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Geometric Hyperquasigroups and Line Spaces 

GUISEPPE TALLINI 
Mathematical Institute, University of Roma*) 

Received 30 March 1983 

Geometrie hyperquasigroups are defined and investigated from the point of view of their 
relations to line spaces. Some generál results on line spaces are proved showing the role the sizes 
of lineš play. 

Geometrické hyperkvazigrupy jsou definovány a vyšetřovány z hlediska jejich vztahů 
k přímkovým prostorům. Jsou dokázány některé obecné výsledky, ukazující jakou roli hrají 
velikosti přímek. • 

OnpefleJiaioTCfl reoMeTpH-iecKHe rHnepKBa3Hrpynnbi H OHH MynaioTCH c TOHKH 3peHH5i HX 
cooTHomeHHfl K npocTpaHCTBaM npHMbix. ,H,oKa3biBaK)TC5i HeKOTOpwe oGuiHe pe3yjIbTaTbí, HOKa3bI-
BaiOUIHe pOJIb KOJIHHeCTBa npíIMblX. 

Let (G, o) be a hypergroupoid, i.e. a non-empty set G together with a binary com­
position law — hyperproduct — which is a mapping o : G x G ^ P'(G)^ where 
P'(G) = P(G) \ 0, P(G) the power set of G. A hypergroupid (G, 0) is called a hyper-
quasigroup if 

(1) Va,beG, 3x e G : a o x ^ b , 

(2) Va,beG , 3yeG : y oa^b . 

A hypergroup is a hyperquasigroup for which the associative law holds: 

(3) Va, b, c e G , (a o b) o c = a o(b o c), 

where 

(4) (a o b) o c = \j(x o c : xe a o b) , 

a o ( b 0 c) = \j(a o x : x e b o c) . 

Giving a hypergroupoid is equivalent to giving an incidence structure {x 0 y : 
: (x, y)e G x G} in G, i.e. a family of non-empty subsets of G indexed by G x G. 
Thus, the theory of hypergroupoids, in particular of hypergroups, is contained in 
that of incidence structures and can be viewed as an algebraization of the latter ones. 

*) Istituto Matematico "G. Caste lnuovo" Universita di Roma 00185 Rome, Italy. 
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Assume for the hypergroupoid (G, 0.) the following hold: 

(5) Va G G , a 0 a = a (idempotent law), 

(6) Va, b G G , a, b e a o b , 

(7) Va, b G G , Vx, y G a o b , x - # y = > a o b i = X o y . 

From (7) and (6) it follows that 

(8) Va, b G G , Vx, y e a o b , x = # y = > a o b = X c y . 

By (8), (5), (6), the commutative law, i.e. 

(9) Va, b G G , a o b = b o a , 

and the following weak associative law 

(10) Va, b G G , V c e a o b = = > a o ( b o c ) = ( a o b ) o C = a o b 

hold. Furthermore, (l) and (2) hold; therefore, (G, o) is a hyperquasigroup. Next, 
consider the family [x o y : (x, y) G G x G \ AG} of subsets of G and let .£? be the 
proper family associated with it. Thus, (G, S£) is a line space, since there is a unique 
element in & through any two distinct elements in G. Conversely, let (G, «£?) be a line 
space; if a hyperproduct is defined on G by 

_ fx when x = y , 
[line through x and y when x #- v , 

then (G, o) is a hypergroupoid for which (5), (6), and (7) hold. Therefore, the hyper-
groupoids for which (5), (6), and (7) hold will be called geometric hyperquasigroups. 
The subhyperquasigroups of such a hyperquasigroup (G, o) form a closure system # 
coincident with the closure system of the subspaces in the line space associated 
with (G, o). If # is combinatorial, i.e. 

(10) VC e V, Vx e G \ C => C u {x} covers C , 

then (G, o) will be said to be combinatorial and the well known properties of matroids 
hold. 

The associative law (3) for a geometric hyperquasigroup (G, o) can be proved 
to be equivalent to Veblen axiom for the associated line space (G, S£)\ i.e. (3) is the 
algebraic translation of Veblen axiom. Thus, 

(11) The geometric hyperquasigroup (G, o) is a hyper group o (G, J£?) is 
a projective space. 

In what follows (G, o) will always be a finite geometric hyperquasigroup and 
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(G, J&?) the line space associated with it. Set R = |j£?|, k = |G|, 

m = min |x o v| , n = max |x o _y| . 
(x,y)eGxG\AG (x,y)eG* G\AG 

Obviously, both m _• 2 and n < k will be assumed, otherwise (G, o) is the trivial 
hypergroup. 

The number ts of lines containing s points each will be called the index s charac­
ter of (G, &) (m = s ^ n). The characters tm, ...,?„ of (G, J£?) satisfy the following 
equalities: 

(12) £ /. = R , £ s(s - 1) r5 = k(k - 1); 
s = »i s = m 

the first equality (12) is obvious; the second one is obtained computing in two dif­
ferent ways the pairs consisting of a pair of distinct points in G and the line through 
them. 

If m = n, i.e. any line in (G, ££) has size m, then (G, J£?) is a Steiner system 
5(2, m, k) and (G, o) is a Steiner hyperquasigroup (a Steiner quasigroup when 
m = 3); in this case from (12) 

R = k(k - l)/m(m - 1) 

follows. Furthermore, it is straightforward to prove that the number of lines through 
any point in G is r = (k — l)/(m — 1). 

In the sequel the following will be assumed: 

(i) m < n; 
(ii) through any point in G there are exactly r lines of J£f. 

With such a (G, J2?) the parameters (k, K, r, m, «) are associated. 
Next, consider the number of pairs (x, /), where x e G and / is a line in ££ 

through x. This number can be computed in two ways; when lines are looked at, 
n 

N = Yjsts is obtained; when points in G are considered, then N = kr. Thus, another 
s = m 

equality for characters holds; namely, 

' (13) " ists = kr. 
s = m 

Consequently, by (12) and (13), 

(14) i t, = R , 
s = m 

n 

I sts = kr , 
s = m 

i s2ts = k(k + r-l). 
s = m 
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Let N and M be any two integers; from equalities (14) the following is obtained: 

t(N ~ s)(s -M)t,= - £ s \ + (N + M ) £ sts -NM£ts = 
s=m s=m s=m s=m 

= -k(k + r - I) + (N + M)kr - NMR = 

= -(k2 - k((N + M)r - r + 1) + NMR) . 

Set 

(15) f(k, R, r; N, M) = k2 - k((N + M) r - r + l) + NMR ; 

then 

(16) t (N ~ s) (s ~ M) <s = -f(k, R, r; N,M). 
s = m 

(G, <£) will be said to be an h character space if preciseiy h of its characters are 
different from zero. If the indices of the non-zero characters are s2 = m, s2, ..., sh.1, 
sn = n, sx < s2 < ... < sh, (G, 3?) will be said to be of type(s l5 ..., sh). Line spaces 
(G, ££) may be investigated looking at the number of their non-zero characters and 
the difficulties increase together with this number. The one character line spaces are 
Ste'ner systems as already pointed out. 

Next, two character line spaces of type (m, n) will be considered. Setting N = n, 
M = m in (16), since tm + 1 = ... = t„_! = 0, 

(17) f(k, R, r; n, m) = k2 - k((n + m) r - r + l) + mnR = 0 , 

and the following result is proved. 

L The parameters (k, R, r, m, n) of a two character line space (G, Z£) satisfy 
equation (17); therefore, 

A =((n + m)r - r + l)2 - 4nmR 

must be a square integer. 

Denote by Uj the number of lines through a point x in G having j points, j = 
= m, n; then un + um = r, (n — 1) un + (m — 1) um = k — 1, so that 

(is) „____________!, ^ . f c - i - H - - - ) . 
n — m n — m 

consequently, 

(19) r(m - 1) + 1 < k < r(n - 1) + 1 . 

II. If (G, 3?) is of type (m, n), then through any point in G exactly Uj lines 
with j points pass, j = m, n; um and un are given by (18), thus the right hand sides 
must be integers, i.e. n — m divides both r(n — l) — k + 1 and k — 1 — r(m — 1). 
Furthermore, (19) holds. 
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In the general case, i.e. (G, &) is an h character line space with parameters 
(fc, R, r, m, n), substituting n and m for 1V and M in (16), 

(20) £ (n - s) (s - m) fs = -/(fc, K, r; n, m) 
* rs m •+• 1 

is obtained. Since the left hand side of (20) is ^ 0 , and equal to zero iff (G, J&?) has 
just two characters, 

(21) fc2 - fc((fc + m) r - r + 1) + mnR ^ 0 , and 

fc2 — k((n + m) r — r + 1) + nmR = 0 <=> (G, -Sf) is a two character space. 

Therefore, equation (17) must have (positive) real roots, i.e. its discriminant must 
be non-negative: 

(22) A = ((n + m) r - r + l )2 - 4nm.R =• 0 . 

Furthermore, denoting by kl9 k2 these roots (kx _̂  fc2), 

(23) fci = fc = fc2 , 

the equalities holding iff (G, J27) is a two character space. 
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