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Varieties of Left Distributive Semigroups

T. KEPKA
Department of Mathematics, Charles University, Prague*)

Received 30 March, 1983

In the paper, left distributive semigroups and their varieties are investigated.
V &lanku se vySetfuji levodistributivni pologrupy a jejich variety.

B craTtbe u3y4aroTcss MHOroo6pa3us JIeBOOAUCTPHUOY THBHBIX IIOJYTPYIII.

1. Introduction

A semigroup satisfying the identity xyz = xyxz (resp. zyx = zxyx) is said to
be left (resp. right) distributive. We denote by Lthe variety of left distributive semi-
groups.

Throughout the paper, let W be a free semigroup over an infinite set X of vari-
ables. For r, s € W, let Mod(r = s) designate the variety of semigroups satisfying the
identity r = s and put M(r = s) = Ln Mod(r = s). Further, we denote by o(r)
and (r)o the first and the last variable occurring in r and by var(r) the set of variables
contained in r. We put I(x) = 1 for every x € X and I(rs) = I(r) + I(s).

Let S be a semigroup. Then the relations p(S) nad ¢(S) defined by (a, b) € p(S)
and (c, d) € q(S) iff ae = be and ec = ed for every ee S are congruences of S.
Further, denote by Id(S) the set of idempotents of S.

Put R, = M(xy = xyx) = Mod(xy = xyx), Ty = M(xy = x2y),T = M(xy* =
= x?y?), R = M(x?y = x?y?), A4 = M(xyz = uvw) = Mod(xyz = uvw), A, =
= M(xy = uv) = Mod(xy = uv) and I = M(x = x?).

2. Some Properties Of Left Distributive Semigroups

2.1 Proposition. Let S e L. Then:

(i) aba, ab?, a® €1d(S) for all a, b e S.
(i) 1d(S) is a left ideal of S.
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(iii) S satisfies the identities xyz = xyxz = xy?z, x"y = x2y and (xy)" = xy" = xy?
for every n = 2.

(iv) S/p(S)e R, and S[q(S)e T,.

(v) For n = 2, the mapping a — a" is an endomorphism of S iff Se T.

(vi) 1d(S) is an ideal of S iff S*> < Id(S)and iff Se R.

(vii) The set I(a, b) = {c; ac = bc} is either empty or a right ideal for all a, b e S.
viii) The set K(a, b) = {c; ca = cb} is either empty or an ideal for all a, b€ S.

p

Proof. Easy observations.

2.2 Proposition. Let S e L.

(i) Se Aiff Id(S) is a one-element set.
(ii) If Se Tand f(a) = a® then every block of ker(f) is an A-semigroup.
(iii) If S € R then S[Id(S) is an A-semigroup.
(iv) If Se R n Tthen ker(f) n ((1d(S) x 1d(S)) v ids) = ids.
(v) If Se R n Tthen S is a subdirect product of an idempotent semigroup and of
an A-semigroup.

Proof. Easy.

2.3 Proposition. Let S € R;. Then:

(i) S? < 1d(S), 1d(S) is an ideal and S/Id(S) € 4,.

(ii) S eR and S satisfies the identities xy = xy* = xyx.
(iii) S/g(S)e1.

~ Proof. Easy.

2.4 Proposition. Let Se T,. Then:

(i) S satisfies the identities (xy)? = x?y? = xy? and x* = x>.

(ii) The mapping f(a) = a® is a homomorphism of S onto Id(S) and every block of
ker(f) is a semigroup with zero multiplication.

(iii) S/p(S)e .
Proof. Easy.

2.5 Lemma. Let S € L. Denote by G the set of all a € S such that the left translation
by a is injective and put H = S — G.

(i) Every clement of G is a left unit of S.

(i1) If G is non-empty then 4(S) = id, G is a subsemigroup of S, G is a semigroup of
right zeros and S e T;.

(iii) If H is non-empty then it is a prime ideal of S.

(iv) If G is non-empty and S € R, then G = {1} is a one-element set and 1 is a unit
of S.

Proof. Easy.



2.6 Lemma. Let S e L be subdirectly irreducible. Then either G is non-empty or
g(S) =+ id.

Proof. All the left translations of S are endomorphisms.

2.7 Lemma. Let S e L be subdirectly irreducible such that G is non-empty. Then
exactly one of the following four cases takes place:

(i) S = G is a two-element semigroup of right zeros.
(ii) H = {0} is a one-element set, 0 is a zero element of S and G is a two-element
semigroup of right zeros.
(iii) H contains at least two elements, S € R, n I and p(S) = id.
(iv) H contains at least two elements, S ¢1, S ¢ R, p(S) =+ id.

Proof. By 2.5, S e T, and q(S) = id. Denote by r the least non-trivial congruence
of S. Then (a, b) e r for some a, be S, a + b. Clearly, H = K(a, b). If H is empty
then (i) is true. If H = {0} then s U id is a congruence of S whenever s is a congruence
of G and consequently (ii) is true. Hence, suppose that H contains at least two
elements. Since H is an ideal, a, b € H and aa = ab. Now, let p(S) = id. By 2.1(iv),
SeR, and consequently Sel by 2.2. Finally, let p(S) % id. Then (a, b) € p(S),
ab = bb and either a #+ aa or b + bb. Therefore S ¢ I. On the other hand, if Se R
then Id(S) is an ideal, Id(S) is a one-element set, S is an A-semigroup and G is empty,
a contradiction.

2.8 Lemma. Let S € Lbe as in 2.7(iii). Then G = {1} is a one-element set, 1 is a unit
of S, H is subdirectly irreducible and p(H) = id + g(H).

Proof. Easy.

2.9 Propeosition. Let Se T n R be subdirectly irreducible. Then exactly one of the
following four cases takes place:

(i) S is a two-element semigroup of right zeros.
(ii) S contains a zero element 0 and S — {0} is a two-element semigroup of right
zeros.
(iii) Sel n R, and p(S) = id.
(iv) Sis an A-semigroup.
Proof. With respect to 2.2, we can assume that S is idempotent. Then either
p(S) = id and the result follows from 2.1(iv) or ¢(S) = id and we can use 2.6 and 2.7.

2.10 Lemma. Let S € R,. Then there exists a congruence r of S such that S/r is com-
mutative and every block of r containing at least two elements is a semigroup of left
Zeros.

Proof. Define a relation r by (a, b) € r iff either a = b or a = db and b = ca
for some ¢, d € S. Then r is a congruence of S and S/r is commutative, since S € R;.
Let Bbe a block of rand a, be B,a + b. We have a = db, b = ca and ab = aca =

5



= ac = dbc = dcac = dca = db = a. Further, (a, b) e r implies (aa, ab)er and
aae B. If a + aa then a = a* eId(S), a = aa, a contradiction.

2.11 Proposition. The following conditions are equivalent for a semigroup S:

(i) Se R and S satisfies the identity xyuv = xuyv.
(ii) S is both left and right distributive.

Proof. (i) implies (ii). abc = abac = aabc = aabbc = aabbcc = aabec =
= aacbc = acabc = acbe for all a, b, c € S. (ii) implies (i). abed = abcbd = acbd
and aab = abab = aabb for all a, b, c,d € S.

2.12 Proposition. Let S be a subdirectly irreducible left and right distributive semi-
group. Then exactly one of the following six cases takes place:

(i) S is a two-element semigroup of right zeros.
(ii) S contains a zero element 0 and S — {0} is a two-element semigroup of right
Zeros.
(iii) S is a two-element semigroup of left zeros.
(iv) S contains a zero element 0 and S — {0} is a two-element semigroup of left
Zeros.
(v) Sis a two-element semilattice.
(vi) Sis an A-semigroup.

Proof. By 2.11, Se R and abb = abab = aabb for all a,be S. Hence Se
€ TN R and we can assume that Sel n R, (see 2.9). Similarly, using the right hand
form of 2.9, we can assume that S satisfies the identity yx = xyx. However, then S
is clearly commutative.

2.13 Lemma. The following conditions are equivalent for an idempotent semigroup S:

(i) S satisfies the identity xyzx = xzyx.
(ii) S is medial.
(iii) S is both left and right distributive.

Proof. Only the first implication is not immediate. We have abced = abcdabed =
= acdbabcd = acbabdcd = acbdbacd = acbdacbd = acbd for all a, b,c,deS.
2.14 Lemma. Let S € L. Then S* < 1d(S) iff S satisfies the identity xy = xy°.

Proof. Obvious.

3. Finitely Generated Left Distributive Semigroups

Denote by W, the set of all terms from W of the following three types:
1. x;, x}, x3; x e X.
11. x'ix2 o Xy 1 XD 0, j £ 2, x4, ..., X, € X pair-wise distinct.
L xix,...x x5 i £2,1 =k <n, xy,..., x,€X pair-wise distinct.



3.1 Lemma. Let r, s € W. Then there exist p, g € W, such that M(r = 5s) = M(p = q).
Proof. Apply 2.1(iii).

D:znote by W, the set of all the terms t € W such that f(r) e Id(S) for all Se L
and all homomorphisms f of Winto S. Put Wy = W, — W, and denote by W, the
subsemigroup of W generated by {x*; x e X}.

3.2 Lemma. (i) W, < W,.
(ii) Let e W,. Then te Wy iff t = xix, ... x, for some i £ 2, 1 < n and pair-wise
different variables x,, ..., x,,.

Proof. Easy.

3.3 Proposition. Every finitely generated left distributive semigroup is finite.
Proof. Apply 3.1.

Let V be a variety of left distributive semigroups. For each positive integer n,
let a(V, n) designate the number of elements of the free V-semigroup of rank n.

3.4 Example. (i) Consider the following groupoid S, = {a, b, c,d, e} : aa = ab =
=ba=bb=0b,ca=cb=cc=cd=ce=c,ac=da=db=dc=dd=de=
=d, ad = ae = bc = bd = be = ea = eb = ec =ed = ee =e. Then S,;eR,,
S, ¢ Tand S, does not satisfy the identity xyx = x2yx.

(ii) Consider the following groupoid S, = {a,b,c} :aa = a, ab = ba = bb =
=bc=b,ac =ca=cb=cc=c. Then S, el n R, S, does not satisfy xyzx =
= xzyx and S, is not right distributive.

(iii) Consider the following groupoid S; = {a, b,c} :aa = ab = ac = ba = ca =
=c¢b = cc=a, bb=b, bc = c. Then S; € T}, S, satisfies xy> = yx? and S, ¢ R.
(iv) Consider the following groupoid S, = {a,b,c,d} :aa = ac = ad = ca =
=cb=cc=cd=c, ab=da=db=dc=dd =d, ba=bb=bc=>bd=>.
Then S, € Ry, S, satisfies x> = x?y and S, ¢ T.

3.5 Lemma. Let r, s € W, be two different terms. Then L ¢ Mod(r = s).
Proof. Suppose, on the contrary, that L & Mod(r = s). Clearly, var(r) = var(s),
o(r) = o(s), (r) o = (s) o and either I(r), I(s) < 2 or 3 < I(r), I(s). Using this and 3.4,
the result follows easily.
3.6 Proposition. a(L,n) =3n + ) (4 + 2m)n(n — 1)...(n — m) for every n = 1.
m=1
Proof. Apply 3.1 and 3.5.

We have a(L,1) =3, a(L,2) = 18, a(L,3) =93, a(L,4) = 516, a(L,5) =
= 3255, ....




4. ldempotent Left Distributive Semigroups

Put I, = Mod(x = y), I, = Mod(x = xy), I, = Mod(x = x, xy = yx),
I3 = Mod(x = yx), I, = Mod(x = x*, xyz = xzy), Is = Mod(x = xyx), I, =
= Mod(x = x?, xyz = yxz), I; = Mod(x = x?, xy = xyx), I = Mod(x = x?,
xyzx = xzyx) and Iy = I = Mod(x = x?, xyz = xyxz).

4.1 Proposition. (i) I, =1, c I, S1, S 1o, I, clsSlg, I, S lg< I, Ig <1, <
clyclgcsly,lycl; 15,15 € .

(ii) The varieties I, ..., I are the only subvarieties of I.

Proof. The inclusions are clear from 2.13. Moreover, I, & Is,I5 & I; and I, &
& I by 3.4(ii) and it is easy to see that the varieties I, ..., I are pair-wise different.
Further, it is an easy consequence of 2.12 that every subvariety of I is equal to one
of Iy, ..., I, Is. The rest of the proof is divided into two parts.

(i) Let r, s € W, be such that ¥ = M(x = x?, r = s) < I,. We can restrict ourselves
to the case r = x; ... x,and s = y, ... y,, where 1 < n, m, x,, ..., x, € X are pair-
wise different and y,, ..., y, € X are pair-wise different. If var(r) # var(s) then it is
easy to see that V < I5 and we have V = I, I,. Suppose that var(r) = var(s). Then
n = m and there is a permutation p of {1,...,n} such that s = X,y ... Xy If
p(1) # 1 then V=1I,,1,. Let p(1) = 1, p +id and let 2 < i < n — 1 be the least
number with p(i) # i. Using the substitution x,, ..., x;oy = x, X; > y and X;,, ...
...y X, = 2z, we see that V < I, and hence V = Iy, 1,1,,1,.

(ii) Let ¥ be a subvariety of /. We can assume that V is contained neither in I, nor
inIg. By 2.9, Visequal to (Vn 1) + (VnIg). Hence VA I, & Igand I, < Vby (i).
Similarly, Vn Iy & I; and I; = V. However, by 2.9, I, =I5 + 1.

4.2 Lemma. Let 4 < n and let p be a permutation of the set {1, 2,..., n} such that
p(1) =1, p(n) = n and p =+ id. Then Iy = M(x = x%, x; ... X, = Xp(1) -+ Xpem)-
Proof. Easy.

5. A— Semigroups

Put A5 = A = Mod(xyz = u®), A, = Mod(xyz = u?), A4; = Mod(xyz = u?,

xy = yx), A, = Mod(xyz = u?, xy = yx), A; = Mod(xy = zx) and 4, =

= Mod(x = y).
5.1 Proposition. (i) 49 € 4, € 4, € A; € As, A, S A, S As.
(i1) The varieties A, ..., As.are the only subvarieties of A.

Proof. Easy.



6. The Varieties P,.'_,-
Foral0 £ i<5and 0=, =9, let P;; = A4; + I,

6.1 Lemma. (i) Every subvariety of T n R is equal to P, ; for suitable i and j.
(i) Pso = TN R.

Proof. Use 2.9, 4.1 and 5.1.

6.2 Lemma. Let i % 2,3. Then Se P, ; iff Se Tn R, Id(S)el; and S[Id(S)€ A;.

Proof. Denote by V the class of all such semigroups S. Then Vis a variety, and
therefore V = P, ;.

6.3 Lemma. (i) P, ; =I;and P, , = 4,.
(i) P, ; = P4 jand Py ; = P ; for every j + 0, 2.

(iii) Suppose that either i & 2,3 or j = 0,2. Then Se P, ; iff Se Tn R, Id(S)e;
and S/Id(S) e A;. Moreover, A; = P, jn Aand I; = P, ; 0 1.

Proof. (i) This is obvious.

(i) Put V= P3 ;N A. Let GeP; ; be a free semigroup generated by x and y.
Clearly, xy % yx in G. On the other hand, V' ¢ 4, and consequently xy, yx ¢ Id(G).
Let f be the natural homomorphism of G onto GId(G). Then f(xy) # f(yx) and
G(1d(G) ¢ As. But A3 < V, and therefore V = A. The rest is similar.

(iti) For i # 2,3, see 6.2. If j = O then the result is obvious. If j = 2 then we can
proceed similarly as in the proof of 6.2.

'6.4 Proposition. Every subvariety of Tn R = M(xy? = x2y) is equal to one of the
following fortyfour varieties: Ly = Py o =1y = Ay, Ly =Py ; =1;,...,Ly =
= Po,9 =1y, Lig = PI,O =Ay, .. Ly = Ps,o =As, Lis = P1,1a P P1,9v
Ly, = Pz,z,Lzs = Pz,x = P4,17L26 = P4,2,L27 = Pz,s = P4,3aL28 = P2,4 =Psa
Ly = Pz,z, Lys = P2,1 = P4,1, Ly = P4_2, L,; = P2,3 = P4,3’ Lys = P2.4 =
=Py, Lyg = Pz,s = P4,5» Lyo = Py6 = Psg, L3y =Py 7= P4,7s Ly; =P8 =
= Pag L3z = P2,9 = P4,9s L3y = P35, Lys = P35 = Ps, Lg = Ps,zs Ly; =
= P3,3 = Ps,s- Lyg = P3,4 = P5,4» Lyo = P35 = P55, Lyo = P3,6 = Ps,e’ Ly =
= P3,7 = P5,7, Ly, = P3.8 = P5,8a L4y = P3,9 = P5,9~

Proof. Apply 6.1 and 6.3.

6.5 Proposition. P; ; < P, ,iff I; = I, and either 4, < A, or [ +0,2,i =4,k =2

L, —

orl+0,2,i=5k=3.
Proof. Apply 6.1 and 6.2.




7. The Varieties S,-’j, Ri,j and T,.'j

Put §; = M(x? = x*, xp? = xpx), S, = M(x? = x?), S; = M(x)? = xyx)
and S, = L. Let 1 £i <4 and 0 = £9. Denote by S, ; the class of all Se L
such that Id(S)el;and put S, ; = S; " S, ;.

7.1 Lemma. (i) S; = S, nS;, S, = S,and S; = S, = L.
(ii) S, ;is a subvariety of Land S; ;n 1 = I;.
(iii) A5 € Sy, Sy, and A5 € S, .S, .
(iv) Sy, = 85,085, Seo=1L. Spo=As=Ss0and S,0=A =S5,

Proof. Obvious.

Put R; = M(xy = xyx), R, = M(xy = xy?), Ry = Rn S; = M(x? = x?,
xy? = xyx, x’y =x2y?), Ry =RnS, = M(x* = x3, x?y =x%?), Ry=Rn
N S; = M(x?y = x?p?%, xp? = xyx) and R, = R = M(x?y = x?)?).

7.2 Lemma. R, = R, nR;, Ry = Rsn Ry, R, € R,, Ry, + R5; € R,

Proof. Obvious.

ForO0<j=9%9and 1 £i<6,letR;;=S,;nR,

Further, let T, = M(xy = x?y), T, = Tn S, = M(x? = x>, xy? = x%y?),
T, =T=M(xp> =x?p?). For0<j<9and 1 £i=<3letT,;=S,,nT.
7.3 Lemma. T, = T, < T;.

Proof. Obvious.
8. Auxiliary Results

8.1 Lemma. Let r,se W be such that o(r) + x€ X and o(r) # o(s). Then
M(xr = xs) = T.

Proof. Put V = M(xr = xs) and let y € X be such that y ¢ var(xrs). Then V <
< M(xry = xsy) and we have xry = xx{'... x}"y and xsy = xy}'... y;"y where
LEn,mokyy ook Liyoooy by X5 ooy Xuy Vis oo ym€X and x £ x; % y,. Using
the substitution x; — y for every x; + x, y,, y; > y forevery y; # x, y;, y » y and
X,y; = X, we see that xry = xsy implies in L at least one of the following two
identities: xy? = x2y, xp? = x2y%. However, M(xy? = x?y) = T Rand M(xy? =
— xzyz) =T

8.2 Lemma. Let r,se W.

(i) If o(r) # o(s) then M(r =s5) = T.

(ii) If o(r) # o(s) = x and either s = x> or s = x’t for some te W then
M(xr =s)<c T
(i) If x, y, ze X and y #* z then M(xyr = xzs) € T.
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Proof. (i) Let x € X be such that x ¢ var(rs). Then M(r = s) S M(xr = xs) = T
by 8.1.
(ii) Let y € X be such that y ¢ var(rs). Then M(xr = s) < M(xry = x*(t)y) = T.
(iii) Let u € X be such that u ¢ var(xyzrs). Using the substitution w — y for every
variable wevar(uyrs), w #* x,z, and x, - — x, we see that xyru = xysu implies
in Lat least one of the following two identites: xy? = x2y, xy? = x2y2.

8.3 Lemma. Let r,se X.

(i) Suppose that x € X is such that x ¢ var(r) and either s # x, x> or s # tx for every
te W with x ¢ var(t). Then M(rx = s) = R.

(i) If var(r) # var(s) then M(r = s) = R.

Proof. (i) Using the substitution w — x for every variable w e var(rs), w * x,
and x — y, we see that the identity rx = s implies in Lat least one of the following
twentyfour 1identities: xy = x, xy = x%, xy = x3, x%y = x, x%y = x%, x%y = x3,
xy =y, x%y = y3, xy = xyx, x2y = xyx, xy = x2yx, x2y = x2yx, xy = xy?,
x2y = xp?, xy = x2y?, X2y = x%y?, xy = yx, X%y = yx, xy = yx?, xty = yx?,
xy = y2x, x%y = y2x, xy = y?x?, x?y = y?x2. Every of these identities implies in L
the identity x2y = x2y2.

(ii) Let x € X be such that x ¢ var(x) and x € var(s). If s is equal to x then M(r = s)
is the trivial variety. In the opposite case we have sx # x,x* and M(r = s) €

€ M(rx = sx) < R by (i).

8.4 Lemma. Let V be a subvariety of L. If VAl < Iy then VS T. If VAl < I,
then V = R.

Proof. First, let VNI < Is. Then abc = bac for all a, b,celd(S), SeV.
Consequently, V < M(x?yz? = y*xz?) and V < T by 8.2(i). Now, let VnI < I.
Then V = M(x* = x?yx?) and V < R by 8.3(ii).

8.5 Lemma. (i) Let r,s€ W be such that o(r) % os) and var(r) + var(s). Then
M(r =s) = Tn R.
(ii) Let ¥ be a subvariety of Lsuch that VI < I5. ThenV = T R.

Proof. Use 8.2(i), 8.3(ii) and 8.4.

8.6 Lemma. Let r,se Wand V = M(r = s).
(i) If r, s€ W, then V = S, ; for some j.
(i) I r,se W, then ¥V n T = T; ; for some j.
(iti) If r € W, then either VA TS Ror VA T=T; jor VA T= T, ; for some j.
‘Proof. Letl; = Vnl.Then V< S, ;jand VA T<S Ts ;.

(i) Let Se S, ; and let f be a homomorphism of Winto S. Then f(W,) < Id(S), and
hence f(r) = f(s). Thus Se Vand V = S, ;.

11



(ii) Let Se T;; and let f be a homomorphism of W into S. Put g(x) = x* and
k(a) = a® for all x € X and a € S. Then g can be extended to an endomorphism of W,
say h, and k is an endomorphism of S. We have h(W) = W, and k(S) = Id(S).
Moreover, Id(S)el; = VA T and fh(W) < Id(S). Consequently, f h(r) = f h(s).
On the other hand, 1t is easy to see that fh = kf. Therefore k f(r) = k f(s). But f(r),
f(s)eId(S), and so f(r) = f(s).

(iii) We can assume that s € W;,ie.,s = xix;...x,, | < n,i <2and xy,...,x,€ X
pair-wise different. Put U = M(s = s*). Itisclear that Vn T= U n T M(r = s%).
Since r,s€ Wy, M(r = s*) " T = T;, for some k. If n = 1l and i = 1 then U = [
and VnT=1I,. If n=1and i =2 then U =S, and V= T,,,. Suppose that
n > 2. Then U = M(x{x, ... x, = xix, ... x,_,;x7) S R by 8.3(i).

8.7 Lemma. Let x,yeX, r,se W, x ¢ var(rs), and V = M(xyr = xys). If either
V € R or xyr, xys € W, then either V=S, ; or V = R ; for some j.

Proof. If xyr, xys € W, then V = M(xyr® = xys®). Now, we can assume that
r=xj...x3and s = yj ... y5. If x = y then the result follows from 8.6(i). Hence
suppose that x # y and put I; = VnI. Then I; satisfies yx, ... x, = yy, ... ¥
and V< S, ;. Conversely, let Se S, ;. Then S satisfies y3x}...x7 = y3y} ... 3
and hence Se V.

9. Auxiliary Results

9.1 Lemma. Let i,j <2 < n, let x,, ..., x, € X be pair-wise different and let p be
a permutation of {1, ..., n} with p(1) # 1. Put r = x{X5 ... X,, § = XJ(|\Xp02) -+ Xp(n)
andV = M(r = s). Theneither Ve T Ror V = T; 4.

Proof. By 8.2(i), V < T. If p(n) = n then V = R by 8.3(i) and we can assume
p(n) = n.Then3 < n, I, ¢ Vand VI = I,. Consequently, V = T; 5. Conversely,
let SeTye and ay,...,a,€S. Then ai...a)_ia;_y = ay,y ... apu_1yar_, and
Ay...a,=0a1ay...0, = 143 ... Qy_1Gp_ 1@y = A1)y - Ayne1)8n— 1y = Ap(y) -

o Qpn—1)n— 18y = Ap(1y -+ Apu—1)dp-

9.2 Lemma. Let r,se€ W, o(r) # o(s) and V = M(r = s). Then either V= Tn R
orV=T,;orV=T;;forsomej.

Proof. By 8.2(i), ¥ < T and we can assume that var(r) = var(s). Taking into
account 8.6(iii), we may restrict ourselves to the case r, s € W;. Then r = x{x, ... x,
and s = yjy, ... y,. We have n = m, y, = x,, for a permutation p such tht p(1) +
#+ 1. The result follows now from 9.1.

9.3 Lemma. Let i £2, 3<n, x,...,Xx,€X be pair-wise distinct and let p be
a permutation of {2,...,n} with p(2) & 2. Put 7 = X;X; ... X,, § = X{Xp(2) -+ Xp(m)
and V = M(r = s). Then:
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(i) VeT
(il) V= T Rif p(n) # n.
(ili) V = Ty 4 if p(n) = n.
Proof. (i) Use 8.2(iii).
(i1) Use (i) and 8.3(i).
(ili) By 4.2, VnI =1Ig and V < T; 4. Conversely, let Se T; 5 and a,,...,a,€S.
Then we have a;...a,=a}...a}_jala, = alal,, ... ay,-1)a3a, = alaya) -

ver Qpn-1)8n-

9.4 Lemma. Let 3 < n, x4, ..., x, € X be pair-wise different and let p be a permuta-
tion of {1,...,n} with p(1) = 1 and p # id. Put V= M(x}x, ... x, = xIx,3 ..
<.+ Xp(m)- Then:

(i) V= Rg 4 if p(n) #+ n.
(ii) V = S if p(n) = n.

Proof. Similar to that of 9.3.

9.5 Lemma. Let i, k,g,t < 2 < n and let x,, ..., x, € X be pair-wise distinct and p
a permutation of {1, ..., n}. Put ¥ = M(x{x; ... X,— Xk = X411Xp02) +++ Xp(am 1) %himy)-
Then either V= Tn Ror V=S, ;or V=T, ;or V= Rg ;for some m and j.

Proof. It is divided into nine steps.

(i) Let p(1) =% 1. Then we can apply 9.2.

(ii) Let p(1) = 1, k = t = 1 and i = g = 2. This case is clear from 9.4.
(iii) Let p(1) = 1, p(2) # 2, k =t = 1 and i + g < 3. In this case, we can use 9.3.
(iv) Letp(1) = 1,p(2) =2,k =t = land i = ¢ = 1. If p = id then ¥V = L. Hence
assume p = id. Then 4 < n. If p(n) + n then V.= R by 8.3(i), VNI = I, and it is
easy to see that V = Rg 4. Now, let p(n) = n. Then VAl =1z and V< S 4.
Conversely, if SeS,s and ay,...,a,€S then a;...a,=aa3...a2_jala} =
= a,a3a33) - A3p_1)830y = 1A30p3) -+~ Apu—1)d, and S€ V.
() Let p(1) =1, p2) =2, k=t =1 and i =1, g = 2. By 8.2(ii), V< T. If
p(n) + n then V= T R as it follows from 8.3(i). Let p(n) = n and 3 < n. Then
we can see easily that V= T M(x}x, ... x, = x}x3%,2) ... Xpn)- If p + id then
V=T,gandif p = 1 then ¥ = Tj o by 9.4.

(vi) Let p(1) =1,k =t =2, i =2 and g = 1. Then ¥ = T by 8.2(ii) and we can
use 8.6(ii).
(vii) Let p(1) = 1,k =t = 2and i = g = 1.If p(2) = 2 then the result follows from
8.7.1f p(2) + 2 then 3 < n, ¥V = T by 8.2(iii) and the result follows from 8.6(ii).
(viii) Let p(1) = 1, k =t =2 and i = q = 2. In this case, 1t suffices to use 8.6(i).
(ix) Letp(1) =1,k =2and q = 1. If p(n) + n then V = R by 8.3(i). If p(n) = n
then the inclusion ¥ < R is obvious. Hence we have ¥V = R n M(xix, ... x,_;x2 =
= X§X,(2) -+ Xp(n—1)Xom)- The result is now clear from (vi), (vii) and (viii).
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9.6 Lemma. Let r,se W and V= M(r = s) n T. Then either V=< Tn R or V=
= T, ; for some i and j.

Proof. According to 8.3(ii) and 8.6(iii), we can assume that r, s € W;. However,
then 9.5 may be applied.

10. The Lattice Of Subvarieties Of T

10.1 Lemma. (i) T, ;n A=A, T, ;n A=Ay, Ty ;n A=A, T, ;nI=T,;nl =
=Ty;nI=Ty;nl=1;forevery0 <j=<09.
(i) Ty =Py, T, ;= P, ;and Ty ; = Ps ;for je{0, 1,3, 5}.

Proof. Use 6.4 and 8.4.

10.2 Lemma. Let 1

£i,j=3and 0= p,q=£9. Then T; ,n T; , = T, ; for some
r,sand T; , = T; ,iff i £

and I, < I,.
Proof. Easy.

10.3 Lemma. The varieties T;

iJj

1i<3,0<5j <9, are pair-wise distinct.
Proof. Use 10.2.

10.4 Lemma. Let V' be a subvariety of T. Then either V'is contained in Ror V' = T; ;
for some i and j.

Proof. Assume that V ¢ R. By 9.6, Vs the intersection of some T; ; and the rest
is clear from 10.2.

10.5 Proposition. (i) Every subvariety of T is equal to one of the following sixtytwo
varieties: Ly, ..., Lz, Lyg = Ty 3, Lys = Ty 4, Lyg = Ty 6y Ly7 = Ty 5, Ly g = Ty 4,
Lyo = T4, Lso = Ts,za Ls; =Ty Ls; = Ty s, Lsz = Ty 7, Lsa = T34, Lss =
=Ty, Ls¢ = Ts6, Ls7 = Ta 8, Lsg = T3,7, Lso = Ty .9, Lo = T35 and Lg; =
= T;o

(i) Lygo s Ly $ Loz =T R, T, ,cT;,iff i<jand I, <1, and P,, < T,
iff I, = I,andeitherr =3 o0orr=2,m=20,1,2,4orr=1,m=0, .

Proof. (i) Let V' be a subvariety of T such that ¥ & R. By 10.4 and 10.1(ii),
V=T,; where i = 1,2,3 and j = 2,4,6,7,8,9. Conversely, if i and j are such
numbers then Ty , = T, ;, and hence T; ; & R.

(ii) This assertion is easy.

11. Auxiliary Results

11.1 Lemma. Let i, j, k £ 2,0 < n, x, x4, ..., X, € X be pair-wise different and let p
be a permutation of {I,...,n} and V= M(x'x; ... X, X} = x*Xp(1) - -+ Xp(m)X):
Then either V.= Tor V = S, ; for some rand s or V = R, , for some t and q.
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Proof. We must distinguish six cases.

(i) n = 0. Then either V= LorV =S, 40r V =1. y
(1) 1 £ n,i=j=k=2. Then 8.6(i) may be applied.
(i) 1 <n, i=k=2,j=1 By 83(i), YSRand V=RnU, U=M(xx, ...
e Xy Xp = XX pq) e XpnX)- But U = S, ;and V = Rg .
(iv) 1 < n i+ k=3 By82(ii), VS T.
(vy1=ni=k=1,j=21f p(1) # 1 then V = T due to 8.2(iii), and therefore

we can assume p(1) = 1. Clearly, if S€ S5 ; and a, by, ..., b, € S then ab, ... b} =
= a(b,...b,)* = ab, ... b,a and Se V. Now, let p + id. Using similar arguments
as in the preceding case, we see that V = S; ,.

(vij1=n, i=j=k=1 Then VSR, V=RnM(xxy...X,—1 Xz = Xpq1)---
... Xp,mX) and either ¥V = R5 ; or ¥V = R 4 by (v).

11.2 Lemma. Leti,j £ 2,0 < n, x, x,, ..., X, € X be pair-wise different and let p be
a permutation of {1, ..., n} and ¥V = M(x'x; ... x,Xx = X/X,(1, ... XpmX)- Then either
Ve TorV==S,90rV=_S,3

Proof. Similar to that of 11.1.

11.3 Lemma. Let i,j,k =2 <n,1 < q <n, x,x,, ..., X, € X be pair-wise distinct
and let p be a permutation of {1,...,n} and ¥V = M(x'x; ... x,_1xJ = x*x,(, ...
eos XpyXpq)- Then either V. Tor V=S, , or V = Ry, for some r.

Proof. It is divided into five parts.

Jj = k = 2. In this case, we can use 8.6(i).
= k = 2,j = 1. Clearly, V < R and we can use 8.7.
+ k=3 Then V= T.
=k =1 and p(1) # L. Then V < T by 8.1.
k =1 and p(1) = 1. If j = 2 then we can use 8.7.

If j = 1 then V < R and 8.7 may be used again.

114 Lemma. Let i,j <2 =<n,1 <r,s <n, x,X,,..., X, €X be pair-wise distinct
and let p be a permutation of {1,...,n} and V= M(x'x; ... x,x, = x'x,, ...
<+« XpmXp(s))- Then either V< TorV =S, orV = S, , for some q.

Proof. Similar to that of 11.3.
11.5 Lemma. Let i,j <2=<n, 1=k <n, x,x,...,x,€X be pair-wise distinct

and let p be a permutation of {1,...,n} and V= M(x'x; ... x,x = x/x,, ...
«es XpmXpay)- Then either V< Tor V=S5, ,or V=R, ..

Proof. Clearly, VA I =1, and V € M(x}y,) --- XomXau = Xow) -+ Xo(m)- Con-
sequently, V'€ U = M(x'x, ... x,x = x/x,4) ... Xpm) and V = U N S, ,. The result
now follows from 11.1.
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11.6 Lemma. Let r, s€ W be such that var(r) = var(s) and o(r) = ofs). Put V =
= M(r = 5). Then either V= TARorV =T, jorV=R, or V=S5, .

Proof. We can assume that r,se W, and the result then follows from 9.5,
11.1, .., 1L.5.

11.7 Lemma. Let r, s € W be such that var(r) # var(s) and let V = M(r = s). Then
either Ve TnRorV=Rg;orV=R,,

Proof. By 8.3(ii), ¥ = R and we can assume that o(r) = o(s) = x. The rest is
divided into nine parts.
(i) r = x>p and s = x2q where p,qge W and o(p) + x + o(q). Then V = Rg;
by 8.6(i).
(i) r = x'p, s = x’q, p,qge W, o(p) + x £ 0(q), i + j =3. Then V= Tn R by
8.2(ii).
(iti) r = xp, s = xq, p, g€ W, o(p) = o(q) * x, (p) 0 + x + (q) 0. Then we can as-
sume that x ¢ var(pq) and the result follows from 8.7.
(iv) r = xp, s = xq, p, g€ W, x + o(p) + o(q) + x. Then V = T n R by 8.2(iii).
(v) r = xp, s = xq, p,qe W, o(p) = o(q) + x, (p) 0 + x = (q) 0. We can assume
that p = x; ... x,, x¢var(p), ¢ = y; ... yu(x), X, =y, x £ y. Then VI =1,
and it is easy to see that V = Ry ;.
(vi) r = xp,s = xq, p, g € W, o(p) = o(q) *+ x = (p) 0 = (g) 0. We can assume that
P=X1...%%X,q=Y; ...V, X, X; =y,. ThenVnIl =1I5and V= Rg s.
(vii) r = x. Then V< I.
(viii) r = x* and s = x'q, g€ W, o(q) # x. If i = 1 then V= Tn R by 8.2(ii). If
i = 2 then 8.6(i) can be used.
(ix) r =x* s = x'qg, ge W, 0(q) + x. Then V<= S, and V = M(x® = 5) n S,. The
result now follows from (viii).

11.8 Proposition. Let r, s € W. Then M(r = s)€ {P, j, Ry.m> Ty Ses}-
Proof. Apply 8.2, 11.6 and 11.7.

12. The Lattice Of Subvarieties Of R

12.1 Lemma. (i) R, jn A=A, =R,;nA, Ry;nA=A4,=R,;n A, Rs;n
NA=A4As=Rs;nA, Ri;nI=R;;nl=Rs;nI=I;nl; and R, ;n[ =
=Ry ;jnI=Rg;nI=1I;forevery0 =j=09.

(ii) Ry,; = Py j, Ry j = P, j, Rs ;= Ps ;foreveryj =0,2,3,6.

(iii) Riyo=Ry3=Py 0 Ry =Ry6= Py, Ryo=R33=Ps0, R3,=R36=
=P,z Rso=Rs3=Psoand Rs, = Rs 6 = Ps 5.

(iv) Ry ; =R, ;, Ry ; =R, ;and Rs ; = R ; forevery j = 0,1,2,4,7.

Proof. Easy.
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12.2 Lemma. R, ; < R, ;.

Proof. Easy.

12.3 Lemma. Let i€ {1,3,5}, 0 < j, k <9 be such that I, nI; = I;. Then R;; =
=R,

Proof. Easy.

124 Lemma. Let1 < i,j < 6and0 < r,s 9. ThenR;, " R; ; = R, , for some p
and gq.

Proof. Easy.

12.5 Proposition. Let 1 < i,j < 6and 0 < r,s £ 9. Then R;, S R, iff at least one
of the following three conditions is satisfied:
(i) R, sR;and I, = I,.
(i) (i,))e{(2,1), (2,3), (2,5), (4,3), (6,5}, I, s I;and I, < I.
(iii) ie{1,3,5}, Ry, s Rjand I, n I, = I,.

Proof. Use 12.1, 12.2 and 12.3.

12.6 Proposition. Every subvariety of R is equal to one of the following sixtytwo
varieties: Lo, ..., Ly3, Lg; = Ry, Lgs = R3y, Lea = Ry4s Lgs = Ry 5, Lgg =
= Rs 3, L7 = R34, Les = Ry 7, Leg = Rz 8, L70 = Ry,s, L = Rs4, L7, = R 4,
L;3 =Rz, L74 = R4, L7s = Res, L1 = Rs7, L77 = R4, L7z = Rg g and
L9 = Re 9.

Proof. Let V be a subvariety of R such that V & T. It follows from 11.8 and 12.4

that V=R, ; for some 1 =i <6 and 0 <j 9. According to 12.1 and 12.3,
V = Lg,, ..., L;,. On the other hand, L, & T by 3.4(iv).

13. The Main Result

13.1 Lemma. (i) S; jn A =S, ;nA=A4,S;;,nA=8,;nA=A458,;,nl =
=S;;0l=1;nl;, S, ;01 =8,;nl=1I,.

(ii) Si0=13S20=S13=Ps0 S3z0=2S40=2S833=Ps54 Sy3=P,3; and
S4,3 = Ps,s-

(iii) S3nT=T;,

(iV) S12=82=S816=T22 S3,=3S4,
S4,6 = T3,6-

(V) S1,1 =Sz,1 = R3,1, Ss,x = S4,1 = R5,1a S1,5 = R3,1, Sa,s = Rs,l’ Sz,s =
=R, s and S, 5 = Rg 5.

le 6 and

Ss,a = Ts,z, 52,6‘

Proof. Easy.
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13.2 Lemma. Let 0 <i<9andI;=1;n1I;. Then S, ;= S, ;and S;; = S; ;.

Proof. Easy.

A

13.3 Lemma. Let | £i,j<4and0=<r,s £9.Then S;,nS;, =S, , for some p
and q.

Proof. Easy.

13.4 Lemma. S, ; £ S, 5.
Proof. Easy.

13.5 Lemma. Let i =0,1,2,4,7. Then S; ; = S, ;and S5 ; = S, ;.
Proof. Easy.

13.6 Proposition. Let 1 < i,j <4and 0 = r,s £9. Then S;, € S, ; iff at least one
of the following three conditions is satisfied:

(i) S; =S, and 1, = I,
(i) ie{1,3}, S;=S;and I, n1; = I
(iii) (i, /)€ {(2,1), (2,3), (4,3)}, I, = I, and re{0,1.2,4,7}.

Proof. Use 13.1,...,13.5.
13.7 Theorem. Every subvariety of L is equal to one of the following eightyeight

Varieties: .Lo, “eey L79, LBO = S1’4, LS] = SI,7’ L'SZ = Sz’s, LSJ = 82,9, L84 = S3_4,
Lgs = S3,7, Lge = S4sand Lg; = Sy 9 = L.

Proof. Apply 11.8, 13.1, ..., 13.5.
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