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Quasigroups Having at most Three Inner Mappings

T. KEPKA

Department of Mathematics, Charles University, Prague

Received 2 February 1988

In the paper, the quasigroups with at most three inner mappings are described.
V &lanku se popisuji kvazigrupy, které maji nejvyse tfi vnitini permutace.

B cTraThe H3y4YaroTCA KBa3HIPYIIbl HMeloLMe He Gosiee 3 BHYTPEHHBIX NOACTAHOBOK.

1. Introduction

Let Q be a quasigroup. We denote by .#,(Q) (#,(Q)) the left (right) multiplication
group of Q, i.e. the permutation group generated by all L(R,), a € Q; here, L(x) = ax
and R,(x) = xa for every x € Q. Futher, let .#(Q) be the multiplication group of Q.
For aeQ, we put #(Q, a) = {fe #(Q); f(a) = a}. Clearly, the inner mapping
groups #(Q, a) are isomorphic and we can define i(Q) = card (#(Q, a)).

1.1. Proposition. Let Q be a loop with i(Q) < 3. Then Q is an abelian group and
i(Q) = 1.

Proof. For i(Q) < 2, the result is proved in [1]. Hence, assume that i(Q) = 3-
Then #(Q,1) = {1, g, g*}, where g* = 1. Further, assume for a moment that Q
is not commutative. Then ab + ba for some a, b€ Q. We have f(b) + b, where
f=R;'L,. But f(1) = 1, f(a) = a, and hence either f = g or f = g°. Similarly,
h = R, 'L, is equal either to g or to g2. In particular, either f = h or f = h? and,
anyway, f| (b) = b, a contradiction. We have proved that Q in commutative. Put
fap = Ly'L;'L,, for all a, b e Q. Then f, ,(a) = a. We have f,, € {1, g, g}, and so
either f,, =1 or f,,€{g, g%} and g(a) = a. Now, let a, b,ce Q be such that
a.bc % ab.c. Then f; (a) * a, so that f, .€ {g,9*}, fup =1and a.bc = ab.c,
a contradiction. We have proved that Q is associative.

1.2. Corollary. Let Q be a quasigroup with i(Q) < 3. Then Q is isotopic to an
abelian group.
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A quasigroup Q is said to be

-- medial if it satisfies xy . uv = xu . yp,

-- left modular if it satisfies x.yz = z, yx,

-- right modular if it satisfies xy .z = zy . x,

-- left permutable if it satisfies x . yz = y . xz,

-- right permutable if it satisfies xy .z = xz . y,

— an LIP — quasigroup if there is a mapping f of Q into Q such that f(x).xy = y
forall x, ye Q,

-- an RIP — quasigroup if there is a mapping f of Q into Q such that yx . f(x) = y

forall x,ye Q,

-- an IP — quasigroup if it is both left and right IP — quasigroup.

2. Auxiliary results

In this section, let G(+) be an abelian group containing at least three elements
and let g be a permutation of G such that g + id; = g* and g(0) = 0.

Put A = {aeG;g(a + x) = g(a) + x forevery xe G}, B= {beG; g(b + x) =
= g(b) + g(x) for every xeG} and C = {ceG; g(c + x) = g(c) + g*(x) for
every x € G}.

2.1. Lemma. 4 = 0 and C + G.

Proof. Let, on the contrary, ae A. Then 0 = g(0) = g(a — a) = g(a) — a, so
that g(a) = a. Consequently, g(a + x) = a + x for every x€ G, and therefore
g = idg, a contradiction. Proceeding similarly, we can show that C + G.

2.2. Lemma. 0e B and BN C = 0.
Proof. Obvious.
2.3. Lemma. B = G iff g is an automorphism of G(+).

Proof. Obvious.
In the rest of this section, we shall assume that G = B u C and C % (. Then
0+ B=+G.

2.4. Lemma. g | B = id.

Proof. Let be B and ce C. Then g*(b) + g(c) = g(b + ¢) = g(b) + g(c), so
that g%(b) = g(b) and b = g(b).

2.5. Lemma. ¢(C) = C.

Proof. Let, on the contrary, ce C be such that g(c) e B. By 2.4, g%(c) = g(c),
hence ¢ = g(c) € B n C, a contradiction with 2.2.

2.6. Lemma. g(c) % c for every ce C.



Proof. Let, on the contrary, g(C) = ¢ for some c € C. Then, for every ae C, ¢ +
+ g%(a) = g(c + a) = g(a) + g%(c) = g(a) + ¢, and so g*(a) = g(a) and g(a) = a.
We have proved g | ¢ = id; and hence g = id; by 2.4, a contradiction.

2.7. Lemma. B = {be G; g(b) = b}.

Proof. The result follows from 2.4 and 2.6.

2.8. Lemma. Let a, be B (resp. a, be C). Then a + be B.

Proof. If a, be B, then g(a + b) = g(a) + g(b) =a+ bby24anda+ beB
by 2.7. Now, let a, b e C. Then g(a) € C by 2.5 and we have g(a + b) = g*(a) +
+ g(b) = g(g9(a) + g*(b)) = g*(a + b), so that a + b = g(a + b) and a + beB
by 2.7.

2.9. Lemma. B is a subgroup of index 2 in G(+).

Proof. If beB, then 0= g(b — b) = g(b) + g(—b),g(—=b) = —g(b) = —b
and —b e B by 2.7. Now, from 2.8 it follows that B is a subgroup of G(+). Again
by 2.8, Bis of index 2.

2.10. Lemma. Letue C and v = g(u). Then veC,u + v, 3u =3y, C=B + u
and g(b + u) = b + v for each be B.

Proof. By 2.9 and 24, C=B + u,g(b+ u) = b + v for each be B. Since
g *idg, u =+ v. Finally, u = g3(u) = g*(v) = g(g(v — u + u)) = g(2v — u) =
= g(2v — 2u + u) = 3v — 2u, and hence 3u = 3v.

2.11. Lemma. There is an element 0 + we B such that 3w =0 and g(c) =
= ¢ + wforevery ce C.

Proof. The result follows from 2.10.

3. Auxiliary results

In this section let Q be a quasigroup with i(Q) = 3. Suppose that Q is not a right
loop. Take an element O € Q, put g = R, (where z € Qissuchthat0.z = 0), h = L,
and x + y = g~*(x) h~*(y) for all x, y € Q. Then Q(+) is an abelian group. Since
Q is not a right loop, g =* idy. Clearly, g(0) = 0, and hence #(Q,0) = {1, g, 9*}.
In particular, g* = id,,.

We have xy = g(x) + h(y) for all x, y € Q. Put h(0) = v.

3.1. Lemma. Just one of the following three cases takes place:

(i) h(x) = x + v for every x € Q.
(ii) h(x) = g(x) + v for every x € Q.
(iii) h(x) = g*(x) + v for every x € Q.




Proof. Let ue Q be such that u0 = 0. Then L,€{l,g,g?}. However, u =
= g*(—h(0)) = g*(~v) and L, = L* h. The rest is clear.
Further, define the sets 4, B, C similarly as in the preceding section.

3.2. Lemma. Q = AuBuUC.

Proof. Let ae Q and k = L* ,, gL;. Then k(0) = —g(a) + g(a) = 0, so that
ke{l,g,g*}.1fk = 1,thenaec 4;if k = g, thenae B; if k = g*,thena e C.

Now, suppose that B + Q, i.e. C #+ Q. Then, by 2.9 and 2.11, B is a subgroup
of Q(+), B is of index 2, g | B = idy and there is an element 0 # w € B such that
3w =0and g(c) = ¢ + w for every c € C (then g* | B = idg and g*(¢) = ¢ + 2w =
=c—w).

4. Auxiliary results

In this section, let G(+) be an abelian group having at least six elements, let B
be a subgroup of index two, C = G — B, and let 0 = w € B be such that 3w = 0.
Further, let v € G be arbitrary.

Define a multiplication on G by bx =b+ x+v and cx=c+ x+Ww + v
for all be B, ce C, x € G. Then we get a groupoid which is clearly a quasigroup.
We denote this quasigroup by G = G[ +, B, w, v, 1].

4.1. Lemma. (i) For x, y € G, xy = yx iff either x, ye B or x, y € C.

(i) The quasigroup G is not commutative.

(1if) Gisaleftloopand G is not a right loop.

(iv) If v € B, then —v is the left unit element of G.

(v) If ve C, then —w — v is the left unit element of G.

(vi) r = (B x B) U (C x C)is a congruence of G and G/r is a two-element group.
(vii) Qisan LIP — quasigroup and Q is not an RIP — quasigroup.

(viii) Q is left permutable and is not right permutable.

Proof. Easy.

4.2. Lemma. If ve B, then the mapping x - x + v is an isomorphism of
G[+, B, w, v, 1] onto G[+, B, w, 0, 1].

Proof. The assertion may be checked easily.

4.3. Lemma. If v € C, then the mapping x - x + v + w is an isomorphism of
G[+, B, w,v,1] onto G[+, B, w, 0, 1].

Proof. The assertion may be checked easily.

We have proved that the quasigroups G[ +, B, w, v, 1] and G[ +, B, w, 0, 1] are
isomorphic. In the rest of this section, we shall assume that v = 0 and we put G =
= G[+,w,0,1].

4.4. Lemma. G is not medial.



Proof. Let ceC. Then c0.cO0=(c+w)(c+w)=2c+3w+2c+w=
= (2c + w).0 = cc.00.

Put g(b) = b and g(c) = ¢ + w for all be B, ceC. Then g is a permutation
of G, g # idg and g* = idg. Further, let h(b) = b + w and h(c) = c for all b € B,
ceC. Again, h + idg and h® = id;. Clearly, gh = hg = L}, Lfg = gL; and
Lth = gL forallbeB,ceC.

4.5. Lemma. #,(G) = #(G +)) = {L};aeG} and #/(G)= #(G)=
={L;,Lg, L;9* aeG}.

Proof. Easy.
4.6. Lemma. #(G,0) = {1, g, g%}, and so i(G) = 3.

Proof. This follows from 4.5.
Finally, let B’ be a subgroup of index 2 of an abelian group G'(+), let 0 + w’ € B',
3w’ = 0, and let f: G - G’ be a mapping.

4.7. Lemma. The following conditions are equivalent:
(i) fis an isomorphism of G = G[+, B, w, 1] onto G’ = G'[+, B’, w', 1].
(ii) f is an isomorphism of G(+) onto G'(+), f(B) = B’ and f(w) = w'".

Proof. (i) implies (ii). Clearly, f(0) = 0 (f preserves left units). Further, let b € B.
If f(b) ¢ B’, then g(b) = f(b0) = f(b) 0 = f(b) + w', a contradiction. Consequently,
f(B) = B’ and, conversely, f~'(B’) < B, so that f(B) = B'. Now, for any x € G,
(b + x) = f(bx) = f(b) f(x) = f(b) + f(x). On the other hand, if ceC, then
fle + x + w) = f(ex) = f(c) f(x) = f(c) + f(x) + w’ for every x € G. In particular,
fle+w)y=f(c)+w and f(c +w + x) = f(c + w + x) = f(c + w) + f(x). We
have proved that f is an isomorphism of G(+ ) onto G'(+). Finally, f(w) = f(c.(—c¢)) =
= f(c) - f(c) + w' = w'. (ii) implies (i). This implication is evident.

Finally, we put G[+, B,w, 2] = G[+, B, w, 1]°".

5. Auxiliary results

In this section, let G(+) be an abelian group with at least six elements, let B be
a subgroup of index two, C = G — B, and let O + we B be such that 3w = 0.
Further, let v € G be arbitrary.

Define a multiplication on G by bb' =b + b + v, cc’ =c+ ¢ + v —w and
bc=cbhb=b+c+w+vforall b,b’eB, c,c’'eC. We get a groupoid which is
a quasigroup and we denote it by G = G[ +, B. w, v, 3].

5.1. Lemma. (i) The quasigroup G is commutative.
(ii) If ve B, then (—v).(—v) = —v and —v is the only idempotent of G.
(iii) If ve C, then (w — v) (w — v) = w — v and w — v is the only idempotent of G.
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(iv) r = (B x B) U (C x C)is a congruence of G and G/r is a two — element group.
(v) G is not an IP-quasigroup.
Proof. Easy.

5.2. Lemma. If ve B, then the mapping x —» x + v is an isomorphism of
G[+, B, w, v, 3] onto G[ +, B, w, 0, 3].

Proof. The assertion may be checked easily.

5.3. Lemma. If ve C, then the mapping x —» x + v — w is an isomorphism of
G[+, B, w, v, 3] onto G[+, B, w, 0, 3].

Proof. The assertion may be checked easily.

We have proved that the quasigroups G[+, B, w,v,3] and G[+,B,w,3] =
= G[+, B,w,0, 3] are isomorphic. In the rest of this section, we shall assume that
t=0.

5.4. Lemma. G is not medial.

Proof. ForceC,0c.0c =(c + w)(c+w)=2c+w=+2c—w=0.(2c—w) =
=00. cc.

Put g(b) = b and g(c) = ¢ + w for all be B, c e C. Further, let h(b) = b + w
and h(c) = c. Then L}g = gL; and L}h = gL}.

5.5. Lemma. #(G) = {L},L}g,L}g% aeG}.
Proof. Easy.

5.6. Lemma. #(G,0) = {1, g, g*} and i(G) = 3.

Proof. This follows from 4.5.

Finally, let B’ be a subgroup of index 2 of an abelian group G'(+), let 0 # w’ € B/,
3w’ = 0, and let f: G — G’ be a mapping.

5.7. Lemma. The following conditions are equivalent:
(i) f is an isomorphism of G = G[+, B, w, 3] onto G’ = G'[+, B, w’, 3].
(ii) f is an isomorphism of G(+) onto G'(+), f(B) = B’ and f(w) = w'.

Proof. Similar to that of 4.7.

6. Auxiliary results

In this section, let G(+) be an abelian group with at least six elements, let B
be a subgroup of index two, C = G — B, and let 0 = w € B be such that 3w = 0.
Furher, let v € G be arbitrary.

Define a multiplication on G by bb'=b + b + v, ¢c¢'’ =c+ ¢ +v, bc =
=b+c+v—wand cb=b+c+v+w for all b,b’eB, ¢,c’e C. We get
a groupoid G = G[ +, B, w, v, 4] which is a quasigroup.
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6.1. Lemma. (i) For x, y € G, xy = yx iff either x, ye Bor x, y e C.
(i) —uvis the only idempotent of G.
(iii) G is neither a left nor a right loop.
(iv) r = (B x B)u(C x C)isa congruence of G and G/ris a two — element group.
(v) G is neither an LIP-quasigroup nor an RIP-quasigroup.

Proof. Easy.

6.2. Lemma. Let veB. The mapping x —» x + v is an isomorphism of
G[+, B, w, v, 4] onto G[ +, B, w, 0, 4].

Proof. Easy.

6.3. Lemma. Let veC. The mapping x - —x — v is an isomorphism of
G[+, B, w, v, 4] onto G[+, B, w, 0, 4].

Proof. Easy.
In the rest of this section, we shall assume that v = 0.

6.4. Lemma. G is not medial.

Proof. Letce C. Then00.cc = 02c =2c —w+2c — 2w =(c — w)(c — w) =
= Oc. Oc.
Put g(b) = band g(c) = c + wforallbe B, ceC.

6.5. Lemma. .#,(G) = #,(G) = #(G) = {L},L}g,L}g* aeG}.
6.6. Lemma. #(G,0) = {1, g, g*} and i(G) = 3.
Proof. See 6.5.

6.7. Lemma. The opposite quasigroup G°® is equal to G[ +, B, —w, 4]. In particular
G and G°P are isomorphic.

Proof. Obvious.
Finally, let B’ be a subgroup of index 2 of an abelian group G'(+),let 0 & w’ e B’,
3w’ = 0, and let f: G — G’ be a mapping.

6.8. Lemma. The following conditions are equivalent:
(i) f is an isomorphism of G = G[ +, B, w, 4] onto G’ = G'[ +, B, w/, 4].
(ii) f is an isomorphism of G(+) onto G'(+), f(B) = B’ and f(w) = w'.

Proof. Similar to that of 4.7.
7. Quasigroups with i(Q) < 3

The following statements are well known.

7.1. Proposition. A quasigroup Q is medial iff there exist an abelian group Q(+),
commuting automorphisms g, h of Q(+) and an element e€ Q such that xy =
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== g(x) + h(y) + e for all x, y € Q. In this case:
(i) Qiscommutativeiffg = h;

(ii) Qisa left (right) loopiff h = idg (g = idy).

(iii) Q is left (right) modular iff g = h* (h = g?).

(iv) Q is modular iff g> = idy and h = g2.

(v) Q is left (right) permutable iff h = id, (g = idy).

(vi) If g = h, then Q satisfies the identity x(y . uv) = v(y . ux) iff g% = id,,.
(vii) If g = h, then g° = id, iff satisfies the identity x(y(u . vw)) = w(y(u . vx)).
(viii) If h = idgy, then g* = idy iff Q satisfies the identity (xy.u)v = (vy . u)x.

(ix) Q is an LIP — quasigroup (RIP — quasigroup) iff h* = idy (g% = idy).

(x) #(Q, 0) is just the permutation group generated by g and h.

7.2. Theorem. Let Q be a quasigroup.

(i) i(Q) = 1iff Q is an abelian group.

(i) i(Q) = 2 iff Q is not an abelian group and at least one (and then just) one of the
following cases takes place:

(a) Qisacommutative medial quasigroup satisfying the identity x(y . uv) = v(y . ux).

(b) Q is left modular and right permutable (then Q is a right loop).

(¢) Q is right modular and left permutable (then Q is a left loop).

In all these cases, Q is a medial IP — quasigroup.

Proof. See 4.1 and [1, Theorem 4.6]-

7.3. Theorem. The following conditions are equivalent for a quasigroup Q:

(i) Q is medial andi(Q) = 3.

(if) Q is not an abelian group and at least one (then just one) of the following cases
takes place:

(a) Q is commutative and satisfies the identity x(y(u . vw)) = w(y(u . vx)).

(b) Q is left permutable and satisfies the identity (xy . u) v = (vy . u) x (then Q is
a left loop).

(¢) Q is right permutable and satisfies the identity x(y . uv) = v(y . ux) (then Q is
a right loop).

(d) Qis modular.

Proof. Apply 4.1.

7.4. Theorem. Let Q be a quasigroup such that Q is not medial and i(Q) = 3.
Then there exist an abelian group Q(+), its subgroup B of index 2 and an element
0 + we B, 3w = 0, such that Q is equal to at least one (and then to exactly one)
from the quasigroups Q[ +, B, w, 1], Q[ +, B, w, 2], Q[ +, B, w, 3], Q[+, B, w, 4].

Proof. Apply the results of the preceding sections.

7.5. Proposition. Let G(+) be an abelian group with at least six elements, B its
subgroup of index 2 and 0 + w € B, 3w = 0. Then:
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(i) None of the quasigroups G; = G[ +, B, w, j],1 < j < 4, is medial and i(G;) = 3.
(ii) G, is a left loop, G, is a right loop, G, is commutative, G, + G and G, is
isomorphic to Gg°.
(iii) None of the quasigroups Gy, G, G3, G, is simple.
(iv) G[+, B, w, j] is isomorphic to G'[+, B', w', j'] iff j = j' there and is an iso-
morphism f: G(+) - G'(+) such that f(B) = B’ and f(w) = w'.

Proof. Apply the results of the preceding sections.
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