Acta Universitatis Carolinae. Mathematica et Physica

Andrzej Skowronski

On nonexistence of oriented cycles in Auslander-Reiten quivers

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 25 (1984), No. 1, 45--52

Persistent URL: http://dml.cz/dmlcz/142528

Terms of use:

© Univerzita Karlova v Praze, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/142528
http://project.dml.cz

1984 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 25. NO. 1

On Nonexistence of Oriented Cycles in Auslander-Reiten Quivers

ANDRZEJ SKOWRONSKI
Institute of Mathematics, Nicholas Copernicus University, Torun*)

Received 30 March 1983

Let A be a representation-finite algebra over=an algebraically closed field and let I'(4) be
the Auslander-Reiten quiver of 4. In this note we give a simple necessary and sufficient condition
for nonexistence of oriented cycles in I'(4) in the class of representation-finite algebras 4 with
Auslander-Reiten invariant f(4) < 2.

Kategorii levych moduli nad kone¢né dimenzionalni algebrou nad algebraicky uzavienym
télesem, ktera ma pouze konedny podet tfid izomorfismi nerozloZitelnych modulu, 1ze popsat
pomoci Auslanderova-Reiterova grafu. V €lanku jsmu uvedeny nutné a postadujici podminky pro
neexistenci orientovanych cyklu v tomto grafu.

ITycts K — anreGpanyecku 3aMKHYTOE IOJIe M A — KOHEYHO pa3MepHas K-anrebpa mMeromas
TOJIBKO KOHEYHOE YHCJIO HePa3JIOKHMBIX A-Monyneit. CTpoeHHe KaTeropuu A-MoyJieit OIACHIBAETCA
npu nomMouu rpada Aycnennepa-Peittena. B ctaTthe Hal{ieHbI HeOOXOAMMEBIE H JOCTATOYHBIE YCIIO-
BHA U1 HECYIIIECTBOBRHUA OPHEHTHPOBAHHBIX LIAKJIOB B 3TOM rpade.

Throughout we fix an algebraically closed field K. We use the term algebra to
denote a finite-dimensional, connected, basic associative K-algebra with unity.
Similarly the term module is used for a left module of finite K-dimension.

Let A be an algebra and let M, N be two indecomposable A-modules. Then
a homomorphism f: M — N is siad to be irreducible if for every factorization
f = gh, g is splitepi or h is sphit mono [3]. An algebra A is said to be representation-
finite if it has only a finite number of isomorphism classes of indecomposable
A-modules. It is well-known that any homomorphism between two indecomposable
modules over a representation-finite algebra is a sum of compositions of irreducible
homomorphisms [5, 11]. Thus, for a representation-finite algebra A, the full informa-
tion on the category of 4-modules, mod A, is contained in a finite connected graph
I'(A) called the Auslander-Reiten quiver of A. The vertices of I'(4) are the iso-
morphism classes of indecomposable 4-modules and there is an arrow from a class
of M to a class of N if there is an irreducible homomorphism from M to N (see [1]).

One of the open question in the representation theory of algebras is that when,
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for a representation-finite 4, I'(4) has no oriented cycles. It is an interesting question
since, as it was proved by Happel and Ringel [13] (see also [12]), if 4 is representa-
tion-finite and I'(4) has no oriented cycles, then the indecomposable A-modules are
uniquely determined, up to isomorphism, by their simple composition factors. This
problem has been considered partially by Bautista and Smalo [8].

In this note we give a complete solution of the raised above problem for repre-
sentation-finite algebras 4 with B(A4) < 2. Recall that, for an indecomposable
A-module M, the invariant f(M) records the largest possible number of noniso-
morphic indecomposable 4-modules N, ..., N, which are not projective-injective
and there are irreducible maps M - N, i = 1, ..., r. Then B(A) is defined to be the
supremum of B(M) for M indecomposable A-modules (see [2—6]). Bautista and
Brenner proved in [7] that, for any representation-finite algebra A4, B(4) < 3.
There is no still classification of all representation-finite algebras. For the case f(4) <
< 2, this problem has been solved by the author and Waschbiisch in [16] (see also
[6, 15]), where it was shown that, for a representation-finite algebra A, B(4) < 2 if
and only if A is biserial. Recall that an algebra A is called biserial (cf. [9]) if the radical
of any indecomposable nonuniserial projective left or right A-module is a sum of
two uniserial submodules whose intersection is simple or zero. Consequently we are
concerned with the problem when, for a representation-finite biserial algebra 4, I' (A)
has no oriented cycles. Morever, it is well-known (see [11, 14]) that if I'(4) has no
oriented cycles then A is a factor of an hereditary algebra.

In order to formulate the main result of this note we need the notion of a special
family of local modules. A sequence of nonisomorphic uniserial 4-modules U, ...

..»Up, and local nonuniserial A-modules L;,...,L;, 1 £ i; < ... <i,=m, is
called special if, for i, <j < i+, top(U;) =soc(U,,), and for 1 <t < p,
soc (L;,) = top (U;,) ® soc(U;,+4), where U, .y = U,. Recall that a module M is
called uniserial if the submodule lattice of M is a chain. Moreover, M is local if it
has unique maximal proper submodule or, equivalently, it is a factor of an inde-
composable projective module. Finally, we denote by top (M) the top of M, by soc(M )
the socle of M, and by P(M) the projective cover of M.

Then we have the following theorem which is the main result of this paper.

Theorem. For an algebra A being a factor of an hereditary algebra the following
conditions are equivalent.

(i) A is representation-finite, B(A) < 2, and I'(A) has no oriented cycles.

(i) A is biserial and there is no special family of local A-modules.

We know from [15, Theorem 1] that any algebra A4 satisfying the condition (ii)
of Theorem is representation-finite and B(A4) < 2. Thus, for our aim, it is enough
to prove that, for a representation finite biserial alg=bra 4, I'(4) has no oriented cycles
if and only if there is no special family of local A-modules. In order to prove this
fact we use a good presentation of any representation-finite biserial algebra as
a bounden quiver algebra.
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Let A be a basic algebra and let Q be the ordinary quiver of A [11]: The set Q,
of vertices is a fixed complete set of primitive orthogonal idempotents {e;, ..., e}
of A and for all i, j, 1 < i,j £ q the set of arrows from e; to e; is in one-one cor-
respondence with a K-basis of the space e; rad 4e; modulo the subspace e; rad? Ae;,
where rad A4 is the Jacobson radical of A. Then the map ¢: Q — A, defined by
¢(e;) = e; and ¢(a) = a where a corresponds to the arrow a of Q, extends uniquely to
an algebra epimorphism ¢ : K[Q] — A, K[Q] is the quiver algebra of Q [11], with
kernel I contained in rad® K[Q]. In this case we say that A is isomorphic to the
bounden quiver algebra K[Q,I] of the bounden quiver (Q,I). But the ideal I
dep=nds on the chosen representatives of the arrows and, in order to prove Theorem,
we need a good choice of them. A path (oriented) of Q which does not belong to I
is called a nonzero path of (Q, I).

We have the following consequence of the facts proved in [16].

Proposition. Any representation-finite biserial algebra A being a factor of an
hereditary algebra is isomorphic to a bounden quiver algebra K[Q,I] where
(0, 1) satisfies the following conditions:

(i) Q has no oriented cycles.

(ii) The numbers of arrows starting respectively ending in any vertex of Q are
bounded by 2.

(iii) For any arrow o of Q there is at most one arrow ¢ and at most one arrow y
such that ao and yo are not in I.

(iv) There is an upper bound for the length of paths in Q which are not in I.

(v) I is generated by paths and differences of two parallel paths in Q.

Let A be a representation-finite biserial algebra and assume that 4 = K[Q, I]
where (Q, I) satisfies the conditions (i) — (v) of Proposition. Then mod 4 is equivalent
to the category modg (Q, I) of finite-dimensional K-representations of Q satisfying
the relations given by I, from [15] the support of any indecomposable object X in
modg (Q, I) is described by a picture

1p

ANA AN
/NS VN

where the first or the last path may be of length 0, the paths

7

iy>...—>j, and i,>...5 44, t=1,..,p,

are not in /, and dimyg X; = 1 for any point i from the support of X. Moreover, it is
easy to see that there is a special family of local objects in mody (Q, I) if and only if

47




there is a subquiver Q' of Q of the above form satisfying the following conditions:

(1) the paths iy > ... > j, and i, > ... > j, ., are of length =1,
(2) j1 =Jjp+1 and i #j for any pair {i,j} of vertices of Q' different from

{jl’jp+l}’
(3) the paths i, > ... > j, 4, t = 1,..., p, are not in I.

Indeed, assume that Q' is a subquiver of Q, I satisfying the conditions (1)—(3).

Fort=1,...,p, let
Uge s My = oo™ My iy
k=0,...q, be the family of nonzero subpaths of
VP PR P

such that m, o = i,, m, 4., = j,, and inductively v, , is the maximal nonzero (orien-
ted) subpath of v, starting in m, ,. Since 4 is representation-finite, from [ 16, Theorem
1] follows that for at least one t, g, = 1. Let s, ..., s,, where s; < s, ,, be all integers

from {1, ..., p} with g,, 2 1. Without loss of generality we may assume that s, = 1,
(Q' is a cycle). For each t = 1, ..., p, let L, be the local nonuniserial representation
of Q, I with support

Mg =0y = o> g

Observe that soc (L;,) is a direct sum of two simple representations given by the
vertices m,,, and j,,,. Further, for each, d =1,... ,h, let U, ;, 0= j=<q,,— 1
be the representation of (Q, I) whose support equals to v B Then U 0=
<j=<4,,— 1,1 <d < h, are uniserial representations of (Q, I), for j < q,, — 2,
- top (U,,,;) = soc (U, j+1), and soc(L; ) = top Uy, _,) ® S, ,, Where, for t =
=1, ..., p,S;, denotes the simple representation of (Q, I) given by the vertex j,. Now
it clear that we have a special family of local representations formed by the local
representations L;, ..., L;,, uniserial representations U, ;, 0=j<¢,, — 1, 1 <
< d £ h, and the simple representations S;,, for all t # s,, ..., s,. The fact that any
special family of local representations of (Q,I) is given by a subquiver Q' of Q,
satisfying the conditions (1)—(3) follows from the description of supports of in-
decomposable representations of (Q, I).

Now suppose that is a special family of local A-modules. Then there is a sub-
quiver Q' of (Q, I) satisfying the conditions (1)—(3) and, in our notations, let X,,,
1 £ d < h, be the indecomposable representation of (Q, I) with support

Sads,— sa,j?

. 1 m
(%) 1sy 154,14 Sd+195444

A A
/NSNS
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where 5,4, = s;. Let us observe that there are nonzero maps U, , -1 — soc (Xs,)
and X,, - top (U,,, ,.o)- Then, since top (U,, ;) = soc (Uy, j+,) for j < g,,-,, and

soc X, contains top (U, e _y) as a direct summand, there are chains of nonzero
*isd
maps

XSd - tOp (USd+1y0) - Xsd+l lf qsd = 1 >
and
Xsd - Usdn,l = ... Usdn,qs‘“—l - Xsd+1 H if 9sa g 2
d = 1, ..., h. Consequently there is a chain of nonzero maps

Xo=Y > ..oY,>Y,, =X
with Y;’s indecomposables in mody (Q, I), and from [1, 5], I'(4) contains an oriented
cycle. Thus (i) implies (ii)-
Conversely assume that I'(4) contains an oriented cycle. Then there is a chain
of nonzero maps
S Sa-1 f,

X, — X, > o Xy — X, — X, = X4

where all X; are indecomposable objects in modg (Q, I). Let n be the minimal number
with this property. The f;,,f; =0 for i = 1,..., n, and without loss of generality
we may assume that any X; cannot be exchanged by any its proper submodule or
factormodule. Then all representations X ; are nonsimple and from the description of
supports of indecomposable objects in mod (Q, I) follows that the image of any f;
is simple. We claim that at least one of the modules X; is nonuniserial. Indeed, if
all X s are uniserials, the projective covers P(X;) of X, are indecomposable modules
and the maps f; induce nonzero maps q; : P(X;) - P(X,,). Hence we get a cycle

P(X,) -2 P(X,) > ... » P(X,) -2 P(X))

of nonzero maps between indecomposable projective A-modules and this is a contra-
diction with our assumption that A is a factor of an hereditary algebra (see [14]).
Consequently, one of the modules X ;, say X,, is nonuniserial. Then there is a sequence
of integers 1 < 5, < ... < s, = n such that X, j=1,..., h, are all nonuniserial
modules in the family X, ..., X,. Since the image of any f; is simple, using our des-
cription of supports of indecomposable objects in mod (Q, I), it is not hard to check
that forany i = 1,..., h

ri
Xsi =V + Z L‘;J'
j=1
where V; is a nonsimple uniserial subrepresentation of X;,, L; ; are nonisomorphic
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nonuniserial local subrepresentations of X,

SOC (L,J) = Si,j @ Si.j+l for 1 éj <r
soc(L;,,) = S;,, ® soc (V)

i

ker (f,,) = rad (V}) +.ri L ;
im (fs.-—l) = Si,l >

where all S; ; are simple representations. Thus the support of any Xj, is of the form
J

(*). Foreach 1 < j < h, let pj= ri,and put p = p,and m = p + n — h. Define
i=1

a sequence iy, ..., i, of integers with 1 < i, < ... < i, = m by the equalities
=584 +t—j—1 for pi<t=pjy, j=0,...,

h — 1, where p, = 0, and put
Li = L

t J+1,t—pj*

Finally, for any 1 £ r < m, let U, be the uniserial module defined in the following
way:

U1=Vh9
Vi, for r=s,+p—k+1, 1sk=h-1,

=
Il

U, = Skr-si-pe-rtk> fOT s+ py —k+1<r=s +p -k,
1Zk<h,

U =X, p4x-1 for s, +pp—k+1<r<s+p—k, 0Zk<h

where s, = 0. From our definitions simply follows that the uniserial modules U, ...
..., Up, together with the nonuniserial local modules L; , ..., L;,, form a special family

of local 4-modules. Consequently (ii) implies (i) and this finishes the proof of
Theorem.

Remark. It is not hard to modify our proof of the implication (i) = (i) for the case
of arbitrary representation-finite algebra 4 and prove that if I'(4) has no oriented
cycles then there is no special family of local A-modules. It would be interesting to
know if the converse implication is true.

We end the paper with some example showing that in general there are repre-
sentation-finite algebras A for which any indecomposable module is uniquely deter-
mined by the composition factors but I'(4) contains an oriented cycle.
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Let us consider the bounden quiver algebra 4 = K[Q, I] where Q is the quiver

0—9%
i_fo
0—K K—K k-L>K
1—11—]
0—0 K—0 IO
oj’ KK —15K 0—0 0—0
T4———>1l T1—>l g >1 1 =]
0—> k-Z>K 0—K 0—K KK
K—0 K—J-; 0—0
1 1——] ] |1
K—0 0—0 K—0

and I is generated by two paths By and yo. Then mod (Q,1)is the category of finite-
dimensional K-vector spaces and K-linear maps

4—=t 59
s Te
3 —5—>2

satisfying the relations V,V, = 0 and V3V, = 0, and from [10, 11] I'(4) has the form

o Tw

A SN

We see that indecomposable 4-modules are uniquely determined by their com-
position factors and there is an oriented cycle in I'(4).
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