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The method combining the cranking model with the random phase approximation (RPA) 
is applied for calculation of concrete characteristics of states of rotating nuclei. In broad range 
of rotational frequencies such a properties of nucleus as energy spectrum, transition probabilities, 
strength functions, angular momentům alignment are analysed for a number of nuclei. This 
páper represents a continuation of ref. [1] where the basic ideas of cranking + RPA method 
were presented. 

V práci je aplikována metoda kombinující cranking model (model vynucené rotace) s aproxi­
mací náhodné fáze (Random Phase Approximation RPA) pro výpočet konkrétních charakte­
ristik stavů rotujících jader. V široké oblasti rotačních frekvencí jsou analyzovány energetická 
spektra, pravděpodobnosti přechodů, precesní pohyb jádra, silové funkce el. mag. přechodů 
a další vlastnosti pro řadu jader. Práce navazuje na výsledky práce [1], kde byly uvedeny základní 
myšlenky používané metody. 

MeTOfl KOM6HHHpyioin;HH Mo^ejib npHHyAHTejibHoro BpameHHH H npHÓJiHMceHHe cjryHaáHbix $a3 
npHMeHHeTCíi .ZIJISI onncaHHH KOHKPCTHWX xapaKTepHCTHK COCTO«HHH Bpan^aKMmíxcK HAep. B Hinpo-
KOM ;jHana30He BpamaTejibHbix 3HeprHH .ZIJW pa.ua jwep aHanH3HpyřOTCH Taxne CBoňCTBa KaK 
3HepreTH-iecKHe cneKTpw, BCPOKTHOCTH nepexo,uoB, CHJiOBbie ^VHKHHH, BbiCTpaHBaHHe yrjioBoro 
MOMeHTa H flpyrne. npe^jiaraeiviaH pa6oTa KBJIHCTCH npoflOji»eHHeM pa6. [1], r^e 6bijra npHBeAeHbi 
ocHOBHbie HAen Hcno.nb30BaHHoro MeTOfla. 

1. Introduction 

This paper represents the second part of study of the collective states in rotating 
nuclei. In the first part which is involved in ref. [1] the theoretical problems with the 
description of the collective excitations of fast rotating nuclei were discussed. Particu­
larly in [1] the method combining the cranking model (CM) with the random phase 

*) V Holešovičkách 2, 180 00 Praha 8, Czechoslovakia 
**) Laboratory of Theoretical Physics, JINR Dubna, SV 101 00, USSR 
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approximation (RPA) was suggested for this purpose. Our first paper [1] on this 
theme was devoted to the explanation of basic theoretical ideas of CM + RPA ap­
proach such as the symmetries of cranking Hamiltonian, the Hartree-Fock-Bogo-
lubov problem for rotating systems, the solutions of RPA equations of motion, 
selfconsistency of residual interaction with average nuclear field and others. 

In this second part the concrete properties of rotating nuclei are studied in the 
framework of CM + RPA approach. In chapter 2 of this paper the simplified version 
of CM + RPA model is used for analysis of isoscalar quadrupole and isovector 
dipole excitations. Chapter 3 is devoted to realistic microscopical calculations of 
properties of rotating nuclei in broad range of rotational frequencies (i.e. the low-
lying states of 1 6 8 Er and 1 5 8Dy in § 3.1, the alignment of intrinsic angular momentum 
in § 3.2, giant dipole resonance at high spins in § 3.3). 

2. Analysis of collective excitations of rotating nuclei in the simple model 

2.1. Cranking Hamiltonian in the simple model 

The change of nuclear shape and behaviour of nuclear moment of inertia in de­
pendence on rotational frequency Q can be studied within the simple model based 
on Hamiltonian of harmonic oscillator with effective quadrupole forces [2, 3]. 
This Hamiltonian contains the average deformed nuclear field and residual quadru-
pole-quadrupole interaction which is responsible for collective excitations of positive 
parity [4, 5]. The description of collective excitations with negative parity requires 
to add the negative parity residual interaction H^l into the Hamiltonian. So the 
starting cranking Hamiltonian is 

(1) H'-ifA + TE^l)^ Z ®k + Htis-QLx 
v=i\2m 2 J 2 i,k=x,y,z 

where 

ft* = l4i*(v) 
v = l 

represent the components of tensor of quadrupole moment of nucleus, 

t-*im 
v = l 

stands for the operator of angular moment projection onto x-axis and Q is the 
rotational frequency. Concrete form of HREl will be given further. In the Hartree 

' approximation the Hamiltonian (1) has the following form 

(2) = нSp.-« I éУ»2-? x ßУ)2 + я; 
2 І = O . I , 2 2 ; = i , 2 
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where 

& + ) = VM&-~ <--l-Uf l>) • Q\+) = j2Qyz 

(3) Q{+) = Vi (G» - <fi| <2»Jfl> - 6-, + <«l 6»\a>) 

Q[-) = j2Qxy, g(

2-
) = V2Qxz 

where (5,y = 3 * , ^ — «5(/
2 and |_T_?> represents the state of yrast line which corresponds 

to minimal eigen value of single-particle Hamiltonian __s-. for given value of rota­
tional frequency Q. 

HS.,.(Q) = t K(Q) 
(4) 

Л,(û) = p- + -J (co2
xx

2 + oĄy2 + colzî) - ßЦv) 
2m 2 

Following [2] eigen functions and values of single-particle Hamiltonian (4) can be 
obtained from eq. for creation operator of oscillator quanta a\ which are defined 
as a linear combinations of particle coordinate r and linear momentum p 

(2mcox)-^ (2mcox)-"2 

1/2 ЩçfŢ -.(-*)' 
( 6 b ) /,.\ / y + Y: Y_ Y*\ 

Z+ Z*+ Z_ Z*_ 
Pr

+ Pr* P_ P_*i 
\pt PZ

+ p_ pr ' 
The explicit form of expressions for transformation coefficients in (6) can be found 
in [3]. Within the terminology of the operators af, ax the Hamiltonian (4) has the 
following form 

(7) J--.-. = Z<K + i)y = Z<o, _, «w° 
1 

where 

00 

<T = X,+ , -

K = a+(v) a<r(v) [aff(v), a+(v')] = -„•--,• i/a 

ш , = c^j^o,] + ß ± i [ (û )- _ ^ . + 8o2(ffl. + ^ -

The change of shape of rotating nucleus was analysed in detail in [3]. Typical 
diagram of dependence of equilibrium deformation parameters on rotational fre­
quency is shown in fig. 1. In relatively small angular velocities the value of single-
particle potential deformation decreases with increasing Q, but nonaxiality grows up. 
In angular velocities higher than some critical value Q^ the most profitable shape 
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shows to be oblate ellipsoid rotating round its symmetry axis. It must be noted that 
the behaviour of deformation parameters is determined by conditions of energy 
minimum which in quasi-classical approach can be expressed in the form [3] 

(oxwx = co+w+ = cj>_w_ = C = const 

Fig. 1. Dependence of deformation parameters /? and y on rotational frequency Q. Points with 
numbers determine the corresponding values of Q[co0. 

la the absence of rotation these conditions justify consistency of nucleon density 
with the shape of the oscillator potential [6], Besides that fixing relations between 
tilling in different rotational axes these conditions give several possibilities correspond­
ing different rotational bands. It is evident that the most favourable from the point 
of view of energy is the yrast line. 

More patent changes in nucleus shape in given model occure in the region of high 
angular velocities of rotation. In this sense more realistic description of behaviour 
of deformation seems to be obtained in the framework of the liquid drop model [7]. 
Similarly to realistic CM + RPA model simple model used in this chapter describes 
the collective excitations by means of phonon which can be expressed in terms of 
generalized coordinate and linear momenta (see rel. (30) in [1]). These coordinates 
and momenta fulfil the RPA equations of motion (28) in [1]. Since the Hamiltonian 
(2) is invariant with respect to rotation by angle n round the axis x in accordance 
with § 2.3.1 in [1] the operators of phonons can be characterised in RPA by quantum 
number of signature ± 

(10) RX(П)O:R;1(П)= ±O: 

and it is possible to divide the residual interactions in (2) into four mutually com­
muting parts H/f£5<±) (similarly as in (20) of [1]) 

( i i ) 

where 

= я s.p. + H&K+) + H&K+) + яй>(-) + яйK-) 
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(12a) #£(+)- -ţ I Uí+)1 Я U + ) = " ţ I ®Ґ' 
2 i = 0,1.2 2 1=1,2 

(12b) нtë = ЯЙK-) + я ^ ( - ) 

2.2. Isocalar quadrupole excitations 

2.2.1. Analysis of spectrum 

Generalised coordinate and linear momenta for Hamiltonian HSp = HK£s(+) +. 
+ HR£S(+) (Hamiltonian of isoscalar forces) can be expressed in the form 

(13) x<*> = v;x;(±) <?<*>, ^ ^ i E ^ t ) ^ 
s s 

where 4*1 \ ^ ± ) are the bilinear combinations of the operators ak and ak. The 
concrete form of these combinations is given in [9]. Linearization of equation of 
motion (Random phase approximation) is obtained by substitution 

(14) • M->, A->] - w ^ , P^LPA = <AI ie\ A±}] io> = n * ^ -
where the quantity Vf±) represents the c-number. Following the method of solving 
of RPA equations of motion for unknowns Xv

s(±) and &v
s(±) given in [1] (see § 2.3.2) 

one can obtain the system of algebraic equations of type (46) and (51) in [1]. The 
dimension of this system of equation is 3 for positive signature (nt = 2, n2 -= 1, 
ni + n2 = 3 — see [1]) and 2 for negative signature (n1 = n2 = 1, nt+ n2 = 2). 
The condition of solving of these systems of equations gives us the secular equations 
for energies co of one-phonon quadrupole states with positive or negative signature for 
given value of rotational frequency Q. Extraction of spurious modes among the 
solutions of RPA equations of motion can be performed by the method described 
i n [ l ] . 

If the rotation is not present the solution of mentioned above systems of algebraic 
equations can be classified by the usual way according to projection Kn of angular 
momentum onto symmetry axis. Spectrum of excitations with positive parity is 
determined for every value K* = 0 + , l + , 2 + from equation 

(15) 1 - 2xSKK(co) = 0 

where (see (47) in [1]) 

(16) sM - - > w , - s (•»; - J«a ; , uy a-. 
ny ((Dp + C0V)2 - CD* 

Matrix elements (Qk)^v
 c a n be obtained in terms of the coefficients of transformation 

(6) and eventually (15) has the following form 

4 v 2 v 
- * + - z = 1 for K* = 0 
3 4vz — v 3 4vx — v 
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(17) 
(v* ~ Vz)2 - v(v* + v,) _ J 
(vx + vz - v)2 - 4vxv, 

for K* = 1 

2v2 = 1 for Kҡ = 2 
4v* - v 

where v = CO2/COQ, V ^ = cô 2/a>o- The solution of these equations is 

c(i;=±)K = v[2(i -1«5)]« v-(- - #) 
c(2;= ±)K = v[2(i + f<5) * V2(i + P) 

V2(l-|5) 

where the Nilsson deformation parameter <5 is used for description of oscillator 
frequencies. The 0 + state with the energy co « 2co0 has not collective character. 
Remaining solutions characterise the position of corresponding branches of giant 
quadrupole resonance (GQR) in deformed nuclei. In the limit of zero deformation 
the solution co = y/2 co0 agrees very well with the experimental data on isoscalar GQR 
[6], It must be noted that since this model used in this chapter is very simple the 
low-lying collective excitations of nuclei (p and y-bands) are described quite well 

Nilss 

Fig. 2. Dependence of energies of giant quadrupole resonance components on deformation, 
parameter oNiiss in the nonrotating case (Q = 0). 

The dependence of energies of GQR states on deformation parameter in the non-
rotating case (Q = 0) is shown in fig. 2. One can see that the excitation energy of 
phonon state 0 + monotonously decreases with increasing S and acquires zero values 
at 5 = l/4(>/(7) - 1) = 0.411. Further we restrict ourselves to investigation of model 
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characteristics in the region of S and __ where the phonon energies hco are nonzero 
in the framework of RPA. 

As was mentioned above in the region of rotational frequencies Q ^ Q^} angular 
moment is aligned along the symmetry axis and the projection of angular moment 
onto this axis is a good quantum number. Further this projection will be assigned by 
symbol T. In this case secular equation for phonon energies can be also divided into three 
independent equations — two of them determine the excitation of positive signature 
with T = 0, ±2 and the third one characterises the excitation of negative signature 
with T = ± 1 . We solved these equations with assumption of dependence of model 
strength constant g = 18xC/m2a4 on rotational frequency __. This dependence 
was determined by requirement of exclusion of nonsphysical spurious modes from 
solutions of motion equations. These spurious modes appear in the solutions of 
motion equation as a result of violation of rotational invariance of Hamiltonian 
by deformed average field (see [4, 5]). This requirement of exclusion has the following 
form 

(19) g = v+v_ . 

Relation (19) together with the condition of selfconsistency (see [3]) determines 
wholly the function g(Q). It must be noted that there are also alternative approaches 
for analysis of collective excitations in fast rotating nuclei (see e.g. [8] in which 
the strength constant are not dependent on rotational frequency). 

If the quadrupole operator matrix elements are written in spherical coordinate 
-system oriented with respect to symmetry axis the equations (15) for the states with 
T = 0 can be expressed as 

<20) \{vy-X)2\ 2 + - - L - 1 = 1 
3 [vx(4vx - v) (v, - X) (4v„ - A) J 

where g = 18xC/m2toJ and A = Q2jcol. The constants C are given by condition 
of nuclear volume conservation 

(21) <x2> <>>2> <z2> = 
m3ö)2ö)+Q)i 

The equation (20) has two solutions which are determined by 

v = a ± V(a2 - b) 

<22) a = 2(vx + v, - gl3vx - Jgj6) 

b = 4(4vxv, - 4flv,/3v, - 2 y/(g) v,/3) . 

Similarly one can obtain the equation 

<23) v2 + 6 y/(X) v + 10A - 2v = 0 
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for the case of T = ±2. This equation has also two solutions 

(24) v l f 2 = ± 3 V ( i ) + V ( 2 v - - 0 -

Eventually the following equation holds for the negative signature (T = ± l) states 

125) 2 ' - z \ 2 ( l + & ) + 2 ^ 1 + ^ 
L V 6 J i + v^ J i + V^ 

where z = Vv + V -̂ Since the analytical form of solution of this equation is not 
so clear we present here the approximate form obtained by expansion into the power 
series in Q 

7 3 
('26) cox~±l « V2 co0 + Q + - Q 
K 6V2 2 

2 co \ 9 co0J 

For comparison we give also and analogous expansions for positive signature solu­
tions (22) and (24) 

vx=0 *f2C!i° 5J2„ 
IV 2 co0 + -^-Q 

(28) l 6 

co 
т = ± 2 ß 

V2 шa ± ЪQ . 
3^2 

The expressions (26) —(28) characterise the splitting of different branches of isoscalar 
GQR in rotating nucleus and (27) determines the frequency of low-energy precessional 
mode. Adiabatic estimate of frequency of precessional vibrations is (see [6]) 

(28') < ; f = Q[(<PX - *,) ($x - <t>z)l<py$2]
112 

where <Pt are the rigid body values of moment of inertia with respect to corresponding 
axes. In the case of axial symmetric rotating nuclei this expression can be written 
as follows 

(29) < ? = QV-*^±± * f (l - - ^ + -..) • 
vx + vy + k 2co0 \ 6 co0 J 

This result differs substantially from our expression (27). For axial symmetric case 
crfpTet 1lc°apreac ~ 3 for small values of rotational frequencies and this ratio decreases 
into about 2 in the region of higher rotational frequencies. It reaches the value near 
2 also for nonaxial case. 
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2.2.2. Transition probabilities 

As it was given in [1] the presence of signature of states determines the selection 
rules of states in transitions. According to these rules the states with positive signature 
have the even value of quantum number of angular momentum I and negative signa­
ture states correspond to odd values of/. The general expression for reduced transi­
tion probabilities is given in paper [1] (see rel. (74). For I > 1 and for transitions 
from one-phonon states into the states in yrast line the rel. (74) in [l] can be re­
written as 

(30) <a, a, I ± T|| AJt(Ek)\ yriy » j(2l) <cr, a| AM'(X9 m = T)| yrast} . 

Here A J(\X9 mx = r) is the component of intrinsic multipole moment with the 
projection z onto the rotational axis x. In the framework of RPA the intrinsic matrix 
element of the operator AJt is understood to have the following form 

(31) <<r, a| AJt'\yrasty = <fl| [Oacr9

 AJf\ |fl> = [Oa<f9

 AM\?A 

where Oa<r is the annihilation operator of phonon which is connected with the generali­
sed coordinates %a(o) and linear momenta A&(6) by (see rel. (30) in [1])* 

(31') o+=^2(*a(,)-.^a(<r)). 

The simplicity of spectrum in our simple model gives possibility to obtain almost 
total information on transitional probabilities from the analysis of sum rules for 
corresponding transitions. The example of such sum rule is represented by following 
relations 

(32) " l V|?r.V>J 

( < H I r , V > J 

where q2 is given by 

6Й2 

ť = г— <HI>vk> 
y/2mco0 v = i 

and coa is excitation energy in RPA expressed in the unit of y/2 co0. The similar ex­
pression can be obtained from (32) by change of indices x9 y and z. 

*) Since we are interested in phonons with coa 4= 0 the energetical factors yJcoa and l/y/co^ 
in (30) of paper [1] is involved in definition of Xa and ^ a . 
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In the value of co0 = 4LT 1 / 3 , (yr\ £r
2\yr> = 11.4445/3 10 -26 cm2 we have 

V 

q2 = 12.3A2/3qWeis where qWeis is single-particle unit of quadrupole transition reduced 
probability. 

The expressions for sum which obtain higher powers of coa are very complicated. 
We restrict ourselves into the analysis of (32) and also of sum involving the third 
order powers in coa which are presented below 

(33a) £a>3|<a| Qxx\yr>\2 = - _ { (yr\ £(r2 + 3x2) \yr} + 
a m ( v 

1 < H I ( P v + 3 ( p v ) 2 ) | > ' r > - - ^ I [ < H Z ( r 2 + 3xv
2)|^r>2 + 

m2(úQ v mcúQ 

+ < H K-'-2 " Зzv

2) \yr}2 + < H X(2r2 - 3Л

2) |>-r>2] j 
V V J 

(33b) »Ҙ|<a| ÛjУr>\2 = l - \(yr\ I(xv

2 + yl) \yr> + 
Gt 2 m l v 

f - î [<.v| У2Ш + Ы 2 |yг> - 9xm<к| I(xv

2 + Л2) |j"->]2} 
l CÛQ v v j 

+
 m>-

In this case of Q = 0 and .G _ Q .̂̂  when the shape of average nuclear field is axial 
symmetric the number of terms in sums (32), (33) is so small that the expressions 
above make possible to determine the most of matrix elements up to the phase factor. 

According to (32), (33) calculated values of |<a| Q2m\Q = 0>|2 in nonrotating case 
Q = 0 are presented in fig. 3 in dependence on deformation parameter 5. The state 
Ot has noncollective character in all values of 6. Matrix element |<0i"| ^2o|0>|2 

increases and energy co0l + decreases with increasing deformation parameter 8 (see also 
fig. 2) so the partial sum of transition strength £0>a|<a| ^2o|0>|2 doesn't change more 

a 

than 40% in all interval of S where the solutions of GQR for 0+ states exist. 
In high rotational velocities Q ^ Qc]} the quadrats of matrix elements can be 

written in the following form 

(34) |<T, i\ Q„]yr>\2 = 8„.Xxi 

where the additional index of state i runs over the two values (i = 1,2,) in the case 
of T = 0, +1 and is absent in T = ±2, — 1. The values of Xxi can be obtained from 
(32), (33) using the formulae for average values given in [3], As a result we obtain 
the following relations 

(35) Koi^i + ^02*2 = <l2A , Xoxz\ + X02e
3

2 = q2B for T = 0 

where i = 1 corresponds to lower state and i = 2 to upper one. Symbols ef (i = 1,2) 
stand for the energies of the states with T = 0. 

64 



(36) 

л _ 2 V ( g ) + v* 
2v„ + .У(_f) 

R _ _ _ _ _ _ ^ > { d ^ - > + ^ + н m ì 
2,0 • l<alô.jo>i2 

/o; 

1.5 

•Ţj> 

1.0 

0.5 í ^ ^ \ 2 + 

__-0j___ 

0.1 0.2 0.3 0.4 ô 

Fi#. 5. Square values |<cc| G2m|0)|2 in dependence on deformation parameter ô in the case 
of ._ = 0. 

The relations of sum rule can be written only for the operators proportional to 
Hermitian ones. Such operators are Q2x ± Q2-x (T = *> 2). Choice of sign in this 
combination is atbitrary because the quadrats of matrix elements for both cases 
coincides. Defining the variables Xt==2,i=i,2 a s follows 

(37) J-,-a.!-i.2 = i |<* = ± 2 | Q2±2\yr>\2 

we obtain for corresponding quantities A and B the following expressions 

(38) -4,-- = Зv_ 

2v„ + Vô* 
B, = 3 (1 + A) v„ 

2v„ + V» 
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The estimate for the case T = +1 can be also obtained from (32) and (33) neglecting 
the contribution of precessional mode. Eventually for T = +1 we have 

-^т-I.I-1.2 = ł|<T = ± l | Ô 2 ± l И | 2 

(39) . _ 3 v* + y/9 

2 2vx + y/g 

{í+T + (Í + fyeÚ + 7MÍ + v) 3 1 , V 

2 1 у/д 

Quadrats of matrix elements (34) of quadrupole operators for T = 0, ±1, ± 2 are 
shown in fig. 4 as a functions of rotational frequency. States |T = 0\ > with energy 
«2G) 0 have noncollective character in all values of Q. The remain quadrupole modes 
of GQR are collective and their contribution to the sum of the first order in coa is 
approximately constant for all Q __ Q(

c

2). 

0-1 0.2 0.3 0.4 Q/u0 

Fig. 4. Dependence of KT, i| Q2

Tly r>|2 o n rotational frequency Q for T = ± 2 , ± 1 , 0. 
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The general behaviour of reduced transition probabilities is in good agreement 
-with the results of analysis of intrinsic matrix elements based on sum rules. Soft 
component of GQR (t = 2) keeps its collective character in whole interval of Q 
\Q < Q^)- In values of Q ^ Q^ this component has the sharp value of projection 
of angular momentum onto symmetry axis and the transitions connected with 
-decreasing of phonon energy cause the decreasing of angular momentum by two 
Planck units. 

Quite intensive transition probabilities occur between the yrast states and the 
states of precessional character. Calculations show that the dependence of such 
transition on angular momentum obtained in the framework of RPA has the different 
behaviour in comparison with the results of rigid rotor model. Some agreement 
of RPA results with the phenomenological rigid rotor model is observed for Q ^ 
^ 0.2co0. 

2.3. Isovector dipole resonance 

As an example of negative parity residual interactions the isovector dipole forces 
are investigated in this part of paper (see also [9]). In this case H{

r~J has the following 
form 

<40) ! £ > - , E ^ ( £ * 3 ( v ) * . ( v ) Y 
i = x,y,z 2_4 \v--l / 

-where T3(V) is the third component of isospin Pauli matrix T3 = ( J and rj is the 

strength parameter characterising the isovector contribution of neutron and proton 
average field 

<4i) v^ = ^(^nN-ir) S^W2-
P 2» \ -4 / i-x,y,z 

The parametrization of dipole interaction (40) corresponds to the receipt of construc­
tion of effective residual forces restoring translation invariance of model Hamiltonian 
(see [1] and [10]). The concrete value of parameter rj is usually determined from 
experimental data on position of giant dipole rezonance (GDR) and reaches r\ « 3 
for oscillator potential. 

The symmetry of average nuclear field with respect to Rx(n) transformation makes 
possible to divide ifj"* into two parts (see (11)) 

m-n^(i^)^))2 

<42) 2A ^ v = i J 

,.2 / A \2 

i=y,z 2A \v=-l / 
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The solution of RPA equations of motion (40) can be found in analogous way a s 
for quadrupole excitation using the scheme described in [1]. However sufficiently 
simple form of dipole interactions (42) enable to apply the simple alternative method. 
In this dipole case the RPA equations can be rewritten in the following form (we are 
interested only in nonspurious solutions) 

(43) [Hs.,. + H<-.\9t'\ = &M 
where the dipole phonon creation operator ®X ^as the following structure 

(44) ^ 4 ^ 3 ( v ) « ; ( v ) . 

Here ax(X = +, —, x) are the operators of creation of oscillator quanta (see (5))» 
Substituting (44) into (41) we obtain for the spectrum of GDR frequencies 

<»x=V(1 +ri)°>x 

3>\ = (1 + ,)__L±J_1 + o- ± .y[(l + , ) - (a>l ~ °>IY + s«2 (i + n) 
(45) 2 

K + a,2)] . 
The probabilities of electromagnetic transitions deexcitating the states of GDR 
with quantum numbers (X, I) into the yrast line states are determined by following 
relation 

(46) \Xf = |<yr| *Jt(El, -fi) 0+|yr>[2 = |[*uT(£ 1, -/<), ®X]\ 

where 

2 
RPЛ 

(47) ҖE 1, џ) = 

r A 

I 
v = J 

Iт3(v)JГ(v) for л = 0 

, +" Л í t3(v) (v(v) ± » z(v))2 for д = ± 1 
L >/2v=i 

are the spherical components of dipole nucleus moment operator in the coordinate 
system where the quantum axis coincides with rotational axis. Using the results 
of paper [3] for the coefficients of transformation (6), it is possible to write the 
explicite expressions for transition amplitudes j ^ | 2 

(48) \X°\2 = (2mcoxJ(l +/j))"1 for X = x 

\XX | =\Yy±iZk\ =*2mcoxy/(l + t1)(co2

+-col) X 

(49) 
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Similarly as in the case of quadrupole excitations if the rotation is not present (Q = 0) 
the dipole states can be classified by quantum number K*. For longitudinal K* = 0" 
and transversal K* == 1~ modes of dipole vibrations in this case we have 

(so) &(p~) = V(i + n) <»t = V(- + n) <i - W2 

Hn = V(- + *K = V(- + *W- + 45)1/2 

Quadrants of intrinsic matrix elements of dipole moment operator for Q = 0 deter­
mine the reduced dipole transition probability with corresponding final state K*, so 

1 
(51) B(E 1, 0+ 

where qY = 3A(eh2)ll6n. 

кn) = Чi 

2m ćò(Kn) 1 + ôкo 

0.1 Q2 0.3 0.4 O/ц, 

l BIEI.ЛІj-- y П f ) 

1.5 

І.U Jf 
(«,*) 

0.5 

, 1 

Fig. 5. 

0 0.1 0.2 0.3 0.4 O/wo 

Fig. 6. 

J^. 5. Dependence of GDR component energy on rotational frequency Q. The figure includes 
also the diagram of deformation parameters 5, y as a function of Q. Dashed lines correspond 
to nucleus with spherical shape for Q = 0 while the solid lines are connected with deformed 

nuclei for Q = 0 (S = 0.25 for Q = 0) (see [9]). 

Fig. 6. Dependence of reduced probabilities B(E 1, Ut->yrlj) for transitions of GDR into the 
yrast line states for different values fi = It— If. The reduced probabilities are given in units qt. 
The first symbol in brackets characterises the type of GDR state (A -= * , + , — ) and the second 

one corresponds to fi = 0 for k = x and n = + 1 for k = -fc. 

Estimates of GDR splitting obtained above are in good agreement with experi­
mental data on photoabsorption cross section [1], In Q + 0 case the additional 
splitting of frequencies of transverse dipole vibrations and a shift of longitudinal 
vibrations appear. Corresponding excitations are then classified by means of signa­
ture quantum number. In this simple model when the rotating nucleus obtains the 
axial symmetric oblate shape and rotational axis coincides with the symmetry axis 
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the additional splitting of negative signature dipole state occurs. This negative-
signature splitting can be characterised by additional quantum numbers X = +1 
which correspond to the projection of phonon angular momentum \x = ±1 onto-
rotational axis. 

The dependence of GDR energies on rotational frequency is shown in fig. 5. Thfr 
figure includes also the diagram of deformation parameters <5, y as a function Q. 
The dependence of reduced transition probabilities on Q is given in fig. 6. Selection 
rule with respect to signature 

(52) ( - 1 ) ^ = 1 

do not allow the dipole transition X = x -* yr with the angular momentum change „ 
In such a way the value of partial sum 

(53) £ c5,|<,,r| *M(E 1,0 = 0) |A>|2 = &^Jí{E 1, 0), 9^A 
2 = i l 

entirely determines the integral character of transitions without spin change. In 
rotation round the symmetry axis only the transitions (A = + , / + 1 -• yr, I) are 
possible. The reduced transition probability of such transitions are the same in all 
spins (see fig. 6) (if the occupation of states k = ± are equal). In the case of collective 
rotation the both type of dipole transitions (k = ±, I -• yr, I ± 1) and the behaviour 
of reduced probability of such transitions are shown in fig. 6 by solid lines. The sum 
rule with energy in the first order for these transitions is given by two components 
sum of which is practically the same as in the case (53) without spin change. 

The model discussed in this chapter enables to investigate the properties of GDR 
and GQR in the process of nuclear rotation. In the framework of this model it is 
possible to describe the possition and dependence of components of GDR and GQR 
on quadrupole deformation in nonrotating case. As was mentioned in [2] the Ha-
miltonian (4) also qualitatively reflects such important characteristics as the de­
pendence of inertia moment on distribution of nuclear matter and appearance of 
nonaxiality in consequence of rotation. It must be noted that the changes of energies 
of different components of GDR is not so expressive as for GQR. 

3. Application of cranking + RPA model for description of collective 
states of rotating nuclei 

3.1. Low lying states of 158Dy and 168Er 

In description of low-lying states we start with the Hamiltonian given in [ l j 
in rel. (5) 

(54) H' = Yek4ck - i YfirKP, " i Z i *£t>Q* 
k t A = l , 2 , 3 . . . n=-X 
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where all symbols are described in [1]. We restrict ourselves by residual interaction 
with multipolarities X = 1, 2, 3. Besides that the conditions of transition invariance 
gives the additional dipole-octupole interaction. It is well known fact (see e.g. [11]) 
that it is sufficient to take into account only isoscalar part of residual quadrupole-
quadrupole and octupole-octupole interaction for description of low-lying quadru-
pole and octupole states. The important role in studying of £ 1, transitions 
between low-lying states is played by low-lying tiles of isovector GDR. Therefore the 
Hamiltonian has the following form 

H' = Y^ck - i ZGXP:PZ - i _ x2mQ+
2mQ2m - ± _ _ *& Q?m

+ ®l 
(cz\ k t m = - 2 t = 0,l m = - l 

- i i *3m&mQ3m - 1 _ _ * L W . + G & + ffivfisa 
m = - 3 t = 0,l m = - l 

where in opposite to (54) the dependence of strength constants xXfl and xM on projection 
li is introduced (xXvL = xA_|1, xM = x_u). Here x\0] and x[1] are the isoscalar and 
isovector strength constants, respectively. In solving the RPA equations for Hamilto­
nian (55) we approximate the average field by axial symmetric deformed potential 
of Saxon-Woods form with parameters taken from refs. [12,13]. The parameters 
of deformation were obtained by means of the method of Strutinsky [14]: f}2 = 
= 0.265, j54 = 0.044 for 158Dy and p2 = 0.284, j?4 = -0.001 for 168Er. The defor­
med field violates the symmetry condition (4) and (5) in [1]. However the restora­
tion of these symmetries according to receipt described in [1] leads to the complex 
dependence of the residual interaction on nucleon coordinates. Therefore fixing 
the residual interactions in the form of (55) only the strength constants xXtl and x^ 
can be determined from the requirement of validity of the symmetry conditions (4) 
in [1] in average. 

The solving of RPA equation of motion was performed according to the method 
described in [1], It is known (see e.g. [15]) that the method of Hartree-Fock Bogolu-
bov without projection onto the particle number for cranking Hamiltonian in the 
region of rotational frequency doesn't give the good results when pairing vanishes. 
Since the pairing gap starts to decrease in spins I ~ 8ft for 168Er and I ~ 6ft for 
158Dy the calculation of spectrum was performed up to spins I _5 8ft and I _5 6ft 
for these nuclei. 

The dependence of spin I on rotational frequency in the states of yrast line is deter­
mined by the standart way the equations of Hartree-Fock-Bogolubov are solved 
in some increasing values of rotational frequency and simultaneously the expectation 
value <>Q| IX\Q} is calculated. Using the cranking conditions (Q\ Ix\&y = VM^ + *)] 
the function I(Q) is obtained. 

Solving Hartree-Fock-Bogolubov equations and taking into account the symmetries 
of single-particle operators involved in (55) (see appendix in [1]) the cranking Hamil­
tonian H' can be rewritten in the form (see (20) in [1]). 
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(56) H' -- <fi| H\Q} + H<:> + H<!> + #<;> + H<I> 

where 

"III = E W V - i!GtP<+)(l)^(l) " ±I«2m&+)(l)&+)(l) 0 = *) 
m = 0 

-^;)
)--Ei-.;-'+*,-iZ'«-.fiJr>(-)ffl.r)(-) (" = ** and »JE> 

v m= 1 

IIn = s *"-*;*, - -K? + ̂ i]) A^(.+)(I)
 A^+)(i) -

- W? - 4V) *-*.&.>(-) A^(UPU(I) - i S x3mn+)(i)^+)(i) -
m = l 

- (4 0 ] + x[
1

lv<i(
1

+'(i)^',+)-

- (x<°> - 4'>) ^ a u i ) ^ o ( i ) + A-s^-)-V-i ,] 
H<:> = i £ £ fc+fc, - i £ W°m

] + 410 Asj,->(i) ^<r>(i) -
v m = 0 , l 

__ V fv - 0 ] _ vC1-^ A_2<-> A ^ ( - ) _ 
m = 0 , l 

- i I ^ .VW -V}(i) - I (*L0] + #J) A-V»(i) -VW -
m = 0 m = 0 , l 

- E W»0] - 41]) [A-*feU-) -V.UW + A«~o(i) ^ U O ] • 
m = 0 , l 

Here the indices m(neut) and m(prot) means the summation only over the neutron 
and proton two-quasiparticle states which contribute to linear boson part of given 
operator (see appendix of [1]). In all other cases the summation goes through the 
both proton and neutron components. The extraction of spurious modes and solving 
equation of motion for each of parts of Hamiltonian given above is performed 
in accordance with the method described in [1]. The dimensions of corresponding 
system of equations for Hamiltonian H[l], H[+], H[±], H[Z] are 7, 2, 6, 10, re­
spectively. Their explicite forms can be found in [16]. The existence of spurious 
mode 0 (̂1), Ix(l) (see [1]) among the solutions of RPA equations for Hamiltonian 
H[X] allows to determine the inertia moment with respect to x-axis (see (32) and (65) 
in [1]). Since the corresponding expression is very complex we don't present it here 
(see [16]). The analogous expression can be obtained also for gNx. From requirement 
for the mode (K(l), Pjc(-O) to have the zero solution of RPA equation for Hamiltonian 
H[l] we have obtained the expression for mass parameter gPx (see (34) in [1]) 

1 _ 1 -?(0)ғ,(*)-ł(*) - 1/2*; 32 (58) «7P = — = 
M 2 [SF 2 +(0) f 2 + - l/2x33] SPxP,(0) - S-.+,„(0) 

where the quantity SAB is given in (16) (see also definition (47) in [1]). From the 
symmetry of one-phonon wave function of Hamiltonian (57) it follows that the 
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even values of total angular momentum I correspond to solutions of RPA equation 
with Hamiltonians H[±] while the odd values of I are connected with Hamiltonians 
ni+V 

The experimental values of excitation energies (one-phonon rotational bands 
above yrast line) were compared with the values calculated according following 
formulae 

(59) EX(I) = Eyr(I0) + -£— [/(/ + 1) - 70(/o + 1)] + hcox(l0) 

where/ = I0 for even values of spins and/ = / 0 ± 1 for odd values of spins, ft cox(l0) 
is the energy of one-phonon state Ox(±)jQIo) and #x(/0) -s inertia moment. It must 
be noted that this expression is more precise for higher spins. In the low-spin region 
one has to correct the rel. (59) in the sense of comments given in [16]. 

The result of calculations depend obviously on strength constants. The values 
of strength constants were determined from following requirements 
i) the validity of translation and rotation invariance of total Hamiltonian which 

leads to the self-consistent conditions (41) in [1] (concrete form is given in [16]); 
ii) since the number of equations obtained from translation and rotation invariance 

of total Hamiltonian is less than the number of strength constants involved in 
Hamiltonian (57) some of the strength constants were determined from compari­
son of experimental and theoretical energies of some one-phonon states. 

2389 6- m 5*355 

§ 0 ^ 2 1 4 4 2 1 5 4 ^ 2 m ^ 
f f ^ i 1974 Jcgfj* 2f f lS-^2032 
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K ^ O ; 

Fig. 7. Comparison of calculated experimental energies of positive parity low-lying states in * 58Dy. 

The more detailed informations about the strength constants are given in [16]. 
The comparison of theoretical and experimental spectrum is shown in figs. 7, 9 
for 158Dy and figs. 8, 10 for 168Er. The theoretical values of B(E2) transitions in 
168Er and 158Dy obtained from expressions (85)—(88) in [1] are compared with 
experimental ones in tables 1 and 2. The effective charges were taken in accordance 
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with [17]: ek
eJ? = 0.2 for neutrons and efcjf = 1.2 for protons. The absolute 

values of B(E 2)exp were obtained from relative values B(E 2)exp by means of Alaga 
rules for intraband transitions supposing that intrinsic quadrupole moment Q0 

for given rotational band is the same as the moment of ground state [18]. In cases 
when among E 2-transitions from given state were no intraband transitions only rela­
tive values of B(E 2) values were shown in tables 1 and 2. One can see that the better 
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Fig. 10. Comparison of calculated and experimental energies of negative parity low-lying states 
in l б 8 Er. 

agreement with experimental B(E 2) values occures in case od 158Dy. It is probably 
caused by quite big anharmonic effects in 168Er which is discussed e.g. in papers 
[18,19]. However to take into account this anharmonicity it means to go beyond 
the RPA. It is interesting that used model reflected the fact of reduction of about 
two orders of B(E 2) values for transitions from y — band into ground band for 
618Er in Comparison with 158Dy. 

Table 1. Reduced transition probabilities B{E2; IiKt-> IfKf) in 1 6 8 Er 

1 2 3 4 5 6 

-".--. IfKf 
B(E 2)iy 
e2.fm4 

B(E 2)j;p 

гelat. 
B(E 2)%tot 

e2 .fm* 
B(E 2)?;ot 

гelat. 

1 2 3 4 5 6 

22+ 00+ 

20+ 

40+ 

259.2 
479.2 

32.6 

54.1 
100,0 

6,8 

163.8 
477,6 
166.7 

34.3 
100,0 

34.9 

32+ 20+ 

40+ 

533.5 
348.8 

100,0 
65.4 

113.0 
42.6 

100.0 
37.7 
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Table 1. (Continued) 

42,
+ 

20,
+ 108.4 1.6 117.3 1.5 

40Г 551.4 8.1 427.4 5.6 

60Г 75.9 1.1 140.4 1.8 

22Г 6839.9 100.0 7633.9 100.0 

52Г 40Г 315.9 2.9 405.1 3.3 

60Г 394.3 3.6 232.6 1.9 

32Г 10968.7 100.0 12241.8 100.0 

62Г 40Г 59.9 0.4 52.5 0.35 

60Г 515.9 3.8 76.8 0.5 

80Г 183.7 1.4 43.7 0.29 

42Г 13499.9 100.0 15071.7 100.0 

72Г бoг 184.6 1.2 1090.9 6.5 

80Г 502.0 3.3 296.1 1.8 

52Г 15152.9 100.0 16917.1 100.0 

82Г 60Г 291.0 1.8 165.9 0.9 

80Г 825.1 5.1 705.9 3.9 

62Г 16295.0 100.0 18194.7 100.0 

20
+ ooг 2.7 28.1 3.2 39.5 

20Г 6.9 71.9 1.2 14.8 

40Г 9.6 100.0 8.1 100.0 

40Г 20Г 3.0 0.018 0.6 0.003 

40Г 4.1 0.025 1.3 0.007 

бoг 33.7 0.205 8.2 0.045 

20,
+ 1615.7 100.0 1820.2 100.0 

60
+ 40Г 2.6 0.014 1.6 0.008 

бoг 18.0 O.ЮO 8.7 0.043 

80Г 12.9 0.071 2.9 0.014 

40Г 18080.2 100.0 2184.5 100.0 

80
2

+ 60Г 100.6 1.614 156.1 0.739 

80Г no exp. data — 219.1 1.037 

бoг 6234.6 100.0 21132.2 100.0 

76 



Table 2. Reduced transition probabilities B(E2; Ifc-^lfKf) in 1DODy 

B{E 2)e;° B{E2)Ï? ß(E2)#eor B(£2)J7or 

I.K. IjK, e2.fm* relat. e2.fm* гelat. 

22
+ 

ooГ 298.0 30.0 198.3 20.0 

20Г 983.1 100.0 945.3 100.0 

40Г 18.5 1.5 10.7 1.14 

32
+ 20Г 100.0 14.5 100.0 

40Г — 70.3 8.7 60.4 

42Г 20Г 12.0 80.1 9.12 

40Г — 100.0 878.0 100.0 

60Г — 13.6 69.6 7.93 

52
+ 40Г 304.0 3.3 482.4 4.4 

бoг 479.0 5.2 246.4 2.2 

32Г 9172.7 100.0 10993.2 100.0 

20Г ooг 106.0 17.3 94.2 8.91 

20,
+ 

179.0 19.3 96.6 9.2 

40Г 611.8 100.0 1055.5 100.0 

40Г 20Г 19.0 56.7 15.8 

40Г — 16.8 73.4 17.3 

бoг — 100.0 423.3 100.0 

32Г 20Г 3.9 0.01 6.8 

40Г — 100.0 0.16 100.0 

42
+ 

20Г 24.6 3.26 24.9 

40Г — 60.4 4.51 49.7 

60Г — 100.0 9.08 100.0 

62Г 40Г -_ 80.4 0.18 77.2 

бoг ~ 100.0 0.23 100.0 

44,
+ 20Г _ 5.2 0.39 7.98 

40
x

+ — 100.0 4.88 100.0 
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Table 3. Ratio B(E 1, /Kv-> / + lgr)jB(E 1, /Kf-> / - Igr) in l t > 0Er 

IК Exp. Theor.
4
) Theor.") 

ЮÍ 1.5295 0.0969 1.1879 

зo2- 1.2500 0.0360 0.3834 

l lľ 2.3793 20.0475 0.8970 

зi г 0.9774 0.00014 2.9298 

51ľ 0.5691 0.1305 5.2117 

11- 0.1667 13.1670 — 

312~ 0.2813 481.6754 — 

51J 0.9500 20.3880 — 

a) Results of this paper. 
b) Results of paper [20] 

Table 4. Ratio B(E 1, /Kv-> / -f- lgr)jB(E 1, IKt -> / - Igr) in 1 **Dy 

IК Exp. Theor.") Theor.
ь
) 

io2- 3.7850 27.8780 1.0445 

llľ 0.8491 477.3660 1.0031 

31 ľ 0.4167 4.2493 3.7429 
32Г 0.3095 3.3890 1.9101 

ззг 1.3763 0.5450 0.5147 

a) Results of this paper. 
b) Results of paper [20]. 

The comparison of theoretical and experimental ratios B{E 1, Iv -> / + lyr) : 
: B{E 1, /v -> / — lyr) is demonstrated in tables 3 and 4. These values are compared 
further with the results of paper [20] obtained from pure phenomenological model 
[21]. We used the following values of effective charges: ekJf = —0.405, ek

eJf = 0.2 
for neutrons ( 1 6 8 Er), e{// = 0.595, ek

f/ = 1.2 for protons ( 1 6 8 Er), exJf

l = -0.418, 
e*ff = 0.2 for neutrons ( 1 5 8 Dy), e*?/ = 0.582, ex

ff = 1.2 for protons ( 1 5 8 Dy). 
It can be seen from tables 3, 4 the agreement of E 1-transition probabilities is worse 
that for E 2-transitions. The E 1-transition probabilities are more sensitive to an-
harmonic effects which were not taken into account in RPA. We also neglected 
the errors caused by mixing of states with different signature in the low-spin region. 
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3.2. Alignment of octupole states in actinides 

The properties of the low-lying octupole vibrational states in the actinide nuclei 
(see e.g. [22]) differ much from what could be expected from the adiabatically sloyi 
rotation. With increasing rotation, the vibrational angular momentum tends to 
align the direction of the rotational angular momentum, giving rise to distortion 
in the spectra of rotational states and to the new regularities in the transitions from 
the aligned states to the ground band states. These new features of the rotational 
band have been understood in the framework of a phenomenological model including 
the pure boson (octupole) operators coupled to a rotor by the Coriolis force [21, 23]. 
The conclusions of refs. [21, 23] were checked within the microscopic cranking + 
+ RPA model [24, 25]. In these papers the alignment of octupole phonons in the 
state of Kn = 0~ band in three nuclei 23°.232Th and 238U was investigated. The 
alignment was studied also in ref. [26]. However, our Hamiltonian differs in para-
metrization from one considered in ref. [26]. 

The states of Kn = 0~ band are related to the states of negative signature. So 
our starting Hamiltonian was (see (20) in ref. [1]) 

H{Z] = i ~ (Eikbtkbik + Eababa) - i I >V £ -*r}to F<n-\r') 
ik xx' m-=0 

where the notation is the same as in [1]. The separable octupole-octupole interaction 
contains both isoscalar and isovector component with the corresponding strength 
constants 

(61) 2x0 = xpp + xnp (x^ = xpp) 

2x1 = xpp — xnp 

(T = p (protons) or n (neutrons)). 
Solving RPA equations of motion with Hamiltonian (60) for each value of rota­

tional frequency Qj corresponding to spin I in yrast line (using the receipt in [1]) 
we obtain the energy hcok and the structure of corresponding one-phonon state 
O* \Qj}9 that means the coefficients X0.(X-7) and ̂ y(^y) of phonon creation operator 

(62) o: = 4 - (*. - i *&.) = - i - 1 [(X + &\j) btj + (X + 0% *+ + 
V2 V2 ?j 

+ (X- 0>%bi3 + (X- 9\t) bl}] . 

With these creation operators we can calculate aligned vibrational angular momentum 

tffi) 

(63) i„(fl) = <Qj\ OJxO: |flf> - <fl7| Ix\Qj} . 

The phonon energies cox(l) and aligned vibrational momentum i„(Q) (63) should be 
compared with corresponding experimental values which can be extracted from 
experimental data according to the following receipt. 
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Let us define the energy of the state a in the rotating frame 

(64) Ra(Q) = Ea(Q) - QI*X(Q) 

where Ea(Q) is the experimental energy of the excitation state a for given rotational 
frequency Q, IX(Q) = (Qj\ OaIx Oa \Qfy is the angular momentum projection onto 
rotational axis (axis x). The difference coa(Q) = Ra(Q) - Ryrast(Q) is the experimental 
excitation energy of the state a relative to the yrast line in the rotating frame, that 
means the quantity which should be compared with the phonon energy. With respect 
to (64) we have 

(65) coa(Q) = Ra(Q) - Ryrast = Ea(Q) - Eyrast(Q) - Q ia(Q) . 

In (65) ia(Q) is understood to be experimental value of aligned momentum. 
The reduced probabilities of E 1-transitions from one-phonon octupole states a 

to the states of yrast line can be calculated by means of the expressions (85)—(88) 
in [1]. From the point of view of comparison of experimental data on transition 
probabilities it is convenient to calculate the branching ratio 

/66x R ^B(E19IQCT^(I-1)+ yrast) 
1 B(El,i;CT-> (I+l)+ yrast) 

which is very sensitive to the structure of the wave function of the state. Substituting 
the expressions (85) —(88) from [1] into (66) we obtain 

(67) ^ | i + z y [ ( / + W 

j + i | i - z V [ / / ( / + i)]|> 

Here, the quantity 

Y,etXlK^) 
(68) Z = ^ - - — 

V/i 

is the microscopic image of the parameter introduced in ref. [27]. In (68) X^ = 
= X1XXIJ),^ = ^ X ^ J ) , ^±>(T) = &it\*)Wt\*)) and the operators #(±> 
are defined as follows 

^(-) = _L(^11_c31_1) 
V2 

(69) **+> = - L ( & . + & - . ) 
y/2 

QU*) = i'n y,„(0j) • 
k-=l 

Effective charges ep = eNJA and en = -eZJA have their standard dipole values. 
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In our calculations quasi-particle energies Eik = Et + Ek and corresponding 
two-quasi-particle boson operators bik (see (60)) were obtained by solving the Hartree-
Fock-Bogolubov problem with the Nilsson Hamiltonian including the cranking 
term and the monopole pairing. We restrict ourselves into the spherical oscillator 
shells 1V = 4, 5, 6 for protons and N = 5, 6, 7 for neutrons. The parameters of 
deformation (e2, £4), of the gap (A) and the chemical potential (A) are taken from 
refs. [28,29] and kept constant. This approximation provides an excellent description 
of the properties of the yrast levels in the entire deformed actinide region [28-30]. 

Fig. 11. Excitation energy of the vibrational states of the K* = 0~ band co0 (MeV) and th 
aligned octupole angular momentum i(Q) as a function of rotational frequencies Q (MeV), 
(a) 2 3 0Th, (b) 2 3 8 U, (c) 2 3 2Th. The solid line corresponds to the experimental values calculated 
with eq. (65), the thin line to the theoretical calculation for x±\x0 = 0 and the dashed line to 
the case Xi[x0 = — 3. Proton and neutron contributions are given by the points and point-
dashed lines, respectively. The parameters (A, X) are given in iico0 units. The experimental data 

are taken from ref. [39] for 2 3 0Th, ref. [23] for 2 3 2 Th and ref. [31] for 2 3 8 U . 

The isoscalar strength constant x0 was fixed to reproduce the F = 1" level of the 
K* = 0~ band. According to the estimate of ref. [6] xx\x0 = —3.6. The result 
of calculation for co0 — are not so sensitive to the choice of the ratio xx\x0. We 
obtain quantitative description of the aligned octupole angular momentum when we 
take into account only an isoscalar part of the octupole-octupole interaction 
(xx\x0 = 0). However, to reproduce simultaneously the alignment and the properties 
of the electric dipole transition from the octupole states we used the value x^\x0 = — 3. 

In spite of a very schematic residual interaction in our model, we observed a good 
agreement of co0(Q) and i(Q) with the experimental data up to 0.17 MeV (see fig. 11). 
The worse agreement in 230Th may be due to the Coriolis antipairing effect that 
decreases the gap at large rotational frequency [6]. Another source of the discrepancy 
is a possible change in the deformation of the mean field. 
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Comparing these results with the results of calculations in ref. [26], one concludes 
that the introduction of effective charges into the octupole operators in the latter 
paper is not in fact necessary for description of the aligned angular momentum. 
We obtain the same quality of the description as in ref. [26] for 2 3 2Th in both the 
cases when xx\x0 = 0 and — 3. In 2 3 8U the experimental aligned octupole momentum 
in the Kn = 0" band decreases when hQ = 0r16 MeV (see ref. [31]). We reproduce 
this tendency in contrast with the results of refs. [21, 26]. 

Fig. 12. The aligned angular momentum in the case of (a) uncorrelated pairs corresponding 
to the lowest negative and positive two-quasiparticle energies (thick line), (b) pure bosons (from 

ref. [2]) (thin dashed line), (c) our calculation (thick dashed line). 

In a pure boson picture [21] (see fig. 12) the aligned vibrational octupole momen­
tum reaches the maximal value 2 —3ft and remains constant at higher values of the 
rotational frequency. In this case it is impossible to reproduce the individual charac­
ter of the alignment because the Coriolis interaction may lead to a constructive or 
destructive interference of the contributions of different two-quasiparticle components 
which are absent in a phenomenological picture. On the other hand, the unpaired 
lower two-quasiparticle components carry a large aligned angular momentum. 
This is because their structure is defined by the Coriolis mixing of the quasi-protons 
from i13/2 and h11/2 shells and the quasi-neutrons from the Ii3/2 and i1 3 / 2 shells. 

A more sensitive test of the structure of the calculated octupole states is provided 
by the El-transitions from these states to the yrast one. Using equations (67) and (68) 
we calculate the branching ratio Rj and quantity Z (see table 5). To describe the ex­
perimentally observed ratio Rj, we have to take into account the isovector part of the 
octupole-octupole interaction (x0/^i = ~ 3 being the optimal choice). 
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The semi-microscopic cranking + RPA model allows to describe quite complex 
mechanism of alignment of octupole vibrational angular momentum in rotational 
bands Kn = 0" for 2 3 0 '2 3 2Th, 2 3 8 U nuclei. Results of calculations demonstrate 
good agreement with experimental data in values as well as in character of changes 
of aligned angular momentum and excitation energies caused by octupole correlations 
in nucleus irrespective of quite simple model residual interactions and using of 
approximation of fixed model parameters not dependent on rotational frequency. 

3.3. Giant dipole resonance at high spins 

The simple model of Giant dipole resonance was discussed in chapter 2. Here the 
more realistic approach is used for studying of GDR. At first the average nuclear 
field is approximated by Nilsson potential. The cranking model calculations based 
on average field of this type make possible to investigate the evolution of shape of 
rotating nuclei in broad range of angular momentum [32, 33]. At second, in real 
experimental conditions the average values of physical quantities are measured 
which require to use the statistical version of cranking + RPA method. For in­
vestigation of energy spectrum of rotating nuclei this version was suggested for the 
first time in ref. [34]. Besides that the method of strength function (see [1]) was 
applied for description of electromagnetic transitions from high-excited states. 

We restricted ourselves only to dipole-dipole residual interaction so the starting 
cranking Hamiltonian has the following form 

(70) H' =-Z(eklck
+

Cl + e^Cl) - QIX - &(*®V\ + ^\'^ + A®i+)a) - M 
kl 

HAV(dd) 

where skJ are the matrix elements of average field potential and other assignment is 
the same as in [1] and preceeding chapters. The symbols ck . ck represent the creation 
and annihilation operators of basis single-particle states \k>, \U> which are chosen 
as eigen vectors of the operator j x : 

(71) jx\k> = mk\k> , \k> = T\k> {\k> = \nljm» 

Similarly as in standart version of cranking + RPA method in statistical one in 
the first step the problem of Hartree is solved. In opposite to normal version in 
statistical approach the dependence on nuclear temperature (as a measure of average 
excitation — nuclear heating) is introduced. The problem of Hartree for heated 
rotating nuclei can be solved for instance by variation method 

(72) 8<fi\ H'\Q> = 0 

which gives for single-particle energies ^k 

(73) & . « - 1 " " ( « 0 - - l - * ! - > • , , - . - f l g , 
dnk 
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where nk are the occupation numbers depending on nuclear temperature [35] 

(74) nk = (Q\ck
+ck\Q> = —L-. 

After the solving of Hartree problem we obtained the average Hartree field in the form 

(75) HHF = £ ( & £ * * + cj-cjf c-) 
k 

In the following step in analogy with standard version of cranking + RPA method 
the residual interaction in (70) are involved in the framework of RPA. In statistical 
version the bosons bkl, b^, bkl (see part 3.1 of this paper and [1]) have two-particle 
character (in standart version they are represented by two-quasi-particles). Besides 
that in statistical version we have to use the following commutation relations 

(76) [ck+cl9c+cv~ * <fl| [cfc
+cz, c+cv] |fl> = 5kV5lk.(nk - n,) 

for determination of energies and structure of phonon describing the coherent 
excitations of heated system. Otherwise the RPA equation of motion are solved 
in the same way as in standart version of cranking -f RPA (see [ l ]) . Again the 
Hamiltonian (70) can be divided into the parts with positive and negative signature 
in consequence of Rx(n) symmetry of average field. 

For energy co of phonons with positive signature we obtain the following secular 
equation 

(77) 3F\l] = 5<+> + ! = 0 
2x 

where 

(78) S<+> = ^S£> u ,+^S£> o t 
A A 

S - T d(1+) f rcftifo - "&) , Q̂ iĈ g ~ "id\ 
u>i kl \ colt - CO2 Ctf|Z - ft)2 / 

o>ki = 5k - £i 

Similarly the secular equation for negative signature phonons has the following form 

(79) *-(->(a,) = fs00 + i-) (slt +y)~ ^sli = 0 

where 
N2 

Áz ^ • ' A2 

N, 

so- = T2 s<Aneut) +~n su(Prot) i>J = °> -

(80) sV = l-P*—2dïï{щ-ñк) 
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o(0 _ v ^kl ^kl (~ - \ 
su = L — 2 (

n* " nk>' 
ki coZi — >tr 

The symbols d(
k\

+\ d$ (i = 0,1) in (78) and (80) represent the particle matrix 
elements of operators @(+\ @0~\ @[~\ 

We introduce the partial strength function of reduced probabilities of dipole 
transitions from one-phonon states to yrast line (see (93) in [1]) 
(81) b(E 1, T, co) = Yfi(E 1. o>l ') Q(<° - <*>!) 

i 

where T is the difference of angular momentum in given transition (T = 0,1). The 
weight function Q(CO — cot) is given by (91) in [1]. Using the expressions (85) and (86) 
in [1] for reduced probabilities of dipole transitions and applying the method de­
scribed in part 2.3.5 of ref. [1] one can obtain the following expressions for partial 
dipole strength functions: 
i) for transition without signature change 

(82) IW-oH = -
X 

where the corresponding function 3F(p) (see (89) in [1] (is given by (77) 
ii) for transitions with signature change 

'—w-F^ltSi^T 
with corresponding function 3F(CD) = <F( \co) given by (79). 
The single-particle energies in rotating system were obtained by diagonalization 

of Nilsson Hamiltonian with cranking term. The equilibrium deformation parameters 
(e, y) were determined by searching of minimum of thermodynamic potential (that 
means for given temperature t and rotational frequency Q (see [32] and [33]). 
Strength constant x in residual interaction was chosen so in order to reproduce 
the position of GDR in spectrum (that means according to expression x = 
= 1200 A"5/3 MeV/fm2). The width A for averaging of strength function (see (91) 
in [1]) is J = 1.5 MeV. 

The dependence of partial strength functions of isovector dipole excitations in 
dependence on angular frequency is shown in fig. 13 for 160 Yb nucleus in t = 0 MeV. 
In deformed nucleus with axial symmetry (which occurs for Q = 0) the dipole 
resonance is splitted into two components. With increasing angular frequency when 
nuclei acquires the nonaxial deformation characterised by parameter y there are 
three components in structure of GDR which correspond to T = 0, +1. 

In fig. 14 the total strength functions of 152Sm, 160Yb and 180Os are shown in 
dependence on angular frequency Q. The shape of 152Sm ans 160Yb changes with 
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Fig. 13. Partial strength functions of isovector dipole excitations for 1 6 0Yb for different values 
of rotational frequencies Q. In the left side of each figure the conditions of calculation are given 
and in the right side there are values of strength function in oscillator case and corresponding 
position of oscillator frequency is shown by arrows in energy axis. The thin line correspons 

to the strength function bx=0i thick one to bx= + and pointed to bx= _. 

increasing Q approximately in the same manner while 180Os acquires the quite high 
nonaxiality as a result of rotation. Such dependence of shape on rotation is reflected 
also in character of strength functions. Similar behaviour of stregth function in 
dependence on energies of y-quanta for different values of Q can be seen for 16°Yb 
and 152Sm. Probably the predominant neutron number in 152Sm (N = 90) as well 
as in 160Yb (N = 90) determines the behaviour of strength function in rotation. 
The character of changes of strength function of 180Os in dependence on energy 
of y-quanta in sufficiently high rotational frequency differ considerably from the 
behaviour of strength function of 152Sm and 160 Yb. This part is probably caused by 
different ability for deformation for 152Sm and 160Yb in comparison with 180Os. 
The bigger ability for deformation the higher splitting of components of isovector 
dipole resonance can be observed and consequently the broader region of localisa­
tion of GDR is found. That means that in fast rotation when large deformation 
occurs the region of localization of GDR must be broader than in the case of low 
angular momenta. 
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/•!>. I4. Total strength functions for nuclei 1 5 2 Sm, 1 6 0Yb and 1 8 0 O s at different values of 
.rotational frequencies Q. In brackets the equilibrium deformation parameters and the values 

of angular momentum I (corresponding to given maximal value of Q) are shown [33], 

Fig. 15. Total strength functions of isovector dipole excitations in 1 6 0Yb for different 
temperatures. 

The total strength functions of 160Yb for t = 0 and 1 MeV are demonstrated 
in fig. 15. The deformation parameters for t =1= 0 case are taken from ref. [33]. The 
heating of nuclei in rotating case in comparison with nonrotating one doesn't in-
Huence considerably GDR (see [36]). In this sense it is necessary to note that in 
obtaining of fig. 15 the deformation of average field has been independent on nuclear 
temperature. In fact the temperature effects substantially influence the nuclear 
shape (see [33]) and therefore one can expect that character of strength function 
of GDR is dependent on temperature through the change of average field. 

87 



4. Conclusion 

The investigation of high excited and high spin states represents the new quickly 
developing region of low energy nuclear physics. The studying of nuclei by means 
of new nonstandart experimental method stimulated the progress of new theoretical 
approaches. One of these approaches is represented by cranking + RPA method. 
The further development of this method is connected with the determination of 
symmetries which are conserved in nuclear rotation when strong Coriolis inter­
action doesn't allow to classify the nuclear levels by means of the projection K 
of angular momentum onto symmetry axis. Conservation of nuclear symmetry with 
respect to rotational axis lead to introduction of new quantum number — signature. 
This quantum number makes possible to understand a lot of regularities in experimen­
tal data on rotating nuclei [37, 38]. The possibility of classification of the states 
according to signature unable also to solve the serious technical problems in solving; 
the Hartreee-Fock-Bogolubov equations in cranking model. 

The cranking + RPA method described in [1] and in this paper allow to investigate 
qualitatively and quantitatively the collective as well as noncollective states in 
broad region of angular momentum and excitation energy. In spite of the fact that 
this method was firstly suggested for investigation of high-spin states its applicability 
for description of low-lying states gives evidence for its universal use. Nevertheless, 
for obtaining of more detailed information on transition character it is necessary 
to go beyond the framework of RPA and to involve into Hamiltonian and inta 
transition operators the terms of higher order of boson expansions of single-particle 
operators. The importance of such effects can be expected in the first place for 
description of low-spin region of spectrum because the signature is a good quantum 
number only for sufficiently high rotational frequency Q. The quality of calculation 
in the framework of cranking + RPA method can be also improved by means 
of taking into account of residual interactions which correspond to precise restora­
tion of translational and rotational symmetries of Hamiltonian violated by deformed 
nuclear average field. 
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