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Received 30 March 1983 

A generál construction for Bol loops is presented and is ušed to show the existence of at 
least two non-isomorphic, non-Moufang Bol loops of order 4k for every integer к greater than two. 

Je dána obecná konstrukce Bolových lup. Taje pak užita к důkazu existence alespoň dvou 
neizomorfních nemoufangovských Bolových lup řádu 4k, pro každé celé číslo к > 2. 

Представлена общая конструкция луп Бола. Она использованна к доказательству су
ществования не менее чем двух неизоморфных луп Бола порядка 4Хг, которые не являются 
лупами Муфанг, для всякого целого к > 2. 

Introduction. A set Lwith a binary operation (•) is called a quasigroup if the speci

fication of any two of the elements a, b, c in the equation a . b = c uniquely deter

mines the third. If a quasigroup (L, •) has a two-sided identity then it is called a loop. 

A Bol loop (resp. Moufang loop) is a loop in which the identity ((xy) Z) y = x((yz) y) 

(resp. ((xy) z)y = x(y(zy))) holds for all x, y, z in L. The question of existence and. 

classification of nonassociative Bol loops of prescribed orders has been the topic of 

investigation by several authors recently (see, for example, [1], [2], [3], [4]). In [4], 

Karl Robinson showed that there exists at least one non-Moufang Bol loop of order 

4fc for each integer k greater than 2. In the present note, we show that, by generalizing 

the construction of Robinson, one can prove that there exists at least two non-iso-

morphic, non-Moufang Bol loops of order 4k for any integer k greater than 2. 

Robinson's Construction. We briefly recall the construction given by Robinson in [4]. 
Let G, H be two groups with identity elements 1, e respectively and letf: G -> Aut(H) 
be a mapping. Let B = G x H and multiplication in B be defined according to (y, b) . 
. (x, a) = (yx, bf{x)a) for all x, y in G and a, b in H. (Here bf{x) denotes the image 
of b under the automorphism f(x)). Then B is a Bol loop with identity (1, e) if and 
only if (i) f(xyx) = f(*)f(y)f(x) for all x, y in G and (ii) f(l) = 1H, the identity 
map on H. Furthermore, B is Moufang if and only if B is associative if and only iff 
is a homomorphism of G into Aut(H). This is Lemma 1 of [4]. Now let G be a group 
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of order 4 generated by two elements a, b such that a2 = b2 = 1, ab = ba. Let H 
be a cyclic group of order k ^ 3. Define the map f: G -> Aut(H) by f(1) = 1H, 
f(a) = f(b) = f(ab) = v where v is the automorphism h -> h"1 of H. Since G and H 
are abelian and (f(*))2 = 1#, x2 = 1 for all x in G, f(xyx) = f(x)f(y)f(x) is 
satisfied for all x, y in G. Next, f(l) = 1H by definition. Finally, since f(ab) 4= 
=t= f(a)f(b),f is not a homomorphism. Thus B is a non-Moufang Bol loop of order 
4k. (This is the corollary to Theorem 1 in [4].) 

Generalization of Robinson's construction. We take two maps f, g from G into 
Aut(H) (instead of just one map fas has been done by Robinson). Define multiplica
tion in B = G x H by (y, b) (x, a) = (yx, bJ(x)a9(y)). Iff, g satisfy/(l) = g(l) = 1H, 
then B is a loop under the above multiplication, with (1, e) as two-sided identity. Let 
us further assume thatf(x) g(y) = g(y)f(x) for all x, y in G. Then, a routine checking 
of the associative identity, the Moufang identity and the Bol identity reveals the 
following: 

(I) The following are equivalent: (l) B is associative (2) B is Moufang (3)f(x v) = 

= f(x)f(y)and g(xy) = g(y) g(x) for all x, y in G. 

(II) B is a Bol loop if and only iff(xyx) = f(x)f(y)f(x) and g(xy) = g(y) g(x) 
for all x, y in G. 

Application. We use the above generalization to prove the following fact: 

Proposition. There exist at least two non-isomorphic, non-Moufang Bol loops of 
order 4k for each integer k > 2. 

Proof: Let G be a group of order 4 generated by two elements a, b with a2 = b2 = 1 
and ab = ba. Let H be a cyclic group of order k. Define f, g : G -> Aut(H) by 
f(l) = 1H, f(a) = f(b) = f(ab) = v and g(x) = 1H for all x in G. Then, the loop B 
obtained with f, g is the same as the one obtained by Robinson. We now define 
another pair of maps f, g' as follows: f'(l) = 1#, f'(a) = f'(b) = f'(ab) = v and 
#'(1) = g'(a) = 1H, g'(b) = g'(ab) = v. Let us call the loop B given by these two 
maps as B'. Since Aut(H) is abelian, the condition f'(x) g'(y) = g'(y)f'(x) is satisfied 
by all x, y in G. Now to check the conditions in (I) and (II): Since f is the same as 
the f in Robinson's construction, it satisfies f'(xyx) = f'(x)f'(y)f'(x) for all x, y 
in G, andf '(ab) + f'(a)f'(b) as checked already. Next, g' is a homomorphism from 
the group G = {1, a, b, ab} onto the group {lH, v}. So g'(xy) = g'(x)g'(y) for all 
x, y in G. But the group {lfl, v} is abelian so that g'(xy) = g'(y) g'(x) for all x, y in G. 
Thus B' is a non-Moufang Bol loop of order 4k. Now we show that B and B' are 
non-isomorphic, by counting the number of elements in each, whose square equals 
the identity. A simple calculation reveals the following: In B, this number equals 
3k + 1 if k is odd and equals 3k + 2 if k is even. In B', it is k + 3 if k is odd and 
k + 6 if k is even. Now 3k + 1 =# k + 3 and 3k + 2 =f= k + 6 since k > 2. This 
shows that B and B' are not isomorphic. 
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Remark. In [2], Burn proves that, for any odd prime p, there exists exactly two 

non-Moufang Bol loops of order 4p. Thus the two loops constructed above, account 

for all non-Moufang Bol loop of order Ap, p an odd prime. 
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