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In this note we give examples which show that there are many distinct types of exponentia-
tion. A definition of exponentiation will be presented which encompasses these various types of
exponentiation. Using this definition, several well known results on exponentiation in a semigroup,
including the Euler-Fermat Theorem for finite semigroups, are generalized.

V této poznamce uvadime priklady ukazujici, Ze existuje mnoho raznych typu exponenciace.
Bude prezentovana definice exponenciace, zahrnujici tyto razné specialni typy. UZitim této defi-
nice jsou zobecn&ny n&€které znimé vysledky o exponenciaci v pologrupég, véetné Euler-Fermatovy
véty pro konecné pologrupy.

B 3TO# 3aMeTKe MbI BK/IIOYaEM IIPUMEDPHI MOKA3LIBAIOILHE, YTO CYIUECTBYIOT MHOTHE pa3iiuy-
Hble THOBI OOpa3oBaHHA CTemeHel. BylneT mpeicrasieHO ompenesieHHe OOpa30BaHHA CTEEHEH,
BKJIIOYAIOILEE 3TH PAa3JIMYHBIE YACTHBIE TUIBL. MICONB3Yst 3TO onpenesesue, Mbl 06061aeM HEKOTO-
pBle U3BECTHBIE PE3YILTATHI O CTENEHAX B IOJYrpyIme, BKIOYas TeopeMy Oitnepa-Pepmara mis
KOHEYHBIX ITOJIYrpyII.

Throughout this note, G denotes a groupoid (i.e. a nonempty set with a binary
operation); and N denotes the set of counting numbers.

Definition 1. Let P and S be nonempty sets with x € S. A P-exponentiation of x is
a mapping E: {x} x P > S. For ke P, x* denotes E(x, k) and is called the k-th
power of x.

Example 2. Let S be a set and M the set of all mappings from S into S.

(i) An M-exponentiation of x € S can be defined as E(x, f) = x/ = (x) f for
fe M. This type of exponentiation is considered in Bruck’s article on nonassociative
integers [1, pp. 82—86].

(ii) An N-exponentiation of x € S can be defined as

N fx if i=1
E(x, ‘)={(x)f"-1 if Q> 1
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where i € N, fe M, and f'~* denotes the (i — 1)-th composition of f. If S is a semi-
group and f is the inner right translation defined by (s) f = sx for all s€ S, then E
is the usual exponentiation of x in the semigroup S.

Example 3. Let S = {x, b, c}. An N-exponentiation of x can be defined as

x if i=1
E(x, i) = x* =<bif i is even
cif iis odd.

Usually exponentiation is defined in terms of an associative binary operation.
The next three definitions of N-exponentiations in a groupoid will be used to exemplify
the generality of our results.

Definition 4. For xe Gand ne N, x! = x and x"*! = x"x.

Definition 5. For x€ Gand ne N, x! = x and

g+l )XX if n=1
x2x" ' if n>1.

Definition 6. For xe G and ne N, x! = x and

ot _ Xx if n+4+1 isodd
= (xC*D2) (x+DI2) §if p + 1 iseven.

Using the following nonassociative operation table and considering a> in each
of the last three definitions, we can see that these definitions are distinct.

Table 1
| afofc] 4
acbclb
b | b | ¢ | al ¢
c | b | a | a | d
ddc%da

Definition 7. Suppose S is a set and x € S with an N-exponentiation E and x has only
finitely many distinct powers. Let r be the least positive integer such that x" = x"
[i.e. E(x, r) = E(x, n)] for some positive integer n where n > r. Let u be the least
possible value for n. Call r the index of x and m(= u — r) the period of x. In
Example 3, x has index 2 and period 2. Using Table I, a has index 3 and period 1
under Definition 4; but, under Definitions 5 and 6, a has index 1 and period 3. Also,
note that under Definition 6, b has index 1 and period 4 although b® = b*.
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Theorem 8. Let S be a set and x € S with an N-exponentiation E such that x has index r
and period m under E. Then the following statements are equivalent:

(a) If x* = x/ then x'*! = x/*1,

(b) If x' = x/ then x'*" = x/*" for all heN.

(c) Let k,neN. Then k 2 r and m | n if and only if x**" = x*.

Proof. (a = b). By induction, a implies b.

(b =c). Suppose k = r, m | n, and whenever x! = xJ then x'*" = x/** There
exists integers p and d such that k = r + p and n = dm. By Definition 7, x" = x"*™.
From part b, x tmytm — xr+2m By induction x" = x"*". Hence x"*? =
= x(r+dm+r Therefore x* = x**".

Now assume x**" = x* and part b holds. By Definition 7, k = r. Claim: there
exists a positive integer s < msuch that x* = x"**. If k = r, lets = m. If r < k <
< r + m, let s = k — r. Otherwise there exists ¢t > m such that k = r + t. There
exists integers j and w such that t = jm + w where 0 S w < m. If w = 0, then
x* = x". So, let s = m. For w % 0, x* = x"*"*/m = x"*¥ So, let s = w. Hence the
claim is proved. Now suppose m f n. Eithern < morn > m.If n > m,n = hm + ¢
where 1 < g < m. Thus x* = x*¥*"m*4 = x*¥*4 Hence in either case there exists
a positive integer v < m such that x* = x***, From the claim there exists an integer e
such that s + e = m. Consider x" = x"*™ = x"*s*te = xk¥e = yktote o yréstote

= x(rtsterte (rtmy+v _ xr+v where v < m. This contradicts Definition 7.

r+m

= x

=x
Hence m | n.

(c = a). Suppose part ¢ holds and x* = x/. Without loss of generality, assume
i <j.Bypartc,j =i+ gm. Again by part ¢, x'*! = x(TD+am Thyg xi+1 = x/+1,

Definition 9. Let S be a set and x € S with an N-exponentiation E such that x has only
finitely many distinct powers under E. We say E is a cyclic N-exponentiation if
x' = x’/ implies x'*! = x/*1,

Clearly, if S is a finite set then Example 2 (ii) is a cyclic N-exponentiation.
Hence, if G is a finite groupoid then Definition 4 is a cyclic N-exponentiation for
every element of G. Also, Example 3 is a cyclic N-exponentiation. Using Table I,
Definition 5 is cyclic for d; but it is not cyclic for a, b, or c. Definition 6 is not cyclic
for any element in the groupoid of Table I.

Table II.
. a ‘ b ’ c l d ] e
a c b c b 4
b d b d d c
c e c b e d
d b e e b
e b c a b a

Definitions 4 and 5.



The following tables which are halfgroupoids [2, p. 1] were constructed so that
every element has a cyclic N-exponentiation under the indicated definitions. The
blanks can be arbitrarily filled with a, b, ¢, d (or e in Table II) to form a groupoid.
Thus one can see that every element of a groupoid can have a cyclic N-exponentiation
with definitions of exponentiation other than Definition 4.

Table III.
ol s | e | 4
a b
b c d
c d
d c b c’d

Definition 6.

Corollary 10. Let S be a set and x € S with a cyclic N-exponentiation E such that x
has index r and period m under E. Then there exists a unique positive integer e such
that x° = x%¢ where r < e £ r + m — 1. Furthermore m | e.

Proof. There exists a unique ee N such that r < e<r+ m —1 and m|e.
From Theorem 8, x%¢ = x¢*¢ = x°.

Hence Corollary 10 generalizes the well known result that some power of every
element of a finite semigroup is idempotent [3, p. 20]. The next corollary is a direct
consequence of Theorem 8 and generalizes the Euler-Fermat Theorem for finite
semigroups [4].

Corollary 11. Let S be a finite set such that every element s has a cyclic N-exponentia-
tion E; which may vary from element to element. Let R = max {r,| r, is the index
of s under E;} and M = lLc.m. {m | m, is the period of s under E,}. Then R and M
are the least positive integers such that s®*™ = s® under E, for all s€ S.

If Definition 5 is used for every element in the halfgroupoid of Table II then
R = 4 and M = 12. However if Definition 4 is used for a, b, and ¢ and Definition 5
is used for d and e then R = 4 and M = 30.

Lemma 12. Let S be a set and x € S with a cyclic N-exponentiation E such that x
has index r and period m under E. Let C, = {r,r + 1,...,r + m — 1}. Define two
binary operations, @ and %, on C, by a @ b = ¢ where x°*? = x°anda*xb =d
where x®® = xfor a, b, ¢, d € C, with + and juxtaposition denoting integer addition
and multiplication, respectively. Then (C,, @, *) is ring isomorphic to Z/m (i.e.
integers modulo m).

Proof. There exists a positive integer j and e € C, such that e = jm. Define e,
to be that element of C, such that x*» = x**" for n€{0, 1,2, ..., m — 1}. Define
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h:C,— Z|m by (e,) h = i (i.e. the equivalence class of integers congruent to
n mod m). It follows routinely that h is the desired isomorphism. Note e, € .

The final result generalizes the well known theorem that if X is a finite cyclic
group generated by x then x' is a generator if and only if ¢ is relatively prime to m
[6, p. 17].

Theorem 13. Let S be a set and x € S with a cyclic N-exponentiation E such that x
has index r and period m under E. For a positive integer ¢ = r, then ¢ is relatively
prime to m if and only if for each v € N, where v = r, there exists a positive integer
n < m (depending on v) such that x™ = x”.

Proof. Let k € N, then k is a generator for the cyclic group Z[m if and only if
(k, m) = 1. Hence, from Lemma 12, ¢, is a generator for (C,, @) if and only if
(er, m) = 1. Consequently for ¢t = r, (t, m) = 1 if and only if there exists e, € C,
such that (e, m) = 1 and x' = x®. Since v > r there exists ¢ € C, such that x* = x°.
Thus, if (f, m) = 1 then there exists n € N such that x"* = x°. By repeated use of
Theorem 8(b), x"* = x". Thus x™ = x". The converse follows by a reverse argument.

Our final result characterizes a cyclic N-exponentiation in terms of a groupoid.

Proposition 14. Let S be a nonempty set and E is an N-exponentiation of x € S.
Let P, = {x"| n € N} and define a relation * from P, x P, into P, by (x*, x/)x =
= x**1. Then (P,, *) is a groupoid if and only if whenever x/ = x* then x/*! = x**1
if and only if (P,, ) is a right cancellative left unar.

Proof. The proof is routine and uses Theorem 8.
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