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In this paper we find out a large class of P-cyclic hypergroups with period introduced in [4].
V ¢&lanku sestrojime velkou tfidu P-cyklickych hypergrup s periodou.

B noknane Mbl OCTpouM GOMBLION Kac P-UMKIMIreCKMX THOEPrpymil C IEPHOAOM.

In this paper we use the definition of hypergroup introduced by F. Marty [3]
in 1934. ‘

Definition [1], [2]. Let H be a non empty set equipped with a hyperoperation,
x:H x H-> PH):(x,y)>x*xycH, x*xy*0

(Weset AxB=axband a*xB={a}*B, Axb = Ax{b})
acA
beB

which is associative x#*(yxz) = (x*y)*z, Vx,y,z€H,
and the condition x*H =H=xx = H, Vxe H is valid, then
the hyperstructure (H, %) is called a hypergroup.
We will study cyclic hypergroups as they are introduced by Wall in [5] i.e. hyper-
groups {H, *) that have an element h € H, called generator, such that

H=huh’u...uh"u....
If there exists an integer n > 0 such that
(1) H=hoh*u.. Ul

then the hypergroup (H, *) is called cyclic with finite period. If n is the minimal
number for which the relation (1) is valid then we say that h has period n. The cyclic
hypergroup (H, ) is called “cyclic with period” [4] if all the generators have the

*) The results of the parer were presented at Charles University during authors’ stay in Prague,
Spring 1986.



same period. The cyclic hypergroups are the ones, that have been called P-cyclic
hypergroups [4] and defined as follows:

Let (H,, *) be a cyclic group with n-elements and P < H. If we consider the
hyperoperation

1 H x H-> P(H):(x,y)—x*"y =x.y({e} U P)
(where e is the unit element of (H, +)) then the (H,, ** is a cyclic hypergroup with
period <n.

In the following we deal with singletons for P i.e. P = {a”*} where a is a generator
of (H,, *). A large class of P-cyclic hypergroups with period is obtained. We write z*
for the powers of z in the group, and z*! for the powers in hypergroups, and we
write 2"t instead of (z”)*.

First we prove the following:

Theorem 1. If (n, x) = 1, n > 2, then the P-cyclic hypergroup {H,, **") is not
cyclic with period.

Proof. Since (n, x) = 1 we have (n, x, n) = 1, hence [4], the element a" = e is
a generator of period n. On the other hand from Thm. 2 [4] we obtain that the
element a* is a generator with period [n/2] + 1 where [n/2] = z when n = 2z or
n=2z+ 1.

Therefore {H,, ***) is not cyclic with period.

In order to prove our main theorem we first prove the following Lemmas.

Lemma 1. Let (H,, ), n > 2, be a finite cyclic group. We suppose that n = x/
and % < 1. Then for the P-cyclic hypergroups (H,, ****> where (@, %) = 1 and for
all u e No such that (4, ¢4, n) = 1 the following is valid:

The set a*[*], where 1 < v £ x, has exactly v elements different from the elements
of the set

A O L2 AU RN L S
Proof. The set
atl = {auv’ auv+¢1, o auv+(v—l)¢l} — {a#v+w1: 0<x< v}

has at the most n elements.
We can also write

@ty g2y . ual ™ = {g** | S s<vand 0=t <s}

First we prove that
a A (@M. uat ) =0.

Suppose the contrary. Then we can write
atvtEel = gnstiek oy + x@d = (ps + tod) mod n =

=>u(v —s5)+ @Ax —t)=0mod n = 4| ulv — s)



but (u, A) = 1 (since (u, @A, n) = 1) hence A |v — s which is a contradiction. It
remains to prove that the set a*I*) has v different elements. Supposing the contrary,
we can find x # y with

0<x,y<v, suchthat a"*x?* = g""* = (x — y) 9l =0mod n =
=>(x—y)p=0modx=>x|x—y
which is a contradiction.

Lemma 2. With the assumptions of Lemma 1 we have the following:
The set a*’*"1 where x — 1 < v £ A — 1, has exactly » elements different from
the elements of the set
a'tly gM2ly . v e,

Proof. We observe that in the set

au[v+1] = {au(v+l), au(v+l)+(p)., e au(v+1)+wp}.}

we have
au(v+1)+mp/1 — au(v+l)’ au(v+l)+(x+l)<pl — au(v+l)+qul’ o
Therefore
gtv+11 = {au(v+l)’ au(v+1)+¢l, ”.’aﬂ(V+1)+(x—1)¢l} — {au(v+1)+x¢z: 0<x< x} R

We shall prove that
a'*t (g Y gPly v atl) =0.
Indeed, suppose that
Pt DFxed — gustted  ywhere 1 <s<v and 0LZt<s.

Then p(v + 1 —s) + @A(x —t) =0mod n and so A|v + 1 — s which is a con-
tradiction.
Finally we observe, as in Lemma 1, that the set

au[v+1] — {au(v+1)+x(p/l: 0 < x< X}

has x different elements.

Lemma 3. With the same assumptions as in Lemma 1 we have the following:
The set a***¢) where 1 < ¢ < x, has exactly x — ¢ elements different from the
elements of the set
atlily Ly gHlAte11

Proof. We observe that in the set

qtli+el — {a“(“"’), au(l+e)+¢l, ey au(1+o)+(;.+p—1)w}

we have

au(l+a)+x¢l = au(l+e)’ au(l+9)+(x+ Dei _ au(i.+q)+<p1 , etc.



Therefore

ghttitel — {.au(lﬂz)’ e au(l+g)+(u—1)<p4} _ {ﬂu(l+e)+w¢l: 0=w< x}

and we deduce, as in Lemma 1, that the set qul4+el has exactly » elements.
Now we want to find which of the elements of the set a*l**9 belong to the set

'ty o gtitet o fgestiedi | < o2 A+ 09— 1,05t <}
i.e. we want to find out w’s such that
qrtotoed aﬂs+t¢i.'<$‘u(l + 0~ s) + (p/l(w _ t) = 0modn <

<0g—-—5s=0modlep=s.
In this case we have

A + oMw — 1) =0modn or u + ¢(w —t)=0modx.

But (¢, x) = 1 so there exist 4, 4, € Z such that 1,¢ + A,x = 1, therefore 1, ou +
+ Ayxp + @(w — t) = 0mod x or A+ w —1t)=0modx or Liu+w —t =
= O mod x.

Finally w = (t — A;u) mod » and since ¢ = s and 0 <t <s we can take t =
=0,1,2,...,0 — 1. This means that we have g different values for w, therefore o
elements of the set a*/**¢! belong to the set

atttly ..y gtt**e-11 Q.E.D.

Theorem 2. Let (H,, +) be a finite cyclic group, where n > 2, n = %A, » < 1. Then
the P-cyclic hypergroups <H,, +***> where a is a generator of (H,, *) and (¢, x) = I,
are cyclic with period » + 4 — 1.

Proof. We know ([4], Th. 1) that an element a* is a generator of (H,, ****) iff

(1, @4, n) = 1.
Let a* be a generator of {H,, *““). Then, according to the Lemmas 1, 2, 3 the set

a1y g2y | U gttxtA-1]

contains exactly n different elements, i.e. every generator a* has period » + A — 1.
Precisely,

— 1)
the set a*("U ... U a7 has exactly Qf—z/) elements (Lemma 1)
the set a*PJ U ... U a** has exactly (2 — x + 1) % elements (Lemma 2) and
- % — 1
the set a***11 U ... U a****7 1 has exactly (—2‘)5 elements (Lemma 3)

Therefore the set a1y ... U a**+*~11 contains n elements.

Theorem 3. Let (H,, -) be a finite cyclic group where n = »(x + 1) > 2, and let
a be a generator. Then the P-cyclic hypergroups <(H,, **""», where (¢, » + 1) = 1,
are cyclic with period 2.

In order to prove this theorem we shall prove the following Lemmas.



Lemma 4. The set a*I"* '], Vu e No with (g, %, n) = 1 and 1 < v < x, has exactly
v + 1 elements different from the elements of the set a*l'1 U a1y ... U a*I"
Proof. We follow the same procedure as in Lemma 1, and deduce that

't in(@y . uat) =90,

Moreover, since (¢, % + 1) = 1, it is clear that the v + 1 elements of a*I**!) are
different from each other.

Lemma 5. The set a***%, Vue No with (u, ¢x,n) =1 and 1 < ¢ < %, has
exactly ¥ — ¢ + 1 elements different from the elements of the set a*!’1 U a"H U ...

s U gilete— 1]

Proof. The proof of this Lemma goes as in Lemma 3.

Proof of theorem 3. The element a* is a generator of (H,, ***") iff
(1, @, %(% + 1)) = 1. Therefore according to the Lemma 4 the set a*t'1 U a"21 U ...
... U a"™ has x(x + 1)2 different elements and from Lemma 5 we see that the set
a'** 1y . U a"? has x(x + 1)[2 new different elements. This means that the
set a0 a1 U ... U a1 has exactly x(x + 1) = n elements and so a"t'1 U ...
ouat®™ = H

References

[1] DuBreiL, P.- Algeébre, Vol. I, Gauthier-Villars, Paris, 1963.

[2] KONGUETSOF, L.: Sur les hypermonoides, Bulletin de la Société Mathématique de Belgique,
t. XXV, p. 211—224 (1973).

[3] MyrTY, F.: 8me Congrés de Mathématiciens Scandinaves, Stockholm, p. 45—49 (1934).

[4] VoucloukLs, T.: Cyclity in a Special Class of Hypergroups, ACTA UNIVERSITATIS
CAROLINAE - MATHEMATICA ET PHYSICA, Vol. 22, No 1, p. 3—6 (1981).

[S] WaLL, H. S.: Hypergroups, American Journal of Mathematics, Vol. 59, p. 77—98 (1937).



		webmaster@dml.cz
	2012-10-05T23:36:34+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




