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1983 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 24, NO. 2 

Exchangeable Partial Groupoids I 

A. DRAPAL and T. KEPKA 
Department of Mathematics, Charles University, Prague*) 

Received 30 March 1983 

In the paper, the problem of distances between finite quasigroups and groups is studied. 

V clanku se studuje problem vzdalenosti konecnych kvazigrup od grup. 

B CTaTbe H3yHaeTcm npo6jieivtMa paccTOAHH* Meacziy KOHeHHMMH KBa3nrpynnaMH H rpyrmaMH. 

1. In troduct ion 

By a partial groupoid we mean a non-empty set together with a partial binary 
operation. Let K be a partial groupoid. For a e K, we put M(K, a) = {(b, c); a = be], 
so that the operation of K is defined just for ordered pairs from the set M = M(K) = 
= [jM(K, a). Further, let T(K) = {(b, c, a); be = a), B(K) = {b; (b, c) e M}, 
C(K) = {c; (b, c) e M}, A(K) = B(K) U C(K), D(K) = {be; (b, c) e M}, m = 
= m(K) = card (M), p = p(K) = card (B), q = q(K) = card (C), o = o(K) = 
= card (D). The number m will be called the rank of K. For all b, c, d e K, let 
p(b) = p(K, b) = card ({a; (b, a) e M}), q(c) = q(K, c) = card ({a; (b, a) e M}), 
o(d) = o(K, d) = card (M(K, d)). Finally, if K is finite, then let 3 = S(K) = 3m -
- 2(p + q + o), S(p) = S(K, p)= m - 2p, S(q) = S(K, q) = m - 2a, d(o) = 
= <5(K, o)= m - 2o. 

1.1. Lemma. Let K be a finite partial groupoid. Then: 

(i) m = £j?(a) = £g(a) = £o(a), a eK. 

(ii) m = pq, max (p(b)) = q, max (q(c)) = p. 

(iii) 6 = 3(p) + S(q) + S(o). 

(iv) *(P) = Z (K*) " 2)' «(«) = I (K<) " 2), «(o) = £ (o(d) - 2). 
fteB(K) ceC(K) deD(K) 

(v) The numbers m, (5, O*(p), O*(^f), O"(o) have the same parity. 

Proof. Obvious. 

*) 186 00 Praha 8, Sokolovská 83s Czechoslovakia. 
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A partial groupoid K is said to be 

— balanced if the sets B, C and D are pair-wise disjoint; 
— reduced if K = A u D; 
— cancellative if (a, b), (a, c)e M (resp. (b, a), (c, a) e M) and ab = ac (resp. 

ba = ca) implies b = c. 

Let K and Lbe partial groupoids. A mapping f of K into Lis said to be a homo-
morphism if (f(a),/(b)) e M(L) andf(ab) = f(a)f(b) for all (a, b) e M(K). Further­
more, we shall say that f is strong if for all (x, y) e M(L), x, y ef(K), there exists 
a pair (a, b) e M(K) with f(a) = x andf(b) = y. A homomorphismf of K into Lis 
said to be a pseudoimmersion (resp. an immersion) if the restrictions f | B(K), 
f | C(K) (and f | D(K)) are injective mappings. 

Let K and Lbe partial groupoids. We shall say that Lis a (strong) partial sub-
groupoid of K if L .= K and this inclusion is a (strong) homomorphism. 

Let K be a partial groupoid and N a non-empty subset of M(K). Define a partial 
groupoid L = S[K, N] by L = {a, b, c; (a, b)eN, ab = c] and M(L) = N. Clearly, 
Lis reduced and Lis a partial subgroupoid of K. 

1.2. Lemma. Let K be a cancellative partial groupoid. Then max (p(K, b), o(K, d)) ^ 

= q(K), max (q(K, c), o(K, d)) = p(K) and max (p(K, b), q(K, c)) = O(K). 

Proof. Obvious. 

2. Parastrophes of cancellative partial groupoids 

Let K be a partial groupoid. Define a partial groupoid K = K(o) (the opposite 
of K) by (a, b) e M(K) iff (b, a) e M(K) and then aob = ba. 

2.1. Lemma. Let K be a partial groupoid. Then: 
(i) A(K) = A(K), B(K) = C(K), C(R) = B(K), D(K) = D(K), m(K) = m(K), 

p{K) =j(K), q(K) = p(K), o(K) = o(K), p(K, b) = q(K, b), q(K, c) = p(K, c) 
and O(K, d) = o(K, d). 

(ii) S(K) = S(K), S(K, p) = S(K, q), 5(K, q) = S(K, p) and S(K, o) = S(K, o), pro­
vided K is finite. 

(iii) K = K and K is balanced (resp. cancellative, reduced) iff K is so. 

(iv) A mapping f of K into L i s a (strong) homomorphism iff it is a (strong) homo­
morphism of K into L. 

(v) A homomorphism f of K into Lis a (pseudo)immersion iff it is a (pseudoim­
mersion of K into L. 

Proof. Obvious. 

Let K be a cancellative partial groupoid. Define two partial groupoids K-1 = 
= K(4-) (the right inverse of K) nad _ 1 K = K( —) (the left inverse of K) as follows: 

58 



(a, b) e M(K - 1 ) and a + b = c iff (a, c) e M(K) and ac = b; (a, b) e M(K - 1 ) and 
a - b = c iff (c, ft) e M(K) and cb = a. 

2.2. Lemma. Let K be a cancellative partial groupoid. Then: 

(i) X(K - 1) = B(K) u D(K), B(K~l) = B(K), C(K-1) = D(K), LXK"1) = C(K), 
m(K-i) = m ( X ) , ^ K " 1 ) = p(K), a(K-1) = O(K), O(K-1) = q(K), p(K-\ b) = 

= p(K, b), q(K-\ c) = o(K, c) and O(K"\ d) = q(K, d). 

(ii) <3(K_1) = <5(K), <5(K"\ p) = 3(K, p), <5(K"\ q) = <5(K, O) and <5(K"\ O) = 

= <5(K, q), provided K is finite, 

(iii) ( K - 1 ) " 1 = K,K-1 is cancellative and K"1 is balanced (resp. reduced) iff K is so. 

(iv) A mapping f of K into L is a (strong) homomorphism iff it is a (strong) homo-

morphism of K-1 into L - 1 . 

(vj A homomorphism / of K into Lis an immersion iff it is an immersion of K-1 

into L"1. 
Proof. Obvious. 

2.3. Lemma. Let K be a cancellative partial groupoid. Then: 

(i) v4(-1K) = C(K) u D(K), B(-1K) = D(K), C(-1K) = C(K), D(~lK) = B(K), 
m("1K) = m(K), p(-1K) = O(K), a(-1K) = q(K), O("JK) = p(K), p(-*K, b) = 

= O(K, b), q(-1K, c) = q(K, c) and O(_1K, d) = p(K, d). 

(ii) <5(_1K) = <5(K), <5(-1K, p) = S(K, o), <5(-1K, q) = S(K, q) and <5(-1K, O) = 

= <5(K, p), provided K is finite, 

(iii) - 1(~iK) = K, " XK is cancellative and ~ XK is balanced (resp. reduced) iff K is so. 

(iv) A mapping / of K into L is a (strong) homomorphism iff it is a homorphism 

o f - 1 K i n t o - 1 L . 

(v) A homomorphism / of K into L is an immersion iff it is an immersion of - LK 
into - 1 L. 
Proof. Obvious. 

2.4. Lemma. Let K be a cancellative partial groupoid. Then (K)"1 = (_1K) = 

= "XK" 1 ) and - 1(K) = (K3 1) = ( - 1 K ) " \ 

Proof. Obvious. 

A partial groupoid Lis said to be a parastrophe of a cancellative partial groupoid 
K if L can be obtained from K by a (possibly repeated) application of the operators 
P->P, P->P-\ P-» - 1 P . 

2.5. Lemma. Let Lbe a parastrophe of a cancellative partial groupoid K. Then: 

(i) L is cancellative, K is a parastrophe of L and L is equal to at least one of the 
partial groupoids K,K,K"\ - 1K , "XK" 1 ) , ( " ^ j " 1 . 
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(ii) Lis balanced (resp. reduced) iffK is so. 

(iii) m(L) = m(K). 

(iv) S(L) = S(K), provided K is finite. 

PrOOf Use 2.1, 2.2, 2.3 and 2.4. 

3. Isotopes of reduced partial groupoids 

A reduced partial groupoid L is said to be an isotope of a reduced partial 
groupoid K if there exist bijections f, g and h of B(K) onto B(L), C(K) onto C(L) 
and D(K) onto D(L), resp., such that M(L) = {(f(a), g(b)\ (a, b) e M(K)} and 
h(ab) = f(a) g(b) for all (a, b) e M(K). 

3.1. Lemma. Let a reduced partial groupoid L be an isotope of a reduced partial 

groupoid K. Then: 

(i) Lis cancellative iffK is so. 

(ii) m(L) = m(K), p(L) = p(K), q(L) = q(K) and o(L) = o(K). 
(iii) d(L) = S(K), S(L, p) = S(K, p), S(L, q) = 8(K, q) and S(L, o) = S(K, o), pro­

vided K is finite. 

(iv) K is an isotope of Land Lis an isotope of K. 

(v) L _ 1 (resp. _1L) is an isotope of K-1 (resp. _ 1K) , provided K is cancellative. 

(vi) The partial groupoids K and L are isomorphic, provided both K and L are 
balanced. 

Proof. Easy. 

4. Group modifications of partial groupoids 

Let K = K(o) be a reduced partial groupoid and F = F(K) the free group of 
words over the set K. Denote by N = N(K) the normal subgroup of F generated by 
all the words bca~x, (b, c, a) e F(K), by f = fK the natural homormophism of F 
onto G = G(K) = F/N and by g = gK the restriction off to K. Then g is a homo-
morphism of K into G and it is the modification of K into the category of groups. 
A normal subgroup R of G is said to be (pseudo)regular if the homomorphism kg 
of K into G\R, k being the natural homomorphism of G onto GJR, is a (pseudo)im-
mersion. The partial groupoid K is said to be (pseudo)regular if the unit subgroup 
of G is so. 

4.1. Lemma. Let K(o) be a reduced partial groupoid and K(*) = K(o). Then there 
exists an isomorphism i of G(K(°)) onto G(K(*)) such that a normal subgroup R 
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of G(K(o)) is (pseudo) regular iff the same is true for the normal subgroup i(R) 
of G(K(*)). 

Proof. There is an automorphism j of F(K(o)) = F(K(*)) such thatj(a) = a~x 

for every a e K. Obviously, j(N(K(0))) = N(K(*)), and hence j induces the iso­
morphism i. 

4.2. Lemma. Let K(o) be a cancellative reduced partial groupoid with B(K(o)) n 
n (C(K(o)) u D(K(o))) = 0. Put K(*) = K(o)"1. Then there exists an isomorphism i 
of G(K(o)) onto G(K(*)) such that a normal subgroup R of G(K(o)) is regular iff the 
normal subgroup i(R) of G(K(*)) is so. 

Proof. There is an automorphism j of F(K(oj) = F(K(*)) such that j(a) = a 
and j(b) = b'1 for all a e C(K(o)) u D(K(o)) and b e B(K(0)). Obviously j(N(K(0)) = 
= N(K(*)). 

4.3. Lemma. Let K(o) be a balanced cancellative reduced partial groupoid and K(*) 
a parastrophe of K(oJ. Then there exists an isomorphism i of G(K(o)) onto G(K(*)) 
such that a normal subgroup R of G(K(o)) is regular iff so is the normal subgroup 
i(R) of G(K(*)). 

Proof. Apply 2.4, 2.5(i), 4.1 and 4.2. 

4.4. Corollary. Let K be a regular balanced cancellative reduced partial groupoid. 
Then every parastrophe of K is regular-

Let K = K(o) be a reduced partial groupoid, g = gK and x = (a, b) e M(K). 
Denote by H(K, x) the subgroup of G = G(K) generated by all g(a)-1 g(c) and 
g(d) g(b)-1 where (c, d) e M(K) and let P(K, x) be the normal subgroup of G gen­
erated by g(a) and g(b). Denote by px the natural projection of G onto G/P(K, x). 
By [1, Lemma 3.3], H(K, x) = H(K, y) = H(K) for all x, y e M(K) and px(H(K)) = 
= G/P(K, x). Moreover, if K is balanced then there exists an isomorphism fx of 
G/P(K, x) onto H(K) with tx | H(K) = id, tx = fxpx ([ l , Lemma 4.3]). A normal 
subgroup S of H(K) is said to be (pseudo)regular if so is the normal subgroup 
tx-

x(S) of G ([1, Lemma 4.5]). 

4.5. Lemma. Let K(o) be a reduced partial groupoid, K(*) = K(o) and let i be the 
isomorphism of G(K(o)) onto G(K(*)) by 4.1. Then i(H(K(o)) = H(K(*)) and 
a normal subgroup S of H(K(0)) is (pseudo)regular iff so is the normal subgroup i(S) 
of H(K(*)). 

Proof. Easy. 

4.6. Lemma. Let K(0) be a balanced cancellative reduced partial groupoid, K(*) = 
= K(o)"1 and let i be the isomorphism of G(K(0)) onto G(K(*)) by 4.2. Further, 
let x = (a, b) e M(K(0)) and a o b = c. Then: 
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(i) i(H(K(o))) = gKMH(K(*))gKn(a)-K 

(ii) Z(P(K(o), x)) = P(K(*), y) where y = (a, c) e M(K(*)). 

(iii) A normal subgroup S of H(K(oj) is regular iff so is the normal subgroup 
^ ( ^ ) _ 1 © t o o f H ( X ( * ) ) . 

Proof. Easy. 

4.7. Lemma. Let K(o) be a balanced cancellative reduced partial groupoid and K(*) 
a parastrophe of K(o). Then there exists an isomorphism k of H(K(o)) onto H(K(*)) 
such that a normal subgroup S of H(K(o)) is regular iff so is the normal subgroup 
k(5)ofH(K(*)). 

Proof. Apply 2.4, 2.5 (i), 4.5 and 4.6. 

5. Couples of companions 

Let K(o) and K(*) be partial groupoids with the same underlying set. We shall 
say that the ordered pair (K(o), K(*)) is a couple of companions if both the partial 
groupoids are reduced and cancellative, M(K(o)) = M(K(*)) = M and for all (a, b) e 
e M there exist (a, c), (d, b), (a, e), (f, b) e M such that c=j=b=l=e, d + a+f and 
aob = a*C = d*b, a*b = aoe=fob. 

A partial groupoid K(o) is called (strictly) exchangeable if there exists at least 
one (just one) partial groupoid K(*) such that (K(o), K(*)) is a couple of companions. 

5.1. Lemma. Let I = (K(o), K(*)) be a couple of companions. Then: 

(i) M(I) = M(K(o)) = M(K(*)), A(l) = A(K(o)) = A(K(*)), B(I) = B(K(o)) = 
= B(K(*)), C(I) = C(K(o)) = C(K(*)) and D(I) = D(K(o)) = D(K(*)). 

(ii) m(l) = m(K(o)) = m(K(*)), p(l) = p(K(o)) = p(K(*)), q(l) = a(K(o)) = 
= q(K(*)) and O(I) = O(K(o)) = o(K(*)). 

(iii) p(I, b) = p(K(o), b) = p(K(*), b), q(l, c) = a(K(o), c) = a(K(*), c) and 
O(I, d) = O(K(o), d) = O(K(*), d). 

(iv) O(I) = S(K(o)) = (5(K(*)), O"(I, p) = 5(K(o), p) = 6(K(*), p), 3(1, q) = 
= S(K(o), q) = S(K(*), q) and 3(1, o) = 3(K(o), o) = 3(K(*), o), provided K is 
finite. 

(v) The ordered pair I = (K(*), K(o)) is a couple of companions (the converse 
couple). 

(vi) Both K(o) and K(*) are exchangeable. 

(vii) K(o) is balanced iff K(*) is so. 

(viii) a o b 4= a * b for all (a, b) e M(I). 

(ix) a o K = a * K and K o a = K * a for every a e K. 
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Proof. Obvious. 

Let I = (K(o), K(*)) and J = (L(o), L(*j) be couples of companions. A mappingf 
of K into Lis said to be a (strong) homomorphism of I into J iff is simultaneously 
a (strong) homomorphism of K(o) into L(o) and of K(*) into L(*). 

5.2. Lemma. Let I = (K(o), K(*)) be a couple of companions. Then: 

(i) The ordered pairs I = (K(o"),K(*)), I"1 = (K(o)~1
9K(*)~x)9 ~H = (_1K(o), 

_1K(*)), etc., are couples of companions, 

(ii) All the parastrophes of K(o) are eaxchangeable. 

Proof. Easy. 

Let I = (K(o), K(*)) and J = (L(o), L(*)) be couples of companions. We shall 
say that J is an isotope of I if there exist bijectionsf, g and h of B(l) onto B(J), C(l) 
onto C(J) and D(I)onto D(J), resp., such that M(J) = {(f(a), g(bj); (a9 b) e M(I)} 
and h(a o b) = f(a) o g(b), h(a * b) = f(a) * g(b) for all (a9 b) e M(I). 

5.3. Lemma. Let I and J be couples of balanced companions such that J is an 
isotope of I. Then these couples are isomorphic. 

Proof. Easy. 

Let I = (K(o), K(*)) be a couple of companions. A non-empty subset N of M(I) 
is said to be admissible if the ordered pair (S[K(o), N], 5[K(*), N]) is again a couple 
of companions. The couple I is called simple if M(I) contains no proper admissible 
subset. 

5.4. Lemma. Let I be a simple couple of companions. Then I and all the parastrophes 
of I are simple. 

Proof. Easy. 

A partial groupoid K is said to be (strongly) primary if it is exchangeable and 
every pseudoimmersion of an exchangeable partial groupoid into K is a surjective 
strong pseudoimmersion (immersion). 

5.5. Lemma. An exchangeable partial groupoid K is primary iff every immersion of 
an exchangeable partial groupoid into K is surjective and strong. 

Proof. The direct implication is clear. As for the converse one, let f be a pseudo­
immersion of an exchangeable partial groupoid Linto K. Put P = S[K,f(M(L))]. 
By [V Lemma 6.2], P is an exchangeable partial groupoid and the identity mapping 
of P into K is an immersion. Consequently, P = K and f is surjective and strong. 

5.6. Corollary. Every parastrophe of a primary exchangeable partial groupoid is 
primary and exchangeable. 
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5.7. Lemma. Let K be an exchangeable partial groupoid. Then K is primary iff for 
every non-empty and proper subset N of M(K) the partial groupoid S[K, N] is not 
exchangeable. 

5.8. Corollary. Let I = (K(o), K(*)) be a couple of companions such that at least 
one of the partial groupoids K(0) and K(*) is primary. Then I is simple. 

A couple I = (K(o), K(*)) of companions is said to be left (resp. right) (strongly) 
primary if K(0) (resp. K(*)) is (strongly) primary. It is said to be (strongly) primary 
if it is both left and right (strongly) primary. Further, I is said to be left (resp. right) 
(pseudo)regular if K(0) (resp. K(*)) is (pseudo)regular and I is said to be (pseudo)re-
gular if it is both left and right (pseudo)regular. 

6. Several inequalities 

6.1. Lemma. Let K be a finite exchangeable partial groupoid, 3 = 3(K), m = m(K), 
p = p(K), q = q(K) and o = o(K). Then: 

(i) 2 = min (p, q, o) = max (p, q, o) = mj2. 

(ii) 2 = o(d) = min (p, q), 2 = p(b) = min (O, q) and 2 = q(c) = min (O, p) for all 
b E B(K), c E C(K) and d e D(K). 

(iii) 4 = m = min (pq, po, qo). 

(iv) 3 = 3(m - 2 7m). 
(v) 3/3 + 2 + 2 V[(O* + 3)/3] = m. 

(vi) p + q + o = (3m — 3)\2 and 3 yjm = p + q + o. 

Proof. The assertions (i), (ii), (iii) are easy, (iv) By (iii), 9m = 3(pq + qo + po) = 

= 2(pq + qo + po) + p2 + q2 + o2 = (p + q + o)2. 

(v) and (vi). These are an easy consequence of (iv). 

6.2. Lemma. Let K be a finite exchangeable partial groupoid. If S(K) = 0 (resp. 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13) then m(K) = 4 (resp. 5, 6, 7, 8, 9, 10, 9, 10, 11, 
12, 11). 

PrOOf Apply 1.1 (v) and 6.1 (v). 

6.3. Lemma. Let K be a finite exchangeable partial groupoid, 3 = 3(K), m = m(K), 
p = p(K), q = q(K) and O = O(K). 

(i) If 3 = 0 then m = 4 is even and p = q = o = m/2. 

(ii) 3 + 1. 

(iii) If 3 = 2 then m = 6 is even and [p, q, O} = {m/2, m/2, (m/2) — l}. 

(iv) If 3 = 3 then m = 7 is odd and p = q = o = (m — l)/2. 
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(v) If S = 4 then m = 8 is even and if m = 8 then either {p, q, o} = {4, 2, 2} or 
{p, q, o} = {4, 3, 3}. 

(vi) If S = 5 then m = 9 is odd and {p, q, o} = {(m - l)/2, (m - l)/2, (m - 3)/2}. 

(vii) If S = 6 them m ^ 8 is even and if m = 8 then p = q = 0 = 3. 

(viii) If S = 1 then m = 9 is odd and if m = 9 then {p, q, o} == {4, 3, 3}. 

(ix) If S = 8 then m = 10 is even and if m = 10 then {p, q, o} = {4, 4, 3}. 

(x) If (5 = 9 then m = 9 is odd and if m = 9 then p = q = O = 3. 

(xi) If 5 = 10 then m ^ 10 is even and if m = 10 then {p, q, o} = {4, 3, 3}. 

(xii) If S = 11 then m = 11 is odd and if m = 11 then {p, q, o} = {4, 4, 3}. 

(xiii) If S = 12 then m ^ 12 is even and if m = 12 then either {P, q, o} = {5, 4, 3} 
or p = q = o = 4. 

(xiv) If S = 13 them m = 13 is odd and if m = 13 then either {P, q, o} = {5, 5, 3} 
or {p, q, o} = {5,4,4}. 

Proof. Apply 1.1 (v), 6.1 and 6.2. 

6.4. Lemma. Let K be a finite exchangeable partial groupoid, m = m(K) and 

S = S(K). 

(i) If m = 4 then S = 0. 

(ii) m 4= 5. 

(iii) If m = 6 then S = 0,2. 

(iv) If m = 7 then S = 3 and p = q = o = 3. 

(v) If m = 8 then S = 0, 2, 4, 6. 

(vi) If m = 9 then £ = 3, 5, 7, 9. 

(vii) If m = 10 then S = 0, 2, 4, 6, 8, 10. 

(viii) If m = 11 then S = 3, 5, 7, 9, 11. 

Proof. Apply 1.1 (v), 6.1 and 6.3. 

7. An example 

Let k = 2, B = {a, b}, C = {c1? ..., ck} andK = {1, 2, . . . ,k}. Define a balanced 
partial groupoid Z = Z(o) = Z(k, o) as follows: Z = £ u C u K; a o ct = i for every 
ie K; b o Cj = j + I for every j e K, j =\= k; b o ck = 1. Put m = m(Z), etc. 

7.1. Proposition. 

(i) Z is a balanced cancellative reduced partial groupoid. 

(ii) card (Z) = 2k + 2, m = 2k, p = q(ct) = 2, q = o = o(i) = k, S = <5(/>) = 
= 2k - 4, % ) = <5(o) = 0. 
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(iii) Z is regular, H(Z) is a cyclic group of order k and no non-trivial subgroup of 

H(Z) is pseudoregular. 

(iv) The partial groupoids Z and Z " 1 are isomorphic and the partial groupoids Z, Z 

and _ 1 Z are pair-wise non-isomorphic, provided k ^ 3. 

(v) If k = 2 then the partial groupoids Z, Z, Z" 1 , _ 1 Z are isomorphic. 
Proof. Easy; for (iii), use eventually some results from [ l , §5]. 

Now define a partial operation * on Z as follows: b * ct = i for every i e K; 
a * c, = j + 1 for every j e K, j 4= k; a * cfc = 1. Put I = l(k) = (Z(0), Z(*)). 

7.2. Proposition. 

(i) I is a strongly primary regular couple of balanced companions, 

(ii) The couples I and I are isomorphic and the partial groupoids Z(0) and Z(*) are 

isomorphic, 

(iii) The partial groupoid Z(0) is strictly exchangeable and strongly primary, 

(iv) The couples I and I-1 are isomorphic and the couples I, I and _ 1I are pair-wise 

non-isomorphic, provided k ^ 3. 

(v) If k = 2 then the couples I, I, I'1 and _ 1I are isomorphic. 
Proof Easy. 

8. Auxiliary results 

8.1. Lemma. Let (K(o), K(*)) be a couple of companions, a, b, c, d, e e K, a #= b, 
a o c = e = bod and o(e) = 2. Then a * d = c = b*c. 

Proof. Obvious. 

Let K be a partial groupoid. For c e C(K), put B(c) = B(K, c) = {b; (b, c) e 
eM(K)}, E(c) = E(K, C) = {beB(c); o(bc) = 2} and define a mapping sc = sKc 

of E(c) into B(K) by sc(b) = a where (a, d) e M(K), be = ad and (b, c) 4= (a, d). 

8.2. Lemma. Let K be an exchangeable partial groupoid and c e C(K). Then: 

(i) sc is an injective mapping of E(c) into B(c) and sc(b) 4= b for every b e £(c). 

(ii) 5C is a permutation of B(c), provided E(c) = B(c). 

Proof. Use 8.1. 

8.3. Proposition. Let K(o) be a reduced cancellative partial groupoid such that o(d) = 
= 2 for every d e D(K(o)). Then K(0) is exchangeable iff the mapping sc is a permuta­
tion of B(c) for every c e C(K(0)). In this case, K(0) is strictly exchangeable. 

Proof. The direct implication follows from 8.2. Now, assume that O(d) = 2 for 
every d e D(K(oj) and put b * c = sc

-1(b) o c for every (b, c) e M(K(0)). Clearly, K(*) 
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is a reduced partial groupoid and M(K(*)) = M(K(0)). Let us show that K(*) is 
left cancellative. Let b*c = b*d=f. Then / = s~x(b) 0 c = sjx(b) 0 d and 
and sj^vb) o c = b 0 e. Since o(/) = 2, either c = d or d = e, sj1^) = b, a contra­
diction. The rest is similar. 

8.4. Lemma. Let I = (K(o), K(*)) be a simple couple of finite companions and let 
L = L(o) be a partial subgroupoid of K(o) such that p(L, b) = p(l, b) and q(L, c) = 
= q(l, c) for all b e B(L) and c e C(L). Then L(o) = K(o). 

Proof. Let (b, c) e M(L) and b * c = d. There are e,feK with d = b o e = 
= f o c, e + c,f + b. Now, with respect to the hypothesis, (fe, c), (/, c) e M(L) and 
it is easy to see that (S[K(o), M(L)~\, 5[K(*), M(L)~] is a couple of companions. 

8.5. Corollary. Let I = (K(o), K(*)) be a simple couple of finite companions and let 
L = L(o) be a partial subgroupoid of K(o) such that S(L, p) = 5(1, p) and 5(L, q) = 
= 5(1, q). Then L(o) = K(o). 

8.6. Lemma. Let K be a primary exchangeable partial groupoid such that K is not 
strongly primary. Then o(K, d) = 4 for at least one d e D(K) and hence p(K), q(K) = 

^ 4 . 

Proof. Easy. 

Let I = (K(o), K(*)) be a couple of companions and suppose that (a, c), (b, c) e 
e M(I), a ^ b, a o c = d and o(d) = q(c) = 2. A finite sequence x = (cl9 ..., cr) is 
called admissible if r = 2, cl9..., cr are pair-wise different elements of C(I), cx = c, 
a o ct = b o ci+1 and q(c,) = o(a 0 ct) = 2 for every 1 ^ i < r. Further, we shall 
say that x is maximal if it has no admissible prolongation. 

8.7. Lemma. Let (cl5 ..., cr) be an admissible sequence. Then b * ct = a * ci + 1 = 
= a oCt for every 1 = i < r. 

Proof. Use 8.L 

8.8. Lemma. Let (cl9..., cr) be a maximal admissible sequence. Then at least one of 
the following three conditions is satisfied: 

(1) q(cr) = 2, b o c1 = a 0 cr = a * cx = b * cr. 
(2) q(cr) = 3 and p(l) = 3. 
(3) o(a o cr) = 3 and p(I) = 3. 

Proof. Suppose that none of these conditions is satisfied. By 8.7, (a, cr) e M(l) 
and a * cr = b * cr_1. By 8.1, a 0 cr = b 0 c r + 1 for some c r + 1 eK . Since (1) is not 
saisfied, c r + 1 #= cx and the sequence (cl9 ..., cr+1) is admissible, a contradiction. 

8.9. Lemma. Suppose that I is simple and (c1 ? . . . , cr) is a maximal admissible sequence 
satisfying (1). Then M(I) = {a, b) x {cl5 ..., cr}. 
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Proof. Use 8.7. 

8.10. Lemma. There exists e e C(l) such that the sequence (c, e) is admissible. 

Proof. Use 8.L 

8.11. Lemma. Suppose that K is finite. Then there exists at least one maximal ad­
missible sequence. 

Proof. Use 8.10. 

9. Couples of companions with p(I) = 2 

9.1. Proposition. Let I = (K(o), K(*)) be a simple couple of finite balanced com­
panions and m = m(I). The following conditions are equivalent: 

(i) m is even and I is isomorphic to one of the couples I(mj2), I(m\2), " lI(m]2). 

(ii) At least two of the numbers 3(1, p), 3(1, q), 3(1, o) are equal to 0. 

(iii) m is even and at least two of the numbers p(I), q(l), o(l) are equal to m/2. 

(iv) At least one of the numbers p(l), q(l), o(I) is equal to 2. 

Proof. The implications (i) implies (ii) and (ii) implies (iii) are clear. 

(iii) implies (iv). This implication is easy (use 8.1). 

(iv) implies (i). Without loss of generality, we can assume that p(I) = 2. Then 
q(c) = o(d) = 2 for all c e C(l) and d e D(I). The result follows now easily from 8.7, 
8.8(1), 8.9 and 8.11. 

9.2. Proposition. Let I = (K(o), K(*)) be a simple couple of finite balanced com­
panions. Suppose that there are a, be B(I) such that a =t= b and p(I, a) ^ p(l, b) _• 
^ q(I) ^ O(I). Then m(I) is even and I is isomorphic to I(m(I)/2). 

Proof. Clearly, p(a) = p(b) = q = o and there are two bijections / and g of 
C(I) such that a o c = f(c) and b o C = g(c) for every c e C(I). Now, the subset 
{a, b) x C(I) of M(l) is admissible, p(l) = 2 and the result follows from 9.L 

9.3. Proposition. Let I be a simple couple of finite balanced companions, m = m(I) 

and 3 = 3(1). 

(i) If 3 = 0 them m = 4 and I is isomorphic to the couple I(2). 

(ii) If 3 = 2 then m = 6 and I is isomorphic to one of the couples I(3), I(3), " *I(3). 

(iii) If m = 4 then 3 = 0 and if m = 6 then 3 = 2. 

(iv) If m = 7 then 3 = 3 and p = q = o -= 3. 

(v) If m = 8 then 3 = 4 and either {p, q, o} = {4, 3, 3} or I is isomorphic to one 
of the couples I(4), I(4), ~ 1/(4). 
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(vi) If m = 9 then S = 5 and {p, q, o} = {4, 4, 3}. 

Proof. For (i), ...,(v), use 6.3, 6.4 and 9.2. (vi) First, let p = q = 3. Then, 
by 1.2 and 6.1, B(l) = {a, b, c}, C(I) = {e,f, g} and p(a) = p(b) = p(c) = q(e) = 
= q(f) = q(g) = 3. It is easy to see that then o = 3, a contradiction with 9.2. Now, 
according to 6.3 and 6.4, S = 5 and {p, q, o} = {4,4,3}. For the rest, use the 
parastrophy. 

10. Examples 

Consider the following two balanced partial groupoids Ki(o) and Ki(*) : Ki = 
= {a, b, c, e, f, g, 1,2,3}, a o e = b of = 1, a of = b o e = c o g = 2, a o g = 

= c o e = 3, a*f=b*e=l, a*g = b*f=c*e = 2, a*e = c*g = 3. Put 

10.1. Proposition. 

(i) K! = Ki(o) is a balanced reduced cancellative partial groupoid, Ki(o) is regular, 
I/(Ki) is a cyclic group of order 4 and no non-trivial subgroup of H(Ki) is 
regular. 

(ii) card(Ki) = 9, m(Ki) = 7, p(Kt) = q(K,) = 0(KX) = 3, p(a) = q(e) =0(2) = 
= 3, p(b) = p(c) = q(f) = q(g) = o(l) = o(3) = 2, (5(Ki) = 3, S(p) = 8(q) = 
= 6(o) = 1. 

(iii) The partial groupoids Ki(o) and Kx(*) are isomorphic. 

(iv) Every parastrophe of Ki(o) is isomorphic to Ki(o). 

Proof. Easy. 

10.2. Proposition. 

(i) Ii is a simple regular couple of balanced companions and Ix is not primary, 

(ii) All parastrophes of It and I! are isomorphic to Iv 

(iii) The partial groupoid Ki(o) is exchangeable, but not primary. 

Proof. Easy. 

Consider the following two balanced partial groupoids K2(o) and K2(*) : K2 = 
= {a, b, c, e,f, g,l,2,3,4}, a oe = b o g = 1, a of = c o e = 2, a o g = b of = 3, 
boe = Cof=4, a*g = b*e=l, a*e = c*f=2, a*f=b*g = 3, b * f = 
= c * e = 4. Put I2 = (K2(o), K2(*)). 

10.3. Proposition. 

(i) K2 = K2(o) is a balanced reduced cancellative partial groupoid, K2(o) is regular, 
H(K2) is a cyclic group of order 5. 

(ii) card(K2) = 10, m(K2) = 8, p(K2) = q(K2) = 3, o(K2) = 4, p(a) = p(b) = 
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= q(e) = q(f) = 3, p(c) = q(g) = O(l) = O(2) = O(3) = O(4) = 2, d(K2) = 4, 
(5(p) = % ) = 2, O-(O) = 0. 

(iii) The partial groupoids K2(0), K2(0) and K2(*) are isomorphic. The partial 
groupoids K2(G), K2(0)

_1 and _1K2(0) are pair-wise non-isomorphic. 

Proof. Easy. 

10.4. Proposition. 

(i) I2 is a strongly primary regular couple of balanced companions. 

(ii) The couples I2, I2 and I2 are isomorphic, 

(iii) The couples I^IJ1 and _1I2 are pair-wise non-isomorphic. 

(iv) The partial groupoid K2(o) is strictly exchangeable and strongly primary. 

Proof. Easy. 

11. Primary groupoids with m(K) ^ 8 

11.1. Proposition. 

(i) Let I be a couple of companions of rank at most 8. Then m(I) = 4, 6, 7, 8. 
(ii) I(2) is a simple couple of balanced companions of rank 4 and every couple of 

balanced companions of rank 4 is isomorphic to I(2). 

(iii) I(3), I(3) and ~ XI(3) are pair-wise non-isomorphic simple couples of balanced 

companions of rank 6 and every couple of balanced companions of rank 6 is 

isomorphic to one of them. 

(iv) I! is a couple of balanced companions of rank 7 and every couple of balanced 
companions of rank 7 is isomorphic to Ix. 

(v) I(4), I(4), _1I(4), I2,I2
 1 and _1I2 are simple couples of balanced companions 

of rank 8 and every simple couple of balanced companions is isomorphic to one 
of them. 

Proof, (i), (ii) and (iii). See 6.4(ii) and 9.3. 
(iv) Let I = (K(o), K(*)) be a couple of balanced companions with m(I) = 7 by 
9.3(iv), p(I) = q(l) = O(I) = 3 and we can assume that B(I) = {a, b, c}, C(l) = 
= {e,f,g} and D(l) = {1,2, 3}. Further, it is clear that {p(a), p(b), p(c)} = 
= {q(e), q(f), q(g)} = {3, 2, 2} and we can assume p(a) = q(e) = 3, a 0 e = I, 
a of = b o e = 2, aQg = coe = 3 (see 5.3). If (b, g) e M(l) then b o g = 1, since 
K(o) is cancellative. But p(b) = 2 and, by 5.l(viii), (ix), we must have b * e = 1, 
b * g = 2. Similarly, c * e = 2, a * e = 3, a *f = 1, a*g = 2 = b*g, a contra­
diction. We have proved that (b,f) e M(I), and so (c, g) e M(I). If b of = 1 then 
it is easy to see that I = I1.lfbof=3 then I is an isotope of I1. 
(v) Let I = (K(o), K(*)) be a simple couple of balanced companions with m(l) = 8. 
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With respect to 9.3(iv), we can assume that p(l) = q(l) = 3, 0(I) = 4, B(l) = 
= {a,b,c}, C(l) = {e,f,g} and D(l) = {1, 2, 3, 4}. Clearly, {p(a), p(b), p(c)}[ = 
= {g(̂ )» g(/)> g(g)} = {3, 3, 2} and we can assume that p(a) = p(b) = q(e) = 
= q(f) = 3, a o e = 1, a of = 2, a o g = 3. Since 4 £ D(I), 4 e b o K. If bog = 4 

then 4 e a * K = aoK, a contradiction. Now, we can assume that b o e = 4. Clearly, 
b * g = 3 and c * c = 4, and so b * c = 1, c of = 4, b *f = 4, b of = 3, bog = 1, 
a*f=3, c*f=2, a*e = 2, a*g = 1, c o e = 2 and I = I2. 

11.2. Corollary. 

(i) Z(2, o) is up to isomorphism the only primary balanced partial groupoid of 
rank 4. 

(ii) Z(3, o), Z(3, o) and 1Z(3, o) are up to isomorphism the only primary balanced 

partial groupoids of rank 6. 

(iii) There are no primary partial groupoids of ranks 5 and 7. 

(iv) Z(4, o), Z(4, o), - 1Z(4, o), K2(o), K2(o)_1 and _1K2(o) are up to isomorphism 
the only primary balanced partial groupoids of rank 8. 

All these partial groupoids are strongly primary regular. 

12. Examples 

Consider the following four balanced partial groupoids K3(o), K3(*), K4(o) 
and K4(*) : K3 = {a, b, c, d, e,f, g, h, 1, 2, 3, 4}, a o e = b of = a *f = b * e = 
= 1, aof=boh = dog = a*g = b * f = d * h = 2, a o g = b o e = c oh = 

= a*e = b*h = c*g = 3, cQg = doh = c*h = d*g = 4; K4 = {a, b, c, d, 

e,f, g, h, 1,2,3}, a o e = b of= c o g = d oh = a *f= b * e = c * h = d * g = 

= 1, a of = boh = d o g = a * g = b *f = d * h = 2, a o g = b o e = c oh = 

= a * e = b * h = c * g = 3. Put I3 = (K3(o), K3(*)) and I4 = (K4(o), K4(*)). 

12.1. Proposition. 

(i) I3 is a strongly primary regular couple of balanced companions, 

(ii) Both K3(o) and K3(*) are strongly primary and regular and the groups H(K3(o)) 

and H(K3(*)) are cyclic groups of order 8. 

(iii) There exists surjective strong pseudoimmersion t of I3 onto I4 such that t is not 

an immersion. 

(iv) I4 is a primary regular couple of balanced companions and I4 is not strongly 
primary. 

(v) Both K4(o) and K4(*) are primary and regular, they are not strongly primary 
and the groups H(K4(o)) and H(K4(*)) are cyclic groups of order 4. 

Proof. Easy. 
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Consider the following two balanced partial groupoids K5(o) and K5(*) : K5 = 
= [a, b, c, e,f, g,h, 1,2,3, 4, 5), a0e = boh = c0g = a*h = b*g = c*e = 
= 1, aof=boe = a*e = b*f=2, aQg = Cof=a*f=c*g = 3, a oh = 
= bQg = a*g = b*h = 4, bof=cQe = b*e = c*f=5. Put I5 = (K5(o), 

12.2. Proposition. 

(i) I5 is a left strongly primary left regular couple of balanced companions and I5 

is neither right primary nor right pseudoregular. 

(ii) K5(o) is strongly primary, regular and H(K5(o)) is a cyclic group of order 5. 

(iii) K5(*) is neither primary nor pseudoregular and H(K5(*)) is a cyclic group or 
order 2. 

Proof Easy. 
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