of (a @) b)/2 or (L @) L)/2 we will write just (a @ b)/2 or (L @ L)/2.
Similarly, an element ¢ of L such that c € (a @ b)/2 for some a, b € L is said to be
a midpoint of L.

An ideal I od L is called a centred ideal it every midpoint with respect to I in
L belongs to 1, i.e. if

(L@, L)y2c1.

Following Rav [8], we define an ideal I of L to be a semiprime ideal if for every
a,b,ceL,froma A bel and a A cel it follows necessarily that a A (b v c)e 1.
Note that characterizations of semiprime ideals are already given as well as in
general lattices (see e.g. [3] and [4]) as in orthomodular lattices [5]. It is easy to
see that any semiprime ideal of L is a centred ideal.

The ideal (0] of the lattice shown in Figure 1 is a centred ideal but it is not
a semiprime ideal.

The set of all relative complements of a € L in the interval [0, b] will be denoted
by Co.sj(a)-

If I is an ideal of L and a € L, then we will denote by af the set of all be L
such that a A bel.

For all other notation and terminology, we refer the reader to [6] or [1].

3. Ideals in sectionally complemented lattices

Let I be an ideal of L and let 6(I) be a relation defined on L in such a way that
(a, b) € 6(I) if and only if I contains every element ¢ € Cpo v s)(@ A b). Clearly, in
the even that a < b, (a, b) € §(1) if and only if any c € L satisfying

cva=b & cAna=0

belongs to I.
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Theorem 1. If L is a sectionally complemented lattice and if | is a centred ideal,
then O(I) is a congruence relation of L.

Proof. It will be useful to prove first the following statement:
(A) If a, b, ce L are such that

a<c<bh & (abebl),

then (a, c) € O(I) and (c, b) € 6(1).
Indeed, let

ate C[o ,,](a), ae C[O. ‘.](a) .

Then a* el and so de(a @;a*)/2. Since I is a centred ideal, d e l. Hence
(a, c) e O(I).

Let ¢* € Co 4)(c). From a* € I we have c* € (a @, a*)/2 which yields c* € I.
Therefore, (c, b) € 6(I).

Now it remains to show that the Gritzer — Schmidt’s Theorem [7] can be
applied.

First, suppose

a<b<c & (ab)edlI) & (b,c)eb(I).
Let
a*e C[o‘ (A](Cl), at e C[o, ,,](a), b* e C[o_ (](b) .

By hypothesis, a*,b* el. From (A) and (a, b)e6(I) we conclude that
(a.a v (a* A b)) e O(I). Since a* A be Cpo . (unnla), Wwe have a* A b e l. From
b* €I it follows that a* A b* € I, and, consequently, a* € (b @, b*)/2 and so we
obtain a* € I. Hence (a, c) € 0(1).

Next, suppose

a<b & (ab)eb()
and let ¢ be an element of L.

Let u* € Cpohaq(a A ¢

It follows from (A) that (a,a v (b A c))ef(I). Now we see that u*e
€ Clo,uv (b (@), s0 that u* € I which implies (a A ¢, b A c) e ().

Suppose now again that a < b, (a, b) € 6(I) and c € L. Let

w=ave t=bna(ave),weCosgavec)teCput)-
It follows from (A) that (t, b) € 6(I). Thus t* € I and
wrattel & wrAaw=0¢el.

Observe that
wvitt=bvc&watt=0.

Therefore w* € (w @, t*)/2. Consequently, w* € I. We thus have (a v ¢,b v ¢)e
€ 6(I) which accomplishes the desired results.
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Let / be an ideal of L and let ¢(I) be defined on L by
(a,b)e (1) <> (a A b)f = (a v b)f.
Corollary 2. Let I be a centred ideal of a sectionally complemented lattice. Then
oI = o(1).

Proof. Suppose (a, b)e &(I) and let ce Cp . s(a A b). Then ce(a A b)f =
=(av b)f and so ¢ A (av b)el. From ¢ <a v b it follows that cel
Therefore (a A b,a v b) € 6(I). Since 6(I) is a congruence relation, (a, b) € 6(1).
Thus @(I) < ().

Suppose now that (a, b) € 6(I). Observe that (a v b)f < (a A b)} is always true.
If ye(a A b)fthenputd = y A a A belandlete =(a v b) A y.Since 6(1) is
a congruence relation, (a A b,(a A b) v e) € 6(I). But the quotients (a A b) v efa A b
and e/d are transposed. Therefore (d, e) € 0(1).

Let d* € Cpo (d). Since (d,e) e O(I), d* € 1. Now it is evident that e = y A
A(avb)=dvd* el Hence 6(I) = ®(I) and this, in turn, gives (1) = D(1).

Lemma 3. If L is a sectionally complemented lattice which contains a sublatice
isomorphic to the pentagon Ny, then there exists a sublattice N5 of L which is
isomorphic to Ns and is such that the zero element 0 of L belongs to Ns.

Proof. Suppose N5 = lo,a, b, c. i} is a sublattice of L. (See Fig. 2.)

O\
o~
e
0

Let 0% € Cp ,,](0). The proof is completed by noting that it is sufficient to put
Ni = {0,0%,a,c,i}.

Lemma 4. If L is a sectionally complemented lattice which contains the
pentagon Ns as a sublattice where the zero of L belongs to Ns, then there exists
a nonzero midpoint of L, i.e.

(Le L)2 + {0}.
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Proof. Consider the sublattice N5 = {0, a b, c, i} as depicted in Figure 3.

S

de Cp q(a), e Cpofd), p=ane, feCpulp).
We will distinguish two cases.
Case I: f+ 0. Then fe(d @ e)/2.

Casell: f=0.Thena=p=anre<eletq=>bneandletge Cpyylg) It
follows readily that g € (d @ e)/2.
Suppose that g & 0 does not hold. Then b = bAane <eande>avb =i, ie.

e = i. However, this leads to a contradiction, because we could then write
O0=dAane=dni=d, obtaining a = c.

Let

Lemma 5. If L is a sectionally complemented lattice which contains as
a sublattice the diamond M, then there exists a nonzero rridpoint of L.

Proof. Consider the sublattice Ms = {o0,a, b, ¢, i} shown in Figure 4.

Let
d € C[O, ,,](0), ee C[O, (.](0) .
Then e € (a @ d)/2. Since 0 + ¢, e = 0 is impossible.
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Theorem 6. Let L be a sectionally complemented lattice. Then L is distributive
if and only if
(L& L)2 = {o0}.

Proof. If L is not distributive, then (L @ L)/2 + {0} by Lemmas 3, 4 and 5.
If L is distributive and m € (a (@) b)/2, then m < a v b and, by distributivity,

m=mna(avb)=(maa)v(imab)=0.

Lemma 7. Let L be a sectionally complemented lattice and let I be a centred
ideal of L.
Let a/0(I), b/6(I) and c/6(I) be elements of the quotient lattice L/6(I) satisfying

(1) a/B(I) € (b/@(l) @ c/()(I))/Z .
Then there exist p, q € L such that

ae(p ®,9)2.

Proof. From a/0(I) < b/6(I) v c/6(I) we get (b v ¢)/6(I) = (av b v c)/6(I) and
$0

(2) (bveavbvc)ell).

Let reCpuvhvglbve) By (2) we have rel. Let p=rvb and let
g€ Cp.q(pVc) Thenpag=0.
Now

p/0(I) = (r v b)/6(I) = r/6(I) v b/6(I) = 0/6(1) v b/6(I) = b/6(I).
From (1) we conclude that
0/6(I) = a/0(I) A bj6(I) = a/8(I) A p/O(I) = a A p/6(1).

sothat anpel.
Using (1) we see that

0/6(I) = a/6(I) A c/6(I) = a A c/6(I).

Thus we have a A ce 1.
But g < ¢, and, therefore, anq < aAncel,thatisanqgel.
Finally,

pvg=pvrvbvg>=(pac)vgvbvr=cvbvr=avbvc>a
and we are done.

Theorem 8. Let L be a sectionally complemented lattice.
Then an ideal I of L is semiprime if and only if it is a centred ideal.

Proof. Let I be a centred ideal. If
a/0(1) e (b/6(1) ® c/6(1))/2
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is true in the quotient lattice L/6(I), then ae (L @ L)/2 by Lemma 7. From this
we conclude that a € I, whence we obtain a/6(I) = 0/6(I). It follows that

(L/6(I) & L/6(1)) = {0/6(I)}.

Applying Theorem 6 to the quotient lattice L/6(I), we conclude that L/6(I) is
a distributive lattice.

By [1; Theorem 1.10, p. 210] or [2; Theorem 2] we get C(L) < 6(I). Therefore
0/C(L) = 0/6(I) = I. An appeal to [3; Theorem 3.3, p. 226] shows that I is
semiprime.

The converse follows easily.

Corollary 9. Let I be a centred ideal of a sectionally complemented lattice L.
Then 6(I) = W(I) where Y(I) (cf. [8, p. 109]) is defined on L by

(a, b) € \P(I) < af = bf.
Proof. Apply Theorem 8 and [4; Theorem 3].
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