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Let A be a representation-finite algebra over-an algebraically closed field and let F(A) be 
the Auslander-Reiten quiver of A. In this note we give a simple necessary and sufficient condition 
for nonexistence of oriented cycles in F(A) in the class of representation-finite algebras A with 
Auslander-Reiten invariant p(A) ^ 2. 

Kategorii levých modulů nad konečně dimenzionální algebrou nad algebraicky uzavřeným 
tělesem, která má pouze konečný počet tříd izomorfismů nerozložitelných modulů, lze popsat 
pomocí Auslanderova-Reiterova grafu. V článku jsmu uvedeny nutné a postačující podmínky pro 
neexistenci orientovaných cyklů v tomto grafu. 

IlycTb K — ajrre6paHHecKH 3aMKHyToe none HA — KOHCHHO pa3MepHan K-ajire6pa HMeiomaa 
TOJibKo KOHe^Hoe Hnáno Hepa3Jio5KHMbix A-Mo,zryjieH. CTpoeroie KaTeropHH A-MOflyneH onHCbiBaeTcm 
npH noMomH rpa(J>a AycjieHflepa-PeňTeHa. B CTaTte HaňfleHM HeoóxoflHMLie H flocTaTOHHbie ycjio-
BHfl jjjin HecymecTBOBaHHH opneHTHpoBaHHbix UHKJIOB B STOM rpa4>e. 

Throughout we fix an algebraically closed field K. We use the term algebra to 
denote a finite-dimensional, connected, basic associative K-algebra with unity. 
Similarly the term module is used for a left module of finite K-dimension. 

Let A be an algebra and let M,N be two indecomposable _4-modules. Then 
a homomorphism / : M -> N is siad to be irreducible if for every factorization 
f = gh,g is split epi or h is split mono [3]. An algebra A is said to be representation-
finite if it has only a finite number of isomorphism classes of indecomposable 
-4-modules. It is well-known that any homomorphism between two indecomposable 
modules over a representation-finite algebra is a sum of compositions of irreducible 
homomorphisms [5, 11]. Thus, for a representation-finite algebra A, the full informa­
tion on the category of .A-modules, mod A, is contained in a finite connected graph 
F(A) called the Auslander-Reiten quiver of A. The vertices of F(-4) are the iso­
morphism classes of indecomposable A-modules and there is an arrow from a class 
of M to a class of N if there is an irreducible homomorphism from M to N (see [l]). 

One of the open question in the representation theory of algebras is that when, 
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for a representation-finite A, F(A) has no oriented cycles. It is an interesting question 
since, as it was proved by Happel and Ringel [13] (see also [12]), if A is representa­
tion-finite and F(A) has no oriented cycles, then the indecomposable ^4-modules are 
uniquely determined, up to isomorphism, by their simple composition factors. This 
problem has been considered partially by Bautista and Smalo [8] . 

In this note we give a complete solution of the raised above problem for repre­
sentation-finite algebras A with /?(A) = 2. Recall that, for an indecomposable 
A-module M, the invariant ft(M) records the largest possible number of noniso-
morphic indecomposable A-modules N1,...,Nr which are not projective-injective 
and there are irreducible maps M -> Nt, i = 1, . . . , r. Then j3(A) is defined to be the 
supremum of P(M) for M indecomposable A-modules (see [2 — 6]). Bautista and 
Brenner proved in [7] that, for any representation-finite algebra A, fi(A) = 3. 
There is no still classification of all representation-finite algebras. For the case /?(A) ^ 
^ 2, this problem has been solved by the author and Waschbusch in [16] (see also 
[6, 15]), where it was shown that, for a representation-finite algebra A, /?(A) = 2 if 
and only if A is biserial. Recall that an algebra A is called biserial (cf. [9]) if the radical 
of any indecomposable nonuniserial projective left or right A-module is a sum of 
two uniserial submodules whose intersection is simple or zero. Consequently we are 
concerned with the problem when, for a representation-finite biserial algebra A, F(A) 
has no oriented cycles. Morever, it is well-known (see [ l l , 14]) that if r(A) has no 
oriented cycles then A is a factor of an hereditary algebra. 

In order to formulate the main result of this note we need the notion of a special 
family of local modules. A sequence of nonisomorphic uniserial A-modules Ul9 ... 
..., Um, and local nonuniserial A-modules L t l , . . . , Lip, 1 _ it < ... < ip = m, is 
called special if, for it <j< it+1, top(Uy) = soc(UJ + 1), and for 1 = t = p, 
soc(Lit) = top(U t t) © soc(U / t+1), where UIp + i = Ui- Recall that a module M is 
called uniserial if the submodule lattice of M is a chain. Moreover, M is local if it 
has unique maximal proper submodule or, equivalently, it is a factor of an inde­
composable projective module. Finally, we denote by top (M) the top of M, by soc(M) 
the socle of M, and by P(M) the projective cover of M . 

Then we have the following theorem which is the main result of this paper. 

Theorem. For an algebra A being a factor of an hereditary algebra the following 
conditions are equivalent. 

(i) A is representation-finite, fi(A) _ 2, and F(A) has no oriented cycles. 
(ii) A is biserial and there is no special family of local A-modules. 

We know from [15, Theorem 1] that any algebra A satisfying the condition (ii) 
of Theorem is representation-finite and /?(A) = 2. Thus, for our aim, it is enough 
to prove that, for a representation finite biserial algebra A, F(A) has no oriented cycles 
if and only if there is no special family of local A-modules. In order to prove this 
fact we use a good presentation of any representation-finite biserial algebra as 
a bounden quiver algebra. 
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Let A be a basic algebra and let Q be the ordinary quiver of A [11]: The set Q0 

of vertices is a fixed complete set of primitive orthogonal idempotents {e1? ..., eq} 
of A and for all i, j , 1 = i,j = q the set of arrows from ex to e} is in one-one cor­
respondence with a K-basis of the space e} rad Aet modulo the subspace ej rad2 Aeh 

where rad A is the Jacobson radical of A. Then the map £ : Q -> A, defined by 
s(e.) = g. and e(oc) = a where a corresponds to the arrow a of Q, extends uniquely to 
an algebra epimorphism e : K[Q] -» -4, K[Q] is t n e quiver algebra of g [11], with 
kernel I contained in rad2 K[6]. In this case we say that A is isomorphic to the 
bounden quiver algebra K[Q, I] of the bounden quiver (<2,1). But the ideal I 
depends on the chosen representatives of the arrows and, in order to prove Theorem, 
we need a good choice of them. A path (oriented) of Q which does not belong to I 
is called a nonzero path of (<2,I). 

We have the following consequence of the facts proved in [16]. 

Proposition. Any representation-finite biserial algebra A being a factor of an 
hereditary algebra is isomorphic to a bounden quiver algebra K[Q, I] where 
(Q,I) satisfies the following conditions: 

(i) Q has no oriented cycles. 
(ii) The numbers of arrows starting respectively ending in any vertex of Q are 

bounded by 2. 
(iii) For any arrow oc of Q there is at most one arrow a and at most one arrow y 

such that aa and ya are not in I. 
(iv) There is an upper bound for the length of paths in Q which are not in I. 
(v) I Is generated by paths and differences of two parallel paths in Q. 

Let A be a representation-finite biserial algebra and assume that A = K[Q, / ] 
where (Q, I) satisfies the conditions (i) — (v) of Proposition. Then mod A is equivalent 
to the category modx (Q, I) of finite-dimensional K-representations of Q satisfying 
the relations given by I, from [15] the support of any indecomposable object X in 
modx (Q, I) is described by a picture 

o' *i i z , \p 

' A A , A 
/ \ / ' \ / \ . 

h k jp Jf+1 

where the first or the last path may be of length 0, the paths 

it-+--.'+Jt an<* i|-> ... -*I r+i , t = U . . . ,P , 

are not in I, and dim^X,; = 1 for any point / from the support of X. Moreover, it is 
easy to see that there is a special family of local objects in modx (Q, I) if and only if 
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there is a subquiver Q' of Q of the above form satisfying the following conditions: 

(1) the paths it -> ... -> j \ and ip-> ... -+ j p + i are of length _tl, 
(2) j \ =jp+1 and i -j=j for any pair {i9j} of vertices of Q' different from 

{Jitjp+ijf 
(3) the paths it-+ ... ->I f + 1 , t = 1, . . . , p, are not in I. 

Indeed, assume that Q' is a subquiver of Q, I satisfying the conditions (l) — (3). 
For t = 1,..., p, let 

k = 0,..., qt9 be the family of nonzero subpaths of 

vt :it-+ . . . - > j , 

such that mt0 = i„ mtqt+1 = jt9 and inductively vtk is the maximal nonzero (orien­
ted) subpath of vt starting in mttk. Since A is representation-finite, from [16, Theorem 
1] follows that for at least one t, qt _% 1. Let sl9 ..., sh, where sd < sd+1, be all integers 
from { 1 , . . . , p] with qSd *_ 1. Without loss of generality we may assume that sx = 1, 
(Q' is a cycle). For each t = 1, ..., p, let Lit be the local nonuniserial representation 
of Q, I with support 

mttl <- . . . <- it - • . . . - » j , + 1 . 

Observe that soc (L/t) is a direct sum of two simple representations given by the 
vertices mtl and j t + 1 . Further, for each, d = 1 , . . . , h9 let USdj9 0 _{j _i qSd — 1 
be the representation of (Q, I) whose support equals to vSdq _ .. Then USdJ, 0 _i 
<_ j <l qSA — \9 \ tl d _* h9 are uniserial representations of (Q, I), for j ^ qSd — 2, 
top(USdJ) = soc(USdJ+1)9 and s o c ( L j = t o p ( £ 7 ^ ^ ) 0-S J j - + 1 , where, for r = 
= 1, . . . , p, Sjt denotes the simple representation of (Q, I) given by the vertexjr Now 
it clear that we have a special family of local representations formed by the local 
representations Lh,..., Lip, uniserial representations USdJ, 0 _l j _{ qSd — 1, 1 <J 
i_\ d _^h, and the simple representations Sjt, for all t =# sl9..., sh. The fact that any 
special family of local representations of (Q91) is given by a subquiver Q' of Q, 
satisfying the conditions (l) —(3) follows from the description of supports of in­
decomposable representations of (Q, I). 

Now suppose that is a special family of local A-modules. Then there is a sub­
quiver Q' of (Q,I) satisfying the conditions ( l ) - (3 ) and, in our notations, let XSd, 
1 5̂  d _i h, be the indecomposable representation of (Q, J) with support 

(*) X-5d fd+1 , SM>^M 

/ \ / \ / 

/ \ / ' V 
m6dA ísd*i J^d+1 
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where sh + 1 = st. Let us observe that there are nonzero maps USd>qs _x -» soc(XSd) 

and XSd -> top(USd+1>0). Then, since top(USdJ) = soc(US d J + 1) for j = aSd_2, and 

socXSd contains top(USd<? _j) as a direct summand, there are chains of nonzero 

maps 

XSd -> top (USd+1,0) ~> *s d + 1
 i f «.« = 1 > 

and 

^ - ^ ^ + 1 , i ^ - - - ^ L / s d + 1 , , S d + l - i ^ -Y S d + 1 , if qSd = 2 

d = 1, ..., h. Consequently there is a chain of nonzero maps 

XS1 = Y1->...->Ym->Ym+1 =XSl 

with Y/s indecomposables in mod* (Q, I), and from [1, 5], F(A) contains an oriented 
cycle. Thus (i) implies (ii). 

Conversely assume that F(A) contains an oriented cycle. Then there is a chain 
of nonzero maps 

f f f 
Xx > X2 -> . . . -» Xn-1 > Xn > Xn+1 = xt 

where all Xt are indecomposable objects in mod* (Q, I). Let n be the minimal number 
with this property. The fi+1f = 0 for i = 1, ..., n, and without loss of generality 
we may assume that any Xt cannot be exchanged by any its proper submodule or 
factormodule. Then all representations Xt are nonsimple and from the description of 
supports of indecomposable objects in mod* (Q, I) follows that the image of any f{ 

is simple. We claim that at least one of the modules Xt is nonuniserial. Indeed, if 
all X,'s are uniserials, the projective covers P(Xt) of Xt are indecomposable modules 
and the maps ft induce nonzero maps q{ : P(Xj) -• P(Xi+1). Hence we get a cycle 

p(xt) -* -» P(X2) - ... - P(X„) -*-> p(xt) 

of nonzero maps between indecomposable projective A-modules and this is a contra­
diction with our assumption that A is a factor of an hereditary algebra (see [14]). 
Consequently, one of the modules Xi9 say Xn9 is nonuniserial. Then there is a sequence 
of integers 1 _ sx < ... < sh = n such that XSj9 j = 1, . . . , h9 are all nonuniserial 
modules in the family Xl9 ..., Xn. Since the image of any ft is simple, using our des­
cription of supports of indecomposable objects in mod^(Q, J), it is not hard to check 
that for any i = 1, . . . , h 

Xsl = Vi +
 1ZLij 
; = i 

where Vt is a nonsimple uniserial subrepresentation of XSi, Litj are nonisomorphic 
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nonuniserial local subrepresentations of XSi, 

soc (Lu) = St j ® SiJ+1 for 1 < j < n , 

soc (Li>ri) = S i i r i 0 soc (V.) 

ker(/Si) = r a d ( V ; ) + r i : L l , 

i m ( / „ - i ) = Sf>1, 

1=1 

where all Sf></ are simple representations. Thus the support of any Xs. is of the form 
J 

(*). For each 1 = j = h, let p} = £ rf, and put p = ph and m = p + n — h. Define 
» = i 

a sequence iu ..., ip of integers with 1 g ix < ... < ip = m by the equalities 

it = sj+1 + t -j - 1 for Pj<t = pj+1, j = 0 , . . . , 

h — 1, where p0 = 0, and put 

At = Lj+1}t-Pj. 

Finally, for any 1 = r = m, let Ur be the uniserial module defined in the following 
way: 

Ux = Vh , 

Ur = Vk, for r = sk + pfc - k + 1 , 1 = k = h - 1 , 

Ur = S ^ - ^ - ^ . ^ t , for sk + pk-t - k + 1 < r = sk + pk - k, 

1 = k = h, 
ur = Xr-Pk+k-i for sk + pk - k + 1 < r = sk + 1 + pk- k, 0 < : k < / i 

where 50 = 0. From our definitions simply follows that the uniserial modules II , . . . 
..., Um together with the nonuniserial local modules L t l , . . . , Lip, form a special family 
of local A-modules. Consequently (ii) implies (i) and this finishes the proof of 
Theorem. 

Remark. It is not hard to modify our proof of the implication (i) => (ii) for the case 
of arbitrary representation-finite algebra A and prove that if F(A) has no oriented 
cycles then there is no special family of local A-modules. It would be interesting to 
know if the converse implication is true. 

We end the paper with some example showing that in general there are repre­
sentation-finite algebras A for which any indecomposable module is uniquely deter­
mined by the composition factors but F(A) contains an oriented cycle. 
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Let us consider the bounden quiver algebra A = K[Q, I] where Q is the quiver 

0->0 

K—X) 

o-^к 

к-iк o—>к 
l î — > i î 
0-+0 к-*o 

l l 

ÝЧ 

ц 
I 

к-Лк 

к—>o к—*o 

i î — > l 
Ќ—>0 0 - > 0 

0—>0 0—>0 

i î < — ^ Л 1 — > J î 1 —*J î — > u 
o—>к к Л к o->к o—>к к-4к 

l î 
к—>0 

and I is generated by two paths /fy and ye. Then mod x (Q, I) is the category of finite-
dimensional K-vector spaces and K-linear maps 

4 -И 

-->2 

satisfying the relations VyVa = 0 and VfiVy = 0, and from [10,11] F(A) has the form 

4 ., r̂  u 
v , _ _ •->VŁ 

We see that indecomposable A-modules are uniquely determined by their com­
position factors and there is an oriented cycle in F(A). 
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