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1986 ACTA UNIVERSITATIS CAROLINAE—MATHEMATICA ET PHYSICA VOL. 27. NO. 2 

General Convolutions Motivated by Designs 

M.-M. DEZA*) A N D I. G. ROSENBERG**) 

Received 3 March, 1986 

The paper is motivated by the algebraic treatment of generalized designs and it extends 
certain ideas of Graver and Jurkat. The main part is devoted to the study of convolution in fairly 
general setting extending semigroup rings. 

Clanek pfinasi algebraicky pfistup k jistym kombinatorickym strukturam a zobeciiuje 
prace Gravera a Jurkata. Hlavni cast je venovana studiu konvoluci v dostatecnS obecnem pojeti 
rozSirujicim pologrupove okruhy. 

CTaTbfl npe^jraraeT HeKOTopbift a.rire6paHHecKHH noflxofl K KOM6HHaTopHbiM CTpyKTypaM 
onpe/iejieHHoro THna H flBjiaeTCH o6o6rneHHeM pa6oT TpaBepa H K)pKaTa. Ee rjiaBHaa nacTb nocBH-
ureHa H3yHeHHK> KOHBOJIK>ITHH, B ^ocraTOHHo o6meM noHHMaHHH, pacuiHpflioHiHM nojiyrpynnoBbie 
KOJibua. 

Introduc t i on 

This paper was inspired by Graver and Jurkat's study [5] and its ideas come 
both from the first author's papers [1, 2], the joint paper [3] and the unpublished 
paper [9] by the author. The motivation comes from generalized design (£ 4) and 
the paper studies convolution as a natural tool which for binary designs was intro­
duced in [5, 6]. It became soon clear that the technique extends to non-binary 
designs and, in fact, the constructions hold for semigroup rings. In [9] semigroup 
rings were extended to structures with convolution in which the semigroup D is 
replaced by a partial groupoid (binary operation), the ring/?is considerably weakened 
and the set $ of maps D -+ R with.finite support is supposed to have only a weaker 
finiteness property. In this paper we go even further and replace the semigroup D 
by a multigroupoid (hypergroupoid) <D, o> which is a map from D2 into the subsets 
of D (equivalent to a ternary relation on D). Within this framework the above 
assumptions seem to be as general as possible. Although the presentation is inevitably 
cumbersome, this approach keeps up with the algebraic tradition to start with the 
highest meaningful level of generality and add further restrictions only when they 
become necessary. For example, we often have to assume that R is distributive 

*) CNRS Paris, 17, passage de l 'Industrie, 750 10 Paris, France 
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(Propositions 1.9, 2.2), is a ring (Proposition 2.5), satisfies the medial law (Pro­
position 1.9) and R2 4= {0} (Proposition 2.2 and 2.5). We concentrate on three main 
topics: 1) a homomorphism of the convolution on the direct power, 2) a similar 
homomorphism induced by a family {A(d): d e D} of subsets of D, in particular, 
for A[d) induced by an order on D and 3) extensions of the above to direct sums 
and products. In fact this algebraic part became so large and of independent interest 
that we have decided to restrict generalized designs to a mere introduction. For this 
reason it is not shown that they form convolutive i^-structures (for binary designs 
this is indicated in [5]). 

In § 1 we define the general convolutive K-structure on a subset S of DR, bring 
forth a few common examples and define a selfmap i// of &. For R distributive and 
satisfying the medial law we give a sufficient condition for \// to be a homomorphism 
of the convolution into the direct power. This map is a sort of linear transformation 
of 8. With a certain cancellation property the above condition is also necessary. 

In § 2 we study a similar selfmap x based on a map A from D into the subsets 
of D. For R distributive and R2 =j= {0} we give a necessary and sufficient condition 
making x a homomorphism of the convolution into the direct power. In particular, 
if R is a non-zero ring, g is a locally finite order on D and A(d) = {x e D: x = d} 
for all d e D, we give a necessary and sufficient condition for x to be an isomorphism 
of the convolution onto the direct power. In particular, if the multigroupoid is 
a partial groupoid with domain F (i.e. \x o y| = 1 for (x, y)e F and x o y = 0 other­
wise) the condition is 1) _ is a partial meet-semilattice in which x and y have a com­
mon lower bound (and hence the meet x A y exists) iff (x, y)e F and 2) the operation 
of the partial groupoid is the partial meet. 

In § 3 we introduce direct sums and products of convolutive /^-structures and 
show that the maps and conditions from §§1—2 naturally extend to direct sums and 
product. This part may be seen as a natural extension of direct sums and Kronecker 
products of n x n matrices (over a ring). 

Following [5] and [2] in § 4 we briefly outline some designs and generalized 
designs from our point of view. The latter are based on the semilattice order ^ on 
5 = {0, 1, ..., s — 1} in which 0 -< i (i = 1, . . . , s — 1) i.e. 0 is the least element and 
all the others are maximal elements (s ^ 2). We birefly mention the connection 
between (3m, ^ ) and the cross-poly topes. The generalized designs are presented as 
f:sm -> N such that the map f^ is constant on certain subsets of sm. We give the 
corresponding combinatorial matrices. For s > 2 this is essentially unique in contrast 
to the case 5 = 2 where _̂  is the order of a boolean algebra an and so admits also 
v and A [5]. 

Since the paper involves unusual structures, we have tried to make it self-
contained and give most of the proofs, which albeit routine, may help the reader. 
A reader not interested in infinite D or outlandish R may think about a semigroup 
ring over a finite semigroup D and an associative and commutative ring R with 
identity and ignore all the cumbersome assumptions. 
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1. Convolutions and Homomorphisms 

1.1 Let R be a nonempty set with two binary operations + and • and an ele­
ment 0 such that <K; + , 0> is an abelian monoid and x 0 = 0 x = 0 for all x e R 
(as usual, we often abbreviate a'b by ab). In other words, R = <-R; + , •, 0> is 
a universal algebra with two binary operations + and • and a constant 0 such that 

(1) x + 0 = x , x 0 = Ox = 0 , x + y = y + x , 

x + (y + z) = (x + y) + z 
holds for all x, y, z e R. 

1.2 Let D be a set and D = <D; o> a multigroupoid (or hypergroupoid) on D, 
i.e. (x, y) -> x © y is a map from D2 into the set 0>(D) of the subsets of D. Note 
that fot x, y e D the subset x © y of D may also be empty. Equivalently, the multi­
groupoid 0 may be conceived as the ternary relation {(x, y,z):x,y e D, z ex o y}. 

Next let C be a family of subsets of D such that 
(i) Cis an ideal of (0*(D), c ) , i.e. Cis closed under union (X u Ye C whenever 

X, Ye C and C is hereditary (Ye C whenever Y c X e C). Further C contains all 
singletons {d} (d e D). 

(i) For all X, Ye C and d e D the set 

(2) {(x,y)eX x Y.dexoy} 

is finite and 

(3) XoY:= (J (JxoyeC. 
YeX yeY 

Note that for D finite the conditions are equivalent to C = 0>(D). 

1.3 Let RD denote the set of maps from D into R. For feRD put supp / : = 
:= {de D:f(d) * 0} and set 

' : = *MDC = { / e RD: supp / e C} . 

Later we shall need the following maps. For reR and de D let [ r j be defined 
by [rd] (d) = r and [r]d(x) = 0 otherwise (thus [r]</is a "spike" or Dirac function). 
As {d} e C we have [r]d e S. 

On & we can define pointwise the operations + and 0. For / , g e $ let / + g 
and fg be defined by setting ( / + g) (d) := f(d) + g(d), and (fg) (d) := f(d) g(d) 
for all d e D. Since supp ( / + g) £ supp / u supp g, by (i) we have f + g e S. 
Similarly fg eS because supp fg c supp / e C 
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For each x e R and f e $ let xtf and fxr be defined by setting 

(*,/) (a") : = xf(d), (fxr) (d) : = f(d) x 

for all d e D. Clearly both supp xtf and suppfxr are included in supp f and so xzf, 
fxrE$. 

1.4 We introduce another operation * on S. For f,g ES define f * g by setting 

(4) (f*9)(d:=Y.f{x)9{y) 
dexoy 

for all d E D. The sum is over the set of all (x, y) such that dexoy which, according 
to (2) is finite and so the value (f * g) (d) is well defined. Put X : = suppf and Y: = 
:= supp a. By definition X, YEC The summation in (4) may be restricted to 
(x, y)EX x Y, so supp (f * g) ^ X o Y and thus, according to (3), it belongs to C. 
Thus $ is closed under *. We calif* a the convolution off and g. The algebra 

E:= ($; + , « , » , { w y e R } , {yr: }> e K}> 

is called a convolutive R-structure. We consider a few examples. 

1.5 Examples. 1. Let n be a positive integer, D := {1, ..., n}2 and put (i,j) 0 

o (k, I) := {(/, /)} if j = k and (i,j) 0 (k, /) = 0 otherwise. Then E is isomorphic 
to the set of n x n matrices over R with the standard sum and product *, rz and rd 

are the left and right scalar multiples and • is the Hadamard (or Schur) product. 
Usually R is assumed to be a ring but it may be also a lattice with zero (i.e. x + y 
is the join or sup and xy is the meet or inf). 

2. Let <D; o> be such that xQy = {x*y} where <D; •>, is a groupoid. Then 
in (4) we sum over all (x, y) e D2 such that x*y = d. In particular, if <D, •> is a semi­
group, and R a commutative and associative ring and C consists of the finite subsets 
of D, then E is isomorphic to the semigroup ring of D over R. If, moreover, D is 
a group, it is isomorphic to the group ring of D over R. For D = {N; + } where 
N := {0, 1,...} is the set of non-negative integers the corresponding semigroup 
ring is isomorphic to the ring R[x] of the polynomials in one indeterminate. 

3. LetD := <N, +>, C = Pvr\J) (all subsets of r\J) and R a ring. Then <<f; + , *> 
is isomorphic to the ring -#[[*]] of formal power series in one indeterminate x. 
This example can be modified to yield the ring of formal power series in several 
indeterminates. 

1.6 The following transformation of $ is an extension of a linear transformation 
of a finite-dimensional vector space. Let X: D2 -> R. For d E D define the d-row 
Xd: D -> R of X by setting Xd[x) : = X(d, x) for all x e D. Suppose that for each X e C 
the map X satisfies: 

( l ) I n supp Xd is finite for all d e D, and 
(2) the set {d e D: X n supp Xd 4= 0} belongs to C 
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Given fe <^put 

(5) fX(d):=^X/x)fyx) 
xeD 

for all d e D. Put X : = suppf If fA(d) * 0 then X/x)f(x) + 0 for some xeD when 
xeX n supp Xd. Thus X n supp Xd + 0 and therefore by (2) 

suppfA c ^ ^ j n SUpp ^ + 0 } e C 
proving thatfAe df. 

Let <G; •> and <G'; •'> be groupoids. A map cp: G -> G' is a homomorphism 
of <G; •> into <G'; •'> if <p(x o y) = <pV) •' cp y) for all x, y e G. Similarly for 
r: G -+ G and r': G' -> G' the map cp is a homomorphism of <G; r> into <G'; r'> 
if <p'r(x)) = r'((p(x)) for all x e G. For constants 0 e G and 0' e G', the map cp is 
a homomorphism of <G; 0> into <G; 0'> if >̂ 0) = 0'. Finally for universal algebras 
G and G' of the same type with at most binary operations the map cp is a homo­
morphism if it is a homomorphism for each operation separately. A homomorphism 
of G into itself is an endomorphism. We have the following immediate lemma: 

1.7 Lemma If the left distributive law 

x(y + z) = xy + xz 

holds for all x e im X and y, z e R, then \j/: f -> fk is an endomorphism of ($; + >. 

If 
(*! + ... + xn)y = x^y + ... + xny 

holds for all positive integers n and for all xu ..., xne (im X) R, then \jt is an endo­
morphism of ($\ yr>. If 

y(xx + ... + xn) = yxx + . . . + yxn 

holds for all positive integers n, all xl9..., x,.e(im^) # and y(ux) = u[yx) is true 
for all u e im X and, xeR, then \j/ is an endomorphism of (£; yt}. 

1.8 Put 

S : = {yr- y e R} X {yt: y e R , y(ux) = u(yx) Vw e im X, x e R} . 

We shall see that certain cases \j/:f -»fA is a homomorphism of E := (£; +, *, S> 
into £" := <$; +, •, 5>. (Although the universe is the same for both E and E', 
the map \j/ is not an endomorphism because * is replaced by •.) If \j/ is a permutation 
of &, this permits to describe E in terms of the more transparent structure E'. In 
other words, the convolution may be then replaced by the pointwise product. As 
we shall see, this is guaranteed if we have enough of "independent characters". 
First we need the following concept. Let A ^ R. We say that r e R is A-cancellative 
if ar = a'r implies a = a' whenever a is a sum of elements from A and a' e A1 

(i.e. a' = ala2 where au a2 e A). We have: 
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1.9 Proposition. Let R be distributive and satisfy the medial law 

(6) (xy) (zt) = (xz) (yt) . 

Further let X: D2 -* R be such that for each X e C all the sets X n supp Xd (d e D) 
are finite and [d e D:X n supp Xd + 0} e C.; Then: 

(i) if for alld, x, y e D 

(7) ^)^)=E^)-
zexoy 

then \j/:f'-*/A is a homomorphism of E := <<f; + ,* ,£> into IT := <<̂ ; + , •, S> 
(ii) Conversely, if for each d e D there is an im Xd-cancellative element r e R2 

and if/ is a homomorphism of ($\ *> into <J?, •>, then (7) holds. 

Proof. Let f,g eS and d e D. Using (5), (4) and the distributive laws we get 

(8) ( / * gf (d) = 2>„(z) ( / * g) (z) = £ A,(z) £ f(x) g(x) = 
z z zexoy 

-i(iv-»a(*)ffO0). 
x,y zexoy 

On the other hand, from (5), the distributive laws, and the medial law (6) we have 

(9) / (d ) g\d) = &Ux)f(x)) E V y ) g(y)) = 

= i(X/x)X/y))(f(x)g(y)). 
x,y 

Suppose that (7) holds. From (8) and (9) we obtain that ( / * g)x (d) = fx(d). 
. gx(d) for all d e D providing (i). 

We prove (ii). Let d, x, y e D and let r = r'r" e R2 be im Ad-cancellative. 
Choosing/ := [r'~\x and g := [r"~\y (see 1.3) from (8) and (9) we obtain 

YjX/z)(r'r") = (Xd(x)X/y))(r'r") 
zexoy 

(because the other terms vanish). Using the right distributive law we get 

zexoy 

which amounts to (7) as r is im /ld-cancellative. • 

1.10 Remark. Suppose <D; •> is a partial groupoid (i.e. (x, y) -> x*y is a map 
from a subset F of D2 into D such that x o y = {x* y} for (x, y) e F and x o y = 0 
otherwise). Then (7) becomes 

(10) X/x-y) = Xi(x)X/y) 

for all (x, y)e F and Xd(x) Xd(y) = 0 otherwise. Thus the d-th row of X is a "partial 
character" i.e. a homomorphism of <D; •> into <R; •> such that Xd(x) Xd(y) = 0 
for all (x, y) e D2 \ F. 
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1.11 Remark. There is a natural question whether \J/ is rnjective, surjective 
or bijective. Suppose that R is a ring. Then xj/ is injective iff he RD, supp heC and 

Z k/x) h(x) = 0 ('Md e D) 
xeD 

implies h(x) = 0 for all x e D. Let Ldenote the matrix (k/j)) whose rows and columns 
are indexed by D. Cleatly the above questions are questions about the linear trans­
formation of E defined by L. Suppose that D is finite. Then the injectivity of \j/ is 
equivalent to the independence of {Xd: d e D} over R (considered as vectors over R). 
Assume that R is a commutative and associative ring with identity. We can form 
determinant d := det L(defined in a standard fashion). By Cramer's rule we obtain: 
IfL is invertible, then \// is a bisection. In particular, ifR is afield, then the following 
conditioms are equivalent: (i) \j/ is injective, (ii) if/ is surjective, (iii) if/ is bijective, 
(iv) Lis non-singular, and (v) {Xd: d e D} is a basis of the vector space RD (over R). 

2. Homomorphisms based on set systems and orders 

2.1 We take a slightly different approach. Let A: D -> <P(D) be such that for all 
XeC 
(1) X n Aid) is finite for all d e D, and 
(2) {deD:XnA<d) + 0} e C 

To each f e E assign fA defined by setting 

(11) f\d):= £/(*) 
xeA(d) 

for each d e D. The condition (1) guarantees that the sum in (11) is finite while (2) 
is sufficient for s u p p f ^ e C Thus fA is well defined and fAeS. For reR and 
neN put Or = 0 and for n > 0 let nr stand for r + ... + r (n times). For r e R \ {0} 
the order D(r) is the least positive integer n such that nr = 0 provided such n exists 
g(r) = oo otherwise (i.e. if nr + 0 for all n = 1, 2, . . .) . Let A c R, If the set 0 : = 
:= {Qfa): a e A\ {0}) contains oo or is infinite put Q(A) = oo, otherwise let o(A) 
be the least common multiple of the numbers from 0. For integers x and y put 
x = y (mod oo) iff x = y, Let S, E and E' be as in 1.8. We have: 

2.2 Proposition. Let R be distributive, let R2 4= {0} and let A: D -> 0>yD) 
satisfy the assumptions of 2.1. Then X'- f ~+fA Is a homomorphism from E into 
E' if and only if 

(3) For all x, y, d e D the cardinality m of the set (x o y) n A(d) satisfies 
m = 1 (mod Q[R2)) if x, y e A(d) and m = 0 (mod Q(R2)) otherwise. 

Proof. The proof of Lemma \.l can be easily modified to show that x is an endo-
morphism of <<f; + , 5>. Thus it suffices to consider only the operations * and •. 
Let f, g e £ and d e D. Then by (11) and (4) 

(12) ( / * g)A (d)=Y Z /(*) g(y) = Z |(* o y) n A(d)\ f(x) g(y) . 
zeA(d) zexoy x,y 
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On the other hand, 

(13) f\d) g\d) = ( £ /(*)) ( £ g(y)) = £ /(*) a(y) . 
xeA(d) yeA(d) x,yeA(d) 

Necessity: Let x, y, d e D and let b = rr' e R2. In (12) and (13) put f := [ r ] x and 
g := [r']j, (see 1.3). Further put m := |(x 0 y) n -4(d)|. Note that by 2.1 the cardi­
nality m is finite. Now the right side of (12) reduces to mb and similarly the right 
side of (13) is b if x, y e A(d) and 0 otherwise. We have the following cases: 

a) Let x, y e A(d). Then by the above mb = b. We show that 

(14) m = 1 (modo(b)). 

Indeed, (14) is obvious if o(b) = oo as it just means m = 1. Thus let Q(b) =: k be 
finite. Using the fact that kb is the least multiple of b which is equal 0 it is easy 
to prove (14). 

Suppose that Q(R2) = oo. If there is beR2\ {0} with Q{b) = oo, then by (14) 
we have m = 1 (mod oo). Thus assume that the set a := {Qb): b e R2 \ {0}} 
is an infinite subset of {1, 2,...}. Then again by (14) we have m = 1 and so m = 1 
(mod oo). 

Suppose that Q(R2) = k is finite. By the Chinese remainder theorem the con­
gruences (14) are equivalent torn = 1 (mod k) proving the claim in this case. 

b) Let (x, y) $ A2(d). Then from (12) and (13) we get mb = 0. Proceeding as 
in the case a) above we obtain that m = 0 (mod Q(R2))- This concludes the proof 
of the necessity. 

Sufficiency. Let d e D. 1) First suppose that Q{R2) = oo. Let x, y e D and 
m := \(x o y) n A(d)\. From (3) we have m = 1 if (x, y) e A2(d) and m = 0 other­
wise. From (12) and (13) we get 

(15) (/ * gY (d) = Z fix) g(y) = fA(d) g\d) 
x,yeA(d) 

proving that (f * g)A = fAgA. 
2) Finally let Q{R2) = : k be finite. Let x, y e D be such that b : = f(x) g(y) + 0. 

Then b e R2\ {0} and so by the definition 0(b) divides k. Put m := \(x o y) n A{d)\. 
We have two cases: a) First suppose that x, y e A(d). From m = 1 (mod k) we get 
m = 1 (mod Q{b)) and so mb = b. b) Let (x, y) $ A2(d). By the same token we have 
m = 0 (mod 0(b)). Applying a) and b) to (12) and (13) we get (15) which proves 
the required (f * g)A = fAgA. • 

2.3 Remark. Suppose that R is distributive and has a left identity 1 (i.e. a left 
neutral element for the multiplication satisfying lr = r). Let k : = Q{1). For r e R from 

kr = k(lr) = l r + ... + lr = (k 1) r = Or = 0 

we see that o(r) divides k. Since 1 = 1. l e K 2 \ < 0 } we see that Q(R2) = k. Now 
put ld(x) := 1 if x e A(d) and Xd(x) = 0 otherwise. Let x, y,de D and let m : = 
: = \(x o y) n A(d)\. the condition (7) from Proposition 1.8 is 1 = m 1 if x, y e A(d) 

56 



and 0 = m 1 otherwise. These conditions are in turn equivalent to the condition (iii) 
from Proposition 2.2. However, Proposition 2.2 is not a corollary of Proposition 1.8 
because it holds even if R has no left identity or does not satisfy the medial law (6). 

2.4 We turn to a particular but important case. Let = be an order on D (i.e. 
a reflexive, transitive and antisymmetric relation which is often called a partial 
order, an ordering on D or a poset). For d e D we put 

\d) := {XED:X = d] ; (d~\ := {xe D:x = d} . 

For d = d' the set \d) n (d'~\ = {x e D: d = x ^ d'} is called an interval. The 
order is locally finite if all intervals are finite. Put A(d) = \d) for all r e D and 
write f- instead of fA i.e. put 

(16) fHd):=If(x) 
x^d 

for all d e D. 
Let (D, ^ ) be a locally finite and x, y e D. Put h(x, y) := — 1 if x <fc y, h(x, y) = 

= 0 if x = y and for x < y let h(x, y) denote the greatest integer n such that 

x = z0 < zx < ... < zn = y 

(such an n exists in a locally finite order). We define the "Mobius inversion" /r. D2 -> 
-> I (cf [4]): by induction on n := h(x, y) as follows: 

1) If n := h{x, y) = 0 put fijy) := h(x, y) + 1. 
2) If n : = h(x, y) > 0 put 

(17) njy):= - Z lay)-
x<z^y 

Suppose that (D, ^ ) also satisfies the following conditions. For all X e C we have: 
(1) \d) n X is finite for all de D and (2) the set {d e D: \d) n X * 0} belongs 
to C Forfe E define f ° : D -> K by setting 

(18) f°(d):=Zn/x)f(x) 
x 

for all de D. Note that in view of \id, x) = 0 for x $ \d) and (i), the sum in (18) 
is a finite one. Moreover, due to (ii) we have suppf° e Cand sof° e E; hence q>:f-*f° 
maps S into itself, We have: 

2.5 Corollary. Let R be a ring with R2 =# {0} and let (D, ^ ) be a locally finite 
order such that for all X eC we have: (1) \d) n X is finite for all de D and (2) 
{d e D: \d) n X #= 0} e C Then the following conditions are equivalent for x>f -• 
-+f^ and<p:f-+f°. 

1) x IS a homomorphism from E into E'. 
2) x is an isomorfihism from E onto E' whose inverse is (p. 
3) For all d, x, y e D the cardinality m of the set (x o y) n \d) satisfies m = 1 

(mod Q(R2)) if x = d, y = d and m = 1 (mod Q\R2)) otherwise. 
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Proof. ( l ) o ( 3 ) . Proposition 2.2. (2) => (2). Evident. (1) => (2). It suffices to 
show that j , = x'1 i.e. that f=° = f°^ = f for allf e ^. Letfe S and de D. Using 
(18) (16), the distributivity and nd{x) = 0 for d $ x we obtain 

f'\d) = X (̂*)/=M = 5>/*)£/O0 = Z^)/(y) = 
x x x^y x^y 

= I ^)f(y) = l( E Mx))f(y), 
d^x^y d^yd^x^y 

It follows from (17) that £ M*) vanishes for d < y and equals 1 for d = y; 
d^x^y 

whence f-°(d) = f(d). Similarly 

f° = (d) = £/"(*) = Z Z^y)f(y) = 
d^x d^x y 

= I ft-OO/W = I (S ^W)/W = m • n 
d^x^y d%yd^x^y 

2.6 We apply Corollary 2.5 to the case that x o y = {x-y} for (x, y) e F and 
x o j = 0 otherwise where <D, •> is a partial groupoid with domain F (cf. Example 
1.5, and 1A0. We say that (d, ^ ) is a partial meet-semilattice if for all y, z G D the 
set (y] n (z] is either empty or has a greatest element which we denote by y A Z 
(in other words, if y and z have a lower bound, then there is a lower bound y A z 
such that y A z = d for all d = y, d = z). Note that the partial operation A 
in a partial meet-semilattice is idempotent (i.e. (x, x) e F and x A x = x for all 
x e D), commutative (if (x, y) e F, then (y, x) e F and x A j = y A x) and asso­
ciative (if (x, y)e F and (x A y, z) e F, then (y, z) e F,(x, y A z) e F and (x A y) A 
A z = x A (y A z)). Conversely if a partial groupoid on D satisfies these laws, 
then the order = on D defined by setting x ^ j ! i f x = x A y i s a partial meet-semi­
lattice. We have: 

2.7 Corollary. Let <D; •> be a partial groupoid with domain F and let x © y = 
= {x'y} ' / (x> y) e F and x o y = 0 otherwise. Then the condition 3 Of Corollary 
2.5 holds if and only if 

F:={(y9z)eD:(y]n(z] 4=0}, 

(D; = ) is a partial meet-semilattice and yz is the meet y A Z of y and z for all 
(y ,Z )eF . 

Proof. Necessity. Let k : = Q(R2) and let 

G:={(y,z)eD2:(y]n(T] + 0 } 

consist of pairs having a common lower bound. We prove that F = G. 1) Let (v, z) e F 
and d := yz. Then \(y o z) n [d)| = |{d}| = 1 and 1 + 0 (mod k) and so by 
condition 3 we have y = d, z g d, i.e. d e (y] n (z] proving (y, z)eG and F c G. 
2) Conversely let (j>, z) e G. Choose de(y]n (z] and put A := (y o z) n [d). 
Now from the condition 3 we have |A | = 1 (mod k). Taking into account |A | = 1 
we get \A\ = 1 proving y o z * 0, hence y o z = {y-z} and (y, z) e F. Thus G s F 
and so G = F. Moreover, x : == yz = d for all d e B : = (y] n (z]. 

58 



Let (y, Z)GF, X := yz and B := (y] n (z]. By the last statement B .= (*]. 
On the other hand, for each te D\B applying the condition 3 we get t = x. In 
particular, xe B i.e. x is the greatest element of B. It follows that (D, =) is a partial 
meet-semilattice and y z = >> A Z for all (j;, z) e F. 

Sufficiency. Let (y, z) e F and let x := y A Z. Clearly x = d iffy = d and 
z = d proving 3. • 

3. Direct sums and products 

3.1 We introduce two constructions for convolutive /^-structures which are 
natural extensions of direct sum and Kronecker product of matrices. 

Let R be as in 1.1, let (J>j\ of) be a multigroupoid, let Cj ^ &\&3) satisfy the 
assumptions of 1.2 (j = 1, 2) and let Ej be the corresponding convolutive /?-struc-
tures (cf. 1.4) j = 1, 2. 

For simplicity we assume that Dx and D2 are disjoint and put D := Dx u D2 

(if not, replace D by the disjoint union of Dt and D2). Define a multigroupoid 
<D; o> by setting x © y : = x0j y if both x and y belong to Dj and x 0 y : = 0 other­
wise. Similarly put C:= {Xt u X2'.XieC/i = 1,2)}. It is easy see to that C 
satisfies the assumption of 1.2. The convolutive /^-structure E corresponding to 
<Z); o> and C is denoted by E1 ® E2 and called the direct sum of Et and E2. Put 
Fj := {feS>:f(D3_J) = {0}} (j = 1,2) It is easy to verify that Fj is the sub-
universe (i.e. carrier of a substructure) of E isomorphic to Ej (j = 1, 2). It is 
easy to verify that the direct sum induces and abelian monoid on the class of iso­
morphism types of convolutive/^-structures. 

The transformation *A:f->fA from 1.6—1.11 extends quite naturally to direct 
sums. 

3.2 Proposition. Let E = E1 ® E2 let A': D) -> R'j = 1, 2) let D := Dx uD 2 

and let A: D2 -> R be defined by setting X[d, x) := XJ(d, x) if both d and x belong 
to the same Dj and k(d, x) := 0 otherwise. Then X satisfies one of 1.6(i), (1.6(ii) 
and (1) if and only if both A1 and X2 have the same property. 

Proof. Direct check. For example, suppose that X1 and k2 satisfy (7). Let d e Dj, 
x e Dk and y e Dt. If j = k = I then by the definition of A and 0 the equation (7) 
becomes 

ii{x)*i(y)= I 4(-) 
zexjoy 

which holds by assumption. Thus suppose that j , k and / are not equal, then the 
left side of (7) vanishes. If k # /, then x Q y = 0 and (7) holds. Thus let k = I, then 
j =1= k and from d e Dj and zex o y ^ Dk we get X/z) = 0 and so (7) holds. 

Conversely, let (7) hold for A. Restricting x, d and y to Dj we see at once that 
(7) holds for Xj. • 

Let Aj: Dj -> 0>(Dj) (j = 1, 2) and let D = Dxu D2. The map Ax u A2: D -> 
-* &{p) is de;ned by (A, u A2)(d) := Aj(d) for deDj(j = 1, 2). As usual, the 
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cardinal sum of orders (Dj9 ^ y ) (j = 1, 2) is the order (D, ^ ) with x ^ y if x, y e Dj9 

x ^j y for some j e {1, 2} (we assume that Dx n D2 = 0). We have: 

3.3 Proposition. Let ie{l,2, 3}. The map A1 n A2 satisfies the condition (i)> 
from 2A and 2.2 if and only if both Ax and A2 satisfy (i). Similarly the cardinal 
sum(D9 ^) of orders (Dj9 Sj)(j = 1, 2) satisfies 2.5 (i) if and only if both (Dl9 ^ x ) 
and (D2, <;2) satisfy 2.5 (i) (i = 1, 2). 

Proof. Direct check. We only prove it for i = 3. Let Ax and A2 satisfy (3) and 
let d e Dj, xe Dk and y e Dt. If j = k = I then (x o y) n A'd) = (xy o y) n A/d) 
and the property is inherited from Aj. Suppose j 4= k = /. Then X o j / c Dfc and 
A(d) =^ Dj show (xo j / ) n Aid) = 0. Since xe Dk does not belong to A(d) = Dj 
we see that (3) holds. Finally let k 4= /. Then x 0 y = 0 and either JC £ A(d) or y $ A(d) 
so that again (3) holds. 

Conversely, let (3) hold for Ax u A2. Letting d, x and y range over D,- we see 
that Aj satisfies (3). • 

3.4 We turn to direct products of convolutive /^-structures E1 and E2. Naturally 
the direct product of the multigroupoids </),•; oj} (j = 1, 2) is the multigroupoid 
<D, o> on D := D! x D2 defined by setting 

(xl9 x2) o (yl9 y2) := (x1Q yi) x (x 2 o y2) 

for all (xl9 x2)9 (yl9 y2) e D. Put 

C:= {Z:Z = XX x K2 for some Xj e C / j = 1, 2)} , 
We have: 

3.5 Fact. C satisfies 1.2 (i) and 1.2 (ii). 

Proof. Let X9 Ye C Then X = Xt x X2 and Yx x Y2 for some Xj9 Yj e Cj 
(j = 1, 2). By the assumption 1.2 (i) we have Zy : = Xj u Yy e Cy (j = 1, 2) and thus 
from X u Y = Zx x Z2 e C we obtain X u Ye C Clearly C is hereditary and 
contains all singletons and so it satisfies 1.2 (i). We prove the first statements of (ii). 
Let d = (dl9 d2) and for j = 1, 2 put Zj := Xj x Yk, := \{xj9 yj) e Z}: d} e 
e Xj oj yj}\ Note that kJ is finite (by the assumption (2)). Clearly the number of pairs 
(x, y) with x = (xl9 x2) e X and y = (yl9 y2) e Ysuch that dex o y does not exceed 
k!k2 and hence is finite. We prove (3). Fory = 1,2 put Wj : = Xj oj Yj. By assumption 
Wj e Cj. We have 

KoY= U U (*1 °1 yl) X (^2 °2 y2) = 
(xi,x2)eX (yi,y2)eY 

= ( U K o 1 y 1 ) ) x ( U (x2o2y2)) = W1xW2 = C. 
(xi,yi)eZi (x2,y2)eZ2 

3.6 In view of Fact 3.5 the structure &RDC is a convolutive /^-structure. It will 
be denoted by Ex x E2 and called the direct product of E1 and E2. There is a natural 
embedding of Ej into Ex x E2. Also it is easy to see that the direct product defines 
an abelian monoid on the class of isomorphism types of convolutive /^-structures. 
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It can be shown easily that the direct product distributes over the direct sum. 
The map xj/: f^fx from 1.6 — 1.11 naturally extends to the direct product 

(for D finite it is the Kronrcker product of the matrices L from 1.11). 

3.7 Proposition. Let E=E1xE2 and let Xj: D) -> R (j = 1, 2). Put D = Dtx 
x D2 and define X: D2 -> R by setting 

(19) X(d9x):=X\dl9x1)X
2(d29x2) 

for all d = (dl9 d2) e D and x = (xl9 x2) e D. Then for i = 1, 2 if at last two of 
X9 X1 and X2 satisfy 1.6 (i), then all three satisfy 1.6 (i). 

Let R be distributive and satisfy the medial law (6). If (7) holds for both X1 

and X2 then (7) is true for X. If(l) holds for X and for some d29xl9 y2e D2 

(-0) A, 2
2 (x 2 )A^ 2 )= £ kl1{z2) = r 

Z2Є .X 2 o 2 У2 

32 where r is im X\-cancellative (see 1.8), then (7) holds for Xv A similar statement 
holds for X2. 

Proof. Let Xj e C, (j = 1, 2) and X := Xt x X2. Let x = (xl9 x2) eX n 
n supp Ad. Then by (19) we have A].(xt) =1= 0 4= ^ 2 ( x 2 ) proving x7- GX ;- n supp A^ 
(j = 1, 2). The converse also holds and so X n supp Xd = (Xt n supp AjJ x 
x (X2 n supp A£.). From this the validity of 1.6 (1) —(2) follows quite easily. To 
prove the second statement let d = (dl9 d2)9 x = (xl9 x2) and y = (yl9 y2) be elements 
of D. Applying (19), the distributive and medial laws and (7) we get 

V * ) A / j ) = (Aj1(*i)Aja(x2))(Aj,(y1)4(j'2)) = 

= (AjI(*,)Aj1(>'1))(Ad
2
2(x2)A^2)) = ( I Aj,(Zl)( I Aj,(z2)) = 

ziexioi^i z2ex2o2<y2 

= I Z Aji(Zl)A,22(z2)=EVz). 
ziexioiyi Z2ex2o2y2 zexoy 

We prove the last statement. Let X satisfy (7), let dl9xl9 y2 and t be the elements 
from (20) and let dl9 xl9 yx e D1 be arbitrary. Put d = \dl9 d2)9 x = (xl9 x2) and 
y = (yl9 y2). Proceeding as above and applying (7) to X we get 

( I Aj,(zO)r = ( I Aj,(z.))( £ A2
2(z2)) = £A<)(z) = A/x )A/ J ) = 

ziexioiyi ziexioyyi z^sxio^yz zexoy 

= (Aj,(xi) AJX^i)) ( A f e ) Aj,(,2)) = (Aj.(x.) A j ^ ) ) r . 

Since r is im ^-cancellative, we obtain that (7) holds X1. D 

We turn to the maps x:f^fA from §2. Let A/. Dj -> 9{PJ) (j = 1, 2) and 
let D := D! x D2. It is natural to define A1 x A2: D -> ^VD) by setting (A1 x A2) . 
. (di,d2) := ^i(di) x A2(d2). We have: 

3.8 Proposition. Let E = Ex x El9 let A,-: D} -> ^ D , ) saf/sfy ^ / d , ) 4= 0 
/Or some dy e Dj (j = 1, 2) and /et A = Ax x A2. If two of Al9 A2 and A satisfy 
the condition (i) from 2A and 2.2, then the third one has the same property, (i = 
= 1, 2, 3). 

61 



Proof. Let Xj e Cj and dj e Dj (j - 1, 2), X = Xx x K2 and d = (a\, d2). 
It is immediate that 

X n A'd) = (Xi n 4 / d O x (K2 n A/d2)) 

which proves the case 2.1 (i). For 2.1 (ii) it suffices to note that 

{d e D: X n Ad) * 0} -̂  {d{ eD1:X1n Ajd,) 4= 0} 

x \d2 e D2: X2 n A/d2)} 

holds for all d = (dl9 d2) e D. For (3) we have 

(21) (x o y) n A(d) = ((*,. o yt) n A^dO) x ((x2 0 j 2 ) n X2'd2)) 

where x = (xl9 x2), }> = 0^ , y2) and d = ^dT, d2) are arbitrary elements of D. 
Let m, and mf (/ = 1, 2) denote the cardinalities of the sets on the left side and on 
the right side of (21). Clearly m = m1m2. 

First suppose that both Ax and A2 satisfy (3). If x,yeA(d), then x1? yx e 
e A / d x ) and x2,y2eA2 d2) and by (3) we have mx = m2 = 1 (mod k) where 
k := Q R2). Then m = m1m2 = 1 (mod k). If (x, y) £ A2(d)9 then (xj9 y3) £ A)(d) 
for somej e {1, 2} and so by (3) we have my = 0 (mod k) leading to m = m1m2 = 0 
(mod k) and we are done in this case. 

Next let A and At satisfy (3). Fix dl9 xl9 yt e Dx so that xl9 yx e A[dt) and let 
d2, x29 y2 e D2 be arbitrary. Now x2, y2 e A2(d2) iff x, y e A(d) and m2 = m1m2 = 
= m imod k)proves(3)forAx. • 

As usual, the direct product of orders (Dj9 ^ y ) (j = 1, 2) is the order (D, ^ ) 
where D := Dx x D2 and (x1? x2) = (j;-., y2) if xx = \ yt and x2 ^ 2 yt. We have: 

3.9 Corollary. Let 1 _ i _ 3. If two Of the orders (Dl9 _ x), (D2, _ 2 ) and 
(D, 5̂ ) satisfy 2.5 (i) then a// three satisfy 2.5 (i). 

4. General balanced arrays 

In this section we look at a concrete example of a convolutive R-structure 
which came up in the study of generalized block designs and together with [5] 
motivated this paper. 

4.1 Let s > 1 be an integer and s := {0, . . . , s — 1}. We order s by setting 
0 -< / for i = 1, ..., s — 1 (so that 0 is the least element of -< while all the other 
elements are maximal). Clearly (s; :_) is a meet semilattice. 

Let m be a positive integer. Given a = (al9..., am)esm and 0 ?g i < s put 
M * : = {j e M: a j = /} . We may think that j e [a J is colored by color i and hence 
a may be viewed as a partition of M := { 1 , . . . , m} into s pairwise disjoint color 
blocks (some of which may be empty). Let r^ denote the componentwise order 
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on sm. Thus for a = (al9 ..., am) e sm and b = (bl9 = (bl9..., bm) e sm we have 
a ^ b iff aj ^ b7- for j = 1, . . . , m. Expressed differently, a _̂  b iff [a] f c [b] f 

for i = 1, . . . , s — 1 i.e. b is obtained from a by enlarging some color blocks at 
the expense of the 0-th color block. 

4.2 The poset (3m
9 ^ ) also appears in geometry. Denote by e1 = (1, 0, •.., 0, ... 

..., em = (0 , . . . , 0, 1) the unit coordinate m-vectors and let Km denote the convex 
hull of {el9..., em, —el9..., — em} (say in Um or Qm). Thus K2 is a square and K3 

is a octahedron (bipyramid). Let Fm denote the set consisting of the faces of Km and 
0 (e.g. F3 consists of 0, 6 vertices, 12 edges and 8 triangles (see Fig. 1)). 

Fig. 1 

There is a bijection C between 3m and Fm. Indeed, given a = (al9..., am) e 3m 

put b = (bl9..., bm) where bt := — 1 if at = 2 and bt = a{ otherwise and let £(a) 
be the face of Cm whose vertices are the non-zero vectors among bxel9 ..., bmem 

(e.g. to (0, 1, 2) we associate the edge joining A = (0, 1, 0) and B -= (0, 0, —1) 
(Fig. 1). The set Fm (of facer of Km), ordered by inclusion, is called the m-dimensional 
cross poly tope (cf. [10]). It is easy to see that £ is an order isomorphism of (3m

9 ^ ) 
onto (Fm, c ) . The poset (3m

9 r^) also plays a role in logic, universal algebra and 
switching theory. The homomorphisms (3m

9 r^) -> (5, ^ ) , called regular ternary 
logic functions, are suitable for treating ambiguity (cf, [7]), 

4,3 Let A and B be two subsets of sm. Consider a map f:sm-+ N such that 
suppf c A and letf- be defined by (16) in section 2.2. The restriction ft off- to B 
is called an A-supported B-covariance pattern (shortly A - B-pattern). A matrix 
T over s with m rows and exactly fyx) columns xT for all x e sm is a realization 
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off—[2], For s = 2 the binary A — B-patterns were considered in [1, 3]. For xesm 

let ||x|| := m — | [x ] 0 | denote the number of non-zero coordinates of x (i.e. the 
Hamming distance of x from (0, . . . , 0)) and let Vt:= {x e sm: \\x\\ = t} (t = 0, ..., m). 
Clearly V, consists of m-vectors over s with exactly t non-zero coordinates. 

4.4 Examples. Let s = 2 and A = 2m. 
1. Let B = Vx. A map f: 2m -> N is an exact cover iff— | V1 is constant i.e. 

f-(b) = kx for all b e Vx. Now x = (xx, ..., xm) e 2m may be identified with \x\l : = 
:= {/: x{ = 1} and to f corresponds the set system F consisting of f[x) sets \x\l . 
.(xe2m). Clearly F corresponds to an exact cover if each ieM:= {'1, ..., m} 
belongs to exactly Xx members of F. 

2. Put B := V! u V2. A mapf: 2m -> r\] is an balanced incomplete block design 
if there are ku k2 e N such that p(b) = At for all b e Vx and f^(b) = A2 for all 
b e V2 (i.e./—(^0 = K for i = l , . . . , m) and/-^(e, + e,) = A2 for 1 =" i = j = m). 
The corresponding set system F is thus described by the fact that each i e M = 
= {1, ..., m} belongs to exactly Xx members of F and each pair {i,j} {1 g i < j ^ m} 
belongs to exactly A2 members of F. 

3. Let B = V! u V2, f an A — B-pattern, and T is realization. Then m x n 
matrix T may be also interpreted as follows. To the i-th row of T associate the set 
R . := [j: ttj = 1} (i = 1,. . . , n). It is easy to see that f-(e,) = \Rt\ (1 _ i = n) 
and f— yet + e,) = \Rt n K7| (1 ^ i < j = m) and thus f— registers the sizes of 
of \Rt n Rj\ (1 _ i,j ^ m). Instead of this covariance or intersection pattern [1, 3] 
we could also consider the intersection matrix (\Rt n Rj\). 

4. Put B = V! u ... u Vr. A map f: 2m -> i%l is a t-design if there are Al5 . . . 
..., Xt e N such that p(b) = Xh for all h = 1, . . . , t and b e Vh [5]. 

4.5 For aesm put z(a) := (v1? ..., vs_ t) where vf := |[a]i| is the number of 
coordinates of a equal to i (i = 1, ..., s — 1), i.e. z^s) is the color frequency vector 
of a. The set 

suppa := [a]t u ... u [a]s_1 

is called the support of a. 
Let T be a subset of M := {1, ..., m} A mapf: sm -> N is balanced with respect 

to T if f-(b) = f-(b') whenever supp b = supp V = T and z(b) = z(b)' (i.e. in 
a realization Tthe number of columns c such that cT ^ b is constant for all b e B 
with supp b = T and the same z(b) [8]). 

We say that f: sm -> N is a balanced array (B. A.) of strength t if B _ Vr 

and there is a map ^ from Z := {z(b): b G B} into N such that f-(b) = v{z(b)) 
for all b G B. 

4.6 We apply the results of §§ 1-3 to <D, o> = <sm; A > where A is the meet 
semilattice operation (i.e. for a, b esm the coordinates of c := a A b satisfy c{ =t= 
=j= 0 => at = bt = ct for i = 1, . . . , m). We start with the case m = 1. Let R be 
an integral domain. It is easy to describe all homomorphism s: <s; A > -> </?, •>. 
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First of all for 0 = i < s we have e{i) = e(i A i) = e2(i) and so e(i) (e(i) - 1) = 0 
shows that e(i) e {0,1} for 0 = i < s. Moreover, we have 

(22) e(0) = e{i Aj) = e{i)e(j) 

for all 0 = i < j < s. We have two cases: a) Suppose e(0) = 1. Then by (22) we have 
e(j) = 1 for all 0 = j < s. This map X0 with Xo(0) = . . . = X0(s - 1) = 1 is ob­
viously a homomorphism. b) Let e(0) = 0. Then (22) shows that e(i) = 1 holds 
for at most one i. The map a with o-(O) = . . . = G(S — 1) = 0 is obviously a homo­
morphism but has little use in the sequel. The remaining maps Xt (i = 1, . . . , s — 1) 
satisfy Xt(i) = 1 andl^x) = 0 otherwise. The maps Xt(i = 0 , . . . , s - 1) define X: s2 -> 
-• R. The corresponding matrix L : = (X/j)) has rows (1, 1, ..., 1) e2, ...,es where 
e2 = (0, 1, 0, . . . , 0) , . . . , es = (0 , . . . , 0, 1). Clearly X exists if R has 1 and is unique 
(up to the permutation of rows) if R is an integral domain. It is easy to verify that 
the inverse L"1 has rows (l , —1, — 1 , . . . , —1), e2, ...,es. Thus, in our case E is 
isomorphic to E' i.e. <<f; *> ~ <<£*; A >. In particular the subalgebras of the first 
may be determined from those of the second (cf. [5]). It is easy to see thatf— = fA 

for allfe<f. 

4.7 Using 3.6 — 3.9 we extend X to <sw, A > . For x = (xY, ..., xm) esm and 
y = (yl9..., ym) e sm we put X(x, y) = 1 if xt = 0 or xt = yt for i = 1, . . . , m and 
X(x, y) = 0 otherwise. Expressed differently, L = (X{x, y)) is the incidence matrix 
of(sm, _Q i.e. X(x, y) = lifx-^y and X(x, y) = 0 otherwise. The inverse matrix L~x 

is the matrix (/x(x, ^)) with (i) pt(x, ;;) = ( — l)v if for all i = 1, . . . , m we have xt = 0 

Table 1. 

1 - 1 - 1 
1 

- 1 1 1 
. - 1 

. - 1 

- 1 1 1 

. - 1 

1 - 1 - 1 

1 

1 

1 - 1 - 1 

1 

or x{ = y{ and v := |{i: xt = 0, yt =j= 0}, and (ii) JJL(X, y) = 0 otherwise. The matrix 
L _ 1 corresponding to s = 2 and m = 3 is on Table 1. Here 32 is listed lexicographic­
ally as (0, 0), (0,1) , . . . , (2, 2)) and dots stand for 0's. 
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