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Department of Mathemathics, Charles University, Prague 

Received 10 September 1982 

The results of [2] háve been extended to the čase of sheaves of C(X, Q) — K-areas (see 
Def. 2.2) to say that the sheaf of sections of the bundle belonging to a given sheaf of complete 
C(X, Q) — K-areas of becoming sort over a hereditarily paracompact base is isomorphic to the 
latter. 

Výsledky ze [2] jsou zobecněny na případ C(X, Q) — K oblastí (def. 2.2). Ukazuje se, že 
svazek řezů bandlu daného svazku úplných C(X, Q) — K oblastí vhodného druhu nad dědičně 
parakompaktní bází j e izomorfní původnímu svazku. 

Pe3yjn>TaTbi H3 [2] pacnpocTpaHeHbi Ha nyHKH C(X, Q) — K o6.nacTeH CU,e(t). 2.2) H noica3biBa-
K>T HTO nynoK pe30B HaKpbiBaioiuero npocrpaHCTBa tjaHHoro nvHKa nojiHhix C(X, Q) — K o6nacTeH 
y^oĎHoro copTa naň HacjieflCTBeHHo napaxoMnaKTHbíM 6a3HcoM H30Mop4>Hbiří ziaHHOMy nyHKy. 

Introduct ion 

In [1] K. H. Hofmann proved that the sheaf of sections of the bundle associated 
with a given sheaf of Banach C(K)-modules of suitable sort over a hereditarily 
paracompact base is isomorphic to the latter. This result has been brought over in [2] 
by the author to the sheaves of complete C(X, P) — K-areas to say that the sheaf of 
sections of the bundle associated with a given sheaf of complete C(X, P) — K-areas 
of suitable sort over a hereditarily paracompact base is isomorphic to the latter. 

Denoting by C(Y, P)(C(Y, Q)) the set of all continuous functions on a topo­
logical space Y with values in P = < - l , 1> (Q = <0, 1>). C(Y, P) - K-area is the 
structure (X, d. +,\/, o) where X is a set, d is a metric on X, + is a commutative 
group operation in X, V is a n upper semilattice operation in X meaning that y : X x 
x X -> X is a commutative and associative operation in X such that a\/ a = a for 

all a eX, and o : C(Y, P) x X -> X is a map such that for all x, y, u, v e X 
(1) d(x V y» w V v) = d(x, u) VR d(y, v) (if a, b are real numbers then a V R b = 

= max (a, b)), 

(2) d(x + y,u + v) ^ d(x, u) + d(y, v), 
(3)(xVy) + u = (x + u)V(y + u). 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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The map o sending (f, x) e C(Y, P) x X onto fo x fulfils the conditions below 
for every x, y eX, f, g e C(Y, P), c, d e Q: 

(4) 1 o x = x, 
(5) (c VR d) o x = (c o x) V (d o x) for any x e X+ = {x+ = x V 0 | x e X}, 
(6) (f + g) o x = f o x + g o x whenever f + g e C(Y, P). 
(7) There is a constant K such that for all x, y e X, fe C(Y, Q) we have d(fo x, 

foy) = Kd(x,y). 

An important place in the theory is held by multiplying the elements by parti­
tions of unity, but the functions which these partitions consist of have values only in Q 
and not in the whole of P, and though in [2] we need that the multiplication of ele­
ments should be by the functions from C(Y, P), a question has arisen of whether 
there is a way round the requirement of the multiplication being by the functions 
from C(Y, P), whether we can do only with C(Y, Q). Also the seventh condition might 
seem being apt to be weakened and one is led to a question of whether the whole 
theory in [2] could be carried through under the only condition that d(cx, cy) = 

= K d(x, y) for all x, y e X, c e Q. 

The paper has originated from trying to find a way round the mentioned two 
conditions. The way has successfully been found and the results of [2] have been 
strengthened to hold for the sheaves of C(Y, Q) — K-areas. 

A C(Y, Q) — K-area is a structure (X, d, + , V> °)> where X, d, + , V keep the 
meaning which they have in case of C(Y, P) — K-areas, such that the conditions 
( l ) - (3 ) of the definition of C(Y, P) - K-area hold, and o : C(Y, Q) x X -> X is 
a map sending (f, x) e C(Y, Q) x X onto f o x such that for every x, y eX, f, g e 
e C(X, Q), c,deQ the conditions (4), (5) of the definition of C(Y, P) - K-area 
hold and 

(6') ( f + g ) o X = f o X + g0x whenever f + g e(X, Q); 
(7') There is a constant K such that for all x, y e X, c e Q we have d(c o x, 

c o y) = K d(x, y). 

Therefore, it has been shown in this paper that the sheaf of sections of the bundle 
belonging to a given sheaf of complete C(X, Q) — K-areas of becoming sort over 
a hereditarily paracompact base is isomorphic to the latter. 

1. Presheaves of metric spaces with contractions 

The means listed in this section, and proven in [2, sec. 1] were originally de­
veloped by K. H. Hofmann in [1] for the presheaves of Banach spaces and later 
adopted and extended for presheaves of metric lattices in [2] by the author. In the 
latter form they will be needed heie, therefore they have been taken over from [2, 
sec. 1] without change to endow us with the necessary tools for further use. 
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1.1. Notation. A map f of a metric space (Xl5 dx) into another (X2, d2) is called 
contraction if d2(f(x),f(y)) ^ dx(x, y) for all x,yeX. 

The category of all metric (complete metric) spaces with contractions as mor-
phisms shall be denoted by W(WS). 

A category ft is called inductive if for every presheaf Sf = {Xa|t2a/?| <4^>} 
from ft there is its inductive limit Hm Sf = {I | {£a | a e A}} in ft (here £a : Xa -> I 
are the natural ft-morphisms). 

1.2. Lemma. Both Wl and SRC are inductive. Let Sf = {(Xa, da) \Q^\ <A^>} be 
a presheaf from 9DJ(£, let <(I°, D) \ {^a | a e A}> be its inductive limit in 2R, and let 
(I, D) be the completion of (I°, D). Then <(I, D) | {^ | a e A}> is inductive limit 
of Sf in 90t(£. Moreover, the following holds: 

A. If a, P e A, a e Xa, beXp, then a, b represent the same element in I° (meaning 
£a(a) = £a(b)) iff there is y .= a, ft such that for a' = Qay(a), V = QPy(b) we have -
setting A(y) = {5 e A \ S ^ y}: 

lim {dd(Qyd(a'), Qyd(b')) \ S e A(y)} = 0 . 

B. If p, q e I such that there are representatives a, b of p, q in an Xa (if it is the 
case then p, q e I°) then 

D(P> q) = 1-m {d/,(.2a/?(a)> £«/>(&)) | P e -4(a)} = inf {the same set} . 

It should be noticed that, by 1.2A, a eXa, beXp represent the same element 
in I not only when Qay(a) = QPy(b) for a y ^ a, f$ as it is in the usual categories. 

1.3. Notation. Let Sf = {(Xv, dv) \QUV\ X} be a presheaf from 901 (90K£) over a topo­
logical space X. 

A. For x e X let @(x) = {U c X| U open, x e U}, let ^ be the partial order 
in @(x) defined as "U ^ V iff V c U", and let Sfx = {(Xv, dv) \QUV\ (®(X) ^ > } . 
By 1.2, there is Hm Sfx = <(£°, Dx) | {{Ux | U e ^(x)}> in 9JI (Hm Sfx =((EX, Dx) \ 
| {£Ux | U e ^(x)}> in Wl£). The metric space (£°, Dx) ((£,,, D*)) is called the stalk 
of Sf over x; it is thus a metric (complete metric) space with a metric D^. If Sf is from 
90H£ then (Ex, Dx) is just the completion of (Ex, Dx). If r, s e Ex such that there is 
U e @l(x) and some representatives a, b eXv of r, s (in which case r , s e Ex) then 

D^r, s) = lim {dv(Quv(a), Quv(b)) \ Ve @(x), V c U} = inf {the same set} . 

B. The set E° = \J{E°X\ xeX}(E = \J{EX\ x eX}) with the projection p : E° -• 
-» X(F -» X) defined as p(r) = x for all r e K°(r e Ex) is called bundle of Sf. 

C. If U a X is open, a e X^, we denote by a the map a : U -> F defined as 
a(x) = ^ ( a ) for x e U, and set A^ = {a | a e X^}. 

23 



D . Let [ / c l b e open. Any map s : U -> E such that ps = identity is called 
section over U. We say that 5 is bounded if there is a eXv such that sup {Dx(d(x), 
s(x)) I x G U} is finite. The set of all bounded sections on U is denoted by F(U). 
If 5, t e F(U) we set dv(s, t) = sup {DJC(s(x), t(x)) | x e U}. 

1.4. Lemma. Under the conditions of 1.3 we have 

(a): a e F(U) for each a e Xv, and if a, be Xv then dv(d, b) ^ dv(a, b). 

(b): The function dv defined on F(U) x F(U) is a metric; thus by (a), the map 

pv : (Xv, dv) -> (F(U), dv) sending any a eXv onto a e F(U) is a contraction. 

1.5. Lemma. Let Sf = {(Xv, dv) \QVV\ X} be a presheaf from SJW(£, E its bundle. 
If U cz X is open, a e Xv, e > 0, let 0(U, a, e) = {r e E \ x = p(r) e U, Dx(d(x\ r) < 
< e}. Then 

(a): cp(x) = Dx(d(x), b(x)) is upper semicontinuous on U for any a, be Xv. 

(b): J* = {0(U, a,e)\U a X is open, a eXv, e > 0} is a bases of a topo­

logy t in E which yields in the stalks Ex the same topology tx as Dx. 

1.6. Notation. Let Sf = {(Xv, dv) \QVV\ X} be a presheaf from 9JKT, U cz X open, 
let E be the bundle of Sf. If t is the topology defined in E by the sets & from the 
foregoing lemma, we denote by F(U) the set of all continuous bounded sections on U. 

1.7. Lemma. Under the conditions of 1.6 we have 

(a): de F(U) for each a eXv; thus the map pv from 1.4b sends Xv into F(U) 
wherefore Av cz F(U). 

(b): If r,seT(U) then cp(x) = Dx(r(x), s(x)) is upper semicontinuous on U. 

1.8. Lemma. Let Sf = {(Xv, dv) \QVV\ X} be from SJTC(L TFAE: 

1) If U c: X is open, a,be Xv, and if "T is an open cover of U then dv(a, b) = 
= sup {dv(Qvv(a), Qvv(b)) \Veir}\ 

2) Given an open U cz X, a, b eXv, an open cover f of U, and e > 0, then 
there is Ve "T such that dv(Qvv(a), Qvv(b)) > dv(a, b) — e; 

3) The natural map pv : (Xv, dv) -> (F(U), dv) is an isometry into F(U) for 
any open U cz X (see 1.7a). 

1.9. Definition. Sf is called a monopresheaf if it fulfils any of the conditions 1 — 3 
of the foregoing lemma. Thus we have 

1.10. Theorem. Let Sf = {(Xv, dv) \QUV\ X} be a monopresheaf from 90KL Then for 
any open U cz X the natural map pv : (Xv, dv) -• (F(U), dv) is an isometry into F(U). 
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1.11. Definition. A presheaf Sf = {(Xv, dv) \QVV\ X] from 9ft is called sheaf if it 
fulfils the following for any open l / c l : 

COND 1: If a, b e Xv, and if for an open cover Y of U we have Qvv(a) = 
= Qvv(b) for all Ve TT then a = b. 

COND 2: Given an open cover Y of U and a family &v = {av e Xv \ Ve TT} 
such that OKKnW(tfV) = ^WVnW(flW) whenever Vn W+ 0 — we call such a family 
smooth - then 

a) There is an a eXv with Qvv(a) = av for all Ve Y; 
b) If ^ t> = {bv eXv | Ve ^ } is another smooth family and b eXv such that 

Qvv(b) = bv for all Ve Y, then ^ ( a , b) = sup {dv(av, bv) \VeiT). 

1.12. Remark. It readily follows from COND 2b that every sheaf is a monopresheaf. 
Further, it is easy to see that COND 1 is equivalent to the 1-1 — ness of the natural 
map pv :XV -> F(U). Also the element a eXv determined by SF v in COND 2 is 
unique because of COND 1. 

2. C(Y, Q)- K-areas 

2.1. Definition. An upper semilattice is a pair (S, V) where S is a set, and V - S x 
x 5 -v 5 is a map such that for all a, b, c e S we have (a V b) V c = aV (bV c), 
a\/ b = b\/ a, ay a = a. 

Given two real numbers a, b, we set a VR b = max (a, b). 

2.2. Definition. The set of all continuous functions on a topological space Y with 
values in the interval P = < - l , 1> (Q = <0,1>) is denoted by C(Y, P) (C(Y, Q)). 

A C(Y, Q) — K-area is a structure (X, d, + , y, o) where X is a set, d is a metric 
on X, + is a commutative group operation on K, V is an upper semillattice operation 
on X, and o : C(Y, Q) x X -> X is a map such that 

A: (K, d, V) is a VR — faithful upper semilattice, i.e. 
(1): d(x y y, uy v) = d(x, u) yR d(y, v) for any x, y, u, v e X, 

B: (X, d, + ) is a metric group meaning that for any x, y, u, v e X 
(2): 1) d(x + y, u + v) = d(x, u) + d(y, v) 

b) d ( - * , - y ) = d(x,y), 

C: (X, + , V) is a group upper semilattice meaning 
(3): (x V y) + z = (x + z) V (y + Z) for any x j , z e X. 

D: The map o sending (f,x)eC(Y, Q) x X onto fox fulfils the conditions 
below for every x, y eX, f, g e C(Y, Q) and any c, de Q: 

(4): 1 o x = x, 

25 



(5): (c VR d) o x = (c o x) V (d o x) for any x e X+ = {x+ = x V 0 | x e X}, 
(6): (/ + g) o x = / o x + g 0 x whenever / + g e C(Y, Q), 
(7): There is a constant K such that d(c 0 x, c © y) ^ K d(x, y) for all 

x, y e l , c e g . 

We shall often write/x instead of/o x, for short. 
If 0 is only a map 0 : Q x X -> K instead of being defined on the whole of 

C(Y, Q), such that the condition D is now fulfilled only for constant functions from 
C(Y, Q), then (X, d, +, V, o) is called a Q - K-area. 

A map F : (Xx, dl9 + l 5 Vu °i) -> (X2, d2, + 4 , V2> 02) between two C(Y, Q) -
— K-aieas (Q — K-areas) is called A — homomorphism (AQ — homomorphism) if 
for all x, y e Xt and any feC(Y, Q) (c e Q) 

(2') 
(3') 

F(x+lУ) = Ғ(x)+2F(y), 

F(xVlУ) = F(x)VгF(y), 
F(f °i x) = f o Ғ(x) (F(c 0 1 x) = С c2 Ғ(x)). 

The category of all C(Y, Q) — K-areas (metric complete ones) with the con­
tractive A — homomorphisms as morphisms is denoted by 5Iy90i(K) (9(?9W(E(K)). 
The category of all Q — K-areas (metric complete ones) with the contractive AQ — 
homomorphisms as morphisrns is denoted by QWl(K) (-Q$R(£(K)). 

2.3. Lemma. A. Let (X, + ) be a commutative group such that there is a map 0 : L = 
= C(Y, Q) x X --> X sending (/, x) e L onto / G x such that the condition (6) of 
the foregoing definition is fulfilled for any xeX and any f, g e C(Y, Q) with 
f + g e C(Y, Q) :(f + g) o x = f o x + g o x. If xeU, h e C(Y, P), f, g,p,qe 
C(Y, Q), h=f—g = p — q then / 0 x — g oX = p o x — q ox. Therefore, the 
map o can be extended to the whole of C(Y, P) x X by setting h ox = f ox — g Qx 
for any x eX, he C(Y, P) and any decomposition h = f — g with/, g e C(Y, Q). 
We then have ( - / ) x = - / x and Ox = 0 for x e X, fe C(Y, Q). 

B. Given a group upper semilattice (G, +, V) meaning that + is a commutative 
group operation and V is an upper semilattice operation in G such that (x V y) + 
+ z = (x + z)\J (y + z) for any x, y, z eG — then for each x e G we have x = 
= x+ — x~ where x+ = x V 0, x~ = (—x) V 0( —a is the inverse element of a e G). 

Proof. A. Let h=f - ge C(Y, P) with fge C(Y, Q). There is r e C(Y, Q) 
such that f = h+ + r, g = h~ + r (we have / = 0 s o / = h V 0 = / i + and set 
r = f — h+). By (6), if r eX then fx = h+x + rx, gx = h~x + rx so fx — gx = 
= h+x — h~x which settles the proof of A. For the proof of B see [2, Lemma 2.4]. 

Given a C(Y, Q) - K-area (X, d, +, V, o) and a presheaf Sf e 51? Wl(K). As the 
condition (7) in C(Y, Q) — K-areas is fulfilled only for c e Q and not for any fe 
e C(Y, Q) we cannot extend the multiplication by /eC (Y , Q) to the completion 
(X, d) of (X, d), nor bring it over to the inductive limit of Sf as it was in [2, Prop. 2.7, 
2.8], But we have 
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2.4. Proposition. If (X, d, + , V> °) ls a Q — K-area, then there is a unique extension 
+ , V of + , V to the completion (X, 3) of (X, d), and a unique extension ° : 2 x 
x K -> K of the multiplications of elements of X by constants from C(Y, Q) such that 
(K, d, + ,V> 5 ) is a Q - K - a r e a . 

Proof. The same as [2, Prop. 2.7]. 

2.5. Proposition. For a fixed K, the category Q Wl(K) (QWl (£(£)) of all £> - K-areas 
(metric complete ones) is inductive. Namely let Sf = {(Xa, da, +a, \/a, oa) \gap\ (A = >} 
be a presheaf from Q SK(K), let -9^ = {(Ka, da) \gafi\ < ^ > } , let <(I°, D) {£a | a e 
GA}> = ]\mS/?

l in 9JI, let p,qel°, c e Q, let a,beXa be some representatives 
of p, q in Ka, and let p\/ q, p + q, c o p be the element represented by a V* &» 
a + a b, c oa a. Then p \/q, p + q, c o p does not depend on the choice of a and a, be 
eX, and (I0, D,+,M, G) is a g - K-area. If ^ is from QW £(K), <(I°, D, + , V, «) | 
| {£a | a e A}> = Hm se in Q 9^(K), then Hm ^ in QSTC (£(K) is just the completion 
of the Q - K-area (7°, D, +, M, o) by Prop. 2.4. 

Proof. The as that of [2, Prop. 2. 8.]. 

2.6. Corollary. Let Sf = {{Xv, dv, + v, yv, 0|/) \QUV\ X} be a presheaf from 2l?9K e(K) 
over a topological space X, let £ be its bundle .Then 

(a): For every xeX the stalk Ex over x is a Q — K-area with the operations 
+ .x, VJC> °* defined as the natural bringover of these from Sfx (see 2.4, 2.5). Further, 
we have for c e Q, a e Xv, xeU : (ca)A (x) = c d(x). 

(a'): If Y = X then Ex can be made into a C(K, Q) — K-area by setting foi 
fe C(X, Q), r e Ex :fr = f(x) r. (Sure enough, we need not have now (fa)A (x) = 
= f d(x) for any fe C(K, Q), a e Xv as it is whenfe Q because fa need not repiesent 
the germ (fa)A (x) = f d(x) in £,,.) 

(b): If U c: X is open, then the set F(U) of all bounded sections over U in E 
with its natural metric dv (see 1.3D), and with the operations %v, \lv, ov pointwise 
defined by (r\/us)(x) = r(x)yxs(x) for xeU — and likewise for +v, ov — is 
a Q — K-area. If a e Xv, c e Q, xeU then by 2.5 we have (ca)A (x) = c d(x). 

(W): If Y = X then F(U) can be made into a C(X, Q) - K-area by setting 
(for fe C(X, Q), a e r(U))fov a e F(U) to be (fov a) (x) = f(x) ox c(x) (we need 
not have now (fa)A = fa for any fe C(K, Q), a e Xv). 

Proof, (a) readily follows from 2.4, 2.5, (a'), (b), (b') are an easy matter of 
checking. 

2.7. Proposition. Under the conditions of 2.6 

(a): The operations V'- + can be stalkwise defined in E. 
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More precisely, if p : E -> X is the natural projection (see 1.3B), we denote 
by E xxE = {(r, s) e E x E \ p(r) = p(s)} the pullback of E x E over X. If 
(r, s) e E x x E, x = p(r) = p(s), we set r V s = r \/x s, r + s = r +x s to get two 
maps y,+ :ExxE^>E. Let t be the natural topology in E by 1.5b. Then, under 
this topology, V, + a r e continuous. 

(b): The set F(U) of all continuous bounded sections over U is closed under 
the operations V, + meaning that r\/ s, r + s e F(U) if r, 5 e F(U). 

(c): The natural map pu : (Xv, dv, +v, Vv, °v) -• (-T(U), dv, + u , VV 5L,) (see 
1.4b) is an AQ — homomorphism (see 2.2) meaning that for any open U c X and 
any a, b e X^, c e Q we have pv(a yv b) = pv(a) \/v pv(b) = d\/u b, pv(a +vb) = 
= Pu{<*) +u Pu(b) = d + v b, pv(ca) = c pv(a) = cd. 

Proof: It is an easy matter of checking (see also [2, Prop. 2.10]). 

2.8. Definition. Let Sf — {(Xv, dv) \QUV\ X} be a presheaf from SJW(£, U a X open. 

A. A subset M c= F(U) is called locally finite if for every xeU there is an open 
nbd K c U of x and a finite set F c M such that for each r e M there is s e F with 
r(y) = s{y) f°r a n v y e *̂ 

B. Let se be from &M d(K). A set M c F(U) is called VU - closed if for 
every locally finite N c M such that r = Vt; -^ = Vu {s | 5 G N} e F(U) (i.e. r is 
bounded; r is defined as r(x) = \/x{s(x) \ s e N} for x e U) we have r e M. 

Following K. H. Hofmann we get in our case 

2.9. Lemma. Let Sf = {(Xt, d^, +u>Vu> °U)\QUV\X} be a sheaf (see 1.11) from 
£&R £(K), (£, t) its bundle (see 1.3A, 1.5b), let pv : (Xv, dv) -+ (F(U), dv) (see 1.4b, 
1.7a) be the natural map sending Xv onto {a | a e l ^ } = Av a F(U). Then for any 
locally finite N <= Av we have Vi/W = Vv{" | « GN} e A^ wherefore Av is VU — 
closed. 

Proof. It is in [2, Lemma 2.12]. 

2.10. Lemma. Let 9> = {(Xv, dv, +v, Vv, °t/) \Quv\ *} be a presheaf from &W (£(K), 
X regular, let U c X be open and paracompact, let M c F(U) such that 

(1) M is Vt; — closed, 
(2) M is a subgroup of F(U) with respect to + v, and fmeM for any fe 

e C(X, Q), meM, 
(3) M(x) = {m(x) | m e M} is dense in F(U) (x) = {o(x) | <7 e F(U)} for all 

x e U. Then M is dense in (F(U), 5^). 

Proof. It goes precisely the same way as that of [2, Lemma 2.13] with the only 
difference that now the stalks (Ez, Dz, +z, \/z, oz) are only Q — K-areas while they 
were C(X, P) — K-areas in [2, 2.13]. Nonetheless, the proof holds also in this case 
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because the fourth condition of [2, 2.13], which required that the multiplication of 
the sections a e F(U) by the functions from C(X, Q) be pointwise meaning that 
( / °u °) (x) = f(x) °x

 a(x)> -s fulfilled here owing to the way of our definition of 
multiplication of sections from F(U) by the functions from C(X, Q) — see 2.6b', 
and also the inequality Dz(fa,fb) = K Dz(a, b) is not needed here for any f e 
C(X, Q), a, beEz, it is needed only that Dz(f(z) a,f(z) b) = K Dz(a, b) for any 
fe C(X, Q), a, be Ez, which is fulfilled as f(z) e Q and Dz(ca, cb) = K Dz(a, b) 
for any ceQ because the stalk (Ez, Dz, +zi\/z,o2) is a Q — K-area where the 
inequality holds by 2.2(7). Finaly, the inequality D(—a,—b) = D(a,b), which 
is needed in the proof, is ensured by 2.2(2b). 

2.11. Definition. Given a presheaf Sf = {(Xv, dv, +v, yv, oV) \QVV\ X} from 
SlgSH £(K), M c X, we set IM = {feC(X, Q) \f = 0 on M). Sf is called "well 
supported" if for any open U c X, felv, aeXv we have f ov a = 0 (see [ l , 2.14, 
P- 12]). 

2.12. Lemma. Let Sf = {(Xv,dv, +v, VU> ov) \QVV\ X) be a well supported sheaf 
from ^m d(K), X normal, U, V c X open, V <= U, a eXL. Then there is b eXx 

with Qxv(b) = QVV(O). 

Proof. The same as that of [2, 2.15]. 

2.13. Lemma. Let Sf = {(Xv,dv, +v, \/v, ov) \QVV\ X} be a well supported sheaf 
from » f 9J? G(K) over a normal X, x e X, r e E°x (see 1.3 A, B). Then there is b e Xx 

such that b(x) = r. 

Proof. The same as that of [2, 2.16]. 

2.14. Lemma. Let Sf = {(Xv, dv, +v, \Jv, oV) \QVV\ X} be a sheaf from SX$Wl £(K) 
such that 

a) Sf is well supported. 

b) For every a eXx the map Ma : C(X, Q) -> Xx sending / e C(K, Q) onto fa 
is continuous at zero with respect to the sup-norm meaning: For every a e Xx, 
£ > 0 there is S > 0 such that 0 = / = S yields dx(fa, 0) < e. 

Let U c= X be open, a e Xv, xeU, cp e Ix. Then (cpa)A (x) = 0. 

Proof. There is an open V with x e V cz V a U and an a, be Xx such that 
Qxvip) — Quv(a) — see 2.12. Further, given £ > 0, there is 3 > 0, d = 1 such that 
dx(gb. 0) < £ whenever g e C(X, Q), 0 = g = S. There is an open W with x e 
e W c V such that 0 = cp < 6 on W. Set h = min ((?, <5). Then h e C(X, Q), 0 = 

= h = S hence dx(hb, 0) < £. Further, Qxw(hb) = hQxw(b) = hQvw(a) = cp Qvw(a) 
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as h = cp on Wand Sf is well supported. Thus dw(Quw(cpa)9 0) = dw(<pQuw(a)9 0) = 
= dw(gxw(hb)9 0) = dx(hb9 0) < z hence lim {dv(Quv(cpa)9 0) | x e V <~ U open} = 

v 
nO = 0, which by 1.3 A shows that cpa and 0 represent the same germ in Ex. We are done. 

For sake of the next lemma let us recall that by 2.3A, if f e C(X, P), a, h9 k9 I e 
e C(X9 Q)9 f = g — h = k — I, a eXv then ga — ha = ka — la. 

2.15. Lemma. If Sf = {(XU9 dl9 +U9\/U9 <>-,) \QUV\X} is a sheaf from 9l?9MC(K), 
X normal, then (1) => (2) below: 

(1) a) Sf is well supported. 

b) For every a e X the map Ma : C(X9 Q) -> Xx sendingfG C(X, Q) onto fa 
is continuous at zero with respect to the sup-norm (see 2.14). 

(2) For every a eXU9 fe C(X9 Q)9 x e U we have (fa)A (x) = f(x) d(x). 

Proof. Let a e Xv, fe C(X, Q)9 xeU. Then h = f - f(x) e C(X, P), ff(x)9 

h +
 9 h~ e C(X, Q) hence by 2.3A, h +a - h~a = fa - f(x) a. Further, h +, h~ elx 

hence (h + a)A (x) = (h~a)A (x) = 0 by the foregoing lemma, and thus (fa)A (x) — 
- (/(*) ay (*) = (fa -f(x) ay (x) = (h+

a - h-ay (x) = (h+
ay (x) - (h-ay. 

. (x) = 0, which we have wanted. 

2.16. Remark. Let Sf = {(XU9 dU9 +U9 \/U9 ou) \QUV\ X} be a presheaf from 
Stf$R G(K), E its bundle. 

A. By 2.4, 2.5, 2.6(a'), the stalks (Ex9 Dx9 +x9 \/x9 ox) are Q - K-areas with the 
operations +x9 VX9 ox defined as the natural bringover of those from the terms of Sf. 
In 2.6(a') we made the stalks into C(X, Q) - K-areas by setting fp = f(x) p for 
p e Ex. We could not bring these operations over from the terms of Sf as we lacked 
the inequality dv(fa9fb) = K dv(a9 b) for feC(X9 Q)9 which caused that, given 
x e X, r G EX9 U ~z X open with xeU9 and a eXv with d(x) = r, the germ (fa)A (x) 
of fa in Ex which should represent fr might depend on the choice of U and of the 
representative a e Xv meaning that there might be an open V a U with x e V and 
a b eXv with b(x) = r such that (fb)A (x) =j= (fa)A (x). But the foregoing lemma 
shows that if Sf is a sheaf which fulfils (1) of 2.15, then the multiplication by the 
functions from C(X, Q) can be brought over to the stalks from the terms of the 
sheaf and that it agrees with the mentioned definition because fa represents 
f(x) d(x) = f(x) r = fr in Ex for any representative a e Xv of r. This also shows 
that the natural AQ — morphisms £Ux : (XU9 dU9 +U9 VU> °U) -> (Ex> Dx> +x> Wx^ °x) 
are A — homomorphisms (see 2.2) as ^Ux(fa) = (fa)A (x) = f(x) d(x) = f d(x) = 
= ftvx(a\ 

B. It can be readily seen from A, that under the same conditions the Q — K-
area (F(U), dU9 +L9 \/U9 ov) defined in 2.6b and made into C(X, Q) — K-areas by 
2.6br can be now made into C(X, Q) - K-areas naturally by setting (for a e F(U), 
fe C(X, Q)) fa to be the section defined as (fa) (x) = f a(x) for x e U because the 
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latter term is just f(x) a(x) which agrees with the definition of fa in 2.6b'. Clearly 
the natural map pv : (X^, dv, +v, \/v, oV) -> (F(U), dv, ^v, tfv, zv) is now an 
A — homomorphism as well because now we have pv(fa) = (fa)A = fa = f Pu(a) 
forfe C(X, Q). From this we get that if a e Av = pv(Xv),fe C(X, Q) then fa e Av. 
Indeed, we have a = a for an a eXv, and fa = (fa)A, and fa eXv so (ftf)A e Av. 
2.17. Theorem. Let Sf = {(Xv, dv, + v, \/v, oV) \QVV\ X) be a well supported sheaf 
from 9l£9W G(K), X locally paracompact, let for each a e Xa the multiplication 
M a : C(X, Q) -> (Xx, dx) sending fe C(X, Q) onto fa be continuous at zero (see 
2.14b). Let t be the topology in the bundle E of Sf defined in 1.5b, let F(U) for open 
U <= X be the set of all continuous bounded sections on U (see 1.6). Then for every 
open U c= X the natural map pv : (Xv, dv) -> (F(U), dv) (see 1.4b) is an isometric 
isomorphism onto F(U). 

Proof. Sf is a sheaf hence it is a monopresheaf by 1.12. By 1.10, pv : (Xt/, aV) -• 
-> (F(U), ^i/) is an isometry into F(U). Let U cz X be open and paracompact. 
By 2.9, the pv — image Av of X^ is V — closed hence A^ fulfils the condition (1) 
of 2.10. Clearly Av is a + D - subgroup of F(U). If m e -4u,f6 C(X, Q) then by 2A6B 
fm e Av hence A^ fulfils also the condition (2) of 2.10. By 2.13, {a(x) | a e Av) = Ex 

for any x eU, and as Ex is dense in Ex, the condition (3) of 2.10 is fulfilled by A^. 
By 2.10, Av is dense in F(U)- Since pv is an isometry and (Xv, dv) is complete, we 
have Av = F(U), which finishes the proof for paracompact U. Now, the way of 
extending the proof to any open U has been shown in [2, added in proof]. 
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