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Notes on the Number of Associative Triples 

JAROSLAV JEŽEK, TOMÁŠ KEPKA 

Praha*) 

Received 2 February 1989 

Some questions concerning the number of associative triples in a quasigroup are discussed. 

Diskutuji se nSktere otazky, tykajici se poctu asociativnich trojic v kvazigrupS. 

#ncKyTHpyK)TCfl HexoTOpwe Bonpocw o HHCJie accouHaTHBHwx TpoeK B KBa3Hrpynne. 

1. In troduct ion 

For a quasigroup Q, let 

A(Q) = {(x, y, z) eQ3;x.yz = xy.z}, a(Q) = card (A(Q)) , 

B(Q) = 2 3 - A(Q) , b(fi) = card (B(Q)) . 

Obviously, b(Q) = 0 iff Q is a group. By [3], Q if Q is infinite and nonassociative 
then a (Q) = b(Q) = card (Q). Now, let Q be finite and n = card (Q). Then a(Q) + 
+ b(Q) = n3; for every x e Q we can define two elements f(x), e(x) e Q byf(x) x = 
= x = x e(x); since f(x) . x e(x) = x = f(x) x . e(x), the set {(f(x), x, e(x)); xe Q} 
is contained in A(Q) and we get n ^ a(g) = n3. 

Every quasigroup with at most two elements is a group. On the other hand, for 
every n = 3 there are nonassociative quasigroups of order n. We denote by amax(n) 
the maximum and by amin(n) the minimum of the numbers a(g), for Q running over 
all the nonassociative quasigroups of order n ^ 3. The numbers bmax(n) and bmin(n) 
can be defined similarly, and we have bmax(n) = n3 — amin(n) and bmin(n) = n3 — 

- amax(n). 
For every n = 1 denote by assspec (n) the set of the numbers a(Q), where Q runs 

over the quasigroups of order n. This set, called the associativity spectrum of n, 
is contained in {n, n + 1, . . . , n3}. We have 

asspec(l) = {1} , 
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assspec(2) = {8} , 
assspec (3) = {9, 27} , 
assspec (4) = {16, 24, 32, 64} , 
assspec (5) = {15,..., 57, 59, 62, 63, 74, 79, 80, 89, 125} , 
assspec(6) = {16, 19,..., 114, 116, 117, 118, 120, 121, 122, 124,..., 128, 130,... 

..., 137, 141, 142, 144, 148, 152, 160, 162, 168, 172, 184, 189, 216}. 

Hence 

ami„(3) = amax(3) = 9 , 
amin(4) = 16 , amax(4) = 32 , 
amin(5) = 15 , amax(5) = 89 , 
amin(6) = 16 , amax(6) = 189 . 

These values can be obtained on a computer. A standard backtracking program 
can be used to generate all n-element quasigroups with a fixed permutation for the 
top row of the multiplication table. For n = 6 there are 1 128 960 such quasigroups. 
Then for each quasigroup generated by the backtracking routine, each number 
of a certain set of permutations is applied to give an isotopic quasigroup. The number 
of associative triples in each such quasigroup is counted. For n = 6 only 12 permuta­
tions are needed to get all the nonindempotent quasigroups, and the idempotent 
case is handled separately. The program was written and the computation for n = 6 
was done by J. Berman using the facilities of the Computer Center at the University 
of Illinois at Chicago. 

The following are examples of a quasigroup H of order 6 with a(H) = 1 6 and of 
a quasigroup Q of order 6 with a(Q) =189 : 

H 12 3 4 5 6 

1 2 14 3 5 6 
2 12 5 6 4 3 
3 6 5 12 3 4 
4 5 6 3 4 12 
5 4 3 2 16 5 
6 3 4 6 5 2 1 

Ö 12 3 4 5 6 

1 2 3 15 6 4 
2 3 12 6 4 5 
3 12 3 4 5 6 
4 6 5 4 13 2 
5 4 6 5 2 13 
6 5 4 6 3 2 1 

2. Examples 

2.1. Example. Let n ^ 4 be an even number. Take an abelian group (?( + ) of order 
n and two distinct elements a, b e Q — {0} with 2a = 0. Let us define a new binary 
operation, a multiplication, on Q as follows: put xy = x + y for all x, y e Q such 
that either x £ {b, a + b} or y $ {b, a + b}; put bb = (a + b) (a + b) = 2b + a 
and b(a + b) = (a + b) b = 2b. It is easy to verify that Q is a commutative loop 
and that (x, y, z) e B(Q) iff either x e {b, a + b}, y e {b, a + b, b — z, a + b — z} 
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and z £ {0, a,b,a + b} or else xe{0,a,b,a + b},ye{b, a + b,b — x, a + b — x} 
and ze{b,a + b}. Hence b(Q) = 16n - 64. 

As a consequence we get 

n3 — 16n + 64 e assspec (n) , 

bmin(n) = 16n - 64, 

amax(n) = n3 - 16n + 64 

for any even number n = 6. 

2.2. Example. Let n = 3 be such that n =f= 4k + 2 for any k. Then there exist 
a commutative group Q(+) and an automorphism / of Q(+) such that f(x) 4= x 
for all x e Q — {0}. For example, we can express n as n = 2md where m =)= 1 and d 
is an odd number, take Q(+) = Ci(+) x ... x Cm(+) x D(+) where Ct is the 
two-element group and D is the cyclic group of order d and pu t / (x 1 ? . . . , xm, y) = 
= (x t + x 2 ,x 3 , ..., xm, xu 2y). Define a multiplication on Q by x>> = / ( x + >>). 
In this way we obtain a quasigroup Q and it is easy to see that A(Q) = {(x, y, x); 
x,yeQ}. 

As a consequence we get 

n2 e assspec (n) , 

amin(n) = " 2 , 
bmax(n) = n3 - n2 

for any number n ^ 3 such that n + 4k + 2 for any k. 

2.3. Example. Let G(+) be an abelian group of an odd order m = 3 and let 
g( + ) = Z 2 (+) x G(+). Put / (a , x) = (a, 2x) for any (a, x)e Q. Then / is an 
automorphism of Q( + ) and we can define a multiplication on Q by pq = / (p) + g 
for all p,qe Q. Clearly, Q becomes a quasigroup and A(Q) = {((a, 0), (6, y), (c, z)); 
a, b, c e Z2 , y, z e G}. 

As a consequence we get 

2n2 e assspec (n) , 

amin(n) = 2n2 , 

bmax(") = n3 - 2n2 

for every number n ^ 6 such that n = 4k + 2 for some k. 

3. The group distance and the numbers bmin(n) 

Let Q(*) and Q(o) be two quasigroups with the same underlying set Q. We put 
dist (Q(*), Q(°)) = card ({(x, y)e Q2;x * y 4= x© y}). This cardinal number is 
called the distance of the two quasigroups; it is easy to see that it is not less than 4, 
provided that the two quasigroups are different. 
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For a quasigroup Q denote by gdist (Q) the minimum of the numbers dist (Q, 6(*)), 
<2(*) being an arbitrary group with underlying set Q. Clearly, gdist (Q) = 0 iff Q 
is a group. 

For n _ 3, let gdist (n) designate the minimum of the numbers gdist (Q), where Q 
is a nonassociative quasigroup of order n; further, put gdist (2) = 4. Obviously, 
if m = 2 and if m divides n then gdist (n) = gdist (m). In particular, gdist (n) ^ 

= gdist (p), p being the least prime number dividing n, and we have gdist (n) = 4 
for every even number n. Using mechanical means (or making a tedious handwork), 
one can establish 

gdist (3) = 6 , gdist (5) = 8 , gdist (7) = 9 , gdist (11) = 11 . 

By [2], we have eln p + 3 < gdist (p) and according to a private communication 
of A. Drapal, gdist (p) < 4 Jp for every prime number p = 3. 

A. Drapal has found in [1] some connections between the numbers b(Q) and 
gdist (Q). Namely, he proved the following two propositions. 

3.1. Proposition. Let Q be a finite quasigroup of order n; put b = b(Q) and g = 
= gdist (Q). Then: 

4gn - 2g2 - 24g ^ b ^ 4gn ; 

4gn - 2a2 — 16g ^ b , provided that g = 24 ; 

3an < b , provided that 1 = b < 3n2/32 . 

3.2. Proposition. Let n ^ 3; put b = bmin(n) and g = gdist (n). Then 4ng — 2a2 — 
- 24g = b = 4ng and 3na < b. If b < 3n2/32, g2 + 14a + 13 < 2n and if Q 
is a quasigroup of order n such that b(Q) = b then gdist (Q) = g. 

3.3. Proposition. Let n = 3 be such that gdist (n) < 3n/l28. Then bmin(n) < 3n2/32. 

Proof. Put a = gdist (n). Let Q be a quasigroup of order n such that gdist (Q) = g. 
By 3.1 (1), bmin(n) = b(Q) ^ 4gn. Since a < 3n/128, we have 4gn < 3n2/32. 

3.4. Proposition. Let n = 29 124. Then bmin(n) < 3n2/32. 

Proof. If n = 29 128 then 4 v
x n < 3n/l28 and the result follows from 3.3. The 

number 29 127 is divisible by 3, the number 29 125 by 5 and the numbers 29 126 and 
29 124 are even. 

3.5. Proposition. Let n = 29 124 be not a prime number and let Q be a quasigroup 
of order n such that b(Q) = bmin(n). Then gdist (Q) = gdist (n). 

Proof. By 3.4, bmin(n) < 3n2/32. Denote by p the least prime number dividing n„ 
Then p - 1 = 70 and 16p + 56 ̂ /P + 13 < 2n. The result follows from 3.2. 

If n is even then a considerably more complete result is known (see [1]): 

3.6. Proposition. Let n ^ 168 be even. Then bmin(n) = 16n — 64 and amax(n) = 
= n3 - 16n + 64. 

18 



3.7. Proposition. Let n = 194 be even and let Q be a quasigroup of order n such 
that b(e) = 18n. Then b(Q) e {0, 16n - 64, 16n - 56, 16n - 48, 16n - 36, 16n -
- 32}. 

Proof. Assume that Q is not a group. We have b(Q) ^ 18n < 3n2/32 and so 
gdist (Q) < 6 by 3.1 (3). Now, it is easy to show that gdist (Q) = 4 and the result 
follows from Proposition 10.4 of [1]. 

3.8. Proposition. Let n be an even number, 6 ^ n ^ 166. Then 3n2/32 g bmin(n) ^ 
^ 16n - 64. 

Proof. The inequality bmin(n) = 16n — 64 follows from 2.1. Now, let Q be a quasi­
group of order n with b = b(Q) = bmin(n). Suppose that b < 3n2/32. By 3.1 (3), 
g = gdist (Q) < n/32. Since g ^ 4, we have n ^ 130. We have gdist (n) = 4 and 
# = 4 by 3.2. By Proposition 10.4 of [1] we get b ^ 16n — 64, a contradiction. 

3.9. Remark. By 3.8, 2584 ^ bmin(166) ^ 2592. Let Q be a quasigroup of order 
166 with b(Q) = bmin(l66). Then either gdist (Q) = 4 (and then bmin(l66) = 2592) 
or gdist (Q) = 320 (use 3.1). 

3.10. Remark. We have bmin(6) = 27, so that 3.6 is not true for n = 6. The situation 
for 8 = n = 166 is not clear. 

3.11. Remark. In contrast to the numbers bmin(n) and amax(n), almost nothing is 
known about the numbers amin(n). It follows from 2.2 and 2.3 that 

n = amin(n) = n2 for n = 3 , n =j= 4k + 2 , 

n ^ amin(n) = 2n2 for every n = 3 . 

It is not clear whether n < amin(n) for every n ^ 3. By [3], if Q is a quasigroup 
of order n = 3 such that a(Q) = n, then Q is idempotent and not isotopic to a group. 
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