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The method combining the cranking mode l with the random phase approximation is suggested 
for the description of the collective excitations in rotating nuclei. The symmetries of rotating 
nucleus Hami ltonian are discussed. The results of the analysis of the properties of the collective 
excitations in the framework of several models are presented. 

V práci je objasněna metoda kombinující cranking mode l (model vynucené rotace) s aproximací 
náhodné fáze (Random Phase Approximation — RPA) pro popis kolektivních excitací rotujících 
jader. Diskutují se různé symetrie hami ltoniánu rotujícího jádra. Výsledky analýzy vlastností 
kolektivních i nekolektivních excitací v rámci různých přístupů dané metody jsou uvedeny 
v závěru práce. 

H3Ji03KeH MeTOfl, KOM6HHHpyioirniH Mo/íejib npHHyflHTejibHoro BpameHiw H npH6jiH3KeHHfl 
cjiy-ia&Hbix <J>a3, AJIH onncaHHA KOJiJieKTHBHbix B036y»fleHHfi Bpa^aronmxcfl flflep. OocyarflaioTCH 
CHMMeTpHH, COXpaHHK)IHHeCH flJIfl BpaHiaiOHTHXCH fl/iep, HX CBA3b C $H3H-ieCKHMH COCTOíIHHflMH. 
ripeACTaBJieHbi pe3yjibTaTbi aHajnoa CBOHCTB KOJineKTHBHbix B036y»cfleHHíí B paivncax pa3jniHHbix 
MOAejieií. 

1. Introduction 
A 

The investigation of rotational states represents the important source of informa­
tion about the nuclear structure [1]. One can say that the interest in nuclear rotation 
has been grown from the time of discovery of rotational spectrum in nucleus [2]. 
This fact is caused by progress in experimental technique which allows to study 
the nuclei in the region of limiting angular momenta (see e.g. [3]) when the nuclei 
still exist as the whole object. Several regularities in spectra and electromagnetic 
transitions have been succesfully cleared up in terms of nuclear unified model [4]. 
In the base of this model there is a supposition about the adiabatic distribution 
of degrees of freedom into the intrinsic and rotational ones. However nuclear rota-

*) Department of Nuclear Physics, V Holešovičkách 2, 189 00 Praha 8, Czechoslovakia. 
**) institute of Nuclear Physics of Tashkent State University, Tashkent, USSR. 
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tion shows a considerable influence on the intrinsic degrees of freedom with increasing 
angular momenta when Coriolis and centrifugal interaction grow up [3,5 — 9]. 

Studying of nuclear structure in low spin region confirms the fact that the nucleon 
intrinsic motion is mainly determined by nuclear average field and by pairing correla­
tion of superconducting type [10]. This approximation of nuclear average field 
is usually assumed to be valid also in extremal conditions when the angular moment 
is so high that the channel of nuclear fission begins to dominate. Such assumption 
about using the same model approaches in different angular moment region can be 
explained by means of nucleon energy balance. Simple estimation for rare earth 
nuclei (see [6, 11]) shows that rotational energy per nucleon for A —150 doesn't 
exceed 5% of nucleus binding energy in maximal spins J — 60ft which can be reached 
in rare earth nucleus rotation. Therefore one can expect that the similar or the same 
model approaches can be applied in broad region of angular moments [12, 13]. 

One of these approaches is represented by cranking model introduced for the first 
time by Inglis [14]. This model suppose the nuclear average field to rotate with 
constant rotational frequence round the stable axis. The cranking model was succeed 
in analyses of many rotating nucleus properties. Its variant with inclusion of pairing 
interactions was able to clear up the properties of yrast line states or the properties 
of one-, two-quasiparticle states [15]. However last experimental information 
obtained from the analyses of y-spectra of fast rotating nuclei approve the collective 
character of the states not only near the yrast line but also of highly excited states 
( - 1 5 - 2 0 MeV above the yrast line at J - 60ft [16]). 

In [17] the attempts were done to describe the collective states near the yrast line 
as a small oscillations of transverse axis of triaxial rotor [1]. It is evident that this 
approach has the phenomenological character. Therefore the next effort has been 
devoted to form the microscopical model for description of the states near the yrast 
line. The example of such model is the cranking model (CM) added by random 
phase approximation (RPA) [18, 19]. One has to mention also the other approaches 
[20 — 22] based on the method of generalized density matrix, but the CM + RPA 
has been used most often in literature. 

Our aim is to give the explanation of the CM + RPA method and its application 
for calculation of particular characteristics of rotating nuclei. This theme is divided 
into two papers. 

The first paper is devoted to the explanation of basic theoretical ideas of 
CM + RPA approach. Here the symmetries of cranking Hamiltonian, the Hartree-
Fock-Bogolubov problem for rotating systems, the solution of RPA equations 
of motion, selfconsistency of residual interaction with average nuclear field and other 
questions are discussed. 

In the second paper the concrete properties of rotating nuclei are studied in the 
framework of CM + RPA approach such as quadrupole, octupole excitations, 
giant dipole resonance, transition probabilities. 
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2. The cranking model and the random phase approximation 

2.1. The cranking Hamiltonian and its symmetry 

As was mentioned in preceeding section the cranking model (CM) suppose the 
nucleus to rotate round the stable axis. This axis is usually chosen to be simultaneously 
the x-axis of the lab system and x-axis of the intrinsic system rotating together with 
nucleus. The Hamiltonian corresponding to such rotation expressed in the intrinsic 
system can be written as [23] 

(1) H' = H- 5 X # t - Of* 
T 

where H is the total Hamiltonian of nucleus*), #T is the operator of proton (T = Z) 
or neutron (T = N) number, Xx is the corresponding chemical potential, Q stands 
for the angular velocity of rotation, 3X represents the x-component of total angular 
momentum. Hamiltonian fl contains the intrinsic and collective degrees of freedom 
(connected with the whole nucleus rotation and with translation of the nucleus 
center of mass). Their separation represents generally complex nontrivial problem 
(see e.g. [20, 25]) which usually requires some approximations in their solving. 
In this paper the random phase approximation is used for this aim. 

It is natural to suppose the total Hamiltonian to be rotational and translational 
invariant. Besides that we assume the number of particle in processes studied in this 
paper doen't change. Therefore 

(2) [Hjt] = [H,P{] = [H,fit] = 0 

where 3t and Pt are components of the total angular moment and linear moment 
in lab system, respectively. Since 

(3) [Ji9 Pj] = ieijkPk [7„ 3j\ = i£ijjk 

[f}xJi-] = [f}x,Pi] = [Pi,Pj-] = 0 

the symmetry conditions (2) yields for cranking Hamiltonian the following ex­
pressions 

[H'Jx]=0 [H',Px] = 0 
(4) [H'Jy] = -iQjz [H',Py] = -iQPz [H',Nt] = 0 

[H'Jz] = iQ)y [H',Pz]=iQPy 

The total nucleus Hamiltonian H contains the average field and the residual 
interactions. In semimicroscopical approaches the nuclear average field is approxi-

* The total nucleus Hamiltonian Hin (1) is the Hamiltonian in lab system but expressed trrough 
the variables of the intrinsic rotating system. In the same way the component of linear moment 
Pi in further expressions is assumed to be expressed in the intrinsic variables [24], i.e. P—> elJ*a 
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mated by phenomenological deformed potential which violates the conditions (2). 
Therefore one has to choose the residual interactions in the form restoring the sym­
metries (2) of total Hamiltonian violated by deformed average field. Otherwise the 
eigen vectors of total Hamiltonian describing the intrinsic nucleus excitations are 
mixed with unphysical (from the point of view of intrinsic degrees of freedom) 
components of collective type (see e.g. [26, —29]). In the case of violation of total 
Hamiltonian symmetries (2) the collective and intrinsic modes are mutually mixed. 
Since in next considerations the eigen modes of nucleus Hamiltonian are searched 
for in framework of RPA the same approximation is used for restoration of sym­
metries (2). 

For simplicity of explanation of basic ideas of used CM + RPA model we will 
start with spherical symmetric average field. The residual interactions will be taken 
in the form of separable multipole-multipole forces (long-range part) and monopole 
pairing (short-range part). However it must be noted that the particular form of 
residual interactions doesn't influence the generality of explanation of CM + RPA 
method. In further parts of this paper, where the applications of this method are 
discussed, the particular form of average field and residual interactions is given, 
but the calculations are performed in the framework of scheme described in this 
part. So our starting total Hamiltonian has the form 

(5) H ' = 2e.,c*+c4 - i l G . P + P . - * £ £ xxQt,Qx, 
k x A = l , 2 , 3 , . . . p=-X 

where 

(6) I\+=LVCj ^ - - M t f c . qx
kf = <fc|r%|/> 

kex k~l 

ck and ck are the creation and annihilation single-particle operators in the state |fc> 
of spherical nuclear field, respectively. c£ = TckT~x (Tis the time reversal operator 
[31]), xx and Gx are the strength constants of multipole-multipole interaction and 
pairing (r = N, Z), respectively. Summing in rel. (6) goes not only over indices k, I 
but also over £, I. 

Experiment confirms the fact, that the most of nuclei in the ground state and in 
the yrast line states has the P, Rk(7t), Sk = P R'1^) symmetries (P is the intrinsic 
parity operator, Rk(n) — elnJk is the operator of rotation by angle n round the axis 
k of intrinsic fixed-body system). That means the nucleus deformed field posses 
deformation of even multipolarity. Because of the term — QJX the cranking Hamilto­
nian (1) has only P, R^n), Sx-symmetries. Therefore it is convenient to choose 
the single-particle states to be the eigen vectors ofR^n) = Rx(7t) operator [32, 33], so 

J*JX ( C k \ e-injx _ — , (Ck \ 

(7) Uv Uv 
In [30] some aspects of CM + RPA approach are discussed with use of nonseparable forces. 
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In last years a lot of experimental and theoretical papers (see e.g. [34, —, 39]) 
have been published where the possibility of stable octupole nucleus deformation 
have been discussed. Octupole deformation violates the P- and Rx(n) symmetry 
of cranking Hamiltonian, however Sx symmetry remains. Generalisation of CM + 
+ RPA method for the case of stable octupole deformation is presented in [40]. 

RPA calculations for nonrotating nuclei show importance of quadrupole and 
octupole excitations in description of observed spectrum. Therefore we restrict 
ourselves in (5) only for X = 2, 3. Because of the intrinsic i^-symmetry of nucleus 
we introduce the following combinations of multipole operators (see appendix) 

&+> = 020 £+> = i ( & i + ^ ^ g(-> , 1 ( & i _ Q2i) 

\ 2 V 2 

&+) = ^ (022 + 02-2) & _ ) = -J (^22 - 02-2) 

(8) ^ = 030 fl+> * ( f c . - f i , . . ) E(r) = - ^ ( a 3 i + 03-i) 

Pi+) = 4 (032 " 03-2) PV = 4 (&2 + ^3-2) 
V2V&" " - " ' V2 

І-2(ØЗЗ-ØЗ-З) m->-^i PÌ+) = 4 (бзз - бз-з) IT> = 4 (бзз + бз-з) 

with symmetries 

-(f)-—(f) 
These operators allow to rewrite the Hamiltonian (5) as 

(9) H = Ye^: ck - i _\GXP:PX - ^ [ Z & + W > + z 0L->0L->] -
it t 2 m = 0 m"=l 

- ^ [ Z - Y ^ + Z-V^-rT 
2 m = l m=0 

The CM -f- RPA model involves two separate steps 
i) In the first step, the Cranked Hartree-Fock-Bogolubov problem is solved. As 

a result we obtain the quasiparticle spectrum for a given rotational frequency Q. 
The quasiparticle vacuum \Q} characterizes the nucleus state in the yrast line 
with a spin J corresponding to mean value of the operator 3X in the state |0> 
with given frequency Q. 

All operators are defined in the system with quantum axis. z. 
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ii) In the second step, vibrations around the quasiparticle vacuum (i.e. around 
the yrast-line states) are described by the RPA method. 

Later we are going to discuss both steps in more detail. It must be also noted that 
all discussions in this paper deal with the case of even-even nuclei. 

2.2. The method of Hartree-Fock-Bogolubov (HFB) 
for rotating nuclei (description of yrast line) 

The HFB method is used for description of many characteristics of rotating nuclei 
[53 — 59] and is described in detail in [42, 60]. Therefore only the basic ideas, ne­
cessary for further considerations are given in this part. 

Using the Bogolubov transformation the quasiparticle operators <xh a* are in­
troduced 

(io) «,+ = 2K-*+ + « k ) 
k 

«i+ = 1(44 + B[ck) 
k 

where as a consequence of (7) the quasiparticle states are also the eigen states of the 
operator R^n) 

do •"*(<)•"*-*•(<) 
Quasiparticle energies Eh F- and coefficients A\, A\, B^ B\ can be determined from 
the equations 

w -(-M.M3M-D 
with*) 

^(jV^(2, ) 

where the corresponding matrix elements have the form 

(13) h<}> = Skl(ek - rt) - Q(k\ Jx\l> - *2<fl| o.20|<2> <fc| Q20|/> -

- x2<<2| Q2
+)|<2> <fc| Q2

+>|Z> 

hiV = -hi(e* ~ K) ~ W\ Jx\l) + x 2 «2| Q20|O> <fc| C2o|!> -

- *2«2 | Q(2+)|i3> <fc| 6(2+)|/> 

4.1 = - G t / 4 < i 2 | P + | ( 2 > ^ , 
Here <fc| S\l} is the single-particle matrix element of given operator, <f2| §\Q} 
stands for mean value of the corresponding operator in the quasi-particle vacuum 
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\Q>, which is represented in CHFB model by the yrast state with given rotational 
frequency Q. The way of determination of expectation values of single-particle 
operators is given in appendix. The selfconsistent equations (12), (13) have to be 
added by the following conditions 

(14) (Q\NX=N\Q>=N0 <Q\tix=z\Q> = Z0 <fl| JX\Q> = J0 

for the nucleus with N0 neutrons, Z0 protons and with the rotational frequency Q 
corresponding to moment J0 in the yrast line. 

The solution of the HFB problem allows us to rewrite the Hamiltonian (1) in the 
form 

(15) H' = <Q| H\Q} + £ £ K « i + «.+ «.) " £ ^ (A - <0| PP» 
i x 4T 

(Px - <fl| PX\Q») : 

í l v •íñ^ -„ I :(&+) - <Q\ Qm\Q» (QÍ+) - <Q\ Qm\Q» -
2 m = 0 

X2 т .Aí-)A(-). X3 , I :&->&->: ~ ? [ I ••Pm-)P$n-): + Z :^+)^+):] 
2 m=l 2 m=l m = 0 

where the symbol :: denotes the normal ordering with respect to quasiparticle 
vacuum \Q>. Since the Hamiltonian (1) is invariant to the transformation Rx(n) 
and since [IT, P~\ = 0 (P is the space axis inversion operator), the quasiparticle 
vacuum can be searched for with this symmetries 

(16) einJx\Q> = P\Q> = \Q> 

On the base of (16) one can conclude that the mean values is nonzero only for the 
operators A not changing the parity and with positive signature.**) 

The problem of solving of Eq. (12), (13) with the conditions (14) by precise self-
consistent way is quite complicated. Therefore the nuclear average field is usually 
approximated by phenomenological potential of Nilson (see e.g. [53, 57]) or Saxon-
Woods [56, 61] type. The parameters of this phenomenological field are determined 
from the requirement of reproduction of experimental single-particle characteristics 
in the ground state of given nucleus. Then the minimum of the total energy of de­
formed nucleus is searched for given rotational frequency Q using the method 

* EQuations (12) can be for instance obtained by variation method [42, 44] 

3 {<Q\ H'\Q> + ££ f \J1A\A\ + B\B\ + A\A\ + B\B?) - 2]} 
ij I 

with the total Hamiltonian H given in (5). 
** Operator A has the positive signature if Rx(n) Ax

1(n) = A, and negative if Rx(n) . 
.ARX~HTZ)= -A[\S, 19]). 
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of Strutinski [12, 57]. So in the case of phenomenological deformed average field 
the selfconsistency is performed only through the pairing term and cranking term 
in Hamiltonian (1). 

As has been mentioned above the phenomebological deformed average field 
violates the symmetries (2) or (4). In order to restore these symmetries it is necessary 
to choose the corresponding residual interactions (see e.g. [26, —, 28, 62, —66J). 
The connection between the residual interactions and symmetries (4) is discussed 
in detail in part 3 of this paper. 

2.3. The Random Phase Approximation (RPA) 
for rotating nuclei 

2.3.1 Hamiltonian RPA and equation of motion 

The method of RPA has been succesfully used for studying of nonrotational 
nuclei during last 30 years (see e.g. [1, 7, 10, 60] and references there). Firstly the 
RPA together with cranking model was suggested for desctiption of rotating nuclei 
properties in papers of Marshalek [67, 68, 18, 30, 43] and of Jansen and Mikhailov 
[19, 44]. There the basic ideas of HFB + RPA approach were formulated. The 
further progress of this method was connected with the construction of particular 
models for qualitative and quantitative investigation of nucleus properties [69, 45 — 52 
70 — 76] and also with the improvement of theoretical scheme of restoration of total 
Hamiltonian symmetries in rotating nuclei [24, 29]. In [77] the method of strength 
function was used for description of solutions of RPA equations of motion. The 
generalization of the HFB + RPA approach for the case of stable octupole deforma­
tion is given in [40], 

In the framework of HFB + RPA the states near the yrast line are described 
by phonons which are linear combinations of two-quasiparticle bosons (see e.g. 
[43]) 

(17a) bti = a+af
+ fc+, = i'a+a+ b+

} = /a+a,+ 

(17b) a+a, = YiKmblm + b+
mbm) 

m 

«+«7 = iYSPkmhm - Kmbjm) 
m 

These bosons are antisymmetric in indexes (bik = —bki) and fulfil the following 
commutation relations 

(1 8) [bkh bmn] = $kmdln ~ ^kn^lm [bU> bm/i] = hmhn 

[bki, bmn] = [bkh 6+J = 0 

The RPA suppose the mean number of quasi-particles in vacuum to be zero 

(Q\ a+a-|.Q> « 0 
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The condition (11) implies 

(19) eM~ 

Ъïk J L Ъ*a J 
Every single-particle operator contained in Hamiltonian (15) can be expressed as an 
expansion in bosons (17). Particular form of this expansion depends on the symmetry 
of given operator regarding Hermitian conjugation, time reversal, transformation 
Rx(n) (see appendix). Substituting these boson expansions of all operators involved 
in cranking Hamiltonian into (15) we obtain the boson representation of H'. Rx(n)-
symmetry of Hamiltonian and commutation relations (18) allow to express the 
cranking Hamiltonian as a sum of four mutually commuting parts 

(20) H' = <fi| H'\Q> + H{1] + ff<;> + H{±] + ff<Z> 

where 

(21a) //<:> = X Eababa - i lG t Pil)P t ( l) - ^ i Qi+\l)Qi+\l) 
ik x 2 m = 0 

(21b) //<;> = \ z(Eikb\pbik + Eababa) - -£ i e^neSTX-) 
ik 2 m = l 

(21c) JJ<!> = Yfiabfra - * } i rL+WL+)W 
ik 2 m = 1 

(21d) H<:> = i ^(Eikbtbik + Eababa) - ^ i P<,->(1) PiT>(l) 
ik 2 m = 0 

Here Elk = Et + Ek and symbols Pt(l), Q^\i)9 FW
±}(1) represent the linear boson 

terms of expansions of corresponding operators (see appendix). Lower index in sym­
bol H(£=±) in (21) characterizes the parity of the operators involved in given part 
of Hamiltonian and upper index characterizes their signature. 

Substituting the boson expansion (A5) into the symmetry conditions (4) one can 
write in the framework of RPA 

(22) WHJX(1)-] = [H{X),NZ(1)-]=0 

(23) [H<;>, J,(1V| = - iQ Jz(l) [H(<;>, J,(l)] = iQ J,(l) 

(24) [H(%>,PJt(l) = 0 

(25) [//<:>, P,(l)] = - iQ Pz(\) [H{-_], P2(l)] = iQ P,(l) 

(26) [J((l), P,(l)] = [J ;(l), iVr(l)] = [P;(l), 7VT(1)] = [P.-(l), Py(l)] = 

= [Jx(\), J,(l)] = [J,(l), J,(l)] = 0 

(27) [J,(l), Jr(l)] = i(Q\ JZ\Q} 
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Since all parts of cranking Hamiltonian (20) mutually commute the RPA equations 
of motion 

(28) [ H \ 0>v~\ = ico\%v [ u \ arv] = -i&v [arv, ^ v , ] = « v . . 

can be solved independently for each of parts [79]. In (28) 3Cy and &y represent 
the generalised coordinates and linear momentum, respectively, cov is corresponding 
energies. The way of solving (28) is described in detail in the following section of 
this paper. 

The Hamiltonian H' expressed in canonical conjugated variables 9CV and 0 \ 
has the form 

(29) H' = i £(-*2 + <*\«X) = i Z K + a)2*?) + i I K = 
V V v 0 

o)v=l-0 o)vO = 0 

= L«,(<PX + i) + iX-*2o 
v vo 

COv + 0 CDvO==0 

where the creation operator of phonon 

(30) ^.J-^,)*,-^,) 

with cov =t= 0 is introduced. The equation of motion (28) for coy 4= 0 can be rewritten 
as 

(31) [ H \ < ] = coX [ H \ 0 j = - " > A [0,, ®v] = ^ v 

Comparison of RPA equation of motion (28) or (31) with the symmetry conditions 
(22) —(25) allows to determine all "unphysical" (spurious) modes of Goldstone 
type (see 79) for all four parts of Hamiltonian (20). 

From comparison of (22) with (28) it follows that there is one solution of RPA 
equation with Hamiltonian H[X] which is connected with the operator Jx(i) and two 
solutions connected with NT(1) (t = N, Z). Therefore 

(32) 

> =* --#) = i I W + ^ l ) + i9sx J
2(l) + i I<7*t<V2(l) 

v̂„=iv, = V(^)N t(l)J rav*
vo,« 

The way of determination of mass parameters gJx and gNz will be discussed later. 
From (32) one can see that the quantity $x = l/gJx represents the moment of inertia 
regarding the rotating axis x. 

The comparison of (23) with (28) allows to conclude that it is possible to construct 
the mode of Hamiltonian H[+j with energy co = Q from the operators Jv(l) and 

•L(i) 
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[H{-+],r+l = Qr+ 

(33) [H(
(;)

),r] = -or 

[ T r + ] = i 

where the operators P, F+ are defined as 

II(ï) = i I K2 + шX2) + ß(Г+Г + І) 
V 

Ö>v*0 ,ß 

r + = JXI)-JJ,(I) 

Comparing (24) with (28) one can write 

(34) ^V0=Px = y/(gPx) Px(i) => H[t\ = i £ (^v
2 + a>2#v

2) + ^ Px(l)2 

V 

cov*0 

where the quantity M = l/gpx represents the effective mass nucleus. 
The comparison of (25) with (28) makes it possible to expect for the mode (Py(l), 

Pz(l)) to be the solution of RPA eqauation with Hamiltonian H^Z] with energy 
cw = Q. However in consequence of commutation [P/l), Pz(l)] = 0 such a mode 
would be nonnormalizable and therefore (P>,(1), -°z(l)) doesn't form the solution 
of H[Z]. Nevertheless it can be shown that the modes based on the operators Py(l), 
Pz(l) and corresponding coordinates Xy(l) and Xz(l) are orthogonal to all solutions 
of RPA equations and therefore don't mix with them. Therefore the Hamiltonian 
can be expressed in terms of its RPA modes as follows 

(35) //<!> = i X (0>l + a>\9£l) + fl(.Y,(l) P,(l) - Xz(l) Py(l)) 
V 

tov + O 

where the last term assures the validity of conditions (25). 
One can see from (32) — (35) that the comparison of symmetry conditions (22) — (25) 

with the RPA equations gives the possibility to extract the Goldstone modes connected 
with the rotation of whole nucleus and with the motion of center of mass of nucleus 
(or with number of particle conservation) from the solutions of RPA equations. 

2.3.2. Diagonalization of RPA Hamiltonian 

In this section the general scheme of diagonalization of RPA Hamiltonian and 
searching for the mass parameters gJx, gNx and gPx is given (see [29, 77]). 

From (20) and (21) it follows that each of four parts of Hamiltonian H' has the 
following structure 

(36) HB = £ EXh + I XstVSiVSl + t *,2W,2WS2 
H S l = l S 2 = l 

where VSi and WS2 are the linear boson parts of corresponding operators 
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(37) r . , = E C ( * + + -V) si = l,...,ni 
Д 

wS2 = үwjŕЖ - bß) s2 = 1, 
џ 

Therefore the diagonalization procedure described further for the case of Hamilto-
nian HB (36) is applicable for arbitrary part of Hamiltonian (20). 

Hamiltonian HB is characteristic by definite symmetries (see (22) —(25)) what 
is formally expressed by zero commutators of Hamiltonian HB with corresponding 
operators (e.g. Jjc(l) and NT(1) in the case of Hamiltonian H( + >). Let us suppose 
that for Hamiltonian HB there are Lx operators of type (b* + b^) and L 2 operators 
of type ( b ; - &„) 

(38) ah = Yp?l\K + K) Ki, = K 2 W - K) 

/j = 1, ..., Lx l2 = 1, ..., L 2 

which for all Zx and l2 fulfil the following commutation relations 

(39) \HB99h-] = [H B ,K ,J = 0 

(40) [9h9 9h.-] = [K,2, X l a.] = [ » J l f K/2] = 0 

Substituting (36), (37), (38) into (39) and using (18) one can obtain 

(41) &?%= nt^sA1XS2) /=1,.-.,L 1 
5 2 = 1 

Kf% = *t*aib\\V? l2 = h...,L2 
51 = 1 

where 

(42) вíi = 2[Wtг, <*..] = 4 И ' 0 и ? 
/-

^ = 2[yS l,К,2]=4УҠ^W;' 
/i " џ 

џ 

It must be noted that the quantities a[\ and b\\ in particular approaches can be 
expressed in terms of the expectation values of type <:Q| Qxt0,2|-^>> <- |̂ ^ T | ^ ) a n d 
others (see [19, 40, 43, 44]). This means the relations (41) represents the conditions 
of selfconsistency between the quasi-particle HFB field and residual interactions 
of cranking Hamiltonian in the framework of RPA. 

The boson representation of canonical conjugated coordinates #*v and linear 
momenta ^ v can be searched for in the form 

«"»= 1K(K + K) 
(43) " [<TV, 0>r] = 2i Y*l< = i^vv 

^ = im(K-K) 
» 

44 



Substituting these expressions and relation for HB (36) into the RPA equation 
of motion (28) and using (18) one obtains the matrix representation of RPA equations 

(44) 

n2 f W-2 "i ysi 
yv _ y v Av v * - V v H" *  
*H - L X s 2 ^S2 „ 2 2 - - X*ia*i _,2 , 2 

S2=l Ep - O); si = l Ep - COv 

n2 W « 2 «1 17 y * l 
^ > v - m

2 y v Av ** _ y v » v _______ 
» / i - Wv /_ ^s 2^s 2 „2 2 - - ^-i^si 2 2 

s i= l EZ - O); si = l Ez - C0V 

where 

(45) A:2 = 4^X;W^ B:X = *Y?IV? 

Resubstitution of (44) into (45) yields the system of algebraic equations for (nx + n2) 
unknowns Av

2 and BV
SI 

(46a) £ *..^(-V,«,. >-.'U) - ^ - ' ) - _ x,.B;. *„.<.-.•<.> = 0 s2 = 1,.... n2 
s 2 = l \ 4 ^ s 2 / ai = -

(46b) "t xJ2A>v
2 %y..MWmin - _ X..B;. (V. (1),v (1) + W ) = 0 si = 1,..., „. 

S2=l Sl = l \ 4 X S l / 

where 

(47) S „ = S^_Jk URr = I^ZL. 
n h^ — m n hp — m 

which fulfil the following useful relations 

(48) SRT = SRT (0) + m2WRT URT = URT (0) + co2.S?Rr 

(49) HrRT = I - * ' T " 2, SP„ = X **T» 
i T E ^ - o , 2 ) ^E2{El-m2) 

Among the solutions of (46) there are ones with zero energy cov = 0 which can 
be connected with the symmetries of cracking Hamiltonian (see sec. 2.3.1.). These 
zero solutions have to be extracted because the physical interest is caused only by the 
solutions with cov #= 0. For cov = 0 the system of Eqs. (46) can be rewritten as 

j > . . 4 i (0) (Sw^w.-n (0) - ^ - ) = 0 -2 - 1,.... na 

(50) T 
J X * . . (0) (~V.(.)»v<.> (0) + ̂ J = 0 si = 1,.. . . n. 

The condition of solvability of (50) is 
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(51) 

det 

det 

\SWS(2)WS'І2) ( ° ) 
4*L. 

5K5(1)FЯ'(1)) (°) + -f1^ 
4x, 

= 0 

= 0 

It is evident that if we put 

(52) 4i(0) = V0«.) a1^ BW) = VG/b) *!. 

the selfconsistent conditions (41) and Eqs. (50) become equivalent. Besides that 
using (50) from equation (51a) it follows 

(53) t^Bl

s\(0)UVHt)WtJO)^0 

Multiplying each of the equations (46a) by KS2a
l

S2 and summing through index s2 

and similarly multiplying each of the equations (46b) by xSib
l

s\ and summing through 
index sx with using of (50) and (52) one can obtain the following system of equations 

n2 n2 Tii n2 

Z Z XS2

XS2

 as[Av

S2'(
swsi2)Ws'i2) — S jr s ( 2 ) wv ( 1 ) (0) ) ~~ Z Z xs,xs2

as\ Uvsii)w.i2) ~ 0 
S 2 ' = l S 2 = l Si = l S 2 = l 

(54) 
ni n2 

^v Z Z xs]

xs2bs\ Ay

S2 UVs{i)WM{2y — 
Sl = 1 S2= 1 

n\ ni 

- Z Z ^i^si' ^ ^ ' ( ^ . ( D K / d , "" ^Y-ioK.'d))^) = ° 
s i # = 1 si = 1 

With help of (48) and (53) the system of equations (54) can be rewritten in the form 

^V Z Z XS2

XS2'
 as\AS2' "WS2WS2' ~ ^V Z Z X Si^S2 aS2**Sl ^VsiX)Wsi2) ~ 0 

s2 s2' Si s2 

(55a) Zx = ! , . . . , £ , 

(55b) 

«v I I *„*., K\Al^VslWsi - C02
v E Z *..«... <B\^rY.xytx. = 0 /2 = 1, ..., L2 

Si S2 Si S i # 

In such a way the complete system of equations for (n1 + w2) unknowns ^ 2 and Bjt 

consists of Lx equations (55a), L2 equations (55b) (nt — Lx) arbitrary chosen equa­
tions (46a) and (n2 — L2) arbitrary chosen equations (46b). From corresponding 
secular equation 

(56) co2
v^

+L*\@(cov)\ = 0 

(here |-#(G>V)| *S determinant of obtained system of Eqs.) it follows the 2(Lj + L2) 
order degeneracy of the solution with cov = 0. The energy of nonzero solutions can 
be obtained from equation 

(57) 
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Then the structure of corresponding phonon (i.e. amplitudes X^ an 0*^ in (43) is 
determined from equation (44) using the normalization conditions in (43) and the 
solution of (57). 

The only unknowns to be found are the mass parameters gtl and gh. The way 
of determination of these parameters differs in two following cases, 
i) the simultaneous existence of spurious states caused by the operators Kh and 

ii) existence of spurious states created only by operators Kh or only by operators 

If the spurious states of both the types simultaneously exist, the relations (50) 
and (53) hold. From the Eqs. (44) for cov = 0 with respect to (52) it follows 

Wo)=-j9t>I*.M\ir 
(58) S1 = 1 E" 

KM = I *W-£(0) - S - V(a,2) x *..# S 
5 2 = 1 - % SI i - ^ 

Substituting these expressions into normalization condition (43) 

(59) [Xh(0), ^ ( 0 ) ] = 2. p t f ( 0 ) ^ ( 0 ) = i 

one can get the following equation 

-y/(9,2) I LX*S2<(0) *J? Uv,wWsm(0) + a/2 Z I * f | .v 6JJ6JJ. Z ^ ^ = x 
3 

si s i ' /* -t^ 

From (53) and (52) one can see that the first term in the right-hand side of Eq. (59) is 
equal to zero. Using (59) and (42) one obtains eventually the expressions for generalised 
inertial coefficients 

1 K(h)K(h) 

(60) — - = 2 ^ M * 
9i2 " En 

A similar expression can be obtained for coefficients gh 

(61) -L = 2X M » 
ø., - -*, > 

Let us investigate the case ii), when only the spurious states of one type exist 
(e.g. created by operator of type Kl2). In this case the relation (53) doesn't hold and 
therefore we have to make an other way of determination of inertial coefficients.From 
(46) with regard to (52) it follows 

(62a) g *S2.A\\.(0)(sWmmW,m(0) - - W ) - J(gh) "± *,M\^v^w.w(°) = ° 
«'=i \ 4*.2/ * » = 1 
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(62b) J(gJI.x.A\- (-W.U0) + ̂ ) = o 

Using (41) Eq. (62a) can be rewritten as 

(63) ]L*n-Ab{0) (SwH1}w.-JO) - ^ - Vfoi,) ^ l w i r . w ( 0 ) = 0 

s2 = 1, . . . , n 2 

Relations (58) and (59) hold in this case too. Substituting (41) into (59) we obtain 

(64) - Vfofe) 2 x>A\(0) SKIWW.W(0) + gh SKl(2)K(<2)(0) = i 
S 2 = -

The inhomogeneous system of equations (63) and (64) allows us to determine the 
unknowns Al

s\(0) and gh using Kramer's method 

(65) 9, l 

Sw.<2)w.'(lì(0) ^20-
4« S 2 

2 l-*ij 
where \@h\ is the determinant of the equation system (63) and (64). 

In the end of this section one has to mention that the representation (43) can be 
understood as a transformation from the space of two-quasiparticle bosons into 
the space of RPA modes (Xv, @>v) (or (0V, Of)). This transformation is given by unitary 
Hermitian matrix with elements X* and 3P^. Number of two-quasiparticle bosons 
b^, b* must correspond to number of RPA modes (Xv, Pv). This completeness 
of both spaces can be expressed by relation (see e.g. [40]) 

(66) b* = i £{[>;, xv] &v + [<?„ b;-\ xv} 
V 

where the summation goes through the spurious as well as through nonspurious 
modes. 

2.3.3. Eigen vectors of cranking Hamiltonian 

All solutions of the RPA equations are known to be orthogonal to each other. 
Therefore, all normal modes (%v, 0>v) of Hamiltonian (20) with cov =t= 0 are ortho­
gonal to spurious Goldstone (Ox(l), Jx(l)) mode (symbol Ox(l) stands for the 
linear boson part of angle 0X canonical conjugated to operator J^). Therefore the 
mean value of the Jx component of the total angular momentum in one-phonon 
states 

(67) <o| OJX\Q> = <fl| [0V, -7J K\Q> + <o| 3xQX\n> » <fl| SX\Q> 

corresponds to mean value of the operator Jx in the yrast line state \Q> (rel. (67) 
valids in RPA order, that means up to the second order in boson expansion). 
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The state |.(2> of yrast line represents the vacuum for quasi-particle and phonon 
operators. Therefore 

(68) opy = Nx(\)\Qy = px(\)\Qy = r\Qy = jx(i)\Qy = o 

Since J ^ l ) « Jx — <0| Jx\Qy, the relation (68) corresponds to the fact that the 
angular momentum in the state \Qy is aligned along the rotational axis x. This is 
expressed by cranking condition 

(69) <Q| JX\Q> * Jj(j + 1) 

From (67) and (69) it follows that the phonon creation operators 0V acting on the 
yrast line state |G> do not change the angular momentum J . 

From (68) and from condition <;Q| Px\Qy = 0 one can also make conclusion 
that there are no vibrations of nucleus center, of mass along the axis x. Generally 
such a vibrations can arise as a consequence of nuclear excitation but the extraction 
of spurious mode (X, Px) from the RPA solutions guarantees the orthogonality 
of normal modes to (X, Px) mode. As was mentioned above the vibrations of center 
of mass along the y,z-axes in lab system also don't mix with the normal RPA modes. 

In accordance with the papers of Marshalek [30, 43] (see also [81, 40]) the eigen 
vectors of cranking Hamiltonian can be written as 

(70) |aJM> = |aJ> x | JM> 

J{J-Jo)0x fr + \J-M 

(71a) l " " \ ----- - [1 J-

(71b) 

| J M > - ф, v V - M)Î | J ° M - J°> 

eHN-N0)eN ei(z-z0)9z eiPxx ÍQ+ w - ) (0»vi + Yyiv( + ) 

V27r yl2n 2n "*<-> Vnv_! Vnv+í 
o, o, j\r0, z0, o 

"v( + ) 

where nv_ and nv+ are numbers of the phonons of negative and positive signature, 
respectively, @x(? = N, Z) and Gx are the angles conjugated to Nt and Jx and X 
is a coordinate x-component. The ket \nv_ = 0, nv+ = 0,N = N0, Z = Z0,PX = 0> = 
= \Qy describes the yrast line state with angular momentum J 0 (with projection 
M = J0 onto x-axis) for a nucleus with N0 neutrons and Z0 protons. Index a in 
(71b) substitutes the quantum number nv+, nv, N, Z, Px. 

Since the intrinsic part |aJ> is supposed to be symmetric with respect to the Rx(n)~ 
transformation and since the yrast line state symmetry (16) is valid it is possible 
to write the following condition 

( - l ) ' ( - l ) e x p £ » v - = 1 
vA 

According to this relation the single-phonon states with positive signature correspond 
to even values of angular momentum J and vice versa. 
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2.3.4. Electric Transition Probabilities 

The analysis of E2-transitions in high angular momentum limit was performed 
in papers of Mikhailov [83] and Marshalek [43]. The El- and E3- transitions were 
discussed in [40]. Qualitative estimations of El-transition probabilities for rotating 
nuclei can be found in papers [70—73, 82]. 

Reduced electric transition probability is given by (see e.g. [21]) 

(72) B(EX; «. J. - , a2J2) = l<M, M ( i a ) j M . > | 

where M{EX, \i) is the electric transition operator of multipolarity v with the projection 
\i. Tensor operator M' XvL defined in lab system can be expressed in terms of its compo­
nents Ji'ky in intrinsic system as follows 

(73) J>fl = Yfrjl\y = \ Z{^iv, ®l„} 
V V 

where the Wigner function Q)k
yfl is understood to be in operator form (see [30, 85])« 

In the case when the quantum axis coincides with the rotational one in J > 1 the 
reduced matrix element has the form [83, 30] 

(74) 
<a2J + v\\j/x\\ axJ> = y/(2J + 1) (JUv \ J + vJ + v) <a2J + v\JTXy\ atJ} 

Since all projections of angular moments in wave functions (70), (71) are defined 
in the system with axis x as a quantum axis, all multipole operators involved in 
Hamiltonian H' have to be rewritten using transformation 

(75) &*, = YPlvM Q*. 

Substituting the boson expansions of the operators (see appendix) and explicite 
form of Wigner functions (see [84]) into (75) one can obtain the following expressions 
(up to the second order in boson expansion) 

&£.o.±2 = <«|0&.=o.2 |o>Ki +l{^ii±f"bti + {-i)xJtlr*b„} 
(76) 

G£-±i.±3 = c £ {.**,-'- Ki + Jtlf'bu + Jl^'bii + Mifhi} 

+ 1 X = 2 
where -X g fix ^ X and c = \ , J(kf, Jt$, M^ are quasi -particle 

- 1 A = 1,3 

matrix elements. Their explicite forms are given in appendix. The expressions 

(76) have be to added by condition 

(77) eU}* = (--/-ft-i-
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Here the symbols (±) above the operator indicates its signature. Substituting space 
completeness condition (66) for all parts (21) of Hamiltonian (20) into (77) the opera­
tors Q[^l c a n be expressed by the normal RPA modes (Xv±, &*v±), spurious modes 
(0X(1), Jx(l)), (<9T(1), Nt(l)), (J,(l), Jz(l)), (X(l),Px(i)) and the modes jY^P^) , 
(Z(l), Pz(l)). In the expressions thus obtained there are the commutators [OS^l* ^(0]» 
[Qxtl j i A [&$1> pxW] and [Qfil p£>] which can be substituted by the correspond­
ing linear combinations of multipole operator mean values in the yrast states (see 
[19, 40, 43. 44]). Further, according to prescription of Marshalek (see [30]), in these 
expressions one has to replace Ox(i) -> 0X9 ®T(l) -> Ox, X (1) -> %, NX=N (1) ->ftN — N0, 
NT=2(l) -> Sfz — Z0, Jx(l) -> Jx — J0, Px(i) -> Px in order to get the relations 
f°r ( J ^ ^ ) in the lab system in which the wave function (70) acts. The obtained 
expressions can be used in (73) for determination of Qkflx acting in the intrinsic 
fixed-body system (i.e. in the space of the function |aJ>, see (71b)). 

For this purpose, one has to express the Wigner function @\v in operator form 
in terms of the operators J^(l), &x(i), F, P+ and to make the replacement 6^(1) -> 
-» 0X, Jx(i) -> Jx — J0 (see [30]). As a result, we obtain 

(78a) ®£L0 = » r > « + (-1) X) + K2 {<a\ ^ - o | o > + 
V 

+ [&V.-o> >'oj (N ~ N0) + [Q&1.0, i©J (Z - Z0) + [ f i ^ . o . i©J (J - -!o)} 

(78b) &£=i,2,3 = H ^ « , + + AX-^0V) + 5X<2 {<Q| 0^2=2|i2> + 
V 

+ [6&I-2'. ' o j (N - N0) + [ £ & = 2', i o j (Z - Z0) + 1&&.2, i©J (J - Jo)} 

where tr = + for fix = 2, a = — for /^ = 1,3. The matrices A*11* have the following 
form 

(79) ^ = ± i . ± 2 . ± 3 = 2 £ ( . 4 ^ ^ _ ^f-"^J t + Jt\i'^ - ^x{"^h) 
ik 

(A?)* = (- iy+Mf, -x^ii^k 

and the meaning of i^k(-j-), (p
v
ikCl^)9 i/^, <Pa follows from the phonon relations 

(so) < = n*2.&« + ?«*«) 
/it 

< . = L W , + * + <Pibtk + Mi + <?.**>.*) 
ik 

Static nuclear moments are defined by mean values of the operators Qitl' *n t n e state 
|aJ>. Using (71b) and (78) nuclear moments can be written in the form of Taylor 
expansion 
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(81) eQ. 2/l» = 0,2 = ЫJ\ 
l 6 n A(+) 

\l2lix = 0,2 
aJ 

= Q 
lбтc fìi + y 
— \І2џx = 0,2 Q) + 

+ 

_Q. 
ðJV, 

ÕQ 

ÕJ 

h^){N_No) + í^_í_\{z_Zo) + 
N = N0/ \vZz = Zo/ 

=*-)(j- J0) 
J=Jo/ 

where the following assignments are introduced 

8Q2,, (82) (__h_\ = I 
\8NK_J V 

^miљi 
дZ. Z = Z 0 

Y mz íðj 
ÕQ 

ÔJ b">/TC«2.'« 
It must be noted that the moments in (81) are determined with respect to axis x. 
The expressions for nuclear moments in the system with quantum axis z can be ob­
tained by means of the transformation (75). 

Substitution of (74) into (72) and using of the asymptotic expressions for Clebsch-
Gordan coefficients (J1? J2 > X) yields (Jl{EX, \x) = eeff2(2 

(83) 

І2џJ 

B(Ek\ a.J - a2J - v) = |<J - v, oc2| e:„&£'__9\ I«i>|2 

where depending on whether the signature in the given transition changes or not, 
we have to take a (—)or( + ) index in (83), respectively. Symbol e\n in (83) means 
the multiplying of single additive components of moment Q\*^ corresponding to 
given type of particle by effective charge. The relations (78) can be substituted into 
(83), and we obtain all searched for El, E2, E3 reduced probabilities. 

For transitions not changing the number of phonons (i.e. transition along the 
rotational bands including the yrast band), one can write 

(84) B(E 2; aJ -> aJ - v) = |<fi| g<2+>=2|fl> + ]_Q%1=2, iON] (N - No) + 

+ [62^=2, Mz] (Z - Z0) + [g2;> = 2, i0x] (J - J0) |2 

where Q2^ = e^O^l • I* lS evident that in the normal case, when the HFB and 
RPA problems are solved in the framework of one nuclei and when the intrinsic 
structure of the states |aJ> does not drastically depend on J, one can put N = N0, 
Z = Z0,J = J 0 (see 30). 

The transition changing the number of phonons by 1 (extraband transitions) 
can be divided according to the angular momentum change 

i) for transitions with A J = 0 

(85) B(EX; nxJ0 - nx ± \J0) = |Af+|2 x j " v + + 1 

where X = 1, 2, 3, A = eeff^l 



ii) for transitions with A J = 1 

(86) B{EX, n, Jo -> nv ± 1J0 - 1) = I A V I 2 x {"" + 1 

where X = 1, 2, 3, a = + for A = 3, a = - for X = 1, 2 

iii) for transitions with A J = 2 

(87) B(E1, n , j 0 -> nv ± U 0 - 2) = | T ^ = * 2 | 2 x {"'• + 1 

iv) for transitions with A J = 3 

(88) B{Ek, nxJ0 --> nv ± J 0 - 2) = | ^ * = * 3 | 2 x {"' + l 

[J*V 

In (85) —(88) the index VG characterises the signature of phonon by which the initial 
state differs from the final state in the given transition. It is possible to expect that 
all transitions with a change of the number of phonons (extraband transitions) are 
weaker than the transitions along one rotational band, since the reduced probabilities 
of one-phonon transitions are proportional to the arnplitudes |Avff*|2 ( s e e (85) — (88)) 
which are less by a factor of boson decomposition than the mean values of multi-
pole operators <;Q| (5VA.J;Q> characterizing the intraband transitions. 

In the end of this section one has to note that the expressions (85) —(89) have 
been obtained in high spin limit Jl9 J2 > L However in many papers (see e.g. 
[9, 86]) the arguments are given for possibility of applying the CHFB approaches 
for description of low-lying and low-spin states. In this case the relation (76) is used 
without asymptotic form of Clebsch-Gordan coefficients and corresponding ex­
pressions for reduced transition probabilities can be found in [87]. 

2.3.5. Strength function method 

In order to obtain the information on transition probabilities between discrete 
levels in the framework of SCCM + RPA approach it is necessary to know the 
structure of corresponding initial and final states. For it one has to solve the corre­
sponding secular equation (56) and system of equations (46). However the investiga­
tion of single solutions of secular equations in the region of high excitations (f.i. 
giant resonances) loses its sense because the density of levels in this region of spectrum 
grows up very hardly and experimental information has the statistical character. 
Therefore it is used to apply the method of strength function [31] for description 
of electromagnetic transition in the high excited states region. Strength function 
method has been used with succes in analysis of giant resonances of nonrotating 
nuclei [88, 89, 41]. Further we give the basic ideas of this method in the case of 
rotating systems (see [77]). 

Let us examine the quantity b(co,) which has physical meaning in the points cot 
satisfying the following equation 

53 



(89) ^(cot) = 0 

The function b(cot) can be for instance the probability of transition of given type 
and multipolarity from one-phonon states into yrast line. In this case cot represent 
energies of phonons and equation (89) coincides with (57). The strength function 
of quantity b(co) is defined as an expectation value of this quantity averaged in some 
energetical interval A in neighbourhood of point cot (see [31]) 

(90) 6 » = Z *K) i?> -o> i ) 
i 

where QA(CO — a>f) is weight function normalised to unity with maximum in points 
co — cot = 0. Weight function is usual taken in the form 

(91) «?> -« , , ) = l A 

In (co - cot)
2 + A214 

Considering all solutions of (89) nondegenerate, i.e. (3i r /3co a ,= a ) |) =(= 0, one can 
introduce the function P(co) as follows 

<*> b^-0 
If function P(z)\&>(z) as a function of complex variable z hasn ' t any peculiarities 
except of simple poles in zeroes of 3*(z) and if 

lim P(z)\3F(z) = 0 
z-*ao 

then using the theorem of Cauchy it is possible to write 

t«*>\ , / \ 1 T Pin + *iA) 
( 9 3 ) bA(co) = -lm J JJ 

% &(co + \\A) 
Let us exam the question of construction of strength function for transitions from 
one-phonon states into yrast line states. With this aim we write the motion equations 
(44) in more symmetric form. Instead of unknowns (45) we introduce the following 
ones (we restrict ourselves to the case cov 4= 0) 

(94) < + > ( v ) = V K ) xM2A]2 «Jr>(v) = - - r - xMJTMX 

vK) 
Then (44) has the form 

J*£ L y ^+)(V, WS2 4- -
E? ~ ^v V^v *- E - co 

(95) K = -^—2 T - I *í+)(v) *? + -JГ—г V^v Z ^Г}(v) C 

4 - i -*.» w;52 + ^ ^ V̂ v ІЛÍГ»(V) v-
Џ r - 2 2 / --> s - v ' Џ T?2 , . 2 
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The system of equations (46) can be then written as 

(96) £-*J+)(v) (sWimWm.m -S-e*) + a>, ^-\v) * K . ( 1 ) - . . W = 0 

_- E <+)(v) _",.,,...-,... + Mr'OO (-?».,.,»_<,, + -W\ _ 0 
*2 51 \ 4xSi 

So we have obtained the system of homogeneous equations for the vectors _#(:F) 

(97) _>V-*.« = 0 
s' 

where 

'SJr.(.,ír.',., - - p - <"* .(„>r,(2)' 
5* = | ^ 

^. ( 1 )TY . ( 2 ) ^F, (i)F.' (i) + ^ -
" Ury 

The normalization condition from (43) with inclusion of (95) yields 

I * X = I ,P2 1 2, ( £ ^v( I <+>(v) * <-,+ >(v) FP« W?* + 
S2S2 

+i aír^v) <->(v) V;1 c ' ) + (£í + <»?) I <+)M <_)W w ) = 
- l S l ' 5 l S l ' 

/-"M+-._ /<k _ , . ds?ss. I i 

2 

n = n i + n 2 3<v? / 

(98) = i Z mjiy) mjiy) J^JSL 
5 1 5 1 ' = 1 00>V = <oJ 

We take over one term to right side of Eq. (97), say e.g. term containing -#-(v), 
then one obtains 

(99) " E Sfn.(y) _f..(v) = - -%A(v) =»" £ ^„.a. . = -**.„ 
s' = l s' = l 

where 

(100) fl-, = _?_: => «_. = „_,«_ 

Substitution of (100) into normalization condition (98) gives 

(101) a S £ a A . J _ _ - _ L i 

Secular equation corresponding to system of equations (97) can be expressed in the 
form of expansion of determinant \S?\ = 0 into its algebraic complements 

(102) \y\ = £ 9>SS.ASS. - o =>"_>... 4=- - - _^_ 
*._ - 1 s ' - l „ „ , 
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where s is arbitrary index from 1, ..., n. Comparing (102) with (99) one obtains 

(103) a,. - ±L 
Asn 

Since s is arbitrary, s = n can be chosen 

(104) a,. = 

Substitution of (104) into (101) yields 

(105) ml = -
An 

Z** 
д(oa=a, 

The total determinant \Sf\ is defined as 

M = I ( - I ) P ^ I P 1 - ^ P . - - ^ "Pџ 

дco sp дco 
ПPn 

(107) = ľ 

^ 1 1 • • • &U 

d<rsl s?d3n 

dco dco 

trnl • • . tr nn 

= LX 
дco 

Then eventually one obtains 

(108) 

дco 

The remained unknowns 0ts can be determined from (100) and (104). The generalized 
coordinates X\ and moments 0^ are able to expressed in terms of 0tn (see (95)) 

(109) 
*; = *. \J^-г 4-1 -*м кг + # 4 z -ftw n] 

[E* - < v^v *•« Яд - Q)v •! J 

*; = *. 1 ^ - 2 4 - -- fl-(v) " ? + 1 ^ s a"(v) ̂  I 
(E£ - cov y/COv S2 E^ - cov • • J 

and corresponding phonon amplitudes i/r and c/> (see (80)) 

*; - -1 ((VK) *; + 4- *;) = 4; v^- £->-» "?+ ->«w *?-
V 2 \ V^v / W2En~ My Si Sl 

(110) 

< = 4; (>»)x;" T - ^) = "T; ^ T T ^ Efl--W "?" ->-W ̂ '-
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= 2A„ (sl 

Since the amplitudes r/> and <p of one-phonon states are proportional to 0tn the 
arbitrary quantity quadratic in these amplitudes (e.g. the probabilities of electric 
transitions (85)—(88) from one-phonon states into yrast line) contains the factor 
(108) making possible to use the strength function [77] (compare (108) with (92)). 

As an example we can give the strength function of reduced probability of electric 
dipole transition from one-phonon state into the state of yrast line without change 
of spin A J = 0. Reduced probability of such transitions is determined by (85) 

(111) B(E 1; nv = 1, J - nv = 0, J) = | E ^ ° ( ^ + ^ ) | 2 

Substitution of (110) into (111) gives 

(112) B(E1; nv = 1, J -> nv = 0, J) = 

M V - V — COv s2 £ . , — COv si J 

Comparison of (112) with (92) yields the expression for the function P(co) 

A* V ^ — ct)v s2 -ti^ — cov si / I 

(113) 

where aS2 and asi are determined by (103). Corresponding expression for strength 
function is then given by definition (93) and (113). The relations for strength function 
of reduced probabilities of arbitrary multipolarity with arbitrary change of spin 
can be obtained by analogous way. 

3. Selfconsistency of residual interactions with average field 

As was mentioned in preceeding sections in practical calculations of particular 
properties of rotating nuclei it is usual to start with phenomenologically chosen 
deformed average field which violates the symmetries (2) of the total Hamilotnian. 
In order to restore these symmetries one has to choose the appropriate form of 
residual interactions. 

In this section the problem of restoration of symmetries of total Hamiltonian is 
discussed and the prescription for construction of residual interactions is proposed 
[131]. This prescription is based on the ideas of Pyatov [26, 27, 91—94]. The restora­
tion symmetry of Hamiltonian of nonrotating nucleus is discussed in [28], the 
restoration of translational symmetry of rotating nucleus Hamiltonian is analysed 
in [24]. 

So the starting Hamiltonian is supposed to have the following form (compare 
with (5)) 

(144) H = HAV-i ZGtPt
+Pr + KiV + *£> 
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Here the separable residual interaction is written in the form of summ of two parts 
according to parity of single-particle operators involved in each of these parts. 
Since in the framework of RP A the components of linear momentum commutes 
with the components of angular momentum and with the pairing operator Px the 
part Vr

(
es

} can be obtained from the restoration of rotational symmetry while V}~* 
is constructed from requirement of translational symmetry of total Hamiltonian. 

3.1. The restoration of rotational symmetry of total Hamiltonian 

The nuclear average field HAV is supposed to be of the following isotopic structute 
(see e.g. [61]) 

(115) HAV = Tkin + t U^(fh fiQ) + i U<*\Th fiQ) 
t = l i=l 

where rk i n is the kinetic energy operator. The proton and neutron potentials can be 
written as 

(116) U<»(r, pa) = lfi°\f, fia) + U^\r, pa) xz + U\>\r, pa) UCoul, T, pa) 

U<">(f, pa) = U™(r, pa) + U^\r, pa) xz + Uff(r, pa) 

Here Ul°\f, jS )̂ and L7cl](r, pQ) represent the isoscalar and isovector potential, 
respectively. Uls(f, fiQ) is the spin-orbital interaction potential and UCoui *s a Coulomb 
term. The symbol fSQ denotes the set of deformation parameters and zz is the z 
component of isospin for a given nucleon. Since the deformation f}Q depends on 
rotational frequency Q, the index Q is prescribed to /?. In what follows, we restrict 
ourselves to the restoration of rotational and translational symmetries violated by 
the isoscalar and isovector parts of (116). The Coulomb term can be treated in the 
same manner. The restoration of translational and rotational symmetries violated 
by the spin-orbital interaction is quite a complicated problem. Nevertheless, one 
may expect that spin-orbital term is not substantional for investigation of properties 
of the state near the yrast line [26]. Therefore, the spin-orbital term will be omitted. 

The isoscalar and isovector potentials are usually taken in the form [61] 

(117) U™(r, pa) = - V0f
l0\r, pa) U^l\r, P0) = Vx f

l\r, pa) 

where V0 and V± are the depths of corresponding potential wells, and fm(r, fin) 
are the functions depending on the nucleus form. For instance, in the case of a de­
formed Saxon-Woods potential f[T](r, fiQ) is represented by the Fermi distribution 
[61]. Since the components of angular momentum Jt commute with the pairing 
term Hpa i r in the Hamiltonian H, the rotational symmetry (2) is violated only by 
a deformed average field HAV, and Hpair needn't be taken into account in restoring 
rotational symmetry (2). 
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For further consideration it is convenient to express the single-particle potential 
in the form of the expansion in spherical harmonics 

(118) / « ( r , ft,) =- £ I /!&?, A,) YLU(f) x = 0, 1 
L = 0 M=-L 

even 

where fLM(r,PQ) = fLlM(r, fiQ). As a consequence of the cranking Hamiltonian 
invariance with respect to rotation Rx(ri) and space-axis inversion, only the even 
values of L remain in (118). Therefore, the nuclear average potential can be written 
as sum of the spherical symmetric part U1Q\PQ), corresponding to the term with 
L = 0 in (118), and the deformed nonspherical part <5 Ulx\f}Q) 

(119) c M ( ? , ft,) - «M(ft,) + s V'(p„) 

even 

It is evident that the Hamiltonian rotational symmetry is violated by the nonspherical 
part of (119) 

(121) [U[T](r, pQ)9 Jv] = [<5 U^(PQ), Jv] * 0 

For every value of Land M of expansion (118) we can construct the system of opera­
tors 

(122) fl%r9pQ)YLJif) fi= -L,...,L 

which obeys the commutation relation with the angular momentum 

(123) [/ffi(r, fia) YLfl(r), J , ] = J[L(L + 1)] (L/i lv | Lp + v)fi&(r, ft,) YLM+V(r) 

Instead of the system of operators (122) one can take a wider class of operators 

(124) g?M(r, ft?) Yjf) 

where gLM(r, f$Q) is an arbitrary linear combination of the radial function 

(125) g™(r, pa) = £ flSj^(L)/gJ.(r, ft,) 
M' = 0 
even 

The ensemble of the operators (125) is used for construction of the residual inter­
action VReV- Introducing the operators 

(126) F%\M) = g™(r, pa) Yjt) FL\\M) = «&(- , ft,) YLft(f) z 

the residual interaction V^s
} can be searched for in the form 

(127) VR
(
eV = O f t , ) + KIKPn) 
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where 

C 3 (ßa) = - S U[0] (ßa) - Ş t І ì FүJЦм) П°ДM) 
2 L = 2 M = 0 д = - L 

(128) 

Î Í Ж ) = - * ^ Ж ) + ~ І І ì ВДм)F^(м) 
2 L = 2 M = 0 џ=-L 

even even 

Now the total Hamiltonian H (114) can be written as 

H = Tkin + HP a i r + UC0](?, pa) + Ut1](r, ft,) + v™(&>) + O ! ? o ) + *& = 

= TkiB + ifPa!r + UH/?*) + UP(po) - ^ £ i i FZ\M) F™+(M) + 
2 L = 2 Af = 0 / t = - L 

even even 

+ T£ I E W W + F'-' 
2 L = 2 A f = 0 / i = - L 

even even 

As a consequence of the concrete form (128) of residual interaction, the nonspherical 
parts d Ulr\pQ) cancel in (129), and therefore H is rotational-invariant, [if, Jv] = 0, 
for arbitrary constants aM^M,(L) (because of [VRe~s

), JV]RPA = 0)- The constants 
alMM'(L) will be determined from the conditions of self consistency of the residual 
interaction with the average field. The Hartree-Fock-Bogolubov averaging of (l) 

with H given in (129) must yield <fi| H'|Q> + X(-EIa/aI + -VI ai)- This leads 
j 

to the condition 

6UW = _ Yl £ £ £ [ < Q 1 jrtor ( M ) | Q > F m ( M ) + < f l | Floj(M) | f l > F m + ( M ) ] 
2 L = 2 M = 0 / i = - L 

even even 

(130) 

Ô Uci] = ş £ ì i [<û| эдм) |O> ЭДM) + <ß| jrøлo |o> шщ 
2 L = 2M = 0 џ=-L 

even even 

where (Q\ F|0> is the mean value in the states of yrast line with a given rotational 
frequency Q. It is reasonable to suppose that the single-particle density matrix 
O[r](r, pn) has the same symmetry properties as the single-particle potentional of 
a deformed average field of s rotating nucleus. In that case one can write, in analogy 
with (118) 

oo L 

(131) Qaz\r, Pa) = I I &h(r, ft,) YLM(r) 
L = 0 M=-L 
even 

where QL

x

M(r, pn) = Qll-M(r, PQ). Using (131) the mean values of the operators 
FL°

](M) and F L^(M) have the form 
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(132) <fl| ^(M) |fl> = £ aMM.(L) b%}M(L) 
M' = L 
even 

<fl| F%(M) |fl> = t £ <&2,.(L) Í>^M(L) 
M' = 0 
even 

where 

(133) bMM. = | /™(r, fl0) e\!M(r, /?„) r2 dr 

So, we have two expressions (130) and (120) for the nonspherical part of average 
potential (119). Comparison of these two expressions with the use of (125), (126), 
(132) and (133) gives the equations for unknown constants 

(134) i I *£.*. (L) \bM\ (L)/&?„ (r, fia) + &$„(L)fI2' fr A»)] = /g? ('. Po) 
M'M" 
even 

Here KMM ' (L) represents the real symmetric matrix 

(135) x™(L) = [a[t](L)]r a™(L) 

One can suppose that the radial dependence of the average potential has the same 
character as the radial dependence of the mass distribution. Then, the radial function 
QL

x
M(r, Pa) of the density matrix in (133) can be substituted by the corresponding 

radial function f£M(r, fin) of the average single-particle potential. In this case &MM' 
defined in (133) takes the form 

(136) b™M.(L) - hMM,(L) = |/™(r, pa)j™.(r, 0O) r2 dr 

and the self consistent equation (134) can be rewritten as 

(137) i I mM-m\(L)f]:M.. (r, pa) + &$&)/&. (r, ft,)] = / « (r, pa) 
M'M" 
even 

The solution of (137) is 

(138) £ ^M»( i )^>( I - ) = ^M-
M' = 0 

even 

hence 

(139) x[T](L) » 2[T](L) = [ ^ (L ) ] " 1 

So, the final expression for residual interaction V^ restoring the rotational 
symmetry of the total Hamiltonian is 

(140) V& = 0 />« ) + VklXPa) 
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where 

VS}(fia)=SUl01(Pa)-

~ ".? I £ Z [5[0] (I-)]*rV ( / $ • (r, Pa) Yjř)Y \f^..(r, fia) Yjř)) 
2 L = 0 fi=-L M'M" = 0 

even 

(141) 
V&(Pa)=-&lfill(fia) + 

+ T Ž Ž í [6[1W]MV(fí^ 
2 L = 0 / x = - L M ' M " = 0 

even 

In the case of axial symmetry of the average field (QLM(r, fin) = &MO QlLo(r> Pn)) onfy 
one element of the matrix bl$M.(L) is nonzero 

(142) bMUL) = bM(L)8M05M.0 

where 

(143) b™(L) = Un(r, Pa) Q%(r, Pa) r2 dr 

If in this axial-symmetry case we restrict ourselves to the isoscalar part of residual 
interactions and to multipolarity L= 2, the Hamiltonian (129) can be rewritten as 

(144) H = Tkia + U[°\H) + Hp,lt - i £ x 2 Ff?(M = 0) 1*$+{M = 0) + V& 
H=-2 

where 

(145) x2 = V° 

(f\V(r,Pa)AV(r,Pa)r2dr 

and 

(146) FZ\M^0)=fiV(r,Pa)Y2ll(r) 

The form (144) of Hamiltonian is similar to the one usually used in practical calcula­
tions (see e.g. [10]) except for the radial dependence f!j0

](r, fiQ) of the residual inter­
action which is generally different from r2 used in paper [10]. 

3.2. The restoration of translational symmetry of the total Hamiltonian 
(in the framework of RPA) 

The restoration of translational symmetry of the total Hamiltonian in a rotating 
nucleus violated by the deformed average nuclear field is described in [24]. Therefore, 
here only the basic formulae and ideas are given for the purpose of completeness 
and mutual relation of translational and rotational symmetries. 
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Since the components of linear momenta PM {ji = x, y, z) commute with the HpmiT 

and with angular-momentum components in the framework of RPA, one can con­
struct the negative-parity part PR~) of residual interaction, according to the method 
of Pyatov [26], in separable form 

(147) V&=-1 £ ^.["AV^^PALSAV,?^^ 
V = x,y,z 

where the strength constant tf ^ will be determined from the requirement of transla-
tional symmetry \B, P^\ = 0 for all \i. Using (147) we have 

(148) 

[H, PM] = [HAV, Pfi\RPA - i E ^n{\HAV, Py\RpA, [Pfi, \HAV, PV\\RPA} = 0 
v-=jc,y,z 

where the symbol { , } denotes the anticommutator. In the RPA order (i.e. P., 
is linear in bosons and HAV is quadratic in bosons) the double commutator in (148) 
is a c-number, which means in the RPA order 
If we choose the double commutator as 

(149) \P„ [RAV, PVJ\RPA = <fl|[l»„ [RAy, PJ]|fl> 

(150) [-V[--W,-%]]«** - A , 
and assume 

x.-l 

the translation invariance condition [H, Pv] = 0 is fulfilled automatically. 
As in the case of restoration of the rotational symmetry, only the isoscalar and 

isovector term is considered in the average potential (115) (Coulomb term can be 
treated in the same way, and the spin-orbital term is supposed to be unimportant 
for the states near the yrast line). Substituting of (115) into (147) gives 

(152) FR e ,= - i £ ^ £ v
+ [ T ] i ? v | > ] 

t = 0 , l 
\^xtywz 

where 

(153) U°\ = lUm(r,Pa),Pv-]RPA 

U^ = [Vll\r^a)rz,Pv-]RPA 

The strength constant HV
T] is given by (151) 

(154) ^ = <Q\[P„mW> 
From the symmetry properties of the operators Pv (see appendix) and from the 
symmetry of potential it follows (up to the second order in boson expansions) 
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*w ~ Rim = I^>[r] o ; - &„), ? = an) 

R?1 ~ 4t](i) = - ^ E ws)w (*; + tv) + ^ H (bt + ftj 

where r£k)[f] are the quasiparticle matrix elements of corresponding operators (see 
(A5) in appendix). 

4. Conclusions 

The SCCM + RPA method, described above, makes possible to obtain the quan­
titative informations about the structure of states of rotating nuclei in the framework 
of microscopical theory. However practical realization of this method is connected 
with the tedious numerical calculations and with introduction of number of approxim­
ations. In spite of this problem the SCCM + RPA approach have been succeeded 
in description of many characteristics of nucleus caused by rotation, e.g. isovector 
dipole excitations [70, 98], isoscalar quadrupole low-lying states [48,49, 51], 
giant dipole resonance in rotating system [121, 122. 123] and others. The particular 
results of numerical calculations with the SCCM + RPA method will be discussed 
in the following paper. 
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Appendix: Boson representation of single-particle operators 

Every single-particle operator can be expressed in the form 

(Al) G = £{<fc| G\l> c+c, + <k\ G\l> c+
Cj + <E| G|/> c+cx + <E| G\l> c+ c,} 

kl 

Further the operator G is supposed to have the following symmetries 

(A2) TGT'1 = yTG T=WTK 

<fc| G|/>* = r<fc| G|/> G+=hG T2 = ( - l ) 2 

Rx(n)6R;l(n) = yxG 

\2J 

where Tis the operator of time reversal, QlT is the unitary operator, K stands for the 
operator of complex conjugation. Numbers yx= ± 1 , r = ± 1 , yx= ± 1 , h = ± 1 
characterize the symetries of given operator with respect to corresponding trans­
formation. In consequence of Kx(7r)-symmetry of single-particle and quasiparticle 
vacuum combining (7) and (A2) we have 
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(A3) <fc| G|J> = ytr<fc| G|/> 

<fc| G|/> = -ytr<fc| G|/> 

<fc| G|/> = -yx<k\ G|/> 

<fc| G|/> = yx(k\ G|/> 

From (A3) it follows 

(A4) 6 = £<k | G|/> (c+ct + yTrc+Cj) for operators with yx = + 1 
kl 

G = £<k | Q\V) (c^cj — yxrc+c^) for operators with yx = — 1 
ki 

In next considerations the assignment (? (± ) will be used for the operator with yx = + 1 
Using the Bogolubov transformation (10) and introducing two-particle bosons 
b+

l9 b+
h b+j (see (17)) one can write for operators Gi + )(yx = +1) the following 

expression 

(A5a) G(+> = <fl| G(+)|fl> + G (+) + G (+ ) 

GKV = JjlWibtj + hrbi3), a(+> = £<fc| G^+)|/> {A[B\ - ?t/,B^f) 
ij kl 

G& = Z<fc| G(+>|/> {{AlAJ - yMBi)Z(brjJm + brmbJm) + 
ijkl m 

+ {yzrAM ~ hrB\B\)YSprmbjm + b^b-J) 
m 

and for operators G (_ ) (yx = — 1) the following one 

(A5b) G("> = Gtf + G(
2-,> 

Gtf = - '- UdTWj - rhbtJ) - yMjKKj ~ rhb,,)} 
2 ij 

^ • ) = E<fclG(->|/>(AiB{ + 7thA/Bi) 
kl 

9\V = E<fc| G^\\y{yM\Bi + A\B\) 
kl 

G& = iZ</c| G<->|/> {{A[A\ + yJiBlBtiYSPmb*. - &+
mfeim) + 

ijkl m 

+ ihriyMiM + B\Bi) H O , * - btmbJm) 
m 

In (A5) the symbol G[+J and G[+J denote the linear and quadratic term in boson 
expansion of given operator G (±). The quantities g\f) and g[f) represent the quasi-
particle matrix elements of G (±). From (A5) one can see that the operators G ( _ ) 

(with negative signature) have zero mean values in quasiparticle vacuum \Q}. AS 
a consequence of Rfc(7r)-symmetry (k = 1, 2, 3) of average nuclear field it is con-
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venient to choose the phase of wave function so that the time reversal operator 
has the form 

(A6) T=R;1(TZ).K 

i.e. ^lT = R;x(n). In this case the operators of coordinates r, linear momentum P 
and angular momentum J fulfil 

(A7) TfT-^f ] < * > * = - < * > <PX>* = <PX> < / , > * = <jr,> 
TPT'1 = - ? [ = > <y>* = <>>> <P,>* = -<P,> <J,>* = -<J ,> 
TJT- 1 = - J J <z>* = -<z> <P2>* = <PZ> <J,>* = <JZ> 

where in (A7) the symbol < > denotes the matrix element of corresponding operator. 
Using (A7) and (A6) it is possible to obtain the following symmetries of multipole 
operators QX]l = rxYXll 

(A8) Ql = ( - if Qx-> R&) & , RI'(*) = ( - 1)A &-„ 

In the cranking Hamiltonian H' (1) and in the transition operators (see sect. 2.3.4.) 
there are the combinations of multipole operators QXfl given in (8) and in table bellow. 
Using (A7) and (A8) one can derive the values of yx, yx9 r, h for all operators (8), 
operators of coordinates, linear and angular momentus. These values, allowing to 
one to determine the boson structure of corresponding operator in terms of (A5), 
are collected in table. 

The zero-boson and linear-boson terms for the particle number operator # t 

(T = N, Z) and for pairing operator PT
+ (see (6)) have the forms 

(A9) <Q\Nt\Q} = Ym)2 + (Bl)2] 
kl 

Nt{l) = Znh{b!} + bi3) n\j = £ {Al
kB{ - B&ft 

ij *€T 

Table: Symmetries of single-particle operators 

Operator yx yx h r Operator y, y, /i r 

®V = £io - + + - fV = \(QZ2 + Q3-2) - + + -
V2 

^i+> = ~ (6,1 - fil-l) + + + - F(3+) = -j(Q33 - ^3-3) + + + " 

^i_ > = -J" (Gil + Ol-l) - + + + E3_) = ~ (Q33 + 63-3) - + + + 
V 2 V 2 

6o+) =620 + + + + h + - + + 
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+ + + -

- + + + 

+ + + + 

- - + 

- - + + 

+ + 

Q\+) =-^( (3a i + Ô2-i 

Q[+) ^^-AQzi-Qi-i 
V2 

Ô2+) = ̂ JZ(Û12 + Û2-2 

V2 

QV = --(Un - Û2-2 

W = Ô3Ô) 

r(
1

+)=^(Ô31-Ô3-1 

n _ ) =-L(Ô3i + Ô3-i' 
V2 

r(2+) = - ^ ( ^ 3 2 - 0 3 - 2 

(A10) 

pt
+(l) = p<+) + p<-> 

I>(+) = I P . / K " + bi}) p\f = E ( 4 4 + i^D 
0" ÂC6T 

* + ) = Zrf7}(*ij - M 

At the end of this appendix we present the expressions for quasiparticle matrix 
elements of the operators QXflx (see (76)) 

A\Q) = 4}+) 

) - + + - Py - - + -

- + + - P. - - + -

+ + + - ќ + + + -

- + + + Ÿ - + + + 

) + + + + Ź - + + -

<ß|Ą+|ß> = I [ - 4 ^ 
fc.Iєt 

+ 4-Я 

jĄ\» = ^(-id?Гy-diГ) 
4 

^ " - ^ ( - и ï Г + díП 

-*ПГ1)--7(-«-í?"> + -Чи">) 4 

җ\ •i) = V?r-/áì?->-(-fdg->-dy-») 

-<г0) = ^< . í . + ) - -Ur ) 

4 ^ - ^ - - ^ ( - í í Г + łííì-O 
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-421) - -£(-flg-} + . „ n ^rg-l> = - -£ (42-> + n m 
4 4 

-**22) - ^<?*2+) + i^<z*{+) + urg-*> = - ^ «g+> - i ^ } + > + 
4 2 4 2 

. V 3 „(Q+) . _vr_ _,(o+) 
+ 2V2'M + V - * 

^ ? 0 ) = ^L ( z 3 + ) -^LV + ) 
4 4 

A3l) - - ^/* (r ) + .-£/.?-> + ^*?-J) = ^ z * ? ^ + i^fir -
16 8 16 o 

, V 2 /•(!") / V 3 f ( 0 - ) __ V 2 f d - ) _ / V 3 f ( 0 - ) 
+ l 6 / w T A ' l 6 A ' T A ' 

^ ? 1 } = ̂ /, (z3- ) + i^/*(z2") - ^rg-1* = - ^/, («3- ) + i^-5/iz2") + 
16 8 16 8 

- ^nr - t£j$-> + f6fir - ifnr 

^ ? 2 ) = ^ 3 L ( , 3 + ) + «• ^ / * ( z 2 + ) + ^ * ? - 2 ) = - ^ / ^ z 3 + ) + 1 ^ / * s 2 + ) -

+ ^/* (z 1 + ) , - - £ / £ + ) 

4 4 

.^*?3) = - -£/.?-> + .-£/.?-> - ^ r 3 ) = ^ f / r + ^fir + 
16 8 16 8 

V 3 0 /•(--) • g 'Vs f(o-) , V 3 0 f ( i - ) . * V s f(o-) 

" l 6 " / w + 4 ^ A ' 17 /M 4~V2"A' 

^?3 ) = ̂ / * ( r ) + i^ftr* + urg-> = - -£/&-> + «^/s
(,2-) -

16 8 16 8 

+ V_? /-a-) + i V _ rfp-> _ ___ wi-) , _V_ wo-) 
16 ^ 4 V 2 7 " 16 Jn 4V2 " 

where dJT\ 4\~\ 4\+), <.*?+\ <Z*?+\ _J+ ) . « g - \ <Z*.-\/*(z1+U(z2+\ /* (z3 + \ /{P, 
/*? \ /u - ) > /*/ } represent quasi-particle matrix elements of the operators Qi{

Q
 h 

&*\ Qo+\ ^ i ± ) , fi.**. Po~\ -?(i±), £(2±}> - ^ which can be determined by means 
of (A5) with using of table given in this appendix. 
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