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Adaptive Rank tests 

K. B E H N E N 
Department of Statistics, University of Hamburg*) 

Received 22 December 1982 

The test proceduře based on ranks for the twosample testing problém: 

H0:F= G versus Hl : F^ G , F 4= G 

where F, G are unknown distribution functions, is proposed. Námely, it is suggested to apply 
the usual rank statistic for this problém with the score-generating function (its choice generally 
depends on F and G) replaced by its estimator based on ranks. The asymptotic properties of the 
estimator are studied. The results of simulation study are presented. 

Adaptivní postupy. V předložené práci je navržen test založený na pořadích pro dvou-
výběrový problém: 

H0 : F = G versus Hl\ F< G , F =j= G 

kde F a G jsou neznámé distribuční funkce. Navržený test spočívá v použití pořadové statistiky 
užívané pro tento problém, kde skórová funkce (její volba závisí na F a G) je nahrazena odhadem 
založeným na pořadí. Autor studuje asymptotické vlastnosti tohoto odhadu a uvádí výsledky 
simulační studie. 

A,aanTHBHbie MeTO,zibi. B CTaTbe npe/jjiaraeTca KpHTepHH ocHOBaHHbiH Ha paHrax /LÍH flByx-
Bbi6opOMHoň npo6iieMbi, r^e (|)yHKHH5i CKOPOB (3aBHCHina5ioMFHG) 3aMeHeHa oneHKoň ocHOBaHHoň 
Ha paHrax. ABTOpbi H3y-iaioT acHMnroTHHecKHe CBoňCTBa 3Toíí oněmen H o6cy.*AaioT HeKOTopbie 
pe3yjibraTbi Ha CHMyjiauHflx. 

1. Introduct ion 

Everybody knows that there have to be assumptions on the underlying distribu
tions of data, if we want to test hypotheses. For example, the classical t-test for com
paring two treatments on the basis of m and n independent repetitions, respectively, 
is based on the special assumption of underlying normal distribution, whereas two-
sample rank tests are based on the much more realistic assumption of m and n 
independent repetitions from two arbitrary continuous distributions F and G, 
respectively. 

Especially the work of J. Hajek showed that in case of known type of alternative 
there is a linear rank test which is approximately optimal for this situation. For 

*) D-2000, Hamburg 13, Bundesstrasse 55, West Germany . 
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example, this means that instead of using the classical t-test we should use the van der 
Waerden rank test, which is approximately as good as the t-test if the underlying 
distributions are normal but which is valid also in cases of arbitrary deviations from 
normality. 

In order to have not only validity but also high power of a test, i.e., in order to 
use the approximately optimal rank test, we should know the type of underlying 
alternative, which is an unrealistic assumption for applications. Therefore, we may 
try to estimate the type of alternative from the data, i.e., we try to estimate the score 
function of the optimal linear rank test for the (unknown) underlying situation. 

In case of the two-sample shift model F(x) = G(x — 9) this has been done by 
Hajek and §idak (1967) and others by estimating the optimal shift score function 

(1.1) - f ' o F - V f o F - 1 

on the basis of the order statistic of the pooled sample, leading to an approximately 
optimal adaptive test in this situation. 

In the more general two sample testing problem F = G versus F ^ G, F ^ G 
it is shown in Behnen and Neuhaus (1981) that a good test should be based on the 
linear rank statistic with score function 

(1.2) b=f-g, 

where/ = d(F o H'^jdx, g = d(G Q H'^jdx, H = (mF + nG)j(m + n). The more 
general nonparametric sctore function (1.2) is quite different from the shift score 
function (1A) if there is some deviation from shift model. This is the reason for the 
breakdown of adaptive tests based on an estimator of (Li), if the shift model is not 
exactly true, cf. Behnen (1975). 

Since b is invariant under strictly isotone transformations of the data estimators 
of b should be based on the ranks only, leading to adaptive tests which are (non
linear) rank tests. 

2. A kernel type rank estimator of b. In order to be definite we have to fix the 
assumptions and notations: 

Let Xl9 ...,Xm, Yj, ..., Yn be independent real valued random variables and 
suppose that the distribution of X,[Y/] is given by a continuous (cumulative) distribu
tion function F[G], / = ! , . . . , m, j = 1, ..., n. Let N = m + n be the size of the 
pooled sample and consider the testing problem 

(2.1) H0 : F = G versus B1 : F = G , F * G . 

As discussed in the introduction [cf. Behnen and Neuhaus (1981)] we are interested 
in rank estimators of the Lebesgue-densities on the unit interval [0, 1] (ju-densities) 
defined by 

(2.2) fN = d(F o H^)ldfi, gN = d(G o HN
 x)\dti, 

where 
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(2.3) H,v = (mF + nG)jN and (mfN + ngN)\N = 1 . 

Especially, we are interested in rank estimators of the nonpar-ametric score function 

(2-4) bN =fN - gN, 

which has the properties 

(2.5) - H = bN = Z , fN = 1 + I bN9 gN = l-^bN. 
n m N N 

Since the i.i.d. random variables HN(Xt)9 ..., HN(Xm) have /x-densityfy and the 
i.i.d. random variables H^i), ..., HN(Yn) have /i-density gN9 we may (formally) 
build estimators of fN and gN on the basis of HN(X^)9 ..., HN(Xm) and H^Y^, ... 
..., HN(YN)9 respectively. The only problem is that HN is unknown and that we want 
rank estimators. But fortunately on one hand the Kolmogorov-Smirnov theorem 
tells us (under hypothesis and under alternative) 

(2.6) \\fiN - HN\\ = 0P(N-1/2) , if N -> oo , 

where ||-|| denotes the supremum norm, where 

(2.7) HN = (mFm + nGn)\N 

is the empirical distribution function of the pooled sample, and where Fm and Gn 

are the empirical distribution functions of the X-sample and the Y-sample, respective
ly. On the other hand we have 

(2.8) NHN(X{) = R1{ = rank of X{ in the pooled sample , 

NfiN(Yj) = R2j = rank of Y} in the pooled sample. 

Therefore we may estimate fN and gN on the basis of the rank data 

R11IN5...9R1JN and R21/N9 ..., R2n/N , 

respectively. 
Since fN and gN are ^-densities on the compact interval [0, 1] and since we want 

to construct consistent estimators of bN = fN — gN and its derivative, the usual 
kernel estimators won't work without modifications near zero and one. The mo
dification is done by applying an usual kernel estimator to the modified rank data 

-RjN9 ..., -R,JN9 R11JN9...9R1JN9 2 - I?n/N, ..., 2 - RlmJN, 

and 

- K 2 1 / N , ..., -R2H/N9 R21JN, ...9R2HJN9 2 - R21JN9 . . . , 2 - R2nJN , 

respectively. This artificial enlargement of the original rank data by their reflections 
at the points zero and one will guarantee (uniformly in N) the boundedness (in pro
bability) of the estimator and its first derivative and also the (uniform) consistency. 
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Formally the estimator is defined according to 

(2.9) bN=JN- gN, 

where 

1 m C 
(2.10) ?N(t) = - £K„( t , RUJN) = KN(t, ftN) dFm , 

m » = i J 

gN(t) = - £K„( t , K2,/N) = [KN(t, HN) dGn , 
nj=i J 

and 

(2.11) KN(t, s) = ±\K (i±i) + K (^) + K f-^±A\ • 
<*N I \ <*N J \ aN J \ ClN J) 

Here K : R -> R is a kernel with the following properties, 

(2.12) K is a Lebesgue density on R with absolutely continuous derivative K' and 
essentially bounded second derivative K", such that K(x) = 0, if |x| ^ 1, 

and aN is a sequence in R such that 

(2.13) 0 < a N ^ l / 2 , * » - — 0 , 7Va« ^ - oo . 

Theorem 2.1. Assume N -> oo such that m/N -> A G (0, l). Then, for each fixed 
(F,G) such that b according to 

(2.14) b = d((F - G) o H-^jdfi , H = XF + (1 - X) G , 

has bounded continuous derivative V throughout [0, l ] , we have under the above 
assumptions and notations in (F, G)-probability 

(2.15) ||6N - 6 * | | - 0 - {\6'N-bN\dn-+09 

(̂E,G){H6NII = \\b'\\ + f i } - > l V £ > 0 . 

Moreover, for each N the functions 5* and bN have bounded continuous derivatives 
throughout [0, l ] and 

(2.16) \\bN - b\\-* 0 , l ^ - f c ' l - 0 . 

Proof. Slight modification of Behnen, Neuhaus, and Ruymgaart (1982). 

Lemma 2.2. If, in addition, we assume 

(2.17) K(x) = K(-x), x e R , 
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then, for each N, we have 

(2-18) Í ?Ndn = f 6Ndy. = 1 , f hNdii = 0 . 
Jo Jo Jo 

Proof. Immediate consequence of (2.17) and (2.10) to (2.12). 
This means that for large classes of alternatives we have tractable consistent 

rank estimators BN of the underlying nonparametric score function bN. An ap
proximately optimal rank statistic in case of underlying bN is 

Therefore, since bN is unknown, we substitute bN by its rank estimator bN and get 

(2.20) S..jtiB.(i±zH*) 

as an adaptive rank statistic for the testing problem (2.1). 

In this paper we discuss a simple algorithm for evaluating the estimated scores 

fiw(Sr)' '-1'--"-
in case of a special kernel K3 and report the results of some power simulations in 
this case. Some asymptotic results under H1 of Chernoff-Savage type may be found 
in Behnen, Neuhaus, and Ruymgaart (1982). Some joint work together with Marie 
Huskova and Georg Neuhaus on better asymptotic results in case of special kernel 
type rank estimators is in progress. 

Description of the algorithm: 

(a) Choose s e N (smoothing-number, e.g., 5 = 3) and w e N (width of window, 
e.g., w = 2, 3) such that s(w + l/2)/N = 1/2. 

(b) Given the ranks jRn, ..., Klm of the X-sample in the pooled sample of size 
N = m + n, we put 

hi = l<Ru.....*i™>(0> i = 1,...,-V. 

(c) For r = 1, ..., 5 definefw, i = 1, ..., N, by iteration according to 

LI = 

i + w w + 1 — i 

L*fr-\,j + 2, fr-l,j ' 
7=1 7 = 1 

i + w 

LJ fr-l,j> 
j= i — w 

Іí І = 1, ..., W , 

Іf І = W + 1, ..., N — W , 

Z / r - u + Z Л - i j , if Í = І V - W + 1,...,AГ 
= i-w j = 2N+ 1 -i-w 
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(d) Use 

(2.21) 
\2>v + 1/ 

f.i 
N 

, i = l,...,iV, 
mn \Zw + 1/ n 

as estimators of the (unknown) underlying scores 

bK *<гñ І = i , . . . ,N . 

Properties of the algorithm: 

N 

(2.22) -Njn ^BNi^Nlm, i = l,...,N, £ BNi = 0 
i = l 

(Proof by induction on the smoothing-number s.) 

Theorem 2.3. For each N let hNi, i = 1, ..., N, be given by (2.21) according to 
s = 3 and w = wN e N such that 

(2.23) aN:= 3(wN + 1/2)/N 

satisfies condition (2.13), and let bN be the estimator defined in (2.9) to (2.11) with aN 

from (2.23) and K = K3 according to 

(2.24) 

Then we have 

(2.25) 

* э ( * ) = 

0, if xй -I, 
27(x + 1)2/16, if - 1 = x = - 1/3 , 

9(1 - Зx2)/8 , if -1/3 й x ѓ 1/3, 
27(x - 1)2/16 , if 1/3 = x = 1 , 
0 , if x = 1 . 

max 
1 ^i^N 

U^2)-*., 0. 

If the assumptions on (F, G) listed in Theorem 2.1 are fulfilled, we have in addition 
in (F, G)-probability 

(2.26) 
N 

X 
i = 2 

b bNl 1[0,I/JV] X bNi ^((i-i)/iV,i/.v]|| TT^* ® . 

Sketch of proof: Given 

( 6 l , •••> 63m) = {'Rim, •••, - * 1 1 , -«11, •••, Rim, 2N - Klm, . .., 2N - Rn) 

we define 
i 3m 

^o(x) = ~ Z hQi/N,oo)(x) , X G R , 
m i = i 
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/.(*) = -Jí- íp Jx + •_ + _) - T A - _ \ \ - l + _ < x < 2 - ^ _ _ , 
2w + 1 \ V N J \ NjJ N N 

N f* + w/N 

-W + 1 Jx - ( W + 1 ) / J y 

1 , 2w + - o 2w + 1 | dy , - 1 + < x < 2 
N N 

N f(w+1/2^ 3(w + 1/2) _ 3(w + 1/2) 
• k M = 7 ~ ~ T 7 /2(y)^y5 - 1 + v ' J <x<2- y i >. 

2>V + 1 J x _ ( w + l/2)/JV -V N 
Similarly, we define gl9 g2, and g3 with respect to 

( —-̂ 2«» • ' ~~^21> ^21> •••> R2n> ^ N — K2n, . . . , 2 N — R21) . 

By iteration from 1 to 3 we show on one hand 

?(x)=J y N K (Nx-Q<\ 
J3K ' m & 3(w + 1/2) 3 \3(w + 1/2)1 ' 

which has the form (2.10), (2.11) with K3 instead of K and 3(w + 1/2)/JV instead of aN. 
By symmetry we get a similar representation of g3. 

On the other hand we show for i = -JV + (w + 1),..., 2JV - (w + 1), 

ji — T T - = r — - 7 I - i i a , fl3»>0) = r — — - / n . 

\ JV / 2w + 1 y = ;-H. m 2w + 1 m 

where [cf. part (c) of the algorithm] 

(/.„ i= -N,...,2N) = (f1N,...,/,,,/n,...,/i*r,/iJv,...,/n). 
and for / = -JV + (2w + 2),..., 2JV - (2w + 2), 

? t _ \ = _ _ _ _ ' y ? / L z J _ ? \ = ( l V _ ? 
j 2 W 2w + 1 ,-f-J1 V !V 1 \,2w + 11 m}2i' 

where [cf. part (c) of the algorithm] 

(fit, i= ~N,...,2N) = (f2N,...,f21,f21,...,f2N,f2N,...,f21). 

Moreover, 

'•(„)-0-^)-°-^(s) + H,)-'-

Finally, we prove for i = 1, ..., N, 
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where 

Thus, 

i/з 

9ъ 

Г-J/2 
JV 

' - 1/2 
ІV 

\ ( i Ŷ f. 
/ \2w + 1/ m 

/ i Y
 N 

\2w + 1/ n 

77 ЯÎГr 
< —> 0 , 

4 

77 

Na£ 

4 
AN 

< 

Na£ 

4 
AN 

—» 0 , 
4 Na* 

j3i__0, 0 3 . 2 . 0 , / 3 Í + o3í = (2w + l)3 

i - 1/2' 

Ч4 -Ч-

btf 

i -1/г 
N 

N 
' v_C_/),_(2» + l ) ! 

2w + 17 n \ m 

1 \ 3 ÍN . N 
. 7 ~ J 3 i g3i 
2vv + 1/ \m « 

<l7^o. 
2 ЛfđS 

3. Adaption of the estimator to F = G and some Monte Carlo results. 
Because of H 0 : F = G and H t : F = G, F 4= G we have (under H 0 and H t ), 

(3.1) I fc^x) dx = 0 Vt 6 [0, 1] , J bN(x) dx = 0 . 
j o Jo 

An adaption of estimators to this type of alternatives should increase the power, of 
the corresponding test in finite situations. Moreover, the test should become more 
specific for H1 : F = G, F =j= G. The adaption of bNh i = 1, ..., N, to H1 is done in 
the following way: Use 

(3.2) bNІ : = f>Ni i i f Z &NJ + 2^Ni = 0 , 
1=1 

0 , elsewhere , i = 1, ..., N , 

as estimators of the (unknown) underlying scores bN((i — l/2))/N), i = 1, ..., N. 
A Monte Carlo study of the power of the corresponding tests was done under 

seven types of nonparametric alternatives (A. 1 — A. 7) with sample sizes m = 
= n = 20, 40. The Monte Carlo sample size was 3000. The alternatives A. 1 to A. 7 
are the same as in Behnen and Neuhaus (1981). They were designed to bring out some 
special features of Galton's test against Wilcoxon's test. Since the power of rank 
tests under alternatives (2.2) is independent of the special HN in (2.2) and since we as
sume m = n, i.e., mJN = nJN = 1/2, the alternatives are given by Lebesgue densities 
on [0, 1] of the form (cf. formula (2.5)) 

(3.3) / = 1 + fc/2 , g = í-bj2 

with b according to A. 1 —A. 7: 

A. 1: b(t) = 1.3(2t - 1), 0 = t = 1 (Wilcoxon type) , 
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A. 2: (5/4) b = -lro.o.s) + l[o.5,i] ( r a n k median type) , 

A. 3: b = ( - 0 . 3 ) lro,o.3) - (1.2) l [0.3.o.5) + (1-2) l[0.5,o.7) + (0.3) l [ 0 . 7 f l ] , 

A. 4: (5/6) b = -lro.3,o.5) + l[o.s,o.7) > 
A . 5: b = — 1[0,0.25) + I[0,25,0.5) 5 

A. 6: (4 /3 ) b = — lfO.0.2) + 1[0.2,05) ~~ MO.5,0.8) + 1[0.8,1] » 

A. 7: b = (0.3) lro,o.3) - (0-9) l[0.3,o.7) + (0.9) l [0 .7f l ) . 

The types A. 6 and A. 7 do not correspond to alternatives from Hl : F —^ G, F 4= G, 
since (3.1) is not fulfilled. They were included in order to find out whether the tests 
are specific for Hj . 

From Table 1 we may conclude that we should use the b^-test (adaption to Hj) 
instead of the 6^-test (general estimation of bN). Moreover, the bjv-test shows good 
adaptive behavior for quite different types of alternatives. In cases where the Wilcoxon 
test is nearly optimal (A. 1, A. 2) the power of the suitable bN-test is comparable to 
the power of the Wilcoxon test, whereas in other cases (especially in case of A. 4) 
the power of the bN-test is much higher. The width of window should increase rather 
slowly with sample sizes, i.e., w = 2, if m = n = 20, and w = 3, if m = n = 40. 
For "difficult" alternatives (A. 4) it seems to be hard to come close to the optimal 
power by general adaption, at least with sample sizes up to m = n = 40. Finally, 
it should be mentioned that the adaptive b^-test is not very specific for Ht (cf. A. 6, 
A. T). In order to get a more specific test for Hx we have to modify the b^-test on the 
basis of some (empirical) measure of deviation from Hj, for example. 
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