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M.-M. DEZA*) AND L. G. ROSENBERG**)
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The paper is motivated by the algebraic treatment of generalized designs and it extends
certain ideas of Graver and Jurkat. The main part is devoted to the study of convolution in fairly
general setting extending semigroup rings.

Clanek p¥ina$i algebraicky pristup k jistym kombinatorickym strukturdm a zobeciiuje
prace Gravera a Jurkata. Hlavni ¢ast je v€novana studiu konvoluci v dostateén& obecném pojeti
roz$ifujicim pologrupové okruhy.

CraTtha NpeasiiaraeT HEKOTOPHIA anreOpamyeckuif MOAXOX K KOMOMHATOPHBIM CTPYKTypam
onpenen€éHHOro TUNna u ABaseTcs 06o61ennem pabot I'paBepa u FOpkarta. E€ rnmaBras yacTb nocss-
LLIEHA W3YYEHHUIO KOHBOJIOLMA, B JOCTATOYHO OOLIEM NMOHUMAHHH, PACIIUPSIOIIUM TOTYTPYNIOBbLIE
KOJibLA.

Introduction

This paper was inspired by Graver and Jurkat’s study [5] and its ideas come
both from the first author’s papers [1, 2], the joint paper [3] and the unpublished
paper [9] by the author. The motivation comes from generalized design (§ 4) and
the paper studies convolution as a natural tool which for binary designé was intro-
duced in [5, 6]. It became soon clear that the technique extends to non-binary
designs and, in fact, the constructions hold for semigroup rings. In [9] semigroup
rings were extended to structures with convolution in which the semigroup D is
replaced by a partial groupoid (binary operation), the ring Ris considerably weakened
and the set & of maps D — R with.finite support is supposed to have only a weaker
finiteness property. In this paper we go even further and replace the semigroup D
by a multigroupoid (hypergroupoid) D, o) which is a map from D? into the subsets
of D (equivalent to a ternary relation on D). Within this framework the above
assumptions seem to be as general as possible. Although the presentation is inevitably
cumbersome, this approach keeps up with the algebraic tradition to start with the
highest meaningful level of generality and add further restrictions only when they
become necessary. For example, we often have to assume that R is distributive

*) CNRS Paris, 17, passage de I’'Industrie, 750 10 Paris, France

**) Math. et Stat., Université de Montréal, C.P. 6128, Succ. A, Montréal, Québec H3C 3J7,
Canada

49



(Propositions 1.9, 2.2), is a ring (Proposition 2.5), satisfies the medial law (Pro-
position 1.9) and R* # {0} (Proposition 2.2 and 2.5). We concentrate on three main
topics: 1) a homomorphism of the convolution on the direct power, 2) a similar
homomorphism induced by a family {A(d): d € D} of subsets of D, in particular,
for A/d) induced by an order on D and 3) extensions of the above to direct sums
and products. In fact this algebraic part became so large and of independent interest
that we have decided to restrict generalized designs to a mere introduction. For this
reason it is not shown that they form convolutive R-structures (for binary designs
this is indicated in [5]).

In § 1 we define the general convolutive R-structure on a subset & of DR, bring
forth a few common examples and define a selfmap ¥ of &. For R distributive and
satisfying the medial law we give a sufficient condition for { to be a homomorphism
of the convolution into the direct power. This map is a sort of linear transformation
of &. With a certain cancellation property the above condition is also necessary.

In § 2 we study a similar selfmap y based on a map A4 from D into the subsets
of D. For R distributive and R? # {0} we give a necessary and sufficient condition
making ¥ a homomorphism of the convolution into the direct power. In particular,
if R is a non-zero ring, < is a locally finite order on D and A{d) = {xe€ D: x = d}
for all d € D, we give a necessary and sufficient condition for y to be an isomorphism
of the convolution onto the direct power. In particular, if the multigroupoid is
a partial groupoid with domain F (i.e. [x - y| = 1 for (x, y) € F and x o y = 0 other-
wise) the condition is 1) < is a partial meet-semilattice in which x and y have a com-
mon lower bound (and hence the meet x A y exists) iff (x, ) € F and 2) the operation
of the partial groupoid is the partial meet.

In § 3 we introduce direct sums and products of convolutive R-structures and
show that the maps and conditions from §§ 1 —2 naturally extend to direct sums and
product. This part may be seen as a natural extension of direct sums and Kronecker
products of n x n matrices (over a ring).

Following [5] and [2] in § 4 we briefly outline some designs and generalized
designs from our point of view. The latter are based on the semilattice order < on
s=1{0,1,...,s — 1} in which 0 < i (i = 1,...,s — 1) i.e. 0 is the least element and
all the others are maximal elements (s > 2). We birefly mention the connection
between (3™, <) and the cross-polytopes. The generalized designs are presented as
f:s™ —> N such that the map ff is constant on certain subsets of s™. We give the
corresponding combinatorial matrices. For s > 2 this is essentially unique in contrast
to the case s = 2 where < is the order of a boolean algebra an and so admits also
v and A [5].

Since the paper involves unusual structures, we have tried to make it self-
contained and give most of the proofs, which albeit routine, may help the reader.
A reader notinterested in infinite D or outlandish R may think about a semigroup
ring over a finite semigroup D and an associative and commutative ring R with
identity and ignore all the cumbersome assumptions.
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1. Convolutions and Homomorphisms

1.1 Let R be a nonempty set with two binary operations + and * and an ele-
ment 0 such that {R; +, 0) is an abelian monoid and x 0 = 0 x = O for all xe R
(as usual, we often abbreviate a-b by ab). In other words, R = {R; +, *,0) is
a universal algebra with two binary operations + and - and a constant O such that

(1) x+0=x, x0=0x=0, x+y=y+x,

x+(y+2z)=(x+y) +z
holds for all x, y, z € R.

1.2 Let D be a set and D = {D; o) a multigroupoid (or hypergroupoid) on D,
i.e. (x,y) > xoy is a map from D? into the set #(D) of the subsets of D. Note
that fot x, y € D the subset x o y of D may also be empty. Equivalently, the multi-
groupoid - may be conceived as the ternary relation {(x, y,2):x,yeD, zexo y}.

Next let C be a family of subsets of D such that

(i) Cis an ideal of (#(D), <), i.e. Cis closed under union (X U Ye C whenever
X, Ye C and C is hereditary (Ye C whenever Y = X € C). Further C contains all
singletons {d} (d € D).

(i) Forall X, Ye Cand d € D the set

(2 {(x,)eX x Y:dexoy}

is finite and

(3) XOY:=U UXoyEC.
YeX yeY

Note that for D finite the conditions are equivalent to C = 2(D).

1.3 Let RP denote the set of maps from D into R. For fe R? put supp f:=

:={de D: f(d) # 0} and set

€ = Erpc = {fe R :supp fe C}.
Later we shall need the following maps. For r€ R and d € D let [r,,] be defined
by [r4] (d) = r and [r],(x) = 0 otherwise (thus [r],is a “spike” or Dirac function).
As {d} € Cwe have [r],€ &.

On & we can define pointwise the operations + and .. For f,gef let f + g
and fg be defined by setting (f + g) (d) := f(d) + g(d), and (fg) (d) := f(d) g(d)
for all- de D. Since supp (f + g) < suppfusuppg, by (i) we have f + ge 8.
Similarly fg € & because supp fg < supp f e C.
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For each x € R and f e & let x,f and fx, be defined by setting

(xuf)(d) := xf(d),, (fx,)(d):= f(d)x

for all d € D. Clearly both supp x,f and supp fx, are included in supp f and so x,f,
fx, €é.

1.4 We introduce another operation * on &. For f, g € & define f * g by setting

(4) (f*g)(d:= Y f(x)a(y)

dexoy
for all d € D. The sum is over the set of all (x, y) such that d € x - y which, according
to (2) is finite and so the value (f = g) (d) is well defined. Put X := supp fand Y:=
:= supp g. By definition X, Ye C. The summation in (4) may be restricted to
(x,y)eX x Y,sosupp(f*g) S X o Yand thus, according to (3), it belongs to C.
Thus & is closed under *. We call f % g the convolution of f and g. The algebra

E:= &+, % {y:yeR}, {y:yeR})
is called a convolutive R-structure. We consider a few examples.

1.5 Examples. 1. Let n be a positive integer, D := {1, ..., n}? and put (i, ) o
ofk, 1) :={(i, )} if j = k and (i, ) - (k,I) = 0 otherwise. Then E is isomorphic
to the set of n x n matrices over R with the standard sum and product *, r; and r,
are the left and right scalar multiples and - is the Hadamard (or Schur) product.
Usually R is assumed to be a ring but it may be also a lattice with zero (i.e. x + y
is the join or sup and xy is the meet or inf).

2. Let {D; o) be such that xo y = {x-y} where {D; -}, is a groupoid. Then
in (4) we sum over all (x, y) € D? such that x+y = d. In particular, if {D, *) is a semi-
group, and R a commutative and associative ring and C consists of the finite subsets
of D, then E is isomorphic to the semigroup ring of D over R. If, moreover, D is
a group, it is isomorphic to the group ring of D over R. For D = {N; + } where

:={0,1,...} is the set of non-negative integers the corresponding semigroup
ring is isomorphic to the ring R[x] of the polynomials in one indeterminate.

3. Let D := (N, +), C = PN)(all subsets of N)and R a ring. Then {&; +, *)
is isomorphic to the ring R[[x]] of formal power series in one indeterminate x.
This example can be modified to yield the ring of formal power series in several
indeterminates.

1.6 The following transformation of & is an extension of a linear transformation
of a finite-dimensional vector space. Let A: D> —» R. For d € D define the d-row
As: D > R of A by setting A,/x) := A(d, x) for all x € D. Suppose that for each X € C
the map A satisfies:

(1) X n supp 4, is finite for all d € D, and

(2) the set {d € D: X n supp 4; = 0} belongs to C.
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Given f € & put
(5) fHd):=Y 4/x) fx)
xeD
for alld € D. Put X := supp f. If f(d) + 0 then 4,x) f(x) + 0 for some x € D when
x € X N supp 44. Thus X nsupp 4, + @ and therefore by (2)

suppf* < {deD: X nsupp iy + 0} e C
proving that f* e &.

Let {G; +> and {G’; -') be groupoids. A map ¢: G — G’ is a homomorphism
of (G;-) into {G'; "> if @(xoy) = ¢'x) " ¢'y) for all x,ye G. Similarly for
r:G— G and r': G' > G’ the map ¢ is a homomorphism of {G;r) into {(G';r")
if ’r(x)) = r'(¢(x)) for all x € G. For constants 0 € G and 0’ € G, the map ¢ is
a homomorphism of {G; 0) into {G; 0’) if ¢ 0) = 0. Finally for universal algebras
G and G’ of the same type with at most binary operations the map ¢ is a homo-
morphism if it is a homomorphism for each operation separately. A homomorphism
of G into itself is an endomorphism. We have the following immediate lemma:

1.7 Lemma If the left distributive law
x(y 4+ z)=xy + xz

holds for all xeim A and y, z € R, then : f — f* is an endomorphism of {&; +).

If
(xg+ ..+ x)y=x 4+ ... + x,¥

holds for all positive integers n and for all xy, ..., x, € (im A) R, then ¥ is an endo-
morphism of {&; y,). If
y(xy + oo+ x,) = yx; + ...+ px,

holds for all positive integers n, all x,, ..., x, €(im 1) R and yux) = u'yx) is true
for all ueim A and, x € R, then Y is an endomorphism of {&; y;>.

1.8 Put
S:={y:yeR} X {y:yeR, y(ux)=u(yx) Vueimi, xeR}.

We shall see that certain cases ¥: f — f* is a homomorphism of E := {(&; +, *, §)
into E':= (&; +, *, S). (Although the universe is the same for both E and E’,
the map ¥ is not an endomorphism because * is replaced by -.) If  is a permutation
of &, this permits to describe E in terms of the more transparent structure E’. In
other words, the convolution may be then replaced by the pointwise product. As
we shall see, this is guaranteed if we have enough of “independent characters”.
First we need the following concept. Let A = R. We say that r € R is A-cancellative
if ar = a'r implies a = a’ whenever a is a sum of elements from A and a’ € A2
(i.e. ' = a,a, where a,, a, € A). We have:
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1.9 Proposition. Let R be distributive and satisfy the medial law

(6) (xy) (21) = (x2) (v1).
Further let A: D> — R be such that for each X € C all the sets X 0 supp 4, (d e D)
are finite and {d € D: X nsupp 4, + 0} € C.; Then:
(i) if foralld, x,ye D
(7) Ad(x) A(y) = X A2),

zexoy
then Y: f — f* is a homomorphism of E := {&; +,*,S) into E' := {&; +, -, S)
(ii) Conversely, if for each d € D there is an im A;cancellative element r € R?
and  is a homomorphism of (&; *) into (&, +, then (7) holds.

Proof. Let f,ge & and d e D. Using (5), (4) and the distributive laws we get

® (9@ = TR (+0) () = Tla) T 1) o) =

zexoy

= 2 (X A2) (f(x) 9(y)) -

X,y zexoy

On the other hand, from (5), the distributive laws, and the medial law (6) we have
) 7)) = (SA) ) () 90) =

= ny(la(x)f (x)) (2a(y) 9(»))

= X (40 249) (1) 90

Suppose that (7) holds. From (8) and (9) we obtain that (f * g)*(d) = f*(d) .
. g*(d) for all d € D providing (i).

We prove (ii). Let d,x,ye D and let r = r'r" e R* be im A,cancellative.
Choosing f := [r'], and g := [r"], (see 1.3) from (8) and (9) we obtain

2 A(2) (r'r") = (Aa(x) 44')) (r'r")

zZEXOy
(because the other terms vanish). Using the right distributive law we get
(X Adz)r=(2x) A/ y))r
ZEXOY

which amounts to (7) as r is im 4,-cancellative. a

1.10 Remark. Suppose ¢D; -} is a partial groupoid (i.e. (x, y) » x*y is a map
from a subset F of D* into D such that x o y = {x* y} for (x,y)e Fand xoy = 0
otherwise). Then (7) becomes

(10) Adlxy) = Ad(x) 24(y)

for all (x, y) € F and 4,(x) 4,(y) = 0 otherwise. Thus the d-th row of 4 is a “partial
character” i.e. a homomorphism of ¢D; +> into (R; *> such that A,(x) A,(y) = 0
for all (x, y) e D*\F.
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1.11 Remark. There is a natural question whether ¥ is tnjective, surjective
or bijective. Suppose that R is a ring. Then ¥ is injective iff h € R?, supp h € C and
Y A/%) h(x) = 0 (¥d e D)

xeD
implies h{x) = 0 for all x € D. Let Ldenote the matrix (1,/j)) whose rows and columns
are indexed by D. Cleatly the above questions are questions about the linear trans-
formation of E defined by L. Suppose that D is finite. Then the injectivity of ¥ is
equivalent to the independence of {4,: d € D} over R (considered as vectors over R).
Assume that R is a commutative and associative ring with identity. We can form
determinant d := det L(defined in a standard fashion). By Cramer’s rule we obtain:
If L is invertible, then s is a bijection. In particular, if R is a field, then the following
conditioms are equivalent: (i) \ is injective, (ii) Y is surjective, (iii) ¥ is bijective,
(iv) Lis non-singular, and (v) {4,: d € D} is a basis of the vector space RP (over R).

2. Homomorphisms based on set systems and orders

2.1 We take a slightly different approach. Let A: D — 2{D) be such that for all
XeC
(1) X n A/Q) is finite for all d € D, and
(2) {deD: X n A/d) £ 0} e C.

To each f € E assign f4 defined by setting
(11) fAd) =} f(x)

xeA(d)

for each d e D. The condition (1) guarantees that the sum in (11) is finite while (2)
is sufficient for supp f4e C. Thus f4 is well defined and f4e &. For re R and
ne N put Or = 0 and for n > 0 let nr stand for r + ... + r(n times). For r € R\ {0}
the order o{r) is the least positive integer n such that nr = 0 provided such n exists
o(r) = oo otherwise (i.e. if nr = 0 foralln =1,2,...). Let A < R. If the set 0 :=
:= {0a): ae A\ {0}) contains oo or is infinite put g{A4) = oo, otherwise let o{A)
be the least common multiple of the numbers from 0. For integers x and y put
x = y(mod o) iff x = y, Let S, Eand E’ be as in 1.8. We have:

2.2 Proposition. Let R be distributive, let R* + {0} and let A: D —» 2 D)
satisfy the assumptions of 2.1. Then y: f - f* is a homomorphism from E into
E’ if and only if

(3) For all x,y,de D the cardinality m of the set (x o y)n A(d) satisfies
m = 1(mod ¢/R?)) if x, y € A(d) and m = 0 (mod ¢(R?)) otherwise.

Proof. The proof of Lemma 1.7 can be easily modified to show that y is an endo-
morphism of {&; +, S). Thus it suffices to consider only the operations * and -.
Let f,g € & and d € D. Then by (11) and (4)

(12) (f*9) (@) =% ¥ f(x)9(y) =2 |G o ) » ALd)| £x) 9(») -

zeA(d) zexoy
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On the other hand,
(13) fHd) g4(d) = (X f(x) (X g(Y)) = 2 f(x)9(y).
xeA(d) yed(d x,yeA(d)

Necessity: Let x, y,de D and let b = rr’ eR2 In (12) and (13) put f:= [r], and
g := [r'], (see 1.3). Further put m := |(x - y) N A(d)|. Note that by 2.1 the cardi-
nality m is finite. Now the right side of (12) reduces to mb and similarly the right
side of (13) is b if x, y € A(d) and 0 otherwise. We have the following cases:

a) Let x, y € A(d). Then by the above mb = b. We show that

(14) m =1 (mod ¢(b)) .

Indeed, (14) is obvious if o(b) = oo as it just means m = 1. Thus let ¢/b) =: k be
finite. Using the fact that kb is the least multiple of b which is equal O it is easy
to prove (14).

Suppose that o(R?) = co. If there is b e R?\ {0} with ¢{b) = o, then by (14)
we have m =1 (mod o). Thus assume that the set o := {¢/b): be R*\{0}}
is an infinite subset of {1, 2,...}. Then again by (14) we have m = 1 and som = 1
(mod o).

Suppose that o(R?) = k is finite. By the Chinese remainder theorem the con-
gruences (14) are equivalent to m = 1 (mod k) proving the claim in this case.

b) Let (x, y) ¢ A*(d). Then from (12) and (13) we get mb = 0. Proceeding as
in the case a) above we obtain that m = 0 (mod ¢(R?)). This concludes the proof
of the necessity.

Sufficiency. Let d e D. 1) First suppose that o{R?) = co. Let x,ye D and

= |(x o y) N A(d)|. From (3) we have m = 1 if (x, y) € A*(d) and m = 0 other-
wise. From (12) and (13) we get

(15) (f*9)*(d) = X f(x)g(y) = /4(d) g*(d)

x,yeA(d)
proving that (f = g)* = f4g".

2) Finally let ¢{R?) =: k be finite. Let x, y € D be such that b := f{x) g(y) % 0.
Then b € R*\ {0} and so by the definition ¢(b) divides k. Put m := |(x o y) N A{d)|.
We have two cases: a) First suppose that x, y € A(d). From m = 1 (mod k) we get
m = 1 (mod ¢(b)) and so mb = b. b) Let (x, y) ¢ A*(d). By the same token we have
m = 0 (mod ¢{b)). Applying a) and b) to (12) and (13) we get (15) which proves
the required (f * g)* = fg*. ]

2.3 Remark. Suppose that R is distributive and has a left identity 1 (i.e. a left
neutral element for the multiplication satisfying 1r = r). Let k := o{1). For r € R from

kr=k(lry=1r+ ...+ lr=(kl)r=0r=0

we see that ¢(r) divides k. Since 1 = 1. 1e R*\ (0} we see that o{(R?) = k. Now
put ,(x):= 1 if x € A(d) and A,(x) = O otherwise. Let x, y,de D and let m :=
:=|(x o ) N A(d)|. the condition (7) from Proposition 1.8 is 1 = m 1 if x, y € A(d)
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and 0 = m 1 otherwise. These conditions are in turn equivalent to the condition (iii)
from Proposition 2.2. However, Proposition 2.2 is not a corollary of Proposition 1.8
because it holds even if R has no left identity or does not satisfy the medial law (6)

2.4 We turn to a particular but important case. Let < be an order on D (i.e.
a reflexive, transitive and antisymmetric relation which is often called a partial
order, an ordering on D or a poset). For d € D we put

[d):={xeD:x=d}; (d]:={xeD:x <d}.

For d < d’ the set [d)n(d'] ={xeD:d < x <d'} is called an interval. The
order is locally finite if all intervals are finite. Put A(d) = [d) for all re D and
write f= instead of f4 i.e. put

(16 75 1= L4
for alld € D. )

Let (D, <) be alocally finite and x, y € D. Put h(x, y) := —1ifx € y, h'x, y) =
= 0if x = y and for x < y let h(x, y) denote the greatest integer n such that

x=Zo<Zl<...<Z,|=y

(such an n exists in a locally finite order). We define the ‘“M&bius inversion” p: D* —
— Z (cf [4]): by induction on n := h(x, y) as follows:

1) If n:= h(x,y) < 0 put pu/y) := h(x, y) + L.

2) If n := h(x, y) > O put
(17) m(y)i= = X ml(y)-

x<z=Zy

Suppose that (D, <) also satisfies the following conditions. For all X € C we have:
(1) [d) n X is finite for all de D and (2) the set {de D:[d) n X + 0} belongs
to C. For f € E define f°: D — R by setting

(18) fod) 2= %) f(x)

for all d € D. Note that in view of u'd, x) = 0 for x ¢ [d) and (i), the sum in (18)
is a finite one. Moreover, due to (ii) we have supp f° € Cand so f° € E; hence ¢: f — f°
maps & into itself, We have:

2.5 Corollary. Let R be a ring with R* + {0} and let (D, <) be a locally finite
order such that for all X € C we have: (1) [d) n X is finite for all de D and (2)
{de D:[d) n X * 0} € C. Then the following conditions are equivalent for x: f —
- = and @: f > f°.

1) x is a homomorphism from E into E'.

2) y is an isomorfihism from E onto E’ whose inverse is ¢.

3) For all d, x, y € D the cardinality m of the set (x o y) N [d) satisfies m = 1
(mod ¢(R?) if x 2 d,y 2 d and m = 1 (mod o{R?)) otherwise.
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Proof. (1) < (3). Proposition 2.2. (2) = (2). Evident. (1) = (2). It suffices to
show that ¥ = x~' i.e. that f=° = f°= = fforallfe &. Let fe & and d € D. Using
(18) (16), the distributivity and p,{X) = 0 for d £ x we obtain

f §o(d) = ;ﬂd(x) f g(x) = gﬂd(x)xzs:yf U’) =x§, ﬂd(x)f ()’) =
= Y wx)f(y) =d;y(ds§5yua(x»f(y),

dsx=y

It follows from (17) that ) p,(x) vanishes for d < y and equals 1 for d = y;

dsx=<y

whence f=°(d) = f(d). Similarly
FE@ = T = % T ) =

= Y w)f) =d§y(.,§z,;:‘(y»f(y) = f(d). O

d<x=<y

2.6 We apply Corollary 2.5 to the case that x o y = {x-y} for (x, y)e F and
X o y = 0 otherwise where (D, *) is a partial groupoid with domain F (cf. Example
1.5, and 1.10. We say that (d, <) is a partial meet-semilattice if for all y, z € D the
set (y] N (z] is either empty or has a greatest element which we denote by y A z
(in other words, if y and z have a lower bound, then there is a lower bound y A z
such that y A z > d for all d £ y,d < z). Note that the partial operation A
in a partial meet-semilattice is idempotent (i.e. (x,x)e F and x A x = x for all
x € D), commutative (if (x, y) € F, then (y,x)e F and x A y = y A x) and asso-
ciative (if (x, y) € Fand (x A y,z)€F,then(y,z)e F,(x,y A z)e Fand (x A y) A
Az =x A(y A z)). Conversely if a partial groupoid on D satisfies these laws,
then the order < on D defined by setting x < y if x = x A y is a partial meet-semi-
lattice. We have:

2.7 Corollary. Let {D; - be a partial groupoid with domain F and let x o y =
= {x-y} if (x,y)eF and x o y = Q otherwise. Then the condition 3 of Corollary
2.5 holds if and only if

F:={(y,2)e D:(y] n(z] #+ 0},
(D; £) is a partial meet-semilattice and y-z is the meet y A z of y and z for all
(v, 2)€eF.

Proof. Necessity. Let k := ¢(R?) and let

G:={(y,2)e D*:(y] n(T] + 0}
consist of pairs having a common lower bound. We prove that F = G. 1) Let(y, z) € F
and d:= y-z. Then |(yoz)n[d)| =|{d}|=1 and 1% 0 (mod k) and so by
condition 3 we have y = d, z = d, i.e. de(y] n (z] proving (¥,z2)e G and F < G.
2) Conversely let (y,z)eG. Choose de(y] n(z] and put 4:=(yoz)n [d).
Now from the condition 3 we have |4| = 1 (mod k). Taking into account |4| < 1
we get |A| = 1 proving y oz # 0, hence yoz = {y-z} and (y,z) e F. Thus G < F
and so G = F. Moreover, x := y*z 2 dforallde B := (y] n(z].
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Let (y,z)eF, x:=y-z and B:=(y] n(z]. By the last statement B < (x].
On the other hand, for each t e D\ B applying the condition 3 we get ¢t £ x. In
particular, x € B i.e. x is the greatest element of B. It follows that (D, <) is a partial
meet-semilattice and y-z = y A z for all (y, z) e F.

Sufficiency. Let (y,z)eF and let x:= y A z. Clearly x > d iffy > d and
z = d proving 3. a

3. Direct sums and products

3.1 We introduce two constructions for convolutive R-structures which are
natural extensions of direct sum and Kronecker product of matrices.

Let R be as in 1.1, let {(D;; ;> be a multigroupoid, let C; = 2(D)) satisfy the
assumptions of 1.2 (j = 1,2) and let E; be the corresponding convolutive R-struc-
tures (cf. 1.4) j = 1,2.

For simplicity we assume that D, and D, are disjoint and put D := D, U D,
(if not, replace D by the disjoint union of D, and D,). Define a multigroupoid
{D; o) by setting x o y := Xo; y if both x and y belong to D; and x . y := @ other-
wise. Similarly put C:= {X, U X,:X;eC/i =1,2)}. It is easy see to that C
satisfies the assumption of 1.2. The convolutive R-structure E corresponding to
{D; s> and C is denoted by E; ® E, and called the direct sum of E, and E,. Put
Fi:={feé&:f(D;_;) ={0}}(j =1,2) It is easy to verify that F; is the sub-
universe (i.e. carrier of a substructure) of E isomorphic to E; (j =1,2). It is
easy to verify that the direct sum induces and abelian monoid on the class of iso-
morphism types of convolutive R-structures.

The transformation : f — f* from 1.6—1.11 extends quite naturally to direct
sums.

3.2 Proposition. Let E=E, ® E, let ’: D} > R’j =1,2) let D:= D, UD,
and let A: D* - R be defined by setting A'd, x) := 2(d, x) if both d and x belong
to the same D; and Xd, x) := O otherwise. Then A satisfies one of 1.6 (i), (1.6 (ii)
and (7) if and only if both A' and A* have the same property.

Proof. Direct check. For example, suppose that A' and A2 satisfy (7). Let d € D;,
xe D, and ye D,. If j = k = I then by the definition of 4 and . the equation (7)
becomes

2(x) (y) = ¥ 4ilz)

ZEXjoy
which holds by assumption. Thus suppose that j, k and I are not equal, then the
left side of (7) vanishes. If k = I, then x o y = 0 and (7) holds. Thus let k = I, then
j# kand fromde D;and zex oy S D, we get 4,/z) = 0 and so (7) holds.
Conversely, let (7) hold for A. Restricting x, d and y to D; we see at once that
(7) holds for /. a

Let A;: D; > #(D;) (j = 1,2) and let D = D; U D,. The map 4, U 4,: D —
— 2(D) is de;ned by (4; U 4,)(d) := A,{d) for de D;(j = 1,2). As usual, the
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cardinal sum of orders (D;, < ;) (j = 1, 2)is the order (D, <) with x < yifx, ye D;,
x <; y for some j € {1, 2} (we assume that D, n D, = §). We have:

3.3 Proposition. Let i€ {1,2,3}. The map A, N A, satisfies the condition (i)’
from 2.1 and 2.2 if and only if both A, and A, satisfy (i). Similarly the cardinal
sum (D, <) of orders (D;, <;)(j = 1, 2) satisfies 2.5 (i) if and only if both (D, <)
and (D,, <,) satisfy 2.5 (i) (i = 1, 2).

Proof. Direct check. We only prove it for i = 3. Let 4, and A, satisfy (3) and
let deD;, xe D, and ye D, If j = k = I then (x. y) n A'd) = (x;.0 y) 0 A;(d)
and the property is inherited from A;. Suppose j # k = I. Then x. y = D, and
A’d) = D; show (xoy) n A(d) = 0. Since x € D, does not belong to A(d) = D;
we see that (3) holds. Finally let k & I. Then x - y = @ and either x ¢ A(d) or y ¢ A(d)
so that again (3) holds.

Conversely, let (3) hold for A; U 4,. Letting d, x and y range over D; we see
that A; satisfies (3). a

3.4 We turn to direct products of convolutive R-structures E; and E,. Naturally
the direct product of the multigroupoids {D;; ;> (j = 1, 2) is the multigroupoid

{D, o) on D:= D, x D, defined by setting

(xl’ xz) ° (J’p )’2) = (x1 ° J’1) X (xzo Yz)
for all (x4, x,),(yy, ¥,) € D. Put

C:={Z:Z< X, x X, forsome X;eC/j=1,2)}.
We have:

3.5 Fact. Csatisfies 1.2 (i) and 1.2 (ii).

Proof. Let X, Ye C. Then X = X, x X, and Y; x Y, for some X;, Y;€ C;
(j = 1,2). By the assumption 1.2 (i) we have Z; := X; U Y;e€ C; (j = 1, 2) and thus
from XuY<c Z, x Z,eC we obtain X U Ye C. Clearly C is hereditary and
contains all singletons and so it satisfies 1.2 (i). We prove the first statements of (ii).
Let d=(d,,d,) and for j=1,2 put Z;:=X; x Yk;:=|{x;,y;)€Z;:d;e
€ X; o; y;}| Note that k; is finite (by the assumption (2)). Clearly the number of pairs
(x, y) with x = (x4, x,) € X and y = (y,, y,) € Ysuch that d € x - y does not exceed
kik, and hence is finite. We prove (3). Forj = 1, 2put W; := X o; Y;. By assumption
W; e C;. We have

XoY= U U (x10151) X (x20252) €

(x1,%x2)€X (y1,y2)eY

(U (x1oy)x( U (x20202)) S W, x W, =C.

(x1,y1)€Z (x2,y2)€Z2
3.6 In view of Fact 3.5 the structure &gp¢ is a convolutive R-structure. It will
be denoted by E; x E, and called the direct product of E, and E,. There is a natural
embedding of E; into E; x E,. Also it is easy to see that the direct product defines
an abelian monoid on the class of isomorphism types of convolutive R-structures.

60



It can be shown easily that the direct product distributes over the direct sum.
The map ¥: f — f* from 1.6—1.11 naturally extends to the direct product
(for D finite it is the Kronrcker product of the matrices L from 1.11).

3.7 Proposition. Let E = E; xE, and let ’: D > R (j = 1,2). Put D = D, x
x D, and define A: D* - R by setting
(19) l(d, x) = ll(dl’ xl) lz(dz, xZ)
for all d = (dy,d,)e D and x = (x, x,) € D. Then for i = 1,2 if at last two of
A, A* and A? satisfy 1.6 (i), then all three satisfy 1.6 /).

Let R be distributive and satisfy the medial law (6). If (7) holds for both A
and A? then (7) is true for A. If (7) holds for 1 and for some d,, x,, y, € D,
(20) j':z(xz) lgz(yz) = Z 1132(22) =r

Z2€X202y2

where r is im Aj-cancellative (see 1.8), then (7) holds for A,. A similar statement
holds for 4,.

Proof. Let X;eC;(j=1,2) and X:=X; x X,. Let x ={x,x,)eX n
N supp 4, Then by (19) we have 2;(x,) + 0 + 4,(x,) proving x; € X; N supp A},
(j=1,2). The converse also holds and so X nsupp i, = (X; Nnsupp i) x
x (X, n supp 47)). From this the validity of 1.6 (1)—(2) follows quite easily. To
prove the second statement let d = (dy, d,), x = (x,, x;)and y = (y,, y,) be elements
of D. Applying (19), the distributive and medial laws and (7) we get

M(x) 2 y) = (A1) 2a(x2)) (2a,(v1) i(12)) =
= (Aa,(x) 2a,(y1)) (A(2) 40,(r2) = ( X Aa(z) (X 4a(z2)) =

Z1€X101Y1 22€X202y2

= ) Y Aaf(z1) Ai(z2) = ¥ Afz).

Z1€X101y1 Z2€X202y2 zexoy
We prove the last statement. Let 1 satisfy (7), let d,, x5, y, and t be the elements
from (20) and let dy, x,, y, € D; be arbitrary. Put d = {(d,, d,), x = (xy, x;) and
y = (¥, y2)- Proceeding as above and applying (7) to A we get

(Y Z)r=0Y Z)( ¥ 4(z) =X 4(z) = 4x) 4'y) =

Z1€X10 V1 Z1EX101)1 Z2€X202)2 ZEXOY
= (Ag,(x1) 24,(71)) (A%,(x2) A3,(y2)) = (A,(x1) Aa,(y1)) 7 -
Since r is im A'-cancellative, we obtain that (7) holds A'. O

We turn to the maps x:f — f# from §2. Let A;: D; > 2D;) (j = 1,2) and
let D := D, x D,.Itis natural to define 4; X A4,: D - # D) by setting (4, x 4,).
(dy, dy) 1= Ay(dy) x A,{d;). We have:

3.8 Proposition. Let E = E, x E,, let A;: D; > P D)) satisfy Ajd;) +0
for some d;je D;(j = 1,2) and let A = A, x A,. If two of A, A, and A satisfy
the condition (i) from 2.1 and 2.2, then the third one has the same property, (i =
=1,2,3).
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Proof. Let X;eC; and d;eD;(j = 1,2), X =X, x X, and d = (d, dy).
It is immediate that

X A Ad) = (X1 0 4,/dy) x (X, 0 Ay dy))
which proves the case 2.1 (i). For 2.1 (ii) it suffices to note that
{deD: X nA'd) + 0} = (d, e D,: X, n A,(d,) + 0}
x {dye Dy: X, n A,'d,)}
holds for all d = (d,, d,) € D. For (3) we have

(21) (xoy) N Ald) = ((x; 0 y1) 0 A41(d))) X ((x3 0 ¥2) N 4,/dy))

where x = (xy,x,), y =(yy,y,) and d =(d,, d,) are arbitrary elements of D.
Let m, and m; (i = 1, 2) denote the cardinalities of the sets on the left side and on
the right side of (21). Clearly m = m;m,.

First suppose that both 4, and A, satisfy (3). If x, y € A'd), then x,, y, €
€ A,/d,) and x,, y,€ A, d;) and by (3) we have m; = m, = 1 (mod k) where
k:= g R?. Then m = mym, = 1 (mod k). If (x, y) ¢ A%(d), then (x;, y;) ¢ A%d)
for some j € {1, 2} and so by (3) we have m; = 0 (mod k) leading to m = m,m, = 0
(mod k) and we are done in this case.

Next let 4 and 4, satisfy (3). Fix dy, x, y, € D; so that x,, y, € A'd,) and let
d;, X3, y3 € D, be arbitrary. Now x,, y, € 4,(d,) iff x, y € A{d) and m, = mym, =
= m (mod k) proves (3) for 4,. 0

As usual, the direct product of orders (D;, <;) (j = 1, 2) is the order (D, <
where D := D, x D, and (x,, x,) < (y1, ;) if x; <, y, and x, <, y,. We have:

3.9 Corollary. Let 1 <i < 3. If two of the orders (Dy, <,), (D,, <,) and
(D, <) satisfy 2.5(i) then all three satisfy 2.5 (i).

4. General balanced arrays

In this section we look at a concrete example of a convolutive R-structure
which came up in the study of generalized block designs and together with [5]
motivated this paper.

4.1 Let s > 1 be an integer and s:= {0,...,s — 1}. We order s by setting
O0<ifori=1,...,s — 1 (so that O is the least element of < while all the other
elements are maximal). Clearly (s; <) is a meet semilattice.

Let m be a positive integer. Given a = (ay,...,a,)es™ and 0 < i < s put
[a]i:={jeM:a; = i}. We may think that j € [a,] is colored by color i and hence
a may be viewed as a partition of M := {1,..., m} into s pairwise disjoint color
blocks (some of which may be empty). Let < denote the componentwise order
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on s™. Thus for a = (ay,...,a,) €s™ and b = (b,, = (by,..., b,) € s™ we have
a=Zbiff a2 b; for j=1,..., m. Expressed differently, a < b iff [a]; = [b]:
for i=1,...,s — 1 i.e. b is obtained from a by enlarging some color blocks at
the expense of the 0-th color block.

4.2 The poset (3™, <) also appears in geometry. Denote by e, = (1,0,...,0, ...
eyl = (O, ery 0, 1) the unit coordinate m-vectors and let K,, denote the convex
hull of {ey, ..., ey, —€y,..., —€,} (say in R™ or Q™). Thus K, is a square and K3
is a octahedron (bipyramid). Let F,, denote the set consisting of the faces of K,, and
0 (e.g. F consists of 0, 6 vertices, 12 edges and 8 triangles (see Fig. 1)).

AZ

/‘//
—] ——
A y
X B
Fig. 1
There is a bijection { between 3™ and F,. Indeed, given a = (ay, ..., a,)€ 3"
put b = (by, ..., b,) where b;:= —1 if a, = 2 and b; = a; otherwise and let {(a)

be the face of C, whose vertices are the non-zero vectors among b,ey, ..., b,e,
(e.g. to (0, 1,2) we associate the edge joining A = (0,1,0) and B = (0,0, —1)
(Fig. 1). The set F,, (of facer of K,,), ordered by inclusion, is called the m-dimensional
cross polytope (cf. [10]). It is easy to see that { is an order isomorphism of (3", <)
onto (F,, <). The poset (3", <) also plays a role in logic, universal algebra and
switching theory. The homomorphisms (3", <) — (3, X), called regular ternary
logic functions, are suitable for treating ambiguity (cf. [7]).

4.3 Let A and B be two subsets of s™. Consider a map f: s™ - N such that
suppf < A and let f= be defined by (16) in section 2.2. The restriction § of f= to B
is called an A-supported B-covariance pattern (shortly A B-pattern). A matrix
T over s with m rows and exactly fix) columns x” for all x € s™ is a realization
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of f=[2]. For s = 2 the binary 4— B-patterns were considered in [1, 3]. For x e s™
let |x|| := m — |[x]o| denote the number of non-zero coordinates of x (i.e. the
Hamming distance of x from (0, ..., 0))and let ¥V, := {x e s™: |x| =t} (t = 0, ..., m).
Clearly V, consists of m-vectors over s with exactly ¢t non-zero coordinates.

4.4 Examples. Let s = 2and 4 = 2™

1. Let B=V,. A map f:2" — N is an exact cover if f=|V, is constant i.e.
f3(b) = 4, for all be V. Now x = (Xy, ..., X,,) € 2™ may be identified with [x], :=
:= {i:x; = 1} and to f corresponds the set system F consisting of f x) sets [x], .
.(x€2™). Clearly F corresponds to an exact cover if each ie M :={1,..., m}
belongs to exactly 4, members of F.

2. Put B:= V, U V,. Amap f: 2" - N is an balanced incomplete block design
if there are 4y, 4, € N such that f=(b) = A, for all be V; and f3(b) = 1, for all
beV, (ie. fX(e) =4 fori=1,...,m)and f3(e; + ¢;) = 4, for 1 < i <j < m).
The corresponding set system F is thus described by the fact that each ie M =
= {1, ..., m} belongs to exactly A, members of F and each pair {i, j} {1l < i < j < m}
belongs to exactly 4, members of F.

3. Let B=V,uV,, fan A—B-pattern, and T is realization. Then m x n
matrix T may be also interpreted as follows. To the i-th row of T associate the set
Ri:={jit;y=1} (i=1,...,n). It is easy to see that f3{e;) = |R,|(1 i < n)
and fSe; +e)=|R,AnR;|(1 £i<j=<m)and thus f= registers the sizes of
of |Ri N Rj| 1=ij= m). Instead of this covariance or intersection pattern [1, 3]
we could also consider the intersection matrix (|R; N R;|).

4. Put B=V,u...uV, A map f:2" - N is a t-design if there are 4, ...
.., Ace N such that f3(b) = 4, forallh = 1,...,tand be ¥, [5].

4.5 For aes™ put z(a):= (vy, ..., Vs—;) Where v; := |[a];| is the number of
coordinates of a equal to i (i = 1,...,s — 1), i.e. zs) is the color frequency vector
of a. The set

suppa :=[a]; u... U [a];-;
is called the support of a.

Let 7 be a subset of M := {1, ..., m} A map f:s™ — N is balanced with respect
to 1 if f5(b) = f3(b’) whenever supp b = supp b’ = t and z(b) = z(b)' (i.e. in
a realization T the number of columns ¢ such that ¢’ < b is constant for all be B
with supp b = t and the same z{b) [8]).

We say that f:s™ — N is a balanced array (B. A.) of strength t if B < V,
and there is a map u from Z := {z(b): be B} into N such that f=(b) = u{z(b))
for all b € B.

4.6 We apply the results of §§ 1 —3 to (D, .y = {s™; A) where A is the meet
semilattice operation (i.e. for a, b € s™ the coordinates of ¢ := a A b satisfy ¢; +
+0=>a,=b;,=c; for i=1,...,m). We start with the case m = 1. Let R be
an integral domain. It is easy to describe all homomorphism &: {s; A) = (R, *>.
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First of all for 0 < i < s we have (i) = &(i A i) = ¢*(i) and so &(i) (¢(i) — 1) = 0
shows that (i) e {0, 1} for 0 < i < 5. Moreover, we have

(22) e(0) = &li A j) = &li) &(j)

forall0 < i < j < s. We have two cases: a) Suppose £(0) = 1. Then by (22) we have
g(j) = 1 for all 0 < j < 5. This map A, with 15(0) = ... = Ao(s — 1) = 1 is ob-
viously a homomorphism. b) Let &(0) = 0. Then (22) shows that (i) = 1 holds
for at most one i. The map ¢ with 6{0) = ... = o(s — 1) = 0 is obviously a homo-

morphism but has little use in the sequel. The remaining maps 4; (i = 1,...,s — 1)
satisfy A,(i) = 1 and A,(x) = Ootherwise. Themaps 4;(i = 0, ..., s — 1)define A: s> —»
— R. The corresponding matrix L:= (1,(j)) has rows (1,1, ..., 1) e,, ..., e, where
e; =(0,1,0,...,0),...,e, = (0,...,0,1). Clearly A exists if R has 1 and is unique
(up to the permutation of rows) if R is an integral domain. It is easy to verify that
the inverse L' has rows (1, —1, —1,..., —1), e,, ..., e,. Thus, in our case E is
isomorphic to E’ i.e. {&; *> ~ {&; A ). In particular the subalgebras of the first
may be determined from those of the second (cf. [5]). It is easy to see that f= = f*
for all fe é&.

4.7 Using 3.6—39 we extend A to {s™, A). For x = (xl, .oy Xp) ES™ and
Y= - Imes" weput Ax,y) =1if x;,=0o0r x; =y, fori =1,...,m and
AMx, y) = 0 otherwise. Expressed differently, L= (1'x, y)) is the incidence matrix
of (s, X)i.e. A(x, y) = lif x < y and A(x, y) = 0 otherwise. The inverse matrix L™ "
is the matrix (u(x, y)) with (i) u(x, y) = (—1)"if forall i = 1,..., m we have x; = 0

Table 1.

1 —1—-1 |—1 1 1 =1 1 1

1 —1 —1

1

or x; = y;and v := |{i:x; = 0, y; + 0}, and (ii) u(x, y) = O otherwise. The matrix
L™ ! corresponding to s = 2 and m = 3 is on Table 1. Here 3? is listed lexicographic-
ally as (0, 0), (0, 1), ..., (2, 2)) and dots stand for 0’s.
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