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in Completing the Operations 
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Czechoslovakia*) 
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A parametrized version of the machine-time scheduling problém from [1] with penalized 
earliness in starting and lateness in completing the operations is considered. The optimal choice 
of parameters for this problém is investigated and a method for finding optimal parameters is 
suggested. 

Uvažuje se parametrizovaný problém nalezení optimálního rozvrhu práce n strojů z práce [1] 
při penalizaci předčasného započetí a opožděného ukončení práce jednotlivých strojů. Zkoumá 
ae optimální volba parametrů pro tento problém a navrhuje se metoda umožňující nalézt optimální 
vektor prametrů pro tento případ. 

Рассматривается параметризованная проблема оптимального расписания работы п машин 
при штрафах наложенных на преждевременное начало и опоздавшее время окончания работы 
отдельных машин. Исследуется оптимальный выбор параметров для этой проблемы и предла­
гается метод дающий возможность найти оптимальный вектор параметров. 

1. The concept of optimal choice of parameters 

Let us consider the optimization problem of the form 

cp(x) —> min 

subject to (^I(P)) 

x e M(p) 

where <p: Un -> Ul is a continuous function, M(p) c= Un is a compact set, and peU1 

is a given vector-parameter, which can be chosen from a given set P, P c Ul. Suppose 

that 

P = {p e P | M(p) * 0} 

j£(p) = {xe M(p) | cp(x) = <p(x) for all x e M(p)} Vp e P . 

*) Faculty of Mathematics and Physics, Charles University, Malostranské náměstí 25, 110 00 
Praha 1, Czechoslovakia. 
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Definition 1.1 (compare [3]) 
Vector p = (pu ..., pi)eP is called optimal choice of parameters pu . . . , p , on the 
set P for the problems (^i(P)), p e P, if it holds 

[xeJ?(;>), yeX(p)]=><p(x)^ <p(?) 

for an arbitrary peP. 
Especially, if P = {peUl\ p(1)

 = p = p(2)} and 

M(p) = {x | f (x ) = p/, i= V . . . , / , XGU} , (1.1) 

where p(1), p(2) are given vectors, ft: Rn -> [R1 are given functions, U a given subset 
in Un, the problem of finding the optimal choice of pl9 ..., P/ on P for the problems 
(^x(p)), peP can be solved as follows. 

Let us consider the problems 
<p(x) -* mini 

subject to > ( ^ I ( P ) ) 
XGM(p ) ) 

for p e P = {p | p ( 1 )
 = p = p(2)} and M(/>) defined as in (1.1), and let xopt(p) be the 

optimal solution of ^i(p)) for all peP. 
Let us consider the problem 

<p(x) -> min I 
subject to ' 

Ux) = p\l) V i = l , . . . , / l (^2) 
/,(*) = pi2) Vi = 1 , . . . , / 
x e U J 

and let xopt be the optimal solution of (0>2). Let us set further popt = f(xopt) for all 
i= 1, . . . , / . 

Theorem 1 

(a) <p(xopt) = <p(xopt(popt)) 
(b) (p(xopt(p)) = (p(xopt(popt)) for all p e P. 

Proof 

(a) It is obviously xopt e M(popt). Suppose that (p(xopt) * (/>(xopt(/?opt)). It must be 
therefore <p(xopt) > <p(xopt(popt)). On the other hand xopt(popt) is a feasible solu­
tion of (0>2) so that it must hold that <p(xopt) = <p(xopt(popt)), which is a contra­
diction. 

(b) Let us remark that cp(xopt(popt)) = <p(xopt) according to (a). 
Let us suppose that there exists p° e P such that 

<K*op'(p°)) < <p(xopt(popt)) = <p(xopt). (1.2) 

It holds obviously: xopt(p°) e M(p°) so that p ( 1 )
 = f(xopt(p0)) = p° = p ( 2 ) , 

xopt(p°) e U and xop'(p°) is therefore a feasible solution of (0>2). It must be 
therefore <p(xopt(p0)) = <p(xopt), which is a contradiction with (1.2). 
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Remark 1.1 

The fact that popt is the optimal choice of pl9..., pt in the set P for the problems 
^i(p), pe P, follows immediately from Theorem 1.1(b) (compare Definition 1.1). 

Therefore if we have at our disposal a numerical procedure for solving the problem 

( ^ 2 ) , the problem of determining popt reduces to the solution of this problem (i.e. 

finding xo p t). Vector popt is then defined by the formulae p o p t = f(xopt) for all i = 

= 1,...,/. 

In this paper, we shall use this idea to find the optimal choice of parameters in 
one class of machine-time scheduling problems with penalization of starting time 
earliness and completion time tardiness for the jobs. The corresponding problem of 
the form (&>2) will be solved using an appropriately modified version of the method 
suggested in [4]. 

2. Problem formulation 

The basic assumptions are the same as in the machine-time scheduling problems 
considered in [1]. We assume that n machines are given, machine./ carries out exactly 
one operation j \ the corresponding processing time is tj for j e N = {1, ..., n}. The 
machines work in cycles (cycle 1, 2, . . . ) . Let xy be the starting time of the machine j 
in cycle 1 (for all j e N). Machine i e N can start its work in cycle 2 only after the 
machines in a given set N(0, N(I) c N, had finished their work in the preceding 
cycle 1 (i.e. the operations j with the starting time xy and processing time t} for all 
j e N(l) had been carried out in cycle 1). Let dh i e N, be the earliest possible starting 
time for the machine i in cycle 2. It holds then 

dt = max (xy + ty) . Vi e N (2A) 
J6/V(0 

We shall assume that xy must belong to a prescribed time-interval [ky, Ky] for 
all j eN. The set of feasible starting times xy, j eN for a given d = (du ..., dn) is 
therefore described by the following system of equations and inequalities: 

(2.2) 

We shall suppose that there are given recommended time intervals [tfy, bj], j e N, 
in which the operation j should be carried out, i.e. it is recommended that 

[*;> *j + *j] c= [a,, bj] V/eJV. (2.3) 

The violation of the recommended constraints (2.3) will be penalized by a function 

<Pj(Xj) = max ffll\xj), *j2\Xj + tj), 0) V/ e iV , (2.4) 

where i/^": R1 -* R1 is a decreasing continuous function such that ^-''(a,-) = 0 
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max (xj + tj) = dt, Vi є JV 
УsЛГO 

kj = xj = Kj , VjєЛГ. 



and \l/i2): R1 -> R1 is an increasing continuous function such that 

iif\bs) = o. 
We shall consider the problem 

<p(x) = max (Pj(xj) -> min | 
subject to jeN I 

max (Xj + tj) = dt, Vi e Nf O^OO) 
jeiV<0 

kj^Xj^Kj, V/eArj 

where d = (d l9..., dw) is a parameter, which can move within the set D = [d | d(I) ^ 
^ d = d(2)}. We shall investigate in the sequel the problem of determining the 
optimal choice of parameters dl9 ...,dn for the problems ^ 3 (d ) , d e D in the sense 
of Definition 1.1. 

Using the idea of the section 1 we shall solve the problem 
Minimize 

<p(x) = max (Wixj), ^2)(xj + tj), 0) (2.5) 
subject to jeN 

max (xj + 0) = d\l), Vi G N (2.6) 

max (jcy + tj) = d\2), Vi G N (2.7) 

kj^Xj^Kj, V jeN . (2.8) 
If £ is the optimal solution of (2.5)-(2.8), then 5, = max (xj + f.) Vi G N is the 

je/VCO 

optimal choice of parameters dl9..., dn for ^ 3 (d ) , d G D. 

Let Ly = { / G N | j e N ( 0 } VjGN. The inequalities (2.7) are equivalent to the 
system of inequalities 

xj = xj(d{2)) = min d(2) - tj Vj e N (2.9) 
ieLj 

so that the system of inequalities (2.7), (2.8) can be replaced by new bounds posed 
on the variables xj9 jeN: 

hj = xj = Hj VjGN, (2.10) 
where 

hj = kj9 Hj = min (Kj, xj(d(2))) VjeN 

(xj(d(2)) is defined in (2.9)) and the problem (2.5)-(2.8) is equivalent to 

<p(x) -> min i 
max (xj + tj) = d(i1} Vi G Nl (g> \ 
jeNH) f V 4 ' 

hj = xj = Hj VjGNI 

The problem of optimal choice of parameters di9 i e N is now in principle reduced 
to the solution of (^ 4) . We shall solve this problem by an appropriate adaptation of 
the method suggested in [4]. 
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Remark 2.1 

It can happen that there exists j 0 e N such that hjo > Hjo. In such a case the set 
of solutions of the problem (2.5) —(2.8) is empty. If we denote by M(d) the set of 
feasible solutions of (&3(d)), we have in this case M(d) = 0 for all d e D, so that 
our problem of optimal choice of di9 i e N has no solution. 

Remark 2.2 

Comparing the problem &3(d) with the general formulation in section 1, we obtain: 
I = n, p = d, P = D. 

Remark 2.3 

The objective function (2.5) is a generalization of the objective function used 
in [2]. 

3. The solution procedure 

We shall describe the method for solving the problem (^4). We can assume w.l.o.g. 
that hj ^ Hj Vj e N (compare Remark 2.1). The method is the adaptation of the 
general procedure suggested in [4]. Let us introduce the following notations for all 
iJeN: 

= / 0 , if JtM<'> 
iJ ~ \{Xj I hj = Xj = Hj, XJ + tj = d^} , if j eN<<> 

K. = {j\ VU*Q} for all ieN; 

x{jl) = arg min {(Pj(xj)\ Xj e 177} Vi eN, j e Rt (i.e. xj° is an arbitrary element of Vu 

with the property (Pjix^) = min {(Pj(xj) \ x} e Vtj} for all iJ e N, for which Vtj =# 0). 
We shall denote by j(i) and arbitrary index from Ri9 for which 

JeRi 

We shall set further for all k e N: 

Zk = {ieN\j(i) = k} 

/(\Vik, if Z, + 0 
Xk = ( *eZk 

[hk, Hk] otherwise 
Remark 3.1 
We shall assume further w.l.o.g. that Rt #= 0 for all ieN (otherwise the set of 

feasible solutions of (^4) is empty). 

Theorem 3.1 (compare [4]) 

Suppose Rt -# 0 for all ieN (compare Remark 3.1), let 

xk = arg min {<pk(xk) | xk e Xk} Vk e N . 

Then x = (xx, ..., %k) is the optimal solution of (^4). 
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The assertion of this theorem follows immediately from Theorem 2 in [4], 
Let us remark the sets Vik, Xk are closed intervals and cpk are continuous functions so 
that all minima exist and the assumptions of the Theorem 2 from [4] are satisfied. 

It follows now immediately from the consideration in section 1 that if St = 
= (Stx, ..., Stn) is defined as in Theorem 3.1, then 

dt = max (Stj + tj), V/eJV 
j eN( i ) 

is the optimal choice of parameters dl9..., dn for the problems (0*3(d)), d e D. 

4. Some explicit formulae 

We shall use the special form of the problem (^4) and derive explicit formulae 
for St, 3, from the preceding section. Let us note that it is in our case: 

VU = ixj I hij = XJ = HJ} > w h e r e K = m a x (hr dii]) ~ 0) Vi 6 N , j E Rt (4.1) 

Further we have for all k e N: 

Xk = {xk | hk = xk = Hk} , (4.2) 

where 
max d\1} — tk, if Zk =j= 0 and max d\1} — tk > hk 
ieZk 

hk otherwise. 
hk = \ ieZfc í'eZk 

It follows immediately from the definition of the functions (pk, keN (compare 
(2.4)) that for all ieN, keRt: 

Hk, if ak> Hk 

4l) = ~hik, if bk <hik _ (4.3) 
e [ak, min (bk - tk, Hk)~\ , if ak _ Hk and bk _ hik 

Similarly it holds for all keN: 

Hk, if ak > Hk 

4 0 ) = arg min {<pk(xk) | xk e [hk, Hk~]} = - hk, if bk < hk (4.4) 
e [ak, min (fefc - tk, Hk)] 

if afc _ Hfc and 6k _ hk 

Let us set further 

N = { k e N | Z , =#0} 

Zk = {s e Zk | hsk = max hik] for all k e ft . 
ieZk 

It is then for all keN: 

A _ / x[s) with seZk, if Zfc 4= 0 
Xk~\xk°>, if Z, = 0 (4.5) 
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Therefore the process of determining £, <? can be summarized as follows:1) 
(1) Determine the sets Vij9 Rt Vi eNJe N; 
(2) If there exists i0 eJV such that Rio = 0, then (^4) has no feasible solution and 

thus M(d) = 0 for all d e D. 
(3) If K, + 0 for all i e N, determine xj° according to the formulae (4.3). 
(4) Determine the sets, Zk Vk e N, N and Zk Vk e N. 
(5) Determine xk, k e N according to the formulae (4.5). 
(6) Set dt = max (xy + tj) Vi e N. 

jeJV<0 

5. Numerical example 

m = « = 5 so that N = {1, 2, 3, 4, 5}, 

* ={t^t2,tz,t^t5) = (2,X\,A,5) 

k = (0, 0, 0, 0, 0), K = (10, 10, 10, 10, 10) 

d<!> = (6, 5, 7, 8, 6), d(2) = (10, 10, 10, 10, 10) 

i | 1 | 2 | 3 | 4 | 5 

N«> | {1,2,3} | {2,4} | {1,2,3} | {1,4,5} | {1,2,3,5} 

The inequalities 
max (xj + tj) = 10 Vi e N 

imply that xx = 8, x2 ^ 7, x3 ^ 9, x4 g 6, x5 ^ 5. 
It is therefore 

h = k = (0, 0, 0, 0, 0 ) , H = (8, 7, 9, 6, 5) . 

We shall assume further that 

<Pj(xj) = max (cij — Xj, Xj + tj — bj, 0) for all j e N , 

where aj9 bj are for all j G N given constants so that we have in our case for all j e N: 

Witj) = aJ ~ XJ > fj2\xt + 0) = *; + 0 ~ 67 • 
We assume that a = (1, 1, 1, 3, 3), b = (4, 4, 5, 5, 5). 

We shall solve now the problem (^ 4 ) , which has in our case the following form: 

max max (ay — xj9 Xj + tj — bj9 0) -> min 

S u b j e C t t ° max(x i + 0 ) ^ 4 1 > We TV 
jeN<i> 

0 = x t ^ 8 , 0 ^ x 2 = 7 , 0 = x3 = 9 , 0 = x4 = 6 , 0 = x5 = 5 . 

The sets V;7 look as follows: 

^ii = [ 4 , 8 ] , V12 = [ 3 , 7 ] , V13 = [ 5 , 9 ] , V14 = 0 , V15 = 0 
*) The complexity of the procedure depends on the complexity of determining x^K If <pj(Xj) 

is partially linear as in the next section, the procedure has a polynomial complexity. 
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V2l = 0 , V22 = [2, 7] , V23 = 0 , V24 = [1, 6] , V25 = 0 

V31 = [5, 8] , V32 = [4, 7] , V33 = [6, 9] , V34 = 0 , V35 = 0 

V41 = [6, 8] , V42 = 0 , V43 = 0 , V44 = [4, 6] , V45 = [3, 5] 

V5I = [4, 8] , V52 = [3, 7] , V53 = [5, 9] , V54 = 0 , V55 = [1, 5] 

Further we obtain for x ( " and <p(/> = <p,(x<"): 

<<» = 4, <p\l> = 2; x(
2'> = 3, <p(" 

4 " = 5, 3'> = 1; 

x<2> = 2, ę(2> = 1; x 4
2> = 2, <p(2> = 1; 

5, cp\3) = 3; x (
2

3 ) = 4, <p(
2

3) = 3; 
(3 
3 c<3> = 6, <pү> = 2; 

x\4> = 6, <p\4> = 4; x 4

4> = 4, <p 4

4 ) = 3 ; 
x ( 4> = 3, <p(4> = 3 ; 

5 ! x*,5> = 4, <p(5> = 2; x(

2

5> = 3, <p\5> = 2 ; 
j x ( 5 > = 5, <pf> = l; x ' 5

5 ) = j <?<5> = f 

T h e i n d i c e s / ( f ) , for w h i c h ^ c o W o " ) ) = m m ^X*;0) w *^ be defined as follows 
JeRi 

i | 1 | 2 [ 3 | 4 | 5 

j(i) | 3 | 2 | 3 j 4 j 3 

It is then 

Z t = 0 , Z 2 = {2}, Z 3 = {1,3,5}, Z 4 = {4}, Z 5 = 0 

so that 

Xx = [0, 8] , K2 = [2, 7] , K3 = [6, 9] , K4 = [4, 6] , X5 = [0, 5] 

and 
* = (*!, 2, 6,4,$), where * x e [1, 2] . 

The optimal value of <p is thus <p(jc) = 3. Let us choose e.g. $t = 1. We obtain then 
for the optimal choice of dl9 ..., d5: 

3X = max (3, 5, 7) = 7 

i2 = max (5, 8) = 8 

<23 = max (3, 5, 7) = 7 

<24 = max (3, 8, 6£) = 8 

35 = max (3, 5, 7, 6\) = 7 
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