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1989 ACTA UNIVERSITATTS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 30. NO. 1 

Quasigroups Haying at most Three Inner Mappings 

T. KEPKA 

Department of Mathematics, Charles University, Prague 

Received 2 February 1988 

In the paper, the quasigroups with at most three inner mappings are described. 

V Slanku se popisuji kvazigrupy, ktere maji nejvyse tfi vnitfni permutace. 

B cTaTbe H3ynaioTCH KBa3Hrpynnw HMeroiipie He 6ojiee 3 BHVTpeHHbix noflcraHOBOK. 

1. Introduction 

Let Q be a quasigroup. We denote by Jft(Q) (Jtr(Q)) the left (right) multiplication 
group of Q, i.e. the permutation group generated by all La(Ra), ae Q; here, La(x) = ax 
and Ra(x) = xa for every xe Q. Futher, let M(Q) be the multiplication group of Q. 
For aeQ, we put J(Q, a) = {feJ?(Q);f(a) = a}. Clearly, the inner mapping 
groups J(Q, a) are isomorphic and we can define i(Q) = card (S(Q, 0)). 

1.1. Proposition. Let Q be a loop with i(Q) ^ 3. Then Q is an abelian group and 
Ke) = 1. 

Proof. For i(Q) ^ 2, the result is proved in [1]. Hence, assume that i(Q) = 3-
Then S(Q, 1) = {1, g, g2}, where g3 = 1. Further, assume for a moment that Q 
is not commutative. Then ab =# ba for some a, b e Q. We have f(b) 4= b, where 
/ = R~lLa. But / ( l ) = 1, f(a) = a, and hence either / = g or / = g2. Similarly, 
h = R^Lt, is equal either to g or to g2. In particular, either/ = h o r / = h2 and, 
anyway, f(b) = b, a contradiction. We have proved that Q in commutative. Put 
fatb = LT^LT^L^ for all a, b e Q. Then fatb(a) = a. We have/a>> e {1, g, g2}, and so 
either fa§b = 1 or fQtb e {g, g2} and g(a) = a. Now, let a,b,ceQ be such that 
a . be * ab . c. Then/*,c(a) #= a, so that/fc>c e {g, g2},fa,b = 1 and a . be = ab . c, 
a contradiction. We have proved that Q is associative. 

1.2. Corollary. Let Q be a quasigroup with i(Q) = 3. Then Q is isotopic to an 
abelian group. 
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A quasigroup Q is said to be 
— medial if it satisfies xy . uv = xu . yVy 

— left modular if it satisfies x . yz =-= z . yx , 
— right modular if it satisfies xy . z = Zy . x, 
— left permutable if it satisfies x . j z = y . xz, 
— right permutable if it satisfies xy . z = xz . y, 
— an LIP - quasigroup if there is a mapping f of Q into Q such thatf(x) . xy = y 

for all x, ye Q, 
— an RIP - quasigroup if there is a mapping f of Q into Q such that yx .f(x) = y 
for all x9 y e Q, 
— an IP - quasigroup if it is both left and right IP - quasigroup. 

2. Auxiliary results 

In this section, let G(+) be an abelian group containing at least three elements 
and let g be a permutation of G such that g 4= idG = g3 and g(0) = 0. 

Put A = {aeG; g(a + x) = g(a) + x for every x e G}, B = {b e G; g(b + x) = 
== 9(b) + gOO fc>r e v e r y x e G} and C = {c e G; #(c + x) = g(c) + g2(x) for 
every x e G). 

2.1. Lemma. A = 0 and C =j= G. 

Proof. Let, on the contrary, a e A. Then 0 = g(0) = g(a - a) = g(a) - a, so 
that g(a) = a. Consequently, g(a + x) = a + x for every xeG, and therefore 
<? = idG, a contradiction. Proceeding similarly, we can show that C ^¥ G. 

2.2. Lemma. O e B and B n C = 0. 

Proof. Obvious. 

2.3. Lemma. 5 = G iff g is an automorphism of G(+). 

Proof. Obvious. 

In the rest of this section, we shall assume that G = B \j C and C =f= 0. Then 
0 4= B #= G. 

2.4. Lemma, g | -B = idG. 

Proof. Let b e B and ceC. Then #2(b) + g(c) = g(b + c) = g(fc) + g(c), so 
that £2(fc) = g(b) and b = g(b). 

2.5. Lemma. g(C) e C. 

Proof. Let, on the contrary, c e C be such that g(c) e B. By 2.4, g2(c) = g(c), 
hence c = g(c) e B n C, a contradiction with 2.2. 

2.6. Lemma. g(c) 4= c for every ceC. 



Proof. Let, on the contrary, g(c) = c for some ceC. Then, for every aeC, c + 
+ g2(a) = g(c + a) = g(a) + g2(c) = g(a) + c, and so g2(a) = g(a) and g(a) = a. 
We have proved g | c = idc and hence g = idG by 2.4, a contradiction. 

2.7. Lemma. B = {beG; g(b) = b) . 

Proof. The result follows from 2.4 and 2.6. 

2.8. Lemma. Let a, be B (resp. a, be C). Then a + b e B. 

Proof. If a, beB, then g(a + b) = g(a) + g(b) = a + b by 2.4 and a + beB 
by 2.7. Now, let a,beC. Then #(a) e C by 2.5 and we have g(a + b) = g2(a) + 
+ 9(b) = 0(0(0) + g2(&)) = 92(a + b), so that a + b = g(a + b) and a + b eB 
by 2.7. 

2.9. Lemma. B is a subgroup of index 2 in G(+). 

Proof. If beB, then 0 = g(b - b) = g(b) + g(-b),g(-b) = -g(b) = -b 
and -beB by 2.7. Now, from 2.8 it follows that B is a subgroup of G(+). Again 
by 2.8, Bis of index 2. 

2.10. Lemma. Let u e C and v = ^(u). Then veC,u * v, 3u = 3v, C = B + u 
and g(b + u) = b + v for each fteB. 

Proof. By 2.9 and 2.4, C = B + u, g(b + u) = b + v for each beB. Since 
g 4= idG, u + v. Finally, u = g3(u) = g2(v) = g(g(v - u + u)) = g(2v - u) = 
= g(2v — 2M + u) = 3v — 2u, and hence 3M = 3v. 

2.11. Lemma. There is an element Q + w eB such that 3w = 0 and g(c) -= 
= c + w for every ceC. 

Proof. The result follows from 2.10. 

3. Auxiliary results 

In this section let Q be a quasigroup with i(Q) = 3. Suppose that Q is not a right 
loop. Take an element 0 e Q, put g = R2 (where 2 e Q is such that 0 . z = 0), h = L0 

and x + y = g~~1(x) h~1(y) for all x, y e Q. Then Q(+) is an abelian group. Since 
Q is not a right loop, # =# idQ. Clearly, #(0) = 0, and hence J(Q, 0) = {1, g, g2}. 
In particular, g3 = idQ. 

We have xy = g(x) + h(y) for all x, y e Q. Put h(0) = v. 

3.1. Lemma. Just one of the following three cases takes place: 

(i) h(x) = x + v for every xe Q. 
(ii) h(x) = g(x) + v for every xe Q. 

(iii) h(x) = g2(x) + v for every xe Q. 



Proof. Let ueQ be such that u 0 = 0. Then Lu e {1, g, g2}. However, u = 
== g2(-h(0)) = g (-v) and Lu = L+_vh. The rest is clear. 

Further, define the sets A, B, C similarly as in the preceding section. 

3.2. Lemma. Q = A u B u C. 

Proof. Let a e Q and k = Ltg(f l ) gL+. Then k(0) = -g(a) + g(a) = 0, so that 
ke{l, g, g2}. If k = 1, then a e A; if fc = g, then ae B;i{ k = g2, then a e C. 

Now, suppose that B #= Q, i.e. C + Q. Then, by 2.9 and 2.11, 5 is a subgroup 
of <2( + ), £ is of index 2, g \ B = idB and there is an element 0 + w e B such that 
3w = 0 and g(c) = c + w for every ceC (then g2 \ B = idB and #2(c) = c + 2w = 
== c — w). 

4. Auxiliary results 

In this section, let G(+) be an abelian group having at least six elements, let B 
be a subgroup of index two, C = G — B, and let 0 =f= w e B be such that 3w = 0. 
Further, let v e G be arbitrary. 

Define a multiplication on G by bx = b + x + v and cx = c + x + w + v 
for all b e B, ceC, xeG. Then we get a groupoid which is clearly a quasigroup. 
We denote this quasigroup by G = G[ + , B, w, v, 1]. 

4.1. Lemma, (i) For x, y e G, xy = yx iff either x, y e B or x, y e C. 
(ii) The quasigroup G is not commutative. 

(iii) G is a left loop and G is not a right loop, 
(iv) If v e B, then — v is the left unit element of G. 
(v) If v e C, then — w — v is the left unit element of G. 

(vi) r = (B x 5) u (C x C) is a congruence of G and Gjr is a two-element group. 
(vii) Q is an LIP — quasigroup and Q is not an RIP — quasigroup. 
(viii) Q is left permutable and is not right permutable. 

Proof. Easy. 

4.2. Lemma. If veB, then the mapping x -> x + v is an isomorphism of 
G [ + , B, w, v, 1] onto G[ + ,B, w, 0, 1]. 

Proof. The assertion may be checked easily. 

4.3. Lemma. If v e C, then the mapping x - * x + v + w i s a n isomorphism of 
G[ + , B, w, v, 1] onto G[ + , B, w, 0, 1], 

Proof. The assertion may be checked easily. 
We have proved that the quasigroups G[ + , B, w, v, 1] and G[ + , B, w, 0,1] are 

isomorphic. In the rest of this section, we shall assume that v = 0 and we put G = 
==G[+,w, 0 ,1] . 

4.4. Lemma. G is not medial. 



Proof. Let ceC. Then c 0 . c 0 = (c + w) (c + w) = 2c + 3w + 2c + w = 
= (2c + w). 0 = cc . 00. 

Put g(b) = b and g(c) = c + w for all b e B, ceC. Then g is a permutation 
of G, g * idG and #3 = idG. Further, let h(b) = b + w and ft(c) = c for all b e B, 
c e C. Again, h + idG and h3 = idG. Clearly, gh = hg = L*, L+g = glX and 
L+/t = ^ f o r a l l f t e B , c E C . 

4.5. Lemma. Jft(G) = ^T(G +)) = {L+; a e G} and Jir(G) = ur(G) = 
= {L+

a9Lag,L+
ag

2;aeG}. 

Proof. Easy. 

4.6. Lemma. J(G, 0) = {1, g, g2}9 and so i(G) = 3. 

Proof. This follows from 4.5. 
Finally, let B' be a subgroup of index 2 of an abelian group G'(+), let 0 #= w' e B\ 

3w' = 0, and letf: G -* G' be a mapping. 

4.7. Lemma. The following conditions are equivalent: 
(i) fis an isomorphism of G = G[ + , B, w, 1] onto G' = G'[ + , B\ w', 1]. 

(ii) fis an isomorphism of G( + ) onto G'(+),f(fl) = B' andf(w) = w'. 

Proof, (i) implies (ii). Clearly, f(0) = 0 (f preserves left units). Further, let b e B. 
If f(b) £ JB', then g(b) = f(ft 0) = f(b) 0 = f(b) + vv', a contradiction. Consequently, 
f(B) c J3' and, conversely, f_1(B') c B, so that f(B) = B'. Now, for any x e G , 
f(b + x) = f(fex) = f(b)f(x) = f(b) + f(x). On the other hand, if c e C , then 
f(c + x + w) = f(cx) = f(c)f(x) = f(c) + f(x) + w' for every x e G. In particular, 
f(c + w) = f(c) + w' and f(c + w + x) = f(c + w + x) = f(c + w) + f(x). We 
have proved that fis an isomorphism of G( + ) onto G'(+).Finally,f(w) =f(c.(— c)) = 
= f(c) — f(c) + w' = w'. (ii) implies (i). This implication is evident. 

Finally, we put G[ + , B, w, 2] = G[ + , B, w, l ] o p . 

5. Auxiliary results 

In this section, let G( + ) be an abelian group with at least six elements, let B be 
a subgroup of index two, C = G — B, and let O 4= w e 5 be such that 3w = 0. 
Further, let v e G be arbitrary. 

Define a multiplication on G by bb' = fe + V + v, cc' = c + c' + v — w and 
fcc = cb = b + c + w + v for all b, V e B, c, c' e C. We get a groupoid which is 
a quasigroup and we denote it by G = G[ + , B. w, t;, 3]. 

5.1. Lemma, (i) The quasigroup G is commutative, 
(ii) If v e B, then (— v).( — v) = — v and — v is the only idempotent of G. 

(iii) If v e C, then (w — v) (w — v) = w — v and w — v is the only idempotent of G. 



(iv) r = (B x B) u (C x C) is a congruence of G and G\r is a two - element group, 
(v) G is not an IP-quasigroup. 

Proof. Easy. 

5.2. Lemma. If ve B, then the mapping x -» x + v is an isomorphism of 
G[+, 5, w, i>, 3] onto G[ + , B, w, 0, 3]. 

Proof. The assertion may be checked easily. 

5.3. Lemma. If v e C, then the mapping x -> x + y - w is an isomorphism of 
G[ + , B, w, v9 3] onto G[ + , B, w, 0, 3]. 

Proof. The assertion may be checked easily. 
We have proved that the quasigroups G[ + , £ , w, v, 3] and G[ + ,B, w, 3] = 

== G[ + , -8, w, 0, 3] are isomorphic. In the rest of this section, we shall assume that 
t = 0. 

5.4. Lemma. G is not medial. 

Proof. For c e C, 0c . 0c = (c + w) (c + w) = 2c + w =j= 2c - w = 0. (2c - w) = 
= 00 . cc. 

Put g(b) = b and g(c) = c + w for all b e B, c 6 C. Further, let h(b) = ft + w 
and h(c) = c. Then L+g = gL+ and L+/i = gL+

c. 

5.5. Lemma. ^(G) = {L+
9 L

+g, L+
ag

2; a e G}. 

Proof. Easy. 

5.6. Lemma. J(G, 0) = {1, g, g2} and i(G) = 3. 
Proof. This follows from 4.5. 
Finally, let B' be a subgroup of index 2 of an abelian group G'( + ), let 0 4= w' e B', 

3w' = 0, and letf: G -+ G' be a mapping. 

5.7. Lemma. The following conditions are equivalent: 
(i) / is an isomorphism of G = G[+, B, w, 3] onto G' = G'[ + , B't w', 3], 
(ii) fis an isomorphism of G(+) onto G'(+),f(B) = B' andf(w) = w'. 

Proof. Similar to that of 4.7. 

6. Auxiliary results 

In this section, let G(+) be an abelian group with at least six elements, let B 
be a subgroup of index two, C = G — B, and let 0 + w e B be such that 3w = 0. 
Furher, let v e G be arbitrary. 

Define a multiplication on G by W = b + b' + v, cc' = c + c' + v, be = 
= i + c + t 7 -w and cb = b + c + v + w for all b, b' e B, c, c' e C. We get 
a groupoid G = G[ + , B, w, v, 4] which is a quasigroup. 



6.1. Lemma, (i) For x, y e G, xy = yx iff either x, y e B or x, y e C. 
(ii) — v is the only idempotent of G. 

(iii) G is neither a left nor a right loop. 
(iv) r = (B x B) U (C X C) is a congruence of G and G/r is a two — element group, 
(v) G is neither an LIP-quasigroup nor an RIP-quasigroup. 

Proof. Easy. 

6.2. Lemma. Let veB. The mapping x -> x + t; is an isomorphism of 
G[+, £, w, v, 4] onto G[ + , B, w, 0, 4] . 

Proof. Easy. 

6.3. Lemma. Let veC. The mapping x-+ — x — v is an isomorphism of 
G[+, B, w, i7, 4] onto G[+, 5, w, 0, 4] . 

Proof. Easy. 
In the rest of this section, we shall assume that v = 0. 

6.4. Lemma. G is not medial. 

Proof. Let ceC. Then 00 . cc = 0.2c = 2c - w 4= 2c - 2w = (c - w) (c - w) = 
= 0c . Oc. 

Put g(b) = b and g(c) = c + w for all ft e B, c e C. 

6.5. Lemma. ^,(G) = ^ r (G) = J((G) = {Lj, L+#, L+g2; a e G}. 

6.6. Lemma. J(G, 0) = {1, g, g2} and i(G) = 3. 

Proof. See 6.5. 

6.7. Lemma. The opposite quasigroup Gop is equal to G[ + , B, — w, 4] . In particular 
G and Gop are isomorphic. 

Proof. Obvious. 
Finally, let B' be a subgroup of index 2 of an abelian group G'(+), let 0 + w' e B', 

3w' = 0, and letf: G -> G' be a mapping. 

6.8. Lemma. The following conditions are equivalent: 
(i) / is an isomorphism of G = G[ + , B, w, 4] onto G' = G'[ + , B', w'̂  4] . 

(ii) fis an isomorphism of G(+) onto G'(+),f(JB) = B' andf(w) = w'. 

Proof. Similar to that of 4.7. 

7. Quasigroups with i(g) ^ 3 

The following statements are well known. 

7.1. Proposition. A quasigroup Q is medial iff there exist an abelian group 6 ( + ) , 
commuting automorphisms g, h of Q(+) and an element ee Q such that xy = 



= g(x) + h(y) + e for all x, y e Q. In this case: 
(i) Q is commutative iïïg = h; 

(ii) Q is a left (right) loop ifҒ h = idQ (g = idQ). 
(iii) Q is left (right) modular iff g = h2 (h = g2). 
(iv) Q is modular iïïg3 = idQ and h = g2. 
(v) Q is left (right) permutable iŕҒ h = idQ (g = idQ). 

(vi) If g = h, then Q satisfies the identity x(y . uv) = v(y . ux) iff g2 = idQ. 
(vii) If g = h, then g3 = idQ iff satisfies the identity x(y(u . vw)) = w(y(u . vx)). 

(viii) If Һ = idQ, then g3 = idQ ifҒ Q satisfies the identity (xy ,u)v = (vy . u) x. 
(ix) Q is an LIP — quasigroup (RIP — quasigroup) ifҒ h2 = idQ (g2 = idQ). 
(x) J(Q, 0) is just the permutation group generated by g and h. 

7.2. Theorem. Let Q be a quasigroup. 

(i) i(Q) = 1 ifҒ Q is an abelian group. 
(ii) i(Q) = 2 iŕҒ Q is not an abelian group and at least one (and then just) one of the 

following cases takes place: 
(a) Q is a commutative medial quasigroup satisfying the identity x(y . uv) = v(y . ux). 
(b) Q is left modular and right permutable (then Q is a right loop). 
(c) Q is right modular and left permutable (then Q is a left loop). 
In all these cases, Q is a medial IP — quasigroup. 

Proof. See 4.1 and [1, Theorem 4.6]. 

7.3. Theorem. The following conditions are equivalent for a quasigroup Q: 
(i) Q is medial and i(Q) = 3. 

(ii) Q is not an abelian group and at least one (then just one) of the following cases 
takes place: 

(a) Q is commutative and satisfies the identity x(y(u . vw)) = w(ý(u . vx)). 
(b) Q is left permutable and satisfies the identity (xy . u) v = (vy . u) x (then Q is 

a left loop). 
(c) Q is right permutable and satisfies the identity x(y . uv) = v(y . ux) (then Q is 

a right loop). 
(d) Q is modular. 

Proof. Apply 4.1. 

7.4. Theorem. Let Q be a quasigroup such that Q is not medial and i(Q) = 3. 
Then there exist an abelian group Q(+), its subgroup B of index 2 and an element 
O ф w є B , 3w = 0, such that Q is equal to at least one (and then to exactly one) 
fгom the quasigroups Q[ + , B, w, 1], Q[ + , B, w, 2], Q[ + , B, w, 3], Q[ + , B, w, 4]. 

Proof. Apply the results of the preceding sections. 

7.5. Proposition. Let G(+) be an abelian group with at least six elements, B its 
subgroup of index 2 and 0 Ф w є B, Зw = 0. Then: 
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(i) Noneofthequasigroups Gj = G[ + , B, w,j], 1 ^ 7 ^ 4, is medial and i(Gy) = 3. 
(ii) G1 is a left loop, G2 is a right loop, G3 is commutative, G4 -j= G4

P and G4 is 
isomorphic to GJP. 

(Hi) None of the quasigroups Gl9G2,G3, G4 is simple. 
(iv) G[ + , B, w,I] is isomorphic to G'[+, £', w ' , / ] iff j = / there and is an iso­

morphism f: G(+) -• G'(+) such thatf(5) = 5 ' andf(w) = w'. 

Proof. Apply the results of the preceding sections. 
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