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The paper is concerned with groupoids possessing only one non-associative triple of elements and
it is of the form (a,b,a).

Clanek se tykd grupoidii, které maji jen jednu neasociativni trojici prvki, a ta je tvaru (a,b,a).

This paper is an immediate continuation of [3]. Here Szdsz-Hdjek groupoids of type (a,b,a) are
considered.

IV.1 Basic arithmetic of SH-groupoids of type (a,b,a)

1.1 Throughout this section let G be an SH-groupoid of type (a,b,a). Let a,b € G
be suchthat a-ba+ab-aand put c =ab,d =ba,e=ad =a-baand f = ca =
= ab- a;clearly, a + b and e =+ .

1.2 Proposition. (i) If x, y € G are such that xy = a (resp. xy = b), then either
x =a((resp. x =b)ory = a(resp. y =0b).

(ii) If M is a generator set of G, then a,be M.

(iii) If H is a subgroupoid of G, then either {a,b} € H and H is an SH-groupoid
of type (a,b,a) or {a,b} & H and H is a semigroup.

(iv) Ifr is a congruence of G, then either (e, f) € r and G/r is an SH-groupoid of
type (a,ba) or (e, f) ¢ r and G/r is a semigroup.

Proof. See III.1.2.

1.3 Lemma. (i) If x € G is such that x + a and either x &+ b or a % d, then
ax = a iff xb = b.

(i) If x € Gissuchthat x + aandeither x + bora = c,thenxa = aif bx = b.
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Proof. (i) If ax = a, then a(xb-a) = a(x-ba) = ax-ba=a-ba=e * [ =
= ab-a = (ax ' b)a = (a- xb) a and consequently xb = b. Similarly, if xb = b,
then ax-ba=a(x-ba)=a(xb-a)=a-ba=c+f=ab-a=(a-xb)a=(ax-b)a
and consequently ax = a.

(ii) Similar to (i).

1.4 Lemma. Suppose that a* = a.
(i) Either a = c or b + d.

(ii) Either b  c or a % d.

(iii) ¢ * d.

@iv) If b £ c, then af = [ = fa.

(V) If b * d, then ae = e = ea.

Proof. (i) f a=a and b =d, then e=ad =ab=c=a=aa = ca = f,
a contradiction.

(i1) Similar to (i).

(iii) Ifc=d,thene=ad=ac=a"ab=aa-b=ab=c=d=ba=b-aa =
= ba-a = da = ca = {, a contradiction.

(iv) We have af = a(ab-a) = (a-ab)a=(aa-b)-a=ab-a=f=ab-a=
=ab-aa = (ab-a) a = fa.

(v) Similar to (iv).

1.5 Lemma. (i) Either a + c or b = d.

(ii) Either a = d or b * c.

Proof. (i) Let a = c and b = d. Then f = ca = aa + a by 1.4(i) and we have
a=c=ab=ad=a-ba=a"da=alba-a)=alb-aa)=abf =ab- [ =
=c¢f=af=aaa=aa-a=ac-a=(a-ab)a=(aa-b)-a=fb-a=f ba=
=fd=fb=aa'b=a-ab = ac = aa = f, a contradiction.

(ii) This is dual to (i) (e.g., consider the opposite groupoid).

1.6 Lemma. (i) Let x € G be such that xa # a and either x #+ aorb * c. Then
xe = x/.

(i1) Let x € G be such that ax * a and either x = a or b % d. Then ex = fx.

Proof. (i) We have xe = x(a-ba)= xa-ba = (xa-b)a=(x-ab)a=
= x(ab- a) = x/.

(ii) Dual to (i).

1.7 Lemma. (i) If x€ G and xa = a, then xe = e.

(ii) If xe G, xa = a and either x £+ a or b * ¢, then xf = f.

(iii) If xe G and ax = a, then fx = [.

(iv) If xe G, ax = a and either x £ a or b % d, then ex = e.
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Proof. (i) We have xe = x(a- ba) = xa-ba = a- ba = e.
(ii) We have xf = x(ab* a) = (x- ab)a = (xa-b)a =ab-a = .
(iii) Dual to (i).
(iv) Dual to (ii).
1.8 Lemma. Suppose that ¢ + b + d.
(i) If x€ G and xa * a, then xe = xf.
(ii) If xe G and xa = a, then xe = e and xf = /.
(iii) If x € G and xa # a, then ex = [x.
(iv) If x€ G and xa = a, then ex = e and fx = f.
Proof. See 1.6 and 1.7.

1.9 Lemma. Suppose that b = ¢ = ab.
d=f,e=ad=afand b = c * d.
(i) If a + a’, thenae = d = [ and ea = da = fa.
(ili) If a=a’ thenae = ad = af = e =eaand fa=da=d = {.
Proof. (i) Wehave f =ab-a =ba =d,e = a-ba = ad = af. If b = d, then
f=d=>b = ab = ad = e, a contradiction.
(ii) We have ae=a-ad =a*d=a*-ba=a’b-a=(a-ab)a=ab-a=f=
=dand ea =(a-ba)a=alba-a) =a ba’*=ab-a* = ba’ = ba*a=da=fa.
(iii) First, ae = e = ea by 1.4(v). Further, af = ad = e by (i) and fa = da =
=ba'a=ba’=ba=d=].
1.10 Lemma. Suppose that b = c.
(i) If x € G is such that x + a and xa # a, then xe = xf.
(ii) If x € G is such that x % a and xa = a, then xe = e and xf = |.
(iii) If a®> + a, then ae = f and af = a.
(iv) If a®> = a, then ae = e = af.
(v) If xe G and ax + a, then ex = [x.
(i) If xe G and ax = a, then ex = e and fx = [.
Proof. Combine 1.6, 1.7 and 1.9.

1.11 Proposition. The relation s = idg L {(e,f), (/; €)} is just the least con-
gruence of G such that the corresponding factor is associative.

Proof. The result follows easily from 1.2(iv), 1.8, 1.10 and the dual of 1.10 (i.e.,
the case b = d).

1.12 Itfollows immediately from 1.2(ii), (iii) that every cyclic (i.e. one-generated)
subgroupoid of G is associative. In other words, G is monoassociative (alias power
associative). Further, 6(G) 2 2 and G is minimal (see III.1.3) iff 6(G) = 2. If this
is so, then {a,b} is a smallest generator set of G.
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1.13 Lemma. If xe G, n > 1 and x" = a (resp. x" = b), then x = a (resp.
x = b) and a* = a (resp. b* = b).

Proof. First, let n" = a. By 1.2(i), x = a, a® = a and a* + b. Assume a* # a.
Then, by 1.3, a-ab=a’h =b =ba>=ba-a and ab = b = ba by 1.2(i).
However, then e = a- ba = ab = b = ba = ab - a = f, a contradiction.

Next, let x" = a. Again, by 1.2(i), x = b, b* = b and b* % a. Assume b*> + b.
We have b - b*> = b = b*- b, and hence ab’> = a = b’aby 1.3. Now,ab b = a =
= ba-a,sothatab = a = baby 1.2(i))and e = a-ba = aa = ab- a = f, a con-
tradiction.

1.14 Lemma. Suppose that G is minimal and such that a ¢ {aa, ab, ba, a*ba,ab- a}.
Then a + xa for all x,y € G.

Proof. Suppose the contrary, denote by W an absolutely free groupoid with
atwo-element free basis {u, v} and consider the projective homomorphism ¢: W —» G
such that (u) = a and ¢(v) = b. In view of 1.2(i), we can assume that t € W is
such that a = a¢(t) and I(t) is minimal with the respect to a = ag(t) or a = ¢(t) a.
Now, I(f) = 2,and hence t = rsand a = a - ¢(r) ¢(s). We have (¢(r), ¢(s)) * (a, b),
and hence a = ag(r) ¢(s). Since 1(r) < 1(t), necessarily a¢(r) + a and ¢(s) = a.
Again, 1(s) < 1(¢t), and hence I(s) = 1, s = u and a = ag(r) - a. Further, 1(r) = 2
(use also 1.13), r = ryr, and a = (a- o(r)) ¢(ry)) a. If (b, a) * (¢(r)), ¢(r2)), then
a = (ag(r)* @(ry) a = ag(r))* ¢(r2) a, a contradiction with 1.2(i) and the mini-
mality of 1(t). Consequently, ¢(r)) = b, ¢(r,) = a and a = (a ba)a. If ba = b,
then a = ab - a, which is not true, and therefore ba + b and a = (a- ba)a =
= a(ba- a) = a- ba’ = ab - &, a contradiction with a + ab and a + a”.

1.15 Lemma. Suppose that G is minimal and that b ¢ {ab, ba, bb, b - ab}. Then
b + xy forall x,y€G.

Proof. Similar to that of 1.14.

1.16 Lemma. If a =ab =c,thenb = b* + ba=d + aand f = d*

Proof. By 1.5(i), b #+ d = ba. Further, if a = a,thena = baand e = a- ba =
= aa = ab- a = f, a contradiction. Hence a =+ d, and so b> = b by 1.3(i). Finally,
[ = ab-a = a trivially.

1.17 Lemma. If a = ba = d,thenb = b>+ ab =c + aand e = a’.

Proof. Dual to that of 1.16.

1.18 Lemma. [f a = a-ba = e, then a = a® = ba and b = b

Proof. First, assume that ba = a. Then a*> = aa = a- ba = a. If a = ¢ = ab,
then e = a- ba = aa = ab- a = f, a contradiction. Hence a # ¢ and b* = b by
1.3(ii).

Now, let d = ba #+ a. By 1.3(ii), b =>ba-b =0b-ab. If ¢ = ab = a, then

= b-ab = ba = d, a contradiction with 1.5(i). Thus ¢ = ab + a, and so a =
= ab- a = f by 1.3(ii). However, then ¢ = a = f, a contradiction.
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1.19 Lemma. If a = ab-a = f, then a = a* = ab and b = b~

Proof. Dual to that of 1.18.

1.20 Lemma. (i) If b = ab = c, then a = a’>,d = [ and e = af.

(ii) If b = ba = d, thena = a*, ¢ = e and [ = ca.

(iii) If b = b, then either a = ab = c or a = ba = d.

Proof. (i) Since b = ab = ¢,wehave also f = ab-a=ba =dande = ad =
= af. Further, if a % d% then e = a ba = a(ab - a) = a((a - ab) a) = a((a® - b) a) =
=ala*- ba)=a'"ba=ab-a=(a* abja=a’b-a=(a-ab)a=ba=d =,
a contradiction.

(ii) This is dual to (i).

(iii) Use 1.3.

1.21 Lemma. b = b* iffa = cora = d.

Proof. See 1.16, 1.17 and 1.20(iii).

1.22 Lemma. a % b-ab = ba-b % b.

Proof. Suppose that b = b-ab = ba-b. By 1.3, either a =abora=ab-a
and either a = ba or a = a - ba. Now, by 1.18 and 1.19, we get ab = a = ba and
e = a’ = f, a contradiction.

Now, let b ab = ba- b = a. Since b # a, we must have ab = a = ba, again
a contradiction.

1.23 Corollary. G contains at least three elements.
1.24 Lemma. If b = b% thenc = ab + b % ba = d.

Proof. Suppose, on the contrary, that b = c. Then f = ca = ba = d = a (by
1.20(iii)) and a = ab = ¢ = b by 1.19, a contradiction. Thus ¢ # b and, similarly,
d b

IV.2 Minimal SH-groupoids of the type (a,b,a)

2.1 In this section, let G be a minimal SH-groupoid of type (a,b,a). Let a, b€ G
be such that a- ba =+ ab - a and put ¢ = ab,d = ba, e = ad and f = ca. We have
a+bande * . ’

2.2 Lemma. If a + a® and b ¢ {ab,ba, b*},then a & xy + b for all x,y € G.
Proof. Combine 1.16, 1.17, 1.18, 1.19, 1.22 and 1.14, 1.15.

2.3 Lemma. If a¢ {I?, ab, ba}, then a # xy for all x, y € G.

Proof. See 1.18, 1.19 and 1.14.

2.4 Lemma. If b ¢ {7, ab, ba}, then b % xy for all x, y € G.
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Proof. See 1.22 and 1.15.
2.5 Lemma. If ab + a + ba, then a + xy for all x, y € G, (x, y) * (a, a).

Proof. With respect to 2.3, we can assume that a = a’. Now, consider the
projective homorphism ¢: W — G such that: ¢(u) = a, ¢(v) = b (see proof of 1.14)
and suppose that t € W is such that @ = a¢(t) and 1(¢) is minimal with respect to
cevar(t) and a = ag(t) or a = ¢(t) a.

Clearly, I(f) = 2, and so t = rs for some r,s€ W. If (¢(r), ¢(s)) = (b, a), then
¢(t) = baand a = a- ba, a contradiction with 1.18. Thus (¢(r), ¢(s)) * (b, a), and
hence a = a- ¢(r) ¢(s) = ag(r) - ¢(s) and either a = aqp(r) or a = ¢(s).

First, assume that a = aq(r). If v ¢ var(r), then ¢(r) = a, and therefore a = aq(r)
and a = ag(s), vevar(s), a contradiction with the minimality of 1(t). Hence
v € var(r), again a contradiction with the minimality of I(t).

We have proved that ap(r) + a = ¢(s). Consequently, v e var(r) (otherwise
ag(r) = a) and a = ¢(ur) a. Using the minimality of I(t), we get I(t) = l(ur) =
=1(r) + 1,1(s) = 1and s = u. IfI(r) = 1, then r = vand a = a- ba, which is not
true. Hence I(r) 2 2 and r = riry, a = a(o(r) ¢(r2) - a). If (o(r), ¢(r2)) = (a, b),
then a = a(ab - a) and either ab = b and a = a - ba, a contradiction with 1.18, or
ab + b and a = a(ab-a) = (a-ab)a = (aa-b)a = ab- a, a contradiction with
1.19. Thus (¢(ry), ¢(r)) # (g, b), and hence a = a(o(r\) ¢(r,)- a) = a(p(r)- ¢(r,) a) =
= ap(r))- o(ry) a (clearly, (o(r)), ¢(r2) a) % (b, a)). Now, either ap(r,) = a or
¢(r)) a = a. Suppose the former (the latter being similar). Then v ¢ var(r,)
v e var(r,) and a = ag(r,u), a contradiction with the minimality of 1(¢).

2.6 Lemma. If a* + a = ab, then a + xy for all x,y€ G, (x, y) % (a, b).

Proof. Using 13, 1.16, 1.18 and 1.19, we can proceed similarly as in the proof
of 2.5 (we consider t € W such that I(t) is minimal with the respect to u € var (t)
and either a = ¢(t) or a = ¢(t)a).

2.7 Lemma. If a®> + a = ab, then a % xy for all x, y € G, (x, y) * (b, a).

Proof. Dual to that of 2.6.

2.8 Lemma. If b = b’ that b # xy for all x, y € G, (x, y) # (b, b).

Proof. Similar to that of 2.5 (use 1.22 and 1.24).

Lemma 2.9 If b = ab and b = xy for some x,y€ G, then y = b and x = a"
for some n = 1.

Proof. Similar to that of 2.5 (use 1.22 and 1.24).

2.10 Lemma If b = ba and b = xy for some x, ye G, then x = b and y = a"
for some n = 1.

Proof. Dual to that of 2.9.
2.11 In the sequel, we shall say that G is of subtype
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(o)
(B)
€?)
)]
(e
(9
(@)
m)

if
if
if
if
if
if
if
if

=a’=ab.

=ag*+ba and b= ab.
=a*+ab and b = ba.
a=a’>+ab,ba and b # ab,ba.
a #+ a*ab,ba and b % b? ab, ba.

a
a=a’=ba.
a=ab # a*.
a = ba % a*.
a
a

Proposition. G is of just one of the preceding seven subtypes (o), (B), ..., (n).

Proof. Suppose that G is not of subtype (n). Then ae {a, ab,ba} and
be{t, ab,ba}. If ab="b = ba, then e=a-ba=ab=b=ba=ab a = f
a contradiction. Now using 1.24, we see that exactly one of the three equalities

= b% b = ab, b = ba takes place. Similarly, either a + ab or a #+ ba. The rest
is clear from 1.16, 1.17, 1.20, 1.21 and 1.24.

IV.3 Minimal SH-groupoids of type (a, b, a) and subtype (a)

3.1 Consider the following four-element groupoid S,(c):

Sio)| abde
a aaee
b dbdd
d dddd
e e e ee

It is easy to check that S,(o) is a minimal SH-groupoid of type (a, b, c) and subtype
(). Clearly, sdist (S,()) = 1 (put a x a = e).

3.2 Consider the following three-element groupouid S5(o):

It is easy to check that S5(0) is a minimal SH-groupoid o type (a, b, ¢) and subtype
(o). Clearly, sdist (Syc)) = 1 (put a*d = a or a xa = d).

3.3 Proposition. S,(c) and S,(°) are (up to isomorphism) the only minimal
SH-groupoids of type (a, b, a) and subtype (o).

Proof. Easy (use the preceding resuits).
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IV.4 Minimal SH-groupoids of type (a, b, a) and subtype (y)

4.1 Let G be a minimal SH-groupoid of type (a, b, a) and subtype (y). Let
a,beG, a-ba+ab-a Put d=ba, e=ad =a-ba. We have a = ab,
e+ f=ab-a=a,b=0>ba>+a+db+ d(otherwisea = ab = a- ba = e),
a + e + b + a*> Furthermore, if d =a% then e=ad =a*=da=ba a =
=ba*=bd =b-ba=ba=ba=d=a’>=ab-a=/f, a contradiction. We
have proved that d + a.

Now, consider the following four-element groupoid S3(0):

2

a
d
d

l

2

U SR

b
a
b
a
d d

It is easy to check that S3(©) is a minimal SH-groupoid of type (a, b, a) and subtype
(Y). Moreover, e = a-ba=ad =d, f = ab-a = @ and sdist (S;(0)) = 1 (put
axa=d).

Ifd = ein G, then G is isomorphic to S;(0). If d =+ e in G, then a, a% b, d, e are
pair-wise different, and so G contains at least five elements.

4.2 Let G be a minimal SH-groupoid of type (a, b, a) and subtype (y); let
a-ba+ ab-a, d =ba and e = a‘ ba. Now, define an operation * on G by
x*xy=xyiff (x,y) + (a,a)and a*xa = e.

Let x, y, zeG. If a% y % b, then x*x(y*2) =x*yz=x"yz=xy -z =
= (x * y)z = (x * y) * z (we have yz + a % xy by 2.6). Similarly, if y = a and
x*a%zorif y=>bandeither x + aorz + a,then x *(y*z) = (x * y) » 2.

Ifx=y=a+z+bthenx*(y*xz)=araz=a-az=az2=fz1=ez=
=exz=(axa)xz=(x*y)*z(fz=ezby 1.8(ii)).

If x=y=a, z=b, then x*(y*z)=axab=axa=e=a ba=
=a(b-ab) = alba-b)=(a-ba)b =eb=exb=(axa)xb = (x*y)*z

If x=y=2z=a, then xx(y*xz) =ax(a*xa)=axe =ae=ala" ba) =
= a’ - ba = a’h-a = (a'ab)a = a* 3

a=a'=a a=ab-a’=ab-a?)
=alba-a)=(a-baJa=ea=cxa=(axa)=a=(x*y)xz

If y=z=a+ x, then xe = x/ = xa’ by 1.8(i), and hence x*(y*z)=
=xx(a*xa)=xxe=xe=xa>=xa a=(x*xa)a=(x*a)*a.

If y=>band either x + aorz + a, then x*(y*xz) = xx(b*2) = x x bz =
=x-bz=xb-z=(x*xb)z=(x*xb)xz=(xxy)xz

Finally, if y=b and x =a =z, then x*(y*z)=ax(b*xa)=axba =
=a-ba=e=axa=abxa=(axb)xa=(x*xy)*z

We have checked that G(x) is a semigroup. In particular, this implies that
sdist (G) = 1.
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4.3 Let S be a semigroup contains three (pair-wise different) elements a, b, f such
thata = ab + a® # f,a + xy if (x, y) # (a, b), b = b%, b * xyif (x, y) * (b, b),
fb = f,fx = a’x forevery x + b and yf = ya® for every y € S. Define an operation
oonSbyxoy=xyif(x,y) * (a,a)and aoa = f Then S(c) = (o, y) becomes
an SH-groupoid of type (a, b, a) (@ o (boa) = a*> + f = (a o b) © a) and subtype
(). Moreover, S(o) is minimal, provided that the semigroup S is generated by the
elements a, b, f.

4.4 Proposition. Every minimal SH-groupoid of type (a, b, a) and subtype (o)
can be constructed in the way described in 4.3.

Proof. See 4.2 and 4.3.

4.5 Example. Consider the following infinite groupoid S,(c):

S4(O) a a? a a" b d| dz d3 d,, e
a a a a ... at'.. a e & a ... ot .. o
a? ad a a ... a*?.. a a a & ... a*?*.. 4
a’ a a a& ... at.. ad a o & ... . &
‘;n (.l" +1 ‘;n +2 ‘;n +3 L;ZM : : .. ‘;n ‘;n +1 L;" +2 ‘;n +3 a2n dn +2
b d d dy .. dy . b d dy dy .. d .. dy
d| d2 d3 d4 .o d"+| eee dl dg d3 d4 oes dn+1 d3
dy, |dy di ds .. dyy.. dy dy dy ds .. dy,,.. d,
dy | di dy dg .. dys.. dy dy dy dg .. dyos.. ds
du dn+1 dn+2 dn+3 d2n dn du+1 dn+2 dn+3 d2n dn+2
e ad a a ... a*?.. e a a o ... a**.. a

Then S, is (up to isomorphism) the only infinite SH-groupoid of type (a, b, a) and
subtype (Y).

IV.5 Minimal SH-groupoids of type (a, b, a) and subtype (¢)

5.1 Let G be a minimal SH-groupoid of type (a, b, a) and subtype (¢). Leta, b e G
be such that a-ba + ab-a and put d = ba and e = ad = a- ba. We have
aA=a+da+eab=b+d=fib+ab+eb+b+ad+elfb=d,
then b?> = ab> = ad = ¢, and hence f = d = e, a contradiction. Consequently,
b* % d and the elements a, b, b% d are pair-wise different.
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Now, consider the following four-element groupoid Ss(0):
{0) |a b b*d
a a b b b
b d b* b b?
b? b* b* b* b?
d d b? b b?

Then Ss(O) is a minimal SH-groupoid of type (a, b, a) and subtype (€). Moreover,
e=a-ba=ad="b,f=dundsdist(Ss(c)) = 1 (put b * a = b?.

If b = e in G, then G is isomorphic to Ss(0). If b* # e, then a, b, b% d, e are
pair-wise different and G contains at least five elements.

5.2 Let G be a minimal SH-groupoid of type (a, b, a) and subtype (€). Let
a-ba + ab-a,d = baand e = ad. Define a binary operation *on Gby x * y = xy
if (x,y) # (b,a) and b *a = e. Then G(x) becomes a semigroup. In particular,
sdist (G) =

5.3 Let S be a semigroup containing three (pair-wise different) elements a, b,
S such that a = @* a % xy if (x,y) # (a,a), b = ab, b * xy if (x, y) * (a, b),
xf = xba and fx = bax for every x€ S, x % a, af = ba and fa = f. Define an
operation con Sby x o y = xy if (x, y) % (b,a)and b o a = f. Then S(O) = 5(o, €)
is an SH-groupoid of type (a, b, a) and subtype (¢). Moreover, S( ) is minimal,
provided that S is generated by a, b, f.

5.4 Proposition. Every minimal SH-groupoid of type (a, b, a) and subtype (g)
can be constructed in the way described in 5.3.

Proof. See 5.2 and 5.3.
5.5 Example. Consider the following infinite groupoid S4(c):

S(’(O) a b b2 b3 b" cee (l] dz d; eee d,, ves e
a a b » vV ... b .. e d dy ... d, .. e
b d] b2 b3 b4 b"+| (l?_ d_] d4 ves d"+| . d?_
b2 d2 b3 b4 b5 b”+2 (13 d4 (15 ses d,H,,z oo d3
b* d, b b b ... b dy ds dy ... dyes... dy
bod pr e B L de . d
dd BB b b d dy de o dyyy o d
b d, bbb . b dy dy ds . douy .. d
(l] (l_} b4 bS b6 [)”+3 [I4 (I5 (I(, d,,+3 d4
d, d, BTBTE B L dyyy duys gy e dyy e dyyy
e e BB b L b dy dy de o dyyy e d
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IV.6 Minimal SH-groupoids of type (a, b, a) and subtype ()

6.1 Remark. Let G be a minimal SH-groupoid of type (a, b, a) and subtype (Q).
Let a,be G be such that a-ba + ab-a. Put ¢ = ab, d = ba, e = a- ba and
f = ab-a. It is tedious, but easy to check that sdist (G) = 1 iff at least one of the
following six conditions is satisfied:

(1) There exists an element ¢’ € G such that b = ¢’ # e, cx = ¢’x and xc = xc
for every x € G, x * a, and ac’ = ¢, c’a = e (this implies that ¢’ % a);

(2) d = ba = e and bx = cx, xb = xc for every x€ G, x * a;

(3) There exists an element d’€ G such that b #+ d’ % d, dx = dx’ and xd = xd’
for every x€ G, x # a, and d’a = d’, ad’ = f (this implies that &’ #+ a);

4 ¢ =ab = f and bx = dx, xb = xd for every xe€ G, x * q;

(5) If x, y € G are such that xy = c, then (x, y) € {{a,b), (a, ¢), (¢, a)};

(6) If x, y € G are such that xy = d, then (x, y) € {(b,a), (a, d), (d, a)}.

6.2 Let G be a minimal SH-groupoid of type (a, b, a) and subtype (o). Then «,
b, ¢, d are pair-wise different elements and ¢ + e, d # f, b + b If b*> = c, then
G is isomorphic to one of the following four (pair-wise non-isomorphic) groupoids

i)

5+(0), Sg(0), So(0), Sio(0):

S{o){ abcdef Ss(0) | abcde
a acceelf a accee
b deccecfff b dccecec
c fecefff c ccccec
d deccfff d dcccec
e eccfff e ecceceec
f VfeefSS

Sfc) | abcdf S,O(O)l abcd
a accdf a accd
b dccff b dccc
c fcceff ¢ ccecc
d dccecff d dccec
f \JeelS

6.3 Example.
Sue)| abcdy
a accdy
b dgggy
¢ cgggy
d dggygy
g 99999
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IV.7 Minimal SH-groupoids of type (a, b, a) and subtype (n)

7.1 Remark. Let G be a minimal SH-groupoid of type (a, b, a) and subtype
(n). Let a, b € G be such that a - ba # ab- a. Put ¢ = ab, d = ba, e = a- ba and
S = ab- a. Then sdist (G) = 1 iff at least one of the following four conditions is
satisfied:

(1) There exists an element ¢’ € G such that ¢’ ¢ {a, b, c},xc’ = xc for every x € G,
¢’y =cyforevery yeG, y + a, and c’a = ¢
(2) There exists an element d’ € G such that &’ ¢ {a,b, d},d’x = dx forevery x € G,
yd’ = yd for every ye G, y ¥ a, and ad’ = f;
(3) If x, y € G are such that xy = ¢, then (x, y) € {(a, ) ), c, a)};
(4) If x, y € G are such that xy = d, then (x, y) € {(b,a , (d, a)}.

7.2 Example.

Sf0) | abcdef

a eceecec

b deececee

c feeeee

d eeceece

e eeceece

f eeeceec,
S0)| abecdf Si(c) | abede
a daddd a cceece
b ddddd b deeecee
Cc fdddd c deeeec
d ddddd d ceeece
S/ ddddd,; e ceecee.

IV.8 Comments and open problems

8.1 Find the number sdist (G) for SH-groupoids of type (a, b, a). In particular,
is sdist (G) = 1 for every minimal SH-groupoid of type (a, b, a)?
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