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Received 22 March 1989

By analyzing central ultrafiltres on an orthomodular lattice L we construct a closure space £
such that L is orthoisomorphic to the orthomodular lattice CO(%) of all clopen sets in Z.
This orthoisomorphism becomes the Stone representation on the centre of L. Although the lattice-
theoretic operations are generally not set-theoretic in CO(¥) — this cannot be done at all (see
e.g. [2], [5]) — we show that it is so for couples containing at least one central element. This
generalizes and complements the representation by L. Iturrioz [4] and R. Mayet [6].

V &lanku je ukazano, Ze ke kaZdému ortomodularnimu svazu L existuje uzav&rovy prostor
£ tak, Ze L je izomorfni s ortomodularnim svazem CO(%) viech uzavien&-otevienych mnoZin
v Z. Tento izomorfismus pfejde na centru svazu L ve Stoneovu reprezentaci a navic vytvafeni
svazovych operaci na CO(%) je mnoZinové pro kaZzdou dvojici, ktera obsahuje alespoii jeden
centralni prvek.

B craTbe J0OKa3bIBa€TCA, YTO K M060# OPTOMOAYIAPHOM pemeTke L CylmecTByeT NPOCTPAHCTBO
C 3aMbIKaHHEM £ Tak, 4T0 L u3zomopdHa opromonysiapHOi peméTke CO(F) BceX OTKPHITO-3aMKHY~
THIX MHOXECTB B .. DTOT H30MOP}H3M mEPEXOqUT Ha HEHTPe peléTKksl B npeacrapienue CToyHa
M peléToYHbIe onepauuu Ha CO(¥) COBNAafaloT C TEOPETUKOMHOXKECTBEHBIMH JUIA KaXJO# MAaphI,
KOTOpas COONEPXHT LIEHTPaJIbHBIA 3JIEMEHT.

1. Preliminaries on orthomodular lattices

Definition 1.1. A triple (P <,") is called an orthomodular lattice (abbr. OML)
if (P, <) is a partially ordered set with an orthocomplementation ’ such that

1) P is a lattice with respect to the ordering <,

2) there is a least and a greatest element in P, 0, 1,

3)ifa,bePand a < bthena 2 b,

4) if a€ P then (a') = a,

5)ifa < bthenb=a v (a’ A b).
In what follows, let L always mean an OML.
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Let us call the set C(L) = {aeL|a = (a A b) v (a A b") for each beL}
the centre of L. Let us recall (see [4]) that the set C(L) as the set of absolutely commu-
tative elements of L is a Boolean subalgebra of Land C(L) = L exactly in case L
is Boolean.

In what follows we shall deal with so called central ultrafilters (see also [8]) which
will play an essential role in the representation theorem. (It should be observed that
there is no straightforward generalization of Boolean technique because OML’s
do not generally possesses enough ultrafilteres. For instance the lattice L(H) of pro-
jections in a Hilbert space H possesses none ultrafilter at all (see [1]).

Definition 1.2. Let F be a subset of L. Then F is called a central filter (abbr. c-
filter) on Lif the following conditions are satisfied:

1)ifaeF,beLand b = athenbeF,
2)ifaeFn C(L)and be Fthena A beF.

If F is a filter and the condition a € F implies a’ ¢ F,then F is called proper. Finally,
if F is a proper filter and if for any a € Leither a € F or a’ € F, then F is called a cen-
tral ultrafilter (c-ultrafilter).

Proposition 1.3. Let {F,|x €I} be a collection of c-filters on L. Then the set
G={aeLla2a, Aa, A...ANa, Ad a,eF,, nC(L)(i <k) anddeUF,}
is the least c-filter on Lcontaining all F,(a€l). ael

Proof. By the definition of G, if a € G and a < b then b € G. Suppose now that
aeGn C(L), be G. We have to show a A beG. Since ae G, we havea = q,,
A Qg A ...Aa, Ad where a,eF, nC(L) (i £ k) and deF, Obviously,
there is a Boolean subalgebra of L containing the set {a,,, d,,, ..., a,,, a}. Therefore
we may write a = a v (@ A Gy A ... Aa, Ad)=(ava,)A(ava,) ..

. A (a v a). Thus, changing a v a,, for a,, and a v d for 4, we may assume
that a = a, A a,, A ... A a,, A @, where a,, e F,, n C(L) (i < k) and d€F,.

Put ¢ =a, Aa, A...Aa, Aa. Then ceC(L) and therefore ¢’ e C(L).
Moreover, ¢’ 2 a and therefore ¢’ € F,. Thus, ¢’ € F, n C(L) and moreover, a,, A
Ay Ao NGy AC = (ag Aag Ao Aag) A((g Aag Ao Aay) v
va)=0v(a, A a, A ... A a, A a)=a. Summarizing what we have showed
so far, we have obtained the expression a = a,, A a,, A ... A a, A a where
a,, 6 F,, nC(L)(i S k + 1).

The rest is easy. If b = by, A bg, A ... A by A b, where by, € Fy, n C(L) (i £ p)
andbeF;,wehavea A b2 a, A Gy, A...Aay, Aby Abgy A...Aby AD
and therefore a A b € G. The proof of Proposition 1.3. is complete.

Ak + 12

Proposition 1.4. Suppose that a, b € L. Then either a < b or there exists a central
ultrafilter F on Lsuch that ae F and b¢ F.

Proof. Suppose that a £ b. Denote by &, , the collection of all proper c-filters
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which contain a and do not contain b. Since the c-filter F, = {x € L[ x 2 a} belongs
to #,,, weseethat #, , + 0. Letus order theset #, , by inclusion and take a maximal
element in &, ,, F. A maximal element obviously exists by Zorn’s lemma. We are
going to show that F is a c-ultrafilter.

Suppose that it is not the case. Then there is anelement ¢ € Lsuchthat {c,c'} n F =
=0.Put F, = {xe L| x 2 c} and denote by G the c-filter generated by F, and F.
We shall show first that G is proper. Suppose on the contrary that there is an element
d e L such that {d,d’} = G. Applying Proposition 1.3. we may assume that d >
2mAakand d 2n As, where meFnC(L), neF,.nC(L), ke F, and se F
(The other cases argue similarly) Moreover, we may assume that in the latter expres-
sion we have m = k' and n 2 s’ (Indeed, we can write m A k =m A (k v m’)
and take k v m’ for k if necessary.). Since m, n are central, we can write d =
=(mvdya(m vd) and d' =(nvd) A (n v d). Therefore 0 =d A d =
=mvdya(m vda(nvd)a(w vd) As d=m Ak, we obtain d v
vm z(mak)vm =kvm 2k Thus, d v meF, Analogously, n' v
vdeF. Since (dv m)A(nvd)zc, the equality (m v d) A (m" v d) A
A(nv d)A(n vd)=0 consisting of mutually compatible elements implies
cz(mvd A vd)zmAa(n vd)eF. It follows that ¢’ € F and this is
a contradiction. We have checked that F is proper. We may suppose that b ¢ G.
(Indeed, this follows automatically if b’ € F. If b’ ¢ F, then {b, b’} n F = @ and we
could take b’ for c in the former construction.) We therefore have G € #,, and G
extends F. This is absurd since F was maximal. Thus F is a c-ultrafilter. The proof
of Proposition 1.4. is complete.

Corollary 1.5. Let L be an orthomodular lattice and let F be a Boolen ultrafilter
on C(L). Then F can be extended to a c-ultrafilter on L.

Proof. Put F; = {xc L| x 2 a for any ae F}. Then F, is obviously a proper
c-filter on Land the extension can be obtained from Proposition 1.4.

Proposition 1.6. Let # be the set of all central ultrafilters on L. Let P(£) denote
the set of all subsets of & and let ¢: L— P(¥) bethe mapping defined by the equality
¢(a) = {Fe & | aeF}. Then ¢ has the following properties:

1) ¢(0) =0,

2) ¢(a’) = 2 - o(a),

3) if ae C(L), then ¢(a v b) = ¢(a) L ¢(b) foranybeL,
4) if a,be Lthen a < b <> ¢(a) = ¢(b).

Proof. The conditions 1), 2), 4) follows from the definition of ¢ and Proposition 1.4.
As for the condition 3), suppose that a v be F for a c-ultrafilter F and a € C(L).
Thenav b=av (b A a)eF.If both a,b'A a’ do not belong to F, then both
a', b’ v abelong to F and so does a’ A (b’ v a). But @’ A (b’ va)=a" A b =
= (a v b)' € F, which is absurd. This completes the proof of Proposition 1.6.
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2. Preliminaries on closure spaces

Following [3], a nonvoid set X together with a closure operation ~ is called
a closure space if the following four conditions are satisfied:

1)0=0,

2) Ac Aforany A < X,

3) AcB=>Ac Bforany A,Bc X,
4) 4 = Aforany A c X.

A set A < X is called closed (resp. open) if 4 = A (resp. X — A = X — A).
Obviously, the intersection of closed sets in X is a closed set. Further, X is called
Hausdorff if any pair of distinct points in X separates by.open sets, and X is called
compact if any collection {C, ] a €I} of closed sets in X fulfils the following property:
If ) C, = 0, then there is a finite collection C,,, C,,, ..., C,, such that C, = 0.

29 e
ael k=<n

(A closure space is a topological space if a union of any pair of closed sets is a closed
set.)

3. A representation theorem

Let L be an orthomodular lattice and let ¢: L~ P(¥) be the mapping defined
in Proposition 1.6. For any Ae P(%), put 4 = n{p(a)|aeL, ¢(a) > A}. This
operation converts £ to a closure space which we denote again by £. Let CO(%¥)
denote the set of all sets which are simultaneously closed and open in £.

Proposition 3.1. Let ¢: L— P(Z) be the mapping defined in Proposition 1.6.
Then ¢ has the following properties:

1) the set o(L) = {A = £ | A = ¢(a) for any a€ L} is a subset of CO(Z),

2) every set closed in & is an intersection of elements of ¢(L) (and dually for
open sets),

3) ¢ is an order isomorphism of L and (¢(L), <),

4) the set (L) endowed with the inclusion relation and the set-theoretic ortho-
complementation is an orthomodular lattice and moreover, if A, Be ¢(L) then
Av B=AUBand A A B =(An B) (here ° stands for the operation of taking
the interior), :

5) if in the above condition 4) we have B central in CO(¥),the Av B= AU B
and A A B=AnB.

Proof.

1) Suppose that a € L. Then ¢(a) is closed by the definition of the closure in X.
Further, £ — ¢(a) = ¢(a’) = ¢(a’) = & — ¢(a) and therefore ¢(a) is open. Thus,
¢(a) e CO(2).

2) It follows from the property 1) and from the definition of the closure in X.
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3) Obvious.

4) The first part follows from the property 3) and from the fact that (¢(a))’ =
= ¢(a’). Take elements 4, B e ¢(L). Since ¢(L) is a lattice, there exists C e ¢(L)
such that C = 4 v B. By the definition of the closure in X, we have A v B =
=n{Ceqp(L)| 4 v B c C}. Since for any C from the latter formula we have
C = C, we infer that n{Ceg(L)|AuB < C} =n{Ceqp(L)|C = C} = C. The
rest derives dually.

5) We apply Proposition 1.6. 3).

Proposition 3.2, Let £ be the closure space associated with L. Then & is compact
Hausdorff and ¢(L) = CO(Z).

Proof. Let us check first that & is Hausdorff. Take F,, F, € & such that F, # F,.
Suppose that ae F;, — F,. Then a'e€ F, — F, and the sets ¢(a), ¢(a’) separate
F,, F,.

Let us show now that ¢(L) is compact. Let {C, | « € I} be such a system of closed
subsets of £ that N C, = 0. Since any closed set is an intersection of elements of

ael

¢(L), it suffices to establish the following implication: If (} ¢(a;) = @ then there
JjeJ

exists a finite subset {j,, j, ..., j,} of J such that N ¢(a;) = 0.
ksn
If N ¢(a;) = O then there is no such c-ultrafilter F that F e ¢(a;) (j € J). Since

jeJ
Fe (pj(a ;) if and only if a; € F, we see that there is no c-ultrafilter containing each
cfilter F; = {ae L| a = a;} (j € J). Therefore the c-filter generated by all F; (j e J)
cannot be proper. By Proposition 1.3, there exists x € L such that x = b; A ...

. A b; A b, where b, e F; n C(L)and b,e F,,and x' 2 b, A ... A b, A b,
where b,, € F,,, n C(L)(t < s)and b, e F,. Then ¢(x) > @(b;, A ... A b; A b,) =
= ¢(b;) n ... 0 @(b;) N o(b,) > ¢la;) 0 ... np(a;) ¢(a,) and similarly,
o(x') 2 @(bp, A ... A b, A b)) > @(an) N ... p(a,)n o(a). It follows that
0= o(x)no(x) > @(a;,) N ... 0 9(a;) 0 o(a,) N e(an) ... 0 ¢(a,,) n o(a,)
So & is compact.

Finally, let A belong to CO(¥). According to Proposition 3.1. 2) we have 4 =
=N A4; and A =U Bj, where 4; = ¢(a;) (iel) and B; = ¢(b;) (je J). Thus,

iel jeJ
D=An A = Aji N ) B). Since & is compact, there are indices iy, 1i,...,

iel jeJ
vos s J1s G2+ vr Jim suc}ll that 0 = 4, nA4,n...n A4, n(B;, uB;,U...UB,).
It follows that 4 = A, nA4;,n...n A; . Since A is open, we have
A=A"=A, "4, ...0nA4) = A A Ay A oo A A, = o(a;) A ...

. A ola;,) = ¢(a;, A ... A a;)ee(L). The proof is complete.

The foregoing proposition plus Proposition 1.6. gives us the following theorem.
{Recall that a mapping ¢: L, - L, between two orthomodular lattices is called
an orthoisomorphism if ¢ is an orderisomorphism and if ¢(a’) = ¢(a)’ for any
a € L,. Obviously, any orthoisomorphism is necessary a lattice isomorphism.)
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Theorem 3.3. Let L be an orthomodular lattice. Then there exists a compact
Hausdorff closure space & such that the orthomodular lattice CO(¥) of all clopen
sets in & is orderisomosphic to L. Moreover, the lattice operations in CO(¥) are
set-theoretic on the couples which contain a central element.
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