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1984 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 25. NO . 1 

Varieties of Left Distributive Semigroups 

T. KEPKA 
Department of Mathematics, Charles University, Prague*) 

Received 30 March, 1983 

In the paper, left distributive semigroups and their varieties are investigated. 

V clanku se vysetfuji levodistributivni pologrupy a jejich variety. 

B craTbe H3ynaiOTC5i MHoroo6pa3HH jieBO^HCTpH6yTHBHbix nojiyrpynn. 

1. Introduction 

A semigroup satisfying the identity xyz = xyxz (resp. zyx = zxyx) is said to 
be left (resp. right) distributive. We denote by Lthe variety of left distributive semi­
groups. 

Throughout the paper, let W be a free semigroup over an infinite set X of vari­
ables. For r, s e W, let Mod(r = 5) designate the variety of semigroups satisfying the 
identity r = s and put M(r = 5) = L n Mod(r = s). Further, we denote by o(r) 
and (r)o the first and the last variable occurring in r and by var(r) the set of variables 
contained in r. We put l(x) = 1 for every x e X and l(rs) = l(r) + l(s). 

Let 5 be a semigroup. Then the relations p(S) nad q(S) defined by (a, b) e p(S) 
and (c, d) e q(S) iff ae = be and ec = ed for every e e S are congruences of S. 
Further, denote by Id(S) the set of idempotents of S. 

PutK, = M(xy = xyx) = Mod(xy = xyx),Tx = M(xy = x2y),T= M(xy2 = 
= x2y2), R = M(x2y = x2y2), A = M(xyz = wvw) = Mod(xj;z = uvw), Ax = 
= M(xy = uv) = Mod(xy = wv) and I = M(x = x2). 

2. Some Properties Of Left Distributive Semigroups 

2,1 Proposition. Let S e L. Then: 

(i) aba, ab2, a3 eId(S) for all a,beS. 
(ii) Id(S) is a left ideal of S. 
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(iii) S satisfies the identities xyz = xyxz = xy2z, x"y = x2y and (xy)n = xy" — xy2 

for every n ^ 2. 

(iv) Sjp(S)eRx and Slq(S)eTl. 
(v) For n ^ 2, the mapping a -> a" is an endomorphism of S iff S e T. 

(vi) Id(S) is an ideal of S iff S3 <= W(S) and iff S G K. 
(vii) The set I(a, b) = {c; ac = be] is either empty or a right ideal for all a,b e S. 

(viii) The set K(a, b) = {c; ca = cb] is either empty or an ideal for all a, b e S. 

Proof. Easy observations. 

2.2 Proposition. Let S e L. 

(i) S e A iff Id(S) is a one-element set. 
(ii) If S G Tand f(a) = a3 then every block of ker(f) is an A-semigroup. 

(iii) If SeR then Slld(S) is an A-semigroup. 
(iv) If SeR n Tthen ker(f) n ((/d(S) x Id(S)) u id5) = id5. 
(v) If S G K n Tthen S is a subdirect product of an idempotent semigroup and of 

an A-semigroup. 

Proof. Easy. 

2.3 Proposition. Let S e Rt. Then: 

(i) S2 c id(S), Id(S) is an ideal and SjId(S) e Av 

(ii) SeR and S satisfies the identities xy = xy2 = xyx. 
(iii)S/fl(S)e/. 

Proof. Easy. 

2.4 Proposition. Let S e Tt. Then: 

(i) S satisfies the identities (xy)2 = x2^2 = xy2 and x2 = x3. 

(ii) The mapping f(a) = a2 is a homomorphism of S onto Id(S) and every block of 

ker(f) is a semigroup with zero multiplication, 

(iii) SJp(S)e I. 
Proof. Easy. 

2.5 Lemma. Let S e L. Denote by G the set of all a e S such that the left translation 
by a is injective and put H = S — G. 

(i) Every element of G is a left unit of S. 
(ii) If G is non-empty then q(S) = id, G is a subsemigroup of S, G is a semigroup of 
right zeros and S e Tv 

(iii) If H is non-empty then it is a prime ideal of S. 
(iv) If G is non-empty and S e R{ then G = {1} is a one-element set and 1 is a unit 
of S. 

Proof. Easy. 



2.6 Lemma. Let 5 e L be subdirectly irreducible. Then either G is non-empty or 
q(S) * id. 

Proof. All the left translations of S are endomorphisms. 

2.7 Lemma. Let S e L be subdirectly irreducible such that G is non-empty. Then 
exactly one of the following four cases takes place: 

(i) 5 = G is a two-element semigroup of right zeros. 
(ii) H = {0} is a one-element set, 0 is a zero element of S and G is a two-element 
semigroup of right zeros. 
(iii) H contains at least two elements, S e Rt n I and p(S) = id. 
(iv) H contains at least two elements, S $J, S $ R, p(S) 4= id. 

Proof. By 2.5., S e 7\ and q(S) = id. Denote by r the least non-trivial congruence 
of 5. Then (a, b)er for some a,b e S, a 4= b. Clearly, H = K(a, b). If H is empty 
then (i) is true. If H = {0} then s u id is a congruence of 5 whenever s is a congruence 
of G and consequently (ii) is true. Hence, suppose that H contains at least two 
elements. Since H is an ideal, a, b e H and aa = ab. Now, let p(S) = id. By 2.1(iv), 
SeRt and consequently SeJ by 2.-2. Finally, let p(S) 4= id. Then (a, b) e p(S), 
ab = bb and either a 4= aa or b 4= bb. Therefore 5 £ I. On the other hand, if S e R 
then Id(S) is an ideal, Jd(S) is a one-element set, 5 is an A-semigroup and G is empty, 
a contradiction. 

2.8 Lemma. Let S e Lbe as in 2.7(iii). Then G = {1} is a one-element set, 1 is a unit 
of S, H is subdirectly irreducible and p(H) = id 4= q(H)-

Proof. Easy. 

2.9 Proposition. Let SeTn R be subdirectly irreducible. Then exactly one of the 
following four cases takes place: 

(i) 5 is a two-element semigroup of right zeros. 
(ii) S contains a zero element 0 and S — {0} is a two-element semigroup of right 
zeros. 
(iii) SeJ n Rt and p(S) = id. 
(iv) S is an A-semigroup. 

Proof. With respect to 2.2, we can assume that S is idempotent. Then either 
p(S) = id and the result follows from 2.l(iv) or q(S) = id and we can use 2.6 and 2.7. 

2.10 Lemma. Let S e Rv Then there exists a congruence r of 5 such that Sjr is com­
mutative and every block of r containing at least two elements is a semigroup of left 
zeros. 

Proof. Define a relation r by (a, b) e r iff either a = b or a = db and b = ca 
for some c, d e S. Then r is a congruence of S and S]r is commutative, since S e Rt. 
Let B be a block of r and a, b e B, a 4= b. We have a = db, b = ca and ab = aca = 



= ac = dbc = dcac = dca = db = a. Further, (a, b)er implies (aa, ab)e r and 
aa e B. If a 4= aa then a = a3 e Id(S), a = aa, a contradiction. 

2.11 Proposition. The following conditions are equivalent for a semigroup S: 

(i) S e R and S satisfies the identity xyuv = xuyv. 
(ii) S is both left and right distributive. 

Proof, (i) implies (ii). abc = abac = aabc = aabbc = aabbcc = aabcc = 
= aacbc = acabc = acbc for all a, b, c e S. (ii) implies (i). abed = abebd = acbd 
and aab = abab = aabb for all a, b, c, d e S. 

2.12 Proposition. Let S be a subdirectly irreducible left and right distributive semi­
group. Then exactly one of the following six cases takes place: 

(i) S is a two-element semigroup of right zeros. 
(ii) S contains a zero element 0 and S — {0} is a two-element semigroup of right 
zeros. 
(iii) S is a two-element semigroup of left zeros. 
(iv) S contains a zero element 0 and S — {0} is a two-element semigroup of left 
zeros. 
(v) S is a two-element semilattice. 

(vi) S is an A-semigroup. 

Proof. By 2.11, SeR and abb = abab = aabb for all a, b e S. Hence Se 
e T n R and we can assume that S e I n Rt (see 2.9). Similarly, using the right hand 
form of 2.9, we can assume that S satisfies the identity yx = xyx. However, then S 
is clearly commutative. 

2.13 Lemma. The following conditions are equivalent for an idempotent semigroup S; 

(i) S satisfies the identity xyzx = xzyx. 
(ii) S is medial, 

(iii) S is both left and right distributive. 

Proof. Only the first implication is not immediate. We have abed = abedabed = 
= aedbabed = acbabded = acbdbacd = acbdacbd = acbd for all a, b, c, d e S. 

2.14 Lemma. Let S e L. Then S2 .= Id(S) iff S satisfies the identity xy = xy2. 

Proof. Obvious. 

3. Finitely Generated Left Distributive Semigroups 

Denote by W^ the set of all terms from Wof the following three types: 

1. x^,x^,x^\ x^eX. 
II. x\x2 ... xn_xx

J
n; i,j = 2, xi9 ..., xneX pair-wise distinct. 

III. x[x2 ... xnxk; i = 2, 1 = k < n, x1? ...,xneX pair-wise distinct. 



3.1 Lemma. Let r, seW. Then there exist p, qeWl such that M(r = s) = M(p = q). 

Proof. Apply 2.l(iii). 

Denote by W2 the set of all the terms t e W such that f(t) e Id(S) for all S e L 
and all homomorphisms f of W into S. Put W3 = W1 — W2 and denote by W4 the 
subsemigroup of W generated by {x3; x eX}. 

3.2 Lemma, (i) W4 _ W2. 

(ii) Let t e Wt. Then t e W3 iff t = x\x2 ... xn for some i _ 2, 1 _ rc and pair-wise 
different variables xl9 . ..,x„. 

Proof. Easy. 

3.3 Proposition. Every finitely generated left distributive semigroup is finite. 

Proof. Apply 3.1. 

Let V be a variety of left distributive semigroups. For each positive integer n, 
let a(V, n) designate the number of elements of the free V-semigroup of rank n. 

3.4 Example, (i) Consider the following groupoid 5X = {a, b, c, d, e} : aa = ab = 
= ba = bb = b, ca = cb = cc = cd = ce = c, ac = da = db = dc = dd = de = 
= d, ad = ae = be = bd = be = ea = eb = ec = ed = ee = e. Then St e Rt, 
S! $ Tand 5X does not satisfy the identity xyx = x2yx. 

(ii) Consider the following groupoid S2 = {a, b, c} : aa = a, ab = ba = bb = 
= be = b, ac = ca = cb = cc = c. Then S2e I n Rl9 S2 does not satisfy xyzx = 
= xzyx and 5 2 is not right distributive. 

(iii) Consider the following groupoid S3 = [a, b, c} : aa = ab = ac = ba = ca = 
= cb = cc = a, bb = b, be = c. Then 53 e 1\, <S3 satisfies xy2 = yx2 and S3 $ R. 
(iv) Consider the following groupoid 5 4 = {a, b, c, d} : aa = ac = ad = ca = 
= cb = cc = cd = c, ab = da = db = dc = dd = d, ba = bb = be = bd = b. 
Then S4 e Rl9 S4 satisfies x2 = x2y and S4 $ T. 

3.5 Lemma. Let r,seWl be two different terms. Then L $ Mod(r = s). 

Proof. Suppose, on the contrary, that L _ Mod(r = s). Clearly, var(r) = var(s), 
o(r) = o(s), (r) o = (s)o and either l(r), l(s) ^ 2 or 3 g l(r), l(s). Using this and 3.4, 
the result follows easily. 

n 

3.6 Proposition. a(L, n) = 3n + £ (4 4- 2m) n(n — 1) ... (n — m) for every n ^ 1. 
m = l 

Proof. Apply 3.1 and 3.5. 

We have a(L, 1) = 3, a(L, 2) = 18, a(L, 3) = 93, a(L, 4) = 516, a(L, 5) = 
= 3255, ... . 



4. Idempotent Left Distributive Semigroups 

Put I0 = Mod(x = y), Ix = Mod(x = xy), I2 = Mod(x = x2, xy = yx), 
I3 = Mod(x = yx), I4 = Mod(x = x2, xyz = xzy), I5 = Mod(x = xyx), I6 = 
= Mod(x = x2, xyz = yxz), I7 = Mod(x = x2, xy = xyx), I8 = Mod(x = x2, 
xyzx = xzyx) and I9 = I = Mod(x = x2, xyz = xyxz). 

4.1 Proposition, (i) I0 c I1 cz I4 c I7 c I9, / j C / . c I8? / 2 c / 6 c J 8 J l 0 c / 2 c 
C I4 C I8 C I9, 10C/3C I5, I3 C I,. 

(ii) The varieties I0, ..., I9 are the only subvarieties of I. 

Proof. The inclusions are clear from 2.13. Moreover, I2 $ I5, I3 $ I7 and I7 $ 
$ I8 by 3.4(ii) and it is easy to see that the varieties I0, ..., I9 are pair-wise different. 
Further, it is an easy consequence of 2.12 that every subvariety of I8 is equal to one 
ofIo, . . . , I 6 , I 8 . The rest of the proof is divided into two parts. 

(i) Let r, s e W1 be such that V = M(x = x2, r = s) i= I7. We can restrict ourselves 
to the case r = xx ... xn and s = yx ... ym where 1 _̂  n, m, xx, ..., xneX are pair-
wise different and y1, ..., ym eX are pair-wise different. If var(r) 4= var(s) then it is 
easy to see that V .= I5 and we have V = I0, It. Suppose that var(r) = var(s). Then 
n = m and there is a permutation p of { l , . . . ,n} such that s = x p ( 1 ) . . . xp{n). If 
p(1) 4= 1 then V = I0, I2. Let p(1) = 1, p 4= id and let 2 = i = n - 1 be the least 
number with p(i) 4= /• Using the substitution x1? ..., xi_1 —• x, xt -> y and x l + 1 , ... 
..., x„ -> z, we see that V c I4) and hence V = I0,11? I2, I4. 

(ii) Let Vbe a subvariety of I. We can assume that Vis contained neither in I7 nor 
in I8. By 2.9, Vis equal to (Vn I7) + (Vn I 8 ) . Hence VnI7 $ I8 and I7 <= Vby (i). 
Similarly, Vn I8 $ I7 and I3 ^ V. However, by 2.9, I9 = I3 + I7. 

4.2 Lemma. Let 4 = n and let p be a permutation of the set {l, 2, ..., n] such that 
p(l) = 1, p(n) = n and p 4= id. Then I8 = M(x = x2, xt ... xn = xp(1) ... xp{n)). 

Proof. Easy. 

5. A — Semigroups 

Put A5 = A = Mod(xyz = u3), A4 = Mod(xyz = u2), A3 = Mod(xyz = u3, 
xy = yx), A2 = Mod(xyz = it2, xy = yx), Ax = Mod(xy = zx) and A0 = 
= Mod(x = y). 

5.1 Proposition, (i) A0 ^ A1 .= A2 ^ A3 ^ A5, A2 ^ A4 ^ A5. 

(ii) The varieties A0,..., A5.are the only subvarieties of A. 

Proof. Easy. 
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6. The Varieties PtJ 

For all 0 = i = 5 and 0 g j = 9, let P,,,. = At + / , . 

6.1 Lemma, (i) Every subvariety of Tn R is equal to P, 7- for suitable i a n d / 

(H) p 5 Q = Tn R. 

Proof. Use 2.9,4.1 and 5.L 

6.2 Lemma. Let i 4= 2, 3. Then S e P,,,- iff Se Tn P, Id(S)eIj and 5/I4S) e -4f-. 

Proof. Denote by Vthe class of all such semigroups S. Then Vis a variety, and 
therefore V = PtJ. 

6.3 Lemma, (i) P0J = l} and Pl>0 = A{. 

(ii) P2J = P4J and P3 j = P5J for every j 4= 0, 2. 

(iii) Suppose that either / * 2, 3 or j = 0, 2. Then 5 e PtJ iff S e Tn P, /d(S) e / ; 
and 5//J(5) e Af. Moreover, A{ = Pi} n A and l} = P, fJ. n /. 

Proof, (i) This is obvious. 

(ii) Put V= P3 j n A. Let G e P3j be a free semigroup generated by x and j ' . 
Clearly, xy 4= j x in G. On the other hand, V $ Ai and consequently xy, yx $ ld(G). 
Let / be the natural homomorphism of G onto GJId(G). Then f(xy) 4= /(yx) and 
G\ld(G)$ A3. But A3 i= V, and therefore V = A. The rest is similar, 
(iii) For / 4= 2, 3, see 6.2. If j = 0 then the result is obvious. If j = 2 then we can 
proceed similarly as in the proof of 6.2. 

6.4 Proposition. Every subvariety of Tn R = M(xy2 = x2y) is equal to one of the 
following fortyfour varieties: L0 = P0 0 = / 0 = A0, Lx = P0 x = Il9 ..., L9 = 
= I0,9 = 19> L10 = ° 1 , 0 = ^M> •••> I-14 = I5,0 = ^ 5 ? I^l 5 = °1,1> • • •> -^23 = *1 ,9> 

•--'24 = ^2,2^25 = ^ 2 , 1 = ^ 4 , 1 ? - ^ 2 6 = ^ 4 , 2 ' ^ 2 7 = ^ 2 , 3 = ^4 ,3> -^28 = ^ 2 , 4 = ^ 4 , 4 

L 2 4 = ^ 2 , 2 ? -^25 = -^2,1 = ^ 4 , 1 ? -^26 = ^4 ,2> I-27 = ^ 2 , 3 = ^ 4 , 3 * L2$
 = ^ 2 , 4 = 

= P4,4> ^ 2 9 = ^ 2 , 5 = ^ 4 , 5 ' I-30 = ^ 2 , 6 = ^ 4 , 6 ' I-31 = ^ 2 , 7 = ^ 4 , 7 * ---32 = ^ 2 , 8 = 

= I4,8> I-33 = I*2,9 = I4,9> I-34 = I3,2> I-35 = •* 3,1 = °5,1> -^36 = * 5,2> ^ 3 7 = 

= I3.3 = I*5,3' I-*38 = P3,4 = P5,4> I^39 = ^ 3 , 5 = ^ 5 , 5 ' I-40 = ^ 3 , 6 = ^ 5 , 6 * ^ 4 1 = 

= I3,7 = ° 5 , 7 J I-42 = I3,8 = I5,8> I-43 = I3,9 = I5,9* 

Proof. Apply 6.1 and 6.3. 

6.5 Proposition. PtJ c Pkl iff I. c It and either At = Ak or I 4= 0, 2, i = 4, k = 2 
or / 4= 0, 2, i = 5, k = 3. 

Proof. Apply 6.1 and 6.2. 



7. The Varieties Sitj, Rifj and 7)f . 

Put Sx = M(x2 = x3, xy2 = xyx), S2 = M(x2 = x3), S3 = M(xy2 = xyx) 
and S4 = L. Let 1 = i = 4 and 0 = j = 9. Denote by S4J the class of all S e L 
such that Id(S)eIj and put S/<y = S, n S 4 J . 

7.1 Lemma, (i) S1 = S2 n S3, S2 £ S4 and S3 .= S4 = L. 

(ii) S/t</ is a subvariety of Land Sf 7- n I = I,-. 
(hi) A5 =" S3J? S4J and A5 $ S -J S2,,-. 

( i v ) s i , I = s2j C> S3 j , ^4 ,9 = I>> ̂ 4 ,0 = 4 5 = S3,0 a n d S2?0 = A = S 1 > 0 . 

Proof. Obvious. 

Put R! = M(xy = xyx), R2 = M(xy = xy2), R3 = R n S- = M(x2 = x3, 
xj;2 = xyx, x2y = x2y2), R4 = R n S2 = M(x2 = x3, x2y = x2y2), R5 = R n 
n S3 = M(x2y = x2y2, xy2 = xyx) and R6 = R = M(x2y = x2y2). 

7.2 Lemma. Rx = R2 n R3, R3 = R5 n R4, R2 = R4, R4 + R5 c R6. 

Proof. Obvious. 

For 0 = j = 9 and 1 = i = 6, let RLj = S4J n R,, 
Further, let Tt = M(xy = x2y), T2 = Tn S2 = M(x2 = x3, xy2 = x2y2), 

T3 = T= M(xy2 = x2y2). For 0 = j = 9 and 1 = / = 3, let T,- y. = S4J n T,, 

7.3 Lemma. Tx =• T2 = T3. 

Proof. Obvious. 

8. Auxiliary Results 

8.1 Lemma. Let r, s e W be such that o(r) 4= x e K and O(r) 4= O(s). Then 
M(xr = xs) =" T 

Proof. Put V = M(xr = xs) and let y e X be such that y £ var(xrs). Then V =" 
=" M(xry = xsy) and we have xry = xx\l ... xh

n
ny and xsy = xyi1 ... yl™y where 

1 = n, m^k^ ..., fc„, / l s ..., /„„ x l5 . . . ,x„, yl5 ...,ymeX and x =j= xx 4= yx. Using 
the substitution x,- -> j ! for every x,- #= x, j ^ , j / ^ -» y for every 3^ 4- x, j! l 5 j ! -> y and 
x, yj -> x, we see that xry = xsy implies in L at least one of the following two 
identities: xy2 = x2y, xy2 = x2y2. However, M(xy2 = x2}') = T n R and M(x>>2 = 
= x V ) = T 

8.2 Lemma. Let r, s e W. 

(i) If O(r) 4= o(s) then M(r = s) £ T. 
(ii) If O(r) 4= O(s) = x and either s = x2 or s = x2t for some t e [V then 

M(xr = s) = T. 
(iii) If x, >!, z e X and .y 4= z then M(xyr = xzs) = T. 

10 



Proof, (i) Let x e X be such that x $ var(rs). Then M(r = s) =" M(xr = xs) =" T 
by 8.L 
(ii) Let y e l be such that y £ var(rs). Then M(xr = s) = M(xry = x2(t) y) = T. 

(iii) Let w e K be such that u $ var(xyzrs). Using the substitution w -* y for every 
variable w e var(wyrs), w =1= x, z, and x, z -> x, we see that xyru = xysu implies 
in Lat least one of the following two identites: xy2 = x2y, xy2 = x2y2. 

8.3 Lemma. Let r, s eX. 

(i) Suppose that x e X is such that x ^ var(r) and either s 4= x, x2 or s 4= tx for every 
t e W with x £ var(t). Then M(rx = s) = R. 
(ii) If var(r) 4= var(s) then M(r = s) =" R. 

Proof, (i) Using the substitution w -> x for every variable w e var(rs), w 4= x, 
and x -> y, we see that the identity rx = s implies in Lat least one of the following 
twentyfour identities: xy = x, xy = x2, xy = x3, x2y = x, x2_y = x2, x2y = x3, 
xy = y3, x2y = y3, xy = xyx, x2y = xyx, xy = x2yx, x2^ = x2yx, xy = xy2, 
x2y = xy2, xy = x2y2, x2y = x2y2, xy = yx, x2y = yx, xy = yx2, x2y = yx2, 
xy = y2x, x2y = y2x, xy = y2x2, x2y = y2x2. Every of these identities implies in L 
the identity x2y = x2^2. 

(ii) Let x G X be such that x $ var(x) and x e var(s). If s is equal to x then M(r = s) 
is the trivial variety. In the opposite case we have sx #= x, x2 and M(r = s) = 
£• M(rx = sx) = R by (i). 

8.4 Lemma. Let V be a subvariety of L. If Vn I = I6 then V = T. If Vn I = I5 

then V = R. 

Proof. First, let VnI = I6. Then abc = bac for all a,b,ceId(S), S e V. 
Consequently, V= M(x2yz2 = y2xz2) and V = T by 8.2(i). Now, let Vnl = I5. 
Then V= M(x3 = x2j!x2) and V = R by 8.3(H). 

8.5 Lemma, (i) Let r, s e W be such that o(r) 4= o(s) and var(r) 4= var(s). Then 
M(r = s) ^ Tn R. 

(ii) Let Fbe a subvariety of Lsuch that Vn I = I3. Then V = T n K. 

Proof. Use 8.2(i), 8.3(ii) and 8.4. 

8.6 Lemma. Let r, s e Wand V = M(r = s). 

(i) If r, s e W4 then V = S4J for some j . 
(ii) If r, s e W2 then Vn T= T3 7 for some j . 

(iii) If r e W2 then either Vn T = K or Vn T = T 3 J or Vn T = r 2 J for some j . 

Proof. LetI ; = Vnl. Then V= 5 4 J and Vn T = T3J. 

(i) Let 5 e S+j and let / be a homomorphism of Winto 5. Thenf(W4) = Id(5), and 
hence f(r) = f(s). Thus 5 e Vand V = S 4 J . 
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(ii) Let Se T3 j and let / be a homomorphism of W into S. Put g(x) = x3 and 
k(a) = a3 for all x e X and a e S. Then g can be extended to an endomorphism of W, 
say h, and k is an endomorphism of S. We have h(W) = W4 and k(S) = Id(S). 
Moreover, Id(S)eIj <= Vn T and f h(W) _= Id(S). Consequently, f h(r) = f h(s). 
On the other hand, it is easy to see that /h = kf. Therefore k/(r) = k/(s). But/(r), 
f(s) eId(S), and so f(r) = f(s). 

(iii) We can assume that s e W3, i.e., s = xix2 ... xn, 1 = n, i g 2 and x 1 ? . . . , x„ eX 
pair-wise different. Put U = M(s = s3). It is clear that Vn T= U nTn M(r = s3). 
Since r, s e W2, M(r = s3) n T = T3 k for some k. If n = 1 and i = 1 then U = I 
and VnT = Ik. If n = 1 and / = 2 then U = S2 and V= _r2,ft. Suppose that 
n ^ 2. Then U = M(xix2 ... xn = x\x2 ... xn_lx

2
n) _= R by 8.3(i). 

8.7 Lemma. Let x, yeX, r,seW, x ^ var(rs), and V= M(xyr = xys). If either 
V _= R or xyr, xys e W2 then either V = S4 , or V = R6 j for some j . 

Proof. If xyr, xys e W2 then V = M(x >>r3 = xys3). Now, we can assume that 
r = x3 ... x3 and s = y\ ... ym. If x = y then the result follows from 8.6(i). Hence 
suppose that x =1= y and put Ij = Vnl. Then Ij satisfies yxl ... xn = yy\ ... ym 

and V_= S4j. Conversely, let S e S4j. Then S satisfies y3x3 ... x3 = y3y3 . . . y 3 

and hence S 6 V. 

9. Auxiliary Results 

9.1 Lemma. Let i,j _g 2 ^ n, let xl9 ..., xneX be pair-wise different and let p be 
a permutation of {1, ...,n] with p(l) 4= 1. Put r = xix2 ... xn, s = xJ

p(l)xp(2)... xp(tt) 

and V = M(r = s). Then either V ___ T n K or V = T3,6. 

Proof. By 8.2(i), V __= T. If p(«) = n then V = R by 8.3(i) and we can assume 
p(n) = n. Then 3 ^ n,It $ Vand Vn I = I6. Consequently, V .= T3 6. Conversely, 
let SET3>6 and ^ j , ...,«„ e 5. Then a3... a3_la

3_1 = a3
p(l) ... a3

p(n_1)a
3_l and 

a1...an = a\a2 ...an = a\a\ ... a3
n_la

3
n_lan = a3

p(l)... al^^a^^ = ap(l) ... 

••• ap(n-l)an-lan = ap(l) ' ' ' ap(n-l)an' 

9.2 Lemma. Let r,seW, o(r) * o(s) and V= M(r = s). Then either V=TnR 
or V = T2J or V = T3 j for some j . 

Proof. By 8.2(i), V __= T and we can assume that var(r) = var(s). Taking into 
account 8.6(iii), we may restrict ourselves to the case r, s e W3. Then r = xix2 . . . xn 

and s = y[y2 ... ym. We have n = m, yk = xp(k) for a permutation p such tht p(l) #= 
#= 1. The result follows now from 9.1. 

9.3 Lemma. Let i ^ 2, 3 ^ n, xu ...,xneX be pair-wise distinct and let p be 
a permutation of {2,. . . , n} with p(2) 4= 2. Put r = XjX2 ... xw, s = x 1 x p ( 2 ) . . . xp(n) 

and V = M(r = s). Then: 
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(i) V _ T. 
(ii) V^Tn R if p(n) 4= n. 
(iii) V= T3,8 ^ p(n) = n. 

Proof, (i) Use 8.2(iii). 

(ii) Use (i) and 8.3(i). 
(iii) By 4.2, VnI = I8 and V_ T3 8. Conversely, let Se T3,8 and al9 ...,aneS. 
Then we have a1 ... an = a\ ... aj^aia,. = a\a3

p(2)... a^.^a^ = a\ap(2)... 

9.4 Lemma. Let 3 = n9 xl9 ...9x„eX be pair-wise different and let p be a permuta­
tion of { 1 , . . . , n} with p(l) = 1 and p 4= id. Put V= M(x\x2 ... x,, = x j x ^ ) . . . 
...xp(,,)). Then: 

(i) V=K6,4 if P(n)#n. 
(ii) V=54,8 if p(n) = n. 

Proof. Similar to that of 9.3. 

9.5 Lemma. Let i, k, q,t — 2 g n and let xl9..., xn e X be pair-wise distinct and p 
a permutation of { 1 , . . . , n}. Put V= M(xxx2 ... xn.tx

k
n = xq

p(1)xpi2)... X^-D***))-

Then either V _ Tn R or V = 54 ,y or V = r m J or V = R6t</ for some m andj. 

Proof. It is divided into nine steps. 

(i) Let p(l) =j= 1. Then we can apply 9.2. 
(ii) Let p(l) = 1, k = t = 1 and i = q = 2. This case is clear from 9.4. 

(iii) Let p(i) = 1, p(2) + 2, k = r = 1 and i + g ^ 3. In this case, we can use 9.3. 
(iv) Let p(l) = 1, p(2) = 2, k = t = 1 and i = q = 1. If p = id then V = L. Hence 
assume p * id. Then 4 ^ n. If /?(«) 4= w then V _ £ by 8.3(i), Vn I = I4 and it is 
easy to see that V = R6A. Now, let p(n) = n. Then VnI = I8 and V_ S4,8. 
Conversely, if S e 54>8 and fl1,...,flB6S then at ... an = axa\ ... al_tala„ = 
= ^i^2«p(3) ••• a3

p{n_X)a
3

2an = aYa2ap{3)... apin_1)an and S e V. 

(v) Let p(\) = 1, p(2) = 2, fc = f = 1 and i = 1, q = 2. By 8.2(H), V = T. If 
p(n) 4= n then V_ T n K as it follows from 8.3(i). Let p(n) = n and 3 = n. Then 
we can see easily that F = T n M(x^x2 ... xn = x\x2xp{2)... xp(w)). If j> =j= id then 
V= T3 ,8andifp = 1 then V= T3>9 by 9.4. 
(vi) Let p(l) = 1, k = t = 2, i = 2 and q = 1. Then V_ Tby 8.2(h) and we can 

use 8.6(ii). 
(vii) Let p(l) = 1, k = t = 2 and i = q = 1. If p(2) = 2 then the result follows from 
8.7. If p(2) 4= 2 then 3 = n, V _ Tby 8.2(iii) and the result follows from 8.6(h). 
(viii) Let P(l) = 1, k = t = 2 and i = q = 2. In this case, it suffices to use 8.6(i). 
(ix) Let p(l) = 1, k = 2 and q = 1. If p(n) 4= w then F _ R by 8.3(i). If p(n) = n 
then the inclusion V_ R is obvious. Hence we have V = R n M(x|x2 ... x,I_1x^ = 
= x\xp(2)... xP(,,-i)Xp(-,))- The result is now clear from (vi), (vii) and (viii). 
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9.6 Lemma. Let r, s e W and V = M(r _ 5) n T. Then either V=TnR or V = 
= T, j for some / and j . 

Proof. According to 8.3(ii) and 8.6(iii), we can assume that r, s e W3. However, 
then 9.5 may be applied. 

10. The Lat t i ce Of Subvar ie t ies Of T 

10.1 Lemma. ( ^ T ^ n A = Al9 T2JnA = A4,T3JnA = A^T^jnl = T2JnI = 
= T3J nl = T3j nl = Ij for every 0 _ j = 9. 

(ii) l\j = Puj, T2J = P4J and T3J = P5J for j e {0, 1, 3, 5}. 

Proof. Use 6.4 and 8.4. 

10.2 Lemma. Let 1 _ i, j = 3 and 0 = p, q = 9. Then Tip n T]A = Trs for some 
r, s and TitP = TLq iff / _ j and Ip = Iq. 

Proof. Easy. 

10.3 Lemma. The varieties Titj, 1 = i ^ 3, 0 = j _ 9, are pair-wise distinct. 

Proof. Use 10.2. 

10.4 Lemma. Let Vbe a subvariety of T. Then either Vis contained in R or V = TtJ 

for some / and j . 

Proof. Assume that V $ R. By 9.6, Vis the intersection of some TtJ and the rest 
is clear from 10.2. 

10.5 Proposition, (i) Every subvariety of Tis equal to one of the following sixty two 
varieties: L0, ..., L43, L44 = Tt 2, L45 = Ti 4, L46 = Tl6, L47 = T2 2, L4 8 = Tlt7, 
L 4 9 = F2,4? I^5o = ^3,2» I^5i = T2 6, L52 = Tj 8 , L 5 3 = T 2 7 , L 5 4 = T3 4 , L 5 5 = 
= ^1,95 I^56 = ^3,6? I^57 = T2S, L 5 8 = T3 7, L 5 9 = T29, L 6 0 = T3 8 a n d L 6 1 = 

= F3,9. 
(ii) L44, ..., L6 i $L43 = TnR, TitP = TJtq iff i _ I and Ip = Iq and Pmt„ _ Tr,$ 

iff Iw .= / s and either r = 3 or r = 2, m = 0, 1, 2, 4 or r = I, m = 0, 1. 

Proof, (i) Let V be a subvariety of T such that V $ K. By 10.4 and 10.l(ii), 
V = Titj where / = 1, 2, 3 and j = 2, 4, 6, 7, 8, 9. Conversely, if / and j are such 
numbers then Tx 2 ~ Tf j9 and hence 7^. $ R. 
(ii) This assertion is easy. 

11. Auxi l iary Resu l t s 

11.1 Lemma. Let /, j , k = 2, 0 = n, x, xu ..., xn eX be pair-wise different and let p 
be a permutation of {l,...,n} and V = M(xix1 ... xn_1x

J
n = xkxp(l)... xp(n)x). 

Then either V _ Tor V = Srs for some r and s or V = Rtq for some f and q. 
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Proof. We must distinguish six cases. 

(i) n = 0. Then either V = Lor V = S2,9 or V = I. 
(ii) 1 _ n, i = j = k = 2. Then 8.6(i) may be applied. 

(iii) 1 = n, i = k = 2, j = 1. By 8.3(i), V _ I* and V = R n U, U = M(x'x1 ... 
••• *„-!** = x2xpil)...xp{n)x). But U = S4,sand V= K6s. 
(iv) 1 = n, i + fc = 3. By 8.2(ii), V = T. 
(v) 1 = «, i = fc = 1, j = 2. If p(l) 4= 1 then V_ Fdue to 8.2(iii), and therefore 

wc can assume p(l) = 1. Clearly, if S e S3 7 and a, bl9..., bne S then ab1 ... b2 = 
= a(b1 ... bn)

2 = ab1 ... bna and S e V. Now, let p =j= id. Using similar arguments 
as in the preceding case, we see that V = S3,4. 
(vi) 1 = n, i=j = k = l. Then V _ R, V = R n M(xxx ... xn_xxn = xp(1) . . . 
... xp(n)x) and either V = R5 7 or V = R5 4 by (v). 

11.2 Lemma. Let i, j = 2, 0 ^ w, x, xl9 ..., xn eX be pair-wise different and let p be 
a permutation of {l, ..., n} and V = M(x'x1 ... xnx = x7xp ( 1 ) . . . xp(n)x). Then either 
V _ Tor V = 54>9 or V = 54 ,8 . 

Proof. Similar to that of ILL 

11.3 Lemma. Let i,j,k = 2^n,l = q<n, x, xl9 ...,xneX be pair-wise distinct 
and let p be a permutation of {1, . . . ,«} and V = M(x'xx ... xn_1x^ = **xp(1) . . . 
. . . xp(n)xpiq,). Then either V _ Tor V = 5 4 r or V = R6 r for some r. 

Proof. It is divided into five parts. 

= j = fc = 2. In this case, we can use 8.6(i). 
= fc = 2, j = 1. Clearly, V _ R and we can use 8.7. 
+ fc = 3. Then V _ T. 
= fc = 1 and p(l) * 1. Then V _ F by 8.1. 
= fc = 1 and p(l) = 1. If j = 2 then we can use 8.7. 

(0 
(ii) 

(iii) 
(iv) 

(v) 

If j* = 1 then V _ R and 8.7 may be used again. 

11.4 Lemma. Let i,j _ 2 _ n, 1 ^ r, 5 < n, x, xl9..., xneX be pair-wise distinct 
and let p be a permutation of {l,...,n} and V = M(xIx1 ... xnxr = xJ 'xp(1) . . . 
. . . *p(n)xp(s)). Then either V _ Tor V = S^>q or V = 56>fl for some a. 

Proof. Similar to that of 11.3. 

11.5 Lemma. Let i,j = 2 = n, 1 = k < n, x, xl9..., xneX be pair-wise distinct 
and let p be a permutation of {1, ...,n} and V= M(x'x1 ... xnx = x yx p ( 1 ) . . . 
. . . xp{n)xp{k)). Then either V _ T or V = 5 r,s or V = K,fS. 

Proof. Clearly, Vn I = I7 and V_ M(x3
p{k)... x^(n)x^(k) = x^(fc)... x^(ll)). Con­

sequently, V _ U = M(x,'x1 ... xnx = xjxp{))... xp(n)) and V = U n 5 4 7. The result 
now follows from ILL 
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11.6 Lemma. Let r, s e W be such that var(r) = var(s) and o(r) = o(s). Put V = 
= M(r = s). Then either V___ T n K or V = Titj or V = Rpq or V = 5n m. 

Proof. We can assume that r, s e Wi and the result then follows from 9.5, 
11.1, . . . , 11.5. 

11.7 Lemma. Let r, s e PV be such that var(r) 4= var(s) and let V = M(r = s). Then 
either V _= Tn R or V = P6>y or V = R4 ,, 

Proof. By 8.3(ii), V _= _R and we can assume that o(r) = o(s) = x. The rest is 
divided into nine parts. 

(i) r = x2p and s = x2q where p, qe W and o(p) 4= x 4= o(q). Then V = .R6 y 

by 8.6(i). 
(ii) r = x'p, s = x'_7, p, a e W, o(p) 4= x 4= o(_j), i + j = 3. Then V _= Tn R by 
8.2(H). 
(iii) r = xp, s = xq, p, q e W, o(p) = o(g) =j= x, (p) o =j= x 4= (g) o. Then we can as­
sume that x $ var(pg) and the result follows from 8.7. 
(iv) r = xp, s = xq, p, q e W, x #= o(p) * o(o) 4= x. Then K g T n R by 8.2(iii). 
(v) r = xp, s = xg, p, qe W, o(p) = o(#) 4= x, (p) o 4= x = (q) o. We can assume 

that p = xx ...xn, x£var(p), q = yt ...ym(x), xt = yi9 x 4= >V Then Vnl = It 

and it is easy to see that V = R6tl. 
(vi) r = xp, s = xg, p, qe W, o(p) = o(q) 4= x = (p) o = (#) o. We can assume that 
p = xx ... xnx, q = y1 ... ymx, x- = j ^ . Then Vnl = I5 and V= -R6>5. 
(vii) r = x. Then V __= I. 

(viii) r = x3 and s = x'q, q e JV, o(q) 4= x. If i = 1 then V <= Tn R by 8.2(ii). If 
i = 2 then 8.6(i) can be used. 
(ix) r = x2, s = x'q, qeW, o(q) 4= x. Then V = S2 and V = M(x3 = s) n S2. The 
result now follows from (viii). 

11.8 Proposition. Let r, s e W. Then M(r = s) e {P ,̂., Rw>m, Tp><-, S f JJ. 

Proof. Apply 8.2, 11.6 and 11.7. 

12. The Lattice Of Subvarieties Of R 

12.1 Lemma, (i) RXJ n A = At = R2J n A, R3tj n A = A4 = R4tJ n A, R5J n 
n A = A5 = R6J n A, Rttj nl = R3J nl = R5J nl = Ij nl7 and R2J nl = 
= R4J nl = R6J nl =Ij for every 6 = j = 9. 
(ii) R2J = Pltj, R4J = P4J, R6J = P5J for every j = 0, 2, 3, 6. 

( i i i) Ri,0 = Pij3 = Pi ,0J ^1 ,2 = -^1,6 = -Pl,2» -^3,0 = -^3,3 = ^4,0> -^3,2 = -^3,6 = 

= -°4,2» ^5,0 = -^5,3 = ^5,0 a n ( ^ -^5,2 = -^5,6 = ^5 ,2 ' 

(iv) Ki j = K2tJ., P3 j = R4J and P5tj = R6J for every j = 0, 1, 2, 4, 7. 

Proof. Easy. 
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12.2 Lemma. R2 3 s R13. 

Proof. Easy. 

12.3 Lemma. Let i e {l, 3, 5}, 0 = j , k = 9 be such that Iknl7 = Ij. Then I*,- fc = 

= *i.I. 

Proof. Easy. 

12.4 Lemma. Let 1 = ij = 6 and 0 = r, S = 9. Then I?I>r n Ky>v = Rpq for some p 
and q. 

Proof. Easy. 

12.5 Proposition. Let 1 = ij = 6 and 0 = r, s = 9. Then Ri>r c JRJJS iff at least one 
of the following three conditions is satisfied: 

(i) Rt £ K; and Ir s Is. 
(ii) (ij) e {(2, 1), (2, 3), (2, 5), (4, 3), (6, 5)}, Ir s Is and Ir s I7. 

(iii) i e (1, 3, 5}, R( c K, and Ir n I7 <= Is. 

Proof. Use 12A, 12.2 and 12.3. 

12.6 Proposition. Every subvariety of R is equal to one of the following sixtytwo 
varieties: L0, . . . ,L 4 3 , L62 = Ki,i, L63 = P3ji, L64 = Kij4, L65 = K2,5> ^66 = 

= ^5,l> ^67 = 1^3,4> I^68 = -M,7> I^69 = I^2,8> I-70 = °4,5> L71 = -^5,4> L72 = -*3,7> 

L73 = ^2,9> ^-74 = -^4,8> L75 = ^6,5> L76 = ^5,7> ---*77 = -^4,9> I-78 = ^6 ,8 a n ( * 

L 7 9 = K6>9. 

Proof. Let Vbe a subvariety of I* such that V $ T. It follows from 11.8 and 12.4 
that V = Ritj for some 1 = i = 6 and 0 ^ ; = 9. According to 12.1 and 12.3, 
V = L 6 2 , . . . , L72. On the other hand, L62 $ Tby 3.4(iv). 

13. The Main Result 

13.1 Lemma, (i) Sltj n A = S2J n A = A4, S3J n A = S4J n A = A5, Slfj n I = 
= S3J nl = Ijn I7, S2J nl = S4J n I = I-. 

V11) ^ 1 , 0 = ^2,0 = -^1,3 = P4,0> S3,0 = S4,0 = ^3,3 = -P 5,0> ^2,3 = ^4,3 a n ( -* 

^4,3 = -°5,3* 

(iii) S3nT= T3>7. 

(1V) ^1,2 = ^2,2 = ^1,6 = ^2,2> ^ 3 , 2 = ^4,2 = ^3,6 = ^3,2> ^ 2 , 6 * = ^2,6 a n d 

^4,6 = ^3,6-

(V) ^1,1 = ^2,1 = -^3,1> ^3,1 = ^4,1 = ^5,1> ^1,5 = -^3,1> ^3,5 = -^5,1> ^2,5 = 

= R45 and 54>5 = R65. 

Proof. Easy. 
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13.2 Lemma. Let 0 = i = 9 and Ij = I, n I7. Then S M = Suj and S3ti = S 3 J . 

Proof. Easy. 

13.3 Lemma. Let 1 = i, j' = 4 and 0 ^ r, 5 = 9. Then Sir n S J s = Sp q for some p 
and q. 

Proof. Easy. 

13.4 Lemma. S2 3 $ S1>3. 

Proof. Easy. 

13.5 Lemma. Let / = 0, 1, 2, 4, 7. Then S l j f = S2>1- and S3i = S4 f. 

Proof. Easy. 

13.6 Proposition. Let 1 = ij = 4 and 0 = r, 5 = 9. Then S/?r c S;,s iff at least one 
of the following three conditions is satisfied: 

(i) Si £ S; and Ir £ /,. 
(ii) i e {1, 3}, Sf £ Sj and Ir n I7 £ Is. 

(iii) (f,y) 6 {(2, 1), (2, 3), (4, 3)}, Ir <= Is and r e {0, 1. 2, 4, 7}. 

Proof. Use 13.1, ..., 13.5. 

13.7 Theorem. Every subvariety of L is equal to one of the following eightyeight 
varieties: L0, . . . ,L7 9 , L80 = S 1 4 , L81 = S1>7, L82 = S2 8, L83 = S2 9, L84 = S3 4% 

^85 ^ ^3,7* -^86 = ^4,8 a n c 1 I-87 = ^4,9 = I-* 

Proof. Apply 11.8, 13.1,. . . , 13.5. 

18 


		webmaster@dml.cz
	2012-10-05T23:07:30+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




