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Adaptive Rank tests
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The test procedure based on ranks for the twosample testing problem:
Hy:F= G versus H: F< G, F+ G

where F, G are unknown distribution functions, is proposed. Namely, it is suggested to apply
the usual rank statistic for this problem with the score-generating function (its choice generally
depends on F and G) replaced by its estimator based on ranks. The asymptotic properties of the
estimator are studied. The results of simulation study are presented.

Adaptivni postupy. V predloZzené praci je navrZen test zaloZeny na poradich pro dvou-
vybérovy problém:

Hy:F=G versus H : F= G, F¥+G

kde F a G jsou neznamé distribu¢ni funkce. Navrzeny test spociva v pouziti pofadové statistiky
uzivané pro tento problém, kde skorova funkce (jeji volba zavisi na F a G) je nahrazena odhadem
zaloZzenym na potradi. Autor studuje asymptotické vlastnosti tohoto odhadu a uvadi vysledky
simula¢ni studie.

AanTuBHbIE METOIbI. B cTaThe MpeiaraeTcs KPUTEPHA OCHOBAHHBIN HA paHrax MIs IBYX-
BbIOOPOYHOI Tpo6eMbl, rae hyHkuus ckopoB (3aBucsias oM Fu G) 3aMeHeHa OLEHKOM OCHOBaHHOM
Ha paHrax. ABTODBHI U3y4alOT aCUMIITOTHYECKHE CBOMCTBA 3TOM OLIEHKH M OOCYXJalOT HEKOTOpbIE
pe3yJIbTaThl HA CUMYJIALIUsX.

1. Introduction

Everybody knows that there have to be assumptions on the underlying distribu-
tions of data, if we want to test hypotheses. For example, the classical t-test for com-
paring two treatments on the basis of m and n independent repetitions, respectively,
is based on the special assumption of underlying normal distribution, whereas two-
sample rank tests are based on the much more realistic assumption of m and n
independent repetitions from two arbitrary continuous distributions F and G,
respectively.

Especially the work of J. Hajek showed that in case of known type of alternative
there is a linear rank test which is approximately optimal for this situation. For
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example, this means that instead of using the classical t-test we should use the van der
Waerden rank test, which is approximately as good as the t-test if the underlying
distributions are normal but which is valid also in cases of arbitrary deviations from
normality.

In order to have not only validity but also high power of a test, i.e., in order to
use the approximately optimal rank test, we should know the type of underlying
alternative, which is an unrealistic assumption for applications. Therefore, we may
try to estimate the type of alternative from the data, i.e., we try to estimate the score
function of the optimal linear rank test for the (unknown) underlying situation.

In case of the two-sample shift model F(x) = G(x — 9) this has been done by
Hajek and Sidak (1967) and others by estimating the optimal shift score function

(1.1) —f o FYfo F1

on the basis of the order statistic of the pooled sample, leading to an approximately
optimal adaptive test in this situation.

In the more general two sample testing problem F = G versus F < G, F + G
it is shown in Behnen and Neuhaus (1981) that a good test should be based on the
linear rank statistic with score function

(1.2) b=f-3,

where f = d(F o H™")[dx, § = d(G o H™")[dx, H = (mF + nG)/(m + n). The more
general nonparametric score function (1.2) is quite different from the shift score
function (1.1) if there is some deviation from shift model. This is the reason for the
breakdown of adaptive tests based on an estimator of (1.1), if the shift model is not
exactly true, cf. Behnen (1975).

Since b is invariant under strictly isotone transformations of the data estimators
of b should be based on the ranks only, leading to adaptive tests which are (non-
linear) rank tests.

2. A kernel type rank estimator of b. In order to be definite we have to fix the
assumptions and notations:

Let X4, ..., X, Y;, ..., Y, be independent real valued random variables and
suppose that the distribution of X[ Y;] is given by a continuous (cumulative) distribu-
tion function F[G], i =1,...,m, j=1,...,n. Let N = m + n be the size of the
pooled sample and consider the testing problem

(2.1) Hy:F=Gversus H{: F£G, F+G.

As discussed in the introduction [cf. Behnen and Neuhaus (1981)] we are interested
in rank estimators of the Lebesgue-densities on the unit interval [0, 1] (u-densities)
defined by

(22) Sy =d(F o Hy")du, gy =d(GoHy")du,

where
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(2.3) Hy = (mF 4+ nG)[N and (mfy + ngy)/N =1.

Especially, we are interested in rank estimators of the nonparametric score function
(2‘4) by = fv — gn>

which has the properties

N N n m
(2‘5) —;éb,v___—,fn=l+ﬁb~, 9N=1"szv-

3

Since the i.i.d. random variables Hy(X,), ..., Hy(X,,) have p-density fy and the
i.i.d. random varjables Hy(Y;), ..., Hy(Y,) have p-density gy, we may (formally)
build estimators of fy and gy on the basis of Hy(X;), .. Hy(X,) and H(Y,), ...
.., Hy(Yy), respectively. The only problem is that Hy is unknown and that we want
rank estimators. But fortunately on one hand the Kolmogorov-Smirnov theorem
tells us (under hypothesis and under alternative)

(2:6) |Ay — Hy|| = O4(N~*?), if N— 0,
where ||| denotes the supremum norm, where
(2.7) Ay = (mF, + nG,)IN

is the empirical distribution function of the pooled sample, and where F, and G,
are the empirical distribution functions of the X-sample and the Y-sample, respective-
ly. On the other hand we have

(2.8) NHy(X;) = Ry; = rank of X, in the pooled sample ,

NHAL(Y;) = R,; = rank of Y; in the pooled sample.
Therefore we may estimate fy and gy on the basis of the rank data

Ryy[N;..,R;,[N and Ry|N,..,R,,/N,
respectively.

Since fy and gy are p-densities on the compact interval [O, 1] and since we want
to construct consistent estimators of by = fy — gy and its derivative, the usual
kernel estimators won’t work without modifications near zero and one. The mo-
dification is done by applying an usual kernel estimator to the modified rank data

_R11/Na-~~a _le/N9 Rll/N>'-"R1m/N’ 2—R11/N,...,2— le/N,
and
—RZI/N9“" —‘RZ"/N, RZI/N""’ RZ"/N, 2—R21/N,...,2— Rz,./N,

respectively. This artificial enlargement of the original rank data by their reflections
at the points zero and one will guarantee (uniformly in N) the boundedness (in pro-
bability) of the estimator and its first derivative and also the (uniform) consistency.
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Formally the estimator is defined according to

(2-9) » EN = ]N —dn>
where
(2.10) I = 2 S Kt RyIN) = J Kn(t, By) dF.,

R 1< A A
9u(0) =~ T K RyyIN) = j Kylt. By) dG, |

and

- Le(2) #(2) o #(52)

Here K : R — Riis a kernel with the following properties,

(2.12) K is a Lebesgue density on R with absolutely continuous derivative K’ and
essentially bounded second derivative K”, such that K(x) = 0, if |x| =1,

and ay is a sequence in R such that

(2.13) 0<ay=1/2, ayz50, Nap=0> .

Theorem 2.1. Assume N — oo such that m/N — A€ (0, 1). Then, for each fixed
(F,G) such that b according to

(2.14) =d((F - G)eH Y)du, H=iF +(1-2)G,

has bounded continuous derivative b’ throughout [0, 1], we have under the above
assumptions and notations in (F, G)-probability

(2.15) Iy — by| =0, f|z;;v byl du—0,

Pr.o{|by] || + e} =1 Ve>o0.

Moreover, for each N the functions by and by have bounded continuous derivatives
throughout [0, 1] and

(2.16) [by — b =0, |by — b —0.
Proof. Slight modification of Behnen, Neuhaus, and Ruymgaart (1982).

Lemma 2.2. If, in addition, we assume

(2.17) K(x) = K(-x), xeR,
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then, for each N, we have

1 1 1
(2.18) '[ Fudu =J‘ gydp =1, '[ bydu = 0.
(4] (4] [}

Proof. Immediate consequence of (2.17) and (2.10) to (2.12).

This means that for large classes of alternatives we have tractable consistent
rank estimators by of the underlying nonparametric score function by. An ap-
proximately optimal rank statistic in case of underlying by is

(2.19) S, = ébu (51_:—1/3> .

N

Therefore, since by is unknown, we substitute by by its rank estimator by and get

(2.20) Sy =i§1 by (&;&)

N

as an adaptive rank statistic for the testing problem (2.1).
In this paper we discuss a simple algorithm for evaluating the estimated scores

i — 12
by (F—==L5), i=1,...n,
(7

in case of a special kernel K5 and report the results of some power simulations in
this case. Some asymptotic results under H,; of Chernoff-Savage type may be found
in Behnen, Neuhaus, and Ruymgaart (1982). Some joint work together with Marie
Huskova and Georg Neuhaus on better asymptotic results in case of spscial kernel
type rank estimators is in progress.

Description of the algorithm:

(a) Choose seN (smoothing-number, e.g., s = 3) and we N (width of window,
e.g., w = 2, 3) such that s(w + 1/2)/N £ 1/2.

(b) Given the ranks R, ..., Ry, of the X-sample in the pooled sample of size
N = m + n, we put

fOi = 1{R11,...,R1m}(i) > i = 1’ ] N.

(c) Forr =1,..., s define f,;, i = 1, ..., N, by iteration according to

( itw w+1l-i
Zfr—l.j + Z fr—l,js lf i = 1,...,W,
i=1 j=1
i+tw
S = Zfr—l,ja if i=w+1,..,N—w,
Jj=i—-w
N N
Z f’-l,f+ Z fr-—l,j, if i=N—W+1,...,N
j=i-w j=2N+1-i-w
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(d) Use

N? 1 s
(2.21) by, := — )fsi—g, i=1,..,N,
mn \2w + 1 n

as estimators of the (unknown) underlying scores

i—1/2 .
bN(——N—/—), 1= 1,...,N.

Properties of the algorithm:
N
(2.22) ~N[n <by;<Nlm, i=1,..,N, Yby=0
i=1
(Proof by induction on the smoothing-number s.)

Theorem 2.3. For each N let BM-, i=1,...,N, be given by (2.21) according to
s = 3 and w = wy € N such that

(2.23) ay :=3(wy + 1[2)|N

satisfies condition (2.13), and let by be the estimator defined in (2.9) to (2.11) with ay
from (2.23) and K = Kj; according to

0, if x =< -1,
27(x + 1)*/16, if —1<x< —1/3,
(2.24) Ky(x) =1 9(1 — 3x?)[8, if —1/3<x=<1/3,
27(x — 1)})16, if 13=x<1,
0, if x=1
Then we have
s (i 12\ .
2.25 b — by, 0.
(2.25) max. ~< N ) e

If the assumptions on (F, G) listed in Theorem 2.1 are fulfilled, we have in addition
in (F, G)-probability

N
(2.26) 16— by Tgo,0m1 — Zzbm L—tymimall -0

Sketch of proof: Given

(Q1, - Qsm) = (=Ryp> -, =Ry1, Ryyy ooy Ry, 2N — Ry, .., 2N — Ryy)
we define

N 1 3m
Fo(x) = m ~;1[Q‘/N’°°’(x)’ xeR,
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. w+ 1 ~ w+1
x) = Folx+ —— ) - F -—}), -1+—-—<x<2- s
69 =5 1<< N) °G » ¥
N x+w/N
o) = '[ Foydy, —1 e ALl
2w + 1 x—(w+1)/N N N

N x+(w+1/2)/N .
Ji(x) = J ) dy, —1 430D o, 3w 1)
2w + 1 x—(w+1/2)/N N N

Similarly, we define 44, §,, and g5 with respect to
(=Rgm --» =Ryy, Ry, ooty Ry 2N — Ry, .., 2N — Ry,).
By iteration from 1 to 3 we show on one hand
» 1 & N Nx — Q;
f3(x) = — z K3 Q )
m =1 3(w + 1/2) 3w+ 1)2)

which has the form (2.10), (2.11) with K, instead of K and 3(w + 1/2)/N instead of ay.
By symmetry we get a similar representation of §;.
On the other hand we show for i = —N + (w + 1), ..., 2N — (w + 1),

i— 12 1 i N 1 N
= —_ 1 i) = — i»
Ji ( N ) 2w + 1 j=iz-w m (@ () 2w + 1 m]l

where [cf. part (c) of the algorithm]

(ili! ’= '_'N,'“, 2N) =(le"-"fll’flh""le’le"--,fll)‘
and fori = =N + (2w + 2),...,2N — (2w + 2),

2 (1%1) - 2w1+ 1 j}.-‘:-wwf‘ <j —Nl/z) N <2w 1+ 1)2 gf”’

where [cf. part (c) of the algorithm]
(izi, i=—N,.., 2N) = (fZN’ oo f215 f215 weos Jans fons ~--,f21) .

Moreover,
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i—1/2 1 \3N 27 an
fa / - '—fsu s — N6—’0,
N 2w+1l/ m 4 Nay
P 3 27 4
il 12y [ 1 ggsi :_i~_ﬁ 0,
N 2w+ 1/ n 4 Nay
where
f3:20, g3,20, f3i+g3i=(2w+1)3‘
Thus,

= P (i —Nl/?.) - <2w 1+ 1)3 nﬂef“ - @ 1)3>

A fim2y L iy /1 VYN N
f3< N ) g;( N ) (2w+1> <mf3[ ng3'><

27 ap

_—

2 Na§

3. Adaption of the estimator to F £ G and some Monte Carlo results.
Because of Hy : F = G and H, : F £ G, F + G we have (under H, and H,),

t 1
(3.1) [ bu(x)dx <0 Vee [0, 1] j ba(x) dx = 0 .
Jo 0
An adaption of estimators to this type of alternatives should increase the power, of
the corresponding test in finite situations. Moreover, the test should become more
specific for H, : F £ G, F # G. The adaption of by;, i = 1, ..., N, to H, is done in
the following way: Use

i-1
[bys. it Y by + 16y <0,
ji=1

(3.2) by =
lO, elsewhere, i=1,...,N,

as estimators of the (unknown) underlying scores by((i — 1/2))/N), i = 1,..., N.

A Monte Carlo study of the power of the corresponding tests was done under
seven types of nonparametric alternatives (A.1—A.7) with sample sizes m =
= n = 20, 40. The Monte Carlo sample size was 3000. The alternatives A. 1 to A. 7
are the same as in Behnen and Neuhaus (1981). They were designed to bring out some
special features of Galton’s test against Wilcoxon’s test. Since the power of rank
tests under alternatives (2.2) is independent of the special Hy in (2.2) and since we as-
sume m = n, i.e., m/N = n/N = 1/2, the alternatives are given by Lebesgue densities
on [0, 1] of the form (cf. formula (2.5))

(33) f=1+b2, g=1-0b2
with b according to A. 1—A.7:
A.1: b(t) = 1.3(2t = 1), 0 < t < 1 (Wilcoxon type) ,
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: (5/4)b = —1p,0.5) + ljo.5.17 (rank median type) ,

:b=(-0. 3) lio,0.3) — (1-2) lo.3,0.5 + (1-2) lo.s,0y + (0-3) lo.7,175
(5/6)b— —1t0.3,0.5 + lpos,0.7)

1 b= 1[0025)+1[02505),

(4/3) b= —1p, 0.2) T lto.2,05y — lro.s.0.8) + ljo.8,17»

i b =1(03) 10,03 — (09) I;0.3.0.7 + (0.9) 11074, -

The types A. 6 and A. 7 do not correspond to alternatives from H, : F £ G, F + G,
since (3.1) is not fulfilled. They were included in order to find out whether the tests
are specific for H;.

From Table 1 we may conclude that we should use the by-test (adaption to H,)

instead of the by-test (general estimation of by). Moreover, the by-test shows good
adaptive behavior for quite different types of alternatives. In cases where the Wilcoxon

test is nearly optimal (A. 1, A. 2) the power of the suitable EN-test is comparable to
the power of the Wilcoxon test, whereas in other cases (especially in case of A. 4)

the power of the by-test is much higher. The width of window should increase rather
slowly with sample sizes, i.e., w = 2,if m = n = 20,and w = 3,if m = n = 40.
For “difficult” alternatives (A. 4) it seems to be hard to come close to the optimal
power by general adaption, at least with sample sizes up to m = n = 40. Finally,

it should be mentioned that the adaptive EN-test is not very specific for H, (cf. A. 6,

A. 7). In order to get a more specific test for H; we have to modify the by-test on the
basis of some (empirical) measure of deviation from H;, for example.
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