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1985 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 26. NO. 2 

Differential Rings in which any Ideal is Differential 

ANDRZEJ NOWICKI 
Institute of Mathematics, N. Copernicus University, Torun*) 

Received 26 February 1985 

In the páper, differential rings in which every ideál is differential are studied. 

V článku se studují diferenciální okruhy, v kterých je každý ideál diferenciální. 

B CTaTbe H3yiaioTCfl AH(jxJ>epeHHHajibHbie KOJibua, B KOTOPBIX BCHKHH H^ean HBJíHeTCíi AH4>-
4>epeHHHajibHbiM. 

We study in this paper fd-rings, that is, differential rings in which any ideal 
is differential. We give a list of examples of fd-rings and we prove that if com­
mutative noetherian domain R (such that 1/2 e R) is a non-trivial fd-ring then 
Krull-dim (/*) = 1, 

1. Definitions and examples 

A differential ring (shortly: a d-ring) is a pair (R, d), where R is a ring with 
unit and d is a derivation of R, that is, d: R -> R is an additive mapping which satisfies 
the condition 

d(ab) = a d(b) + d(a) b , 
for any a, b e R. 

Let (R, d) be a d-ring. An ideal A of R is called differential (shortly: a d-ideal) 
if d(A) <= A. 

We say that (R, d) is full (shortly: an fd-ring) if any ideal of R is differential. 
There are two trivial examples of fd-rings. 

Example 1.1. If R is simple (i.e. R has no proper ideals) then (R, d) is an fd-ring 
for any derivation d of R. 

Example 1.2. If d is an inner derivation of R (that is, there exists a e R such that 
d(x) = ax — xa for any x e R), then (R, d) is an fd-ring. 

We say that an fd-ring (R, d) is non-trivial if R is not simple and d is not inner. 

*) ul. Chopina 12/18, 87-100 Toruň, Poland. 
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Look on examples of non-trivial fd-rings. 

Example 1.3. Let K be either a simple ring or a ring in which any derivation is 
inner (for example let K = Z) and let Mn(K) be the ring of n x n matrices over K. 
Let R be a subring of Mn(K) of the form 

R = {A e Mn(K), Au = 0 for (i,j) £ Q} , 

where Q is a relation (reflexive and transitive) on the set {1 , . . . , n}. 
Then (R, d) is an fd-ring for any derivation d of R (see [7] Corollaries 3.8, 4.5 

or [8] Corollary 6.2). 
For example, let n = 4 and 

Q = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (1, 4), (2, 3), (2, 4)} . 
Then 

K = 

K 0 K K 
0 K K K 
0 0 K 0 
0 0 0 K 

Consider a mapping d: R -> R defined by 

*11 0 X13 x 1 4 

0 X22 X23 x24 

0 0 x33 0 
0 0 0 x44 

0 0 x13 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

Then d is a non-inner derivation of R ([7] Proposition 4.9), so (R, d) is a non-trivial 
fd-ring. 

In the remaining part of the paper we will assume that R is a commutative ring 
with unit. Note that a commutative fd-ring (R, d) is non-trivial if R is not a field 
and d 4= 0. 

Example 1.4. Let K = K[[X]] be the formal power series ring over a field K 
and let d be a non-zero derivation of K such that d(X) e (X). Then (K, d) is a non-
trivial fd-ring. 

Example 1.5. Let K = K[X]/(XP), where K is a field of characteristic p > 0 and 
let d be a non-zero derivation of R such that d(x) e (x), where x = X + (Xp). Then 
(K, d) is a non-trivial fd-ring. 

Recall that if (R, d) is a d-ring and 5 is a multiplicative subset of R then the 
pair (RS9 ds), where R is the ring of fractions and 

d . f y - W ' - ' W (for reR,seS), 

is a d-ring ([4] p. 64). It is easy to verify 
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Example 1.6. If (R, d) is an fd-ring and S is a multiplicative subset of R then 
(Rs, ds) is also an fd-ring. 

All rings of Examples 1.4 and 1.5 are local. The following two examples show 
that there are non-trivial fd-domains which are not local. 

Example 1.7. Let T = K[xl9 ..., xn] be a polynomial ring over a field K and d 
be a derivation of T defined by d(K) = 0, d(xt) = xt for i = 1, ..., n. Then 5 = 

n 

= T\\J Txt is a multiplicative subset of T and the pair (Ts, ds) is a non-trivial fd-
i = i 

domain having exactly n maximal ideals. 

Example 1.8. Let T = K[X, y ] be the polynomial ring over a field K and let d 
be a derivation of T defined by d(K) = 0, d(K) = X, d(Y) = y. Then S = 
= T \ (J (X + aY) T is a multiplicative subset of T and the pair (Ts, ds) is a non-

aeK 

trivial fd-domain having exactly |K| maximal ideals. 

All rings R of Examples 1.4, 1.7 and 1.8 are Dedekind domains. The next 
example shows that there are noetherian non-trivial fd-domains which are not 
Dedekind. 

Example 1.9. Let K[X, y ] be the ring of polynomials over a field K and d be 
a derivation of K[X, y ] such that 

d(K) = 0 

d(X) = 3Xy3 

d(Y) = 2YX2 . 

Denote by A the d-ideal (X2 - Y3) and by T the quotient ring K\X, Y]/A. Then 
we have a d-ring (T, d'), where d'(u + A) = d(w) + ,4 for any w eK[X, Y]. The 
set S = T \ (x, y), where x = X + A, y = Y + A, is a multiplicative subset of T. 
Let R = Ts. We can prove that (R, ds) is a noetherian non-trivial fd-domain which is 
not a Dedekind domain. (R is the local ring of the non-simple point (0, 0) on the ir­
reducible curve X2 — Y3 over K (see [9])). 

It is easy to prove the following three propositions 

Proposition 1.10. If (R, d) is an fd-ring and A is an ideal of R, then (RJA, dA), 
where dA(r + A) = d(r) + A, is also an fd-ring. 

Proposition 1.11. Let (Rl9 dx),..., (£n, d„) be a finite family of d-rings. Denote 
by R = Ri x ... x K„ the product of K1?..., Rn and by d = dt x ... x dn the 
derivation of R such that 

d(xt,..., x„) = (d^Xi),..., dn(xn)) . 

Then (i*, d) is an fd-ring if and only if each (Ri9 d^) is an fd-ring. 

Proposition 1.12. (R, d) is an fd-ring if and only if every principal ideal of R is 
differential. 
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2. Solders 

In this section R denotes a commutative ring with identity. 
A mapping h: R -> R will be called a solder of R if 

(i) (a + b) h(a + b) = a h(a) + b h(b) for all a,beR, and 

(ii) h(ab) = h(a) + h(b) for all non-zero a, b e R. 

Proposition 2.1. If ft is a solder of R then the mapping d: R -> R defined by 
d(x) = x h(x), for any x e R, is a derivation of R and (R, d) is an fd-ring. 

Proof is straightforward. 

Proposition 2.2. Let R be a domain. The following conditions are equivalent 
(1) There exists a non-zero derivation d of R such that (R, d) is an fd-ring, 
(2) There exists a non-zero solder of R. 

Proof. (2) => (1) follows from Proposition 2.1. 
(1) => (2). Assume that d is a non-zero derivation of R such that (i?, d) is an fd-ring. 
Then, for each non-zero element x e R, there exists a unique element h(x) e R such 
that d(x) = x h(x). Put ft(0) = 0. Then ft is a mapping from R to R and we have 

(a + b) h(a + b) = d(a + b) = d(a) + d(b) = a h(a) + b h(b) 

for any a, b e R. 

Moreover, if a + 0 and b + 0, then 

ab(h(ab) - h(a) - h(b)) = d(ab) - b d(a) - a d(b) = 0 , 

hence h(ab) = h(a) + h(b). Therefore ft is a non-zero solder of R. 

Example 2.3. Let R = K[[X]] be the formal power series ring over a field K 
and let u e R. If fe R then there exists a natural n and an invertible element fx = 

OO 

= £ rtX
l of R such thatf = Xnfv Put 

i = 0 

htt(f) = u{n+frlfjiriX
i). 

i = 0 

Then the mapping hu is a solder of K such that fttt(K) = 0. Conversely, if ft is a solder 
of R such that ft(K) = 0, then there exists an element u e R such that ft = hu. 

3. Noetherian fd-domains 

In this section we will prove the following 

Theorem 3.1. If (R, d) is a noetherian non-trivial commutative fd-domain and 
1/2 e R then Krull-dim (R) = 1. 

For the proof of this theorem we need four lemmas. 
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Lemma 3.2. Let P be a prime ideal in a commutative ring R and let x, y e R. 
Assume that 2 £ P. 

If x2" + y2n, x2m + y2m e P, for some n + m, then x, y e P. 

Proof. Let m < n. Put n = m + k and denote a = x2m, b = y2m. Then we 
have a + b e P and a2k + b2k e P. Since a + b e P, we have a = — b(mod P) and 
hence a2k _ ( -b ) 2 " = b2k(mod P), so a2k - b2k e P. Therefore 2a2k = 
= (a2k + b2k) + (a2k — b2k) e P, and we see that a e P and hence x, y e P. 

Lemma 3.3. Let (R, d) be a commutative d-domain and A a non-zero ideal of R. 
If d(A) = 0, then d = 0. 

PrOOf. Let 0 + a e A . I f r e P then we have 

0 = d(ra) = r d(a) + a d(r) = a d(r) , so d(r) = 0 . 

If P is a prime ideal of R then by ht(P) we denote the height of P. We will use 
the following version of the Krull Principal Ideal Theorem 

Lemma 3.4. ([10]). Let x be a non-zero element of a noetherian domain R and 
let P be a prime ideal of R containing x. Then P is a minimal prime ideal containing x 
if and only if ht(P) = 1. 

Let us recall that a d-ring (R, d) is called a d-MP ring ([1], [5]) or a special 
differential ring ([3]) if the radical of any d-ideal of R is again a d-ideal. It is clear 
that every fd-ring is a d-MP ring. In [6] we proved 

Lemma 3.5. ([6]). Let (R, d) be a non-trivial (that is, d + 0 and R is not a field) 
noetherian d-MP domain of characteristic p > 0. Then Krull-dim (R) = 1. 

Proof of Theorem 3.1. We can assume, by Lemma 3.5, that R contains the ring Z 
of rational integers. 

Suppose that Krull-dim (R) _ 2. Then there exists a prime ideal P of R such that 
MP) = 2. 

Fix a non-zero element x of P and consider the set {Pls ..., Pt} of all minimal 
prime ideals contained in P and containing x (this set is finite because R is noetherian). 

Observe, that Px u ... u Pt - P. In fact, if Px u ... u Pt = P then P = Pi9 

for some i, and then, by Lemma 3.4, we have 1 = ht(Pt) = ht(P) = 2. 
Fix y e P \ (P1 u ... u Pt) and consider the elements of the form an = x2n + 

+ y2n, forn = 0 , 1 , . . . . 
If an = 0, for some n, then y2n = — x2n e Pu so y s Pt. This contradics the fact, 

that y$P±. 
Therefore an 4= 0 for any n. 
Let Qn, for n = 0, 1, . . . , be a minimal prime ideal contained in P and con­

taining an. Lemma 3.4 implies that ht(Qn) = 1, for n = 0, 1, ... . 
Observe that, if n + m, then Qn =1= Qm- In fact, suppose that Qn = Qm for some 

n + m. Then, by Lemma 3.2, x, y e Qn. Hence, by Lemma 3.4, Qn is a minimal prime 
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ideal in P containing x, i.e. Qn = Pi9 for some i e {1 , . . . , t}. So we have a contradic­
tion: y e Pt and y $ P(. 

Similarly we can show that y $ Qn for n = 0, 1, . . . . 

Now, let h: R -» R be a solder of R (see proof of Proposition 2.2) such that 
d(r) = r h(r), for any r e R. 

We will show that h(x) = h(y). 
Let n be a natural number. Since 

2"(x2" h(x) + j 2 " A(JO) = x2" /i(x2") + y2" h(y2") = a„ h(an) e Qn 

and 2 £ g„, we have 
x2"A(x) + y2"/,(,/) e f t , . 

Hence 
y2\h(x) - h(y)) = (x2" + y2") h(x) - (x2" h(x) + y2" % ) ) e ft,, 

and hence (since y £ Q„), h(x) — h(y) e Qn for any n. 
Suppose that h(x) — h(y) =t= 0. Then each Qn, by Lemma 3.4, is a minimal 

prime ideal containing h(x) — h(j). So, we see that the set of all minimal prime ideals 
containing h(x) — h(y) is infinite. This contradicts the fact that R is noetherian. 

Therefore h(x) = h(y) for any y e P \ Px u ... u Pt. 
In particular if y e P \ Px u ... u Pt, then y2 e P \ P1 u ... u Pt, and we have 

h(x) = h(y) = 2 h(y) - h(y) = 
= h(y2)-h(y) = 
= h(x) - h(x) = 0 , 

and hence d(x) = x h(x) = 0. 

Therefore, we proved that d(x) = 0 for any x e P, so we proved that d(P) = 0. 

Now, by Lemma 3.3, we have d = 0. This contradicts the fact that the fd-ring 

(R, d) is non-trivial. This completes the proof. 

4. Corollary and remarks 

If R is a commutative ring then by N(R) we denote the nilradical of R. 

Corollary 4.1. Let R be a local noetherian ring, 1/2 e R, Krull-dim(R) = 2, 
and let d be a derivation of R. If (R, d) is a nontrivial fd-ring then d(R) £ N(-R)-

Proof. Let {P1? ..., Pw} be the set of all minimal prime ideals of R. Then N(R) = 
= P! n ... n Pw. Consider fd-rings (R/P/, dP), for i = 1, ..., n (see Proposition 
1.10). Since KruH-dim (R/P,) = 2 we have, by Theorem 3.1, dP. = 0, i.e. d(R) ^ Pf, 
for i = l , . . . , n. Therefore d(R) c Px n ... n P„ = N(R). 

In [2, Theorem 3] one can find several equivalent conditions for a d-ring (R, d) 
to have the property d(R) ^ N(R). 
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If R is not local then this Corollary is not necessarily true. 

Example 4.2. Let K be a field. Let Rt = K[[x]] be the formal power series ring 

over K and R2 = K\_xl9..., xM], n = 2, be the polynomial ring over K. Moreover 

let d! be K-derivation of Rt such that d^x) = x, and d2 be the zero derivation of K2. 

Put R = R1 x K2, d = dl x d2 (see Proposition 1.11). Then (R, d) is a non-trivial 

fd-ring, Krull-dim (K) = n = 2 and d(R) * N(K) = 0. 

The next example showes that the converse of Corollary 4A is not true in 

general. 

Example 4.3. Let T = K[[y, xi9 ..., xnJ] be the formal power series ring over 

a field K, and let d be a derivation of T such that d(K) = 0, d(y) = y, d(x.) = 0 

for i = 1,..., n. Observe that the ideal A = (y2

9 yx9 ..., yx) is differential. Put 

R = TJA. Then K is a noetherian local ring with Krull-dim (R) = n and d^(K) .= 

c N(R) but (R, J x ) is not an fd-ring. 

We end this paper with the following two questions: 

1. Is Theorem 3A true without the assumption that 1/2 e Rl 

2. Let R be a local ring of a point on an irreducible curve over a field K. Is there 

a non-zero derivation d of R such that (R9 d) is a non-trivial fd-ring? (Comp. 

Example 1.9). 
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