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The results of [2] have been extended to the case of sheaves of C(X, Q) — K-areas (see
Def. 2.2) to say that the sheaf of sections of the bundle belonging to a given sheaf of complete
C(X, Q) — K-areas of becoming sort over a hereditarily paracompact base is isomorphic to the
latter.

Vysledky ze [2] jsou zobecnény na pfipad C(X, Q) — K oblasti (def. 2.2). Ukazuje se, ze
svazek fezti bandlu daného svazku uplnych C(X, Q) — K oblasti vhodného druhu nad dédi¢né
parakompaktni béazi je izomorfni pivodnimu svazku.

PesynbraTs! u3 [2] pacnpocTpanenbt Ha nyuku C(X, Q) — K obnacreit (ded. 2.2) u noka3biBa-
10T YTO Iy4OK PEe30B HAKPHIBAIOLIETO ITPOCTPAHCTBA JAHHOTO Mmy4Ka noJiHelXx C(X, Q) — K obnacreit
yAaoGHOro copra Haj HACIeACTBEHHO NapaKOMIAKTHbIM 6a3McoM H30MOPQHBIH OAHHOMY MY4YKY.

Introduction

In [1] K. H. Hofmann proved that the sheaf of sections of the bundle associated
with a given sheaf of Banach C(X)-modules of suitable sort over a hereditarily
paracompact base is isomorphic to the latter. This result has been brought over in [2]
by the author to the sheaves of complete C(X, P) — K-areas to say that the sheaf of
sections of the bundle associated with a given sheaf of complete C(X, P) — K-areas
of suitable sort over a hereditarily paracompact base is isomorphic to the latter.

Denoting by C(Y, P)(C(Y, Q)) the set of all continuous functions on a topo-
logical space Y with values in P = (—1,1) (@ = <0, 1)). (Y, P) — K-area is the
structure (X, d +,V, o) where X is a set, d is a metric on X, + is a commutative
group operation in X, V is an upper semilattice operation in X meaning that V : X x
x X — X is a commutative and associative operation in X such that a \V a = a for
allaeX, and - : C(Y, P) x X — X is a map such that for all x, y, u,ve X

(1) d(xV y,uVv) £ d(x,u) Vg d(y, v)(if a, b are real numbers then a Vg b =
= max (a, b)),

(2) d(x + y, u + v) < d(x, u) + d(y, v),
B)ExVy)+u=(x+u)V(y+u).

*) 186 00 Praha 8, Sokolovska 83, Czechoslovakia.
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The map o sending (f, x) € C(Y, P) x X onto f . x fulfils the conditions below
for every x, ye X, f,ge C(Y, P), c,d € Q:

(4) 1ox = x,

(5) (¢Vrd)ox = (cox)V (dox) for any xe X* = {x* =xV 0| xeX},

(6) (f + 9)ox =fox + gox whenever f + g€ C(Y, P).

(7) There is a constant K such that for all x, y € X, fe C(Y, Q) we have d(f - x,
foy) < Kd(x,y).

An important place in the theory is held by multiplying the elements by parti-
tions of unity, but the functions which these partitions consist of have values only in Q
and not in the whole of P, and though in [2] we need that the multiplication of ele-
ments should be by the functions from C(Y, P), a question has arisen of whether
there is a way round the requirement of the multiplication being by the functions
from C(Y, P), whether we can do only with C(Y, Q). Also the seventh condition might
seem being apt to be weakened and one is led to a question of whether the whole
theory in [2] could be carried through under the only condition that d(cx, cy) <
< Kd(x,y)forallx, yeX, ce Q.

The paper has originated from trying to find a way round the mentioned two
conditions. The way has successfully been found and the results of [2] have been
strengthened to hold for the sheaves of C(Y, Q) — K-areas.

A C(Y, Q) — K-area is a structure (X, d, +, V, o), where X, d, +,V keep the
meaning which they have in case of C(Y, P) — K-areas, such that the conditions
(1)—(3) of the definition of C(Y, P) — K-area hold, and o: C(Y, Q) x X - X is
a map sending (f, x) € C(Y, Q) x X onto f o x such that for every x, ye X, f, g€
€ C(X, Q), ¢, d e Q the conditions (4), (5) of the definition of C(Y, P) — K-area
hold and

(6') (f+ g)ox =fox + g o x whenever f + ge(X, Q);
(7') There is a constant K such that for all x, ye X, ce Q we have d(co x,
coy) £ Kd(x,y)

Therefore, it has been shown in this paper that the sheaf of sections of the bundle
belonging to a given sheaf of complete C(X, Q) — K-areas of becoming sort over
a hereditarily paracompact base is isomorphic to the latter.

1. Presheaves of metric spaces with contractions

The means listed in this section, and proven in [2, sec. 1] were originally de-
veloped by K. H. Hofmann in [1] for the presheaves of Banach spaces and later
adopted and extended for presheaves of metric lattices in [2] by the author. In the
latter form they will be needed hete, therefore they have been taken over from [2,
sec. 1] without change to endow us with the necessary tools for further use.
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1.1. Notation. A map f of a metric space (X,, d,) into another (X, d,) is called
contraction if d,(f(x), f(y)) £ d,(x, y) for all x, y € X.

The category of all metric (complete metric) spaces with contractions as mor-
phisms shall be denoted by MM(ME).

A category R is called inductive if for every presheaf & = {Xalga,,| (A}
from R there is its inductive limit lim & = {I | {&,| x € 4}} in & (here &, : X, > I
are the natural K-morphisms).

1.2. Lemma. Both M and 9MC are inductive. Let & = {(X,, d,) |e.s| (A=)} be
a presheaf from ME, let {(I°, D) | {&, | @ € A}) be its inductive limit in M, and let
(1, D) be the completion of (I° D). Then {(I, D) | {¢, | xe A}) is inductive limit
of & in ME. Moreover, the following holds:

A. Ifa, Be A, aeX,, be Xy, then a, b represent the same element in I° (meaning
E(a) = E,(b)) iff there is y = o, B such that for a’ = g,,(a), b’ = gp,(b) we have —
setting A(y) = {6e 4|6 2 y}:

lim {dy(2,a(a), 0,(6) | 3 AR} = 0.

B. If p, q €1 such that there are representatives a, b of p, g in an X, (if it is the
case then p, g € I°) then

D(p, q) = lim {dy(0.4(a), 0.5(b)) | B € A(2)} = inf {the same set} .

It should be noticed that, by 1.2A, a € X,, b € X, represent the same element
in I not only when g,,(a) = ¢4,(b) for a y = o, B as it is in the usual categories.

1.3. Notation. Let & = {(Xy, dy) [euy| X} be a presheaf from M (IMCE) over a topo-
logical space X.

A. For xe X let #(x) = {U = X|U open, xe U}, let < be the partial order
in %(x) defined as “U < Viff V.= U”, and let &, = {(Xy, du) |euv| <B(x) £>}.
By 1.2, there is lim &, = <(E3, D) | {¢v. | U € #(x)})> in M (lim &, =<(E,, D,)|
| {¢ux | U € #B(x)}> in ME). The metric space (E7, D) ((E,, D;)) is called the stalk
of & over x; it is thus a metric (complete metric) space with a metric D,. If & is from
9MME then (E,, D,) is just the completion of (EY, D,). If r, s € E, such that there is
U € #(x) and some representatives a, b € Xy, of r, s (in which case r, s € ES) then

D,(r, s) = lim {dy(ouv(a), ouv(b)) | Ve B(x), V = U} = inf {the same set} .

B. The set E® = U{E| x € X} (E = U{E,| x € X}) with the projection p : E® -
— X(E > X) defined as p(r) = x for all r € E)(r € E,) is called bundle of &.

C. If U < X is open, a € Xy, we denote by 4 the map d: U — E defined as
d(x) = &yo(a) for x e U, and set 4y = {d|ae Xy}
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D. Let U < X be open. Any map s : U — E such that ps = identity is called
section over U. We say that s is bounded if there is @ € X, such that sup {D(4(x),
s(x)) | x e U} is finite. The set of all bounded sections on U is denoted by I(U).
If s, t € [(U) we set dy(s, 1) = sup {D(s(x), (x)) | xe U}.

1.4. Lemma. Under the conditions of 1.3 we have
(a): deT(U) for each a € Xy, and if a, b e Xy, then dy(d, b) < dy(a, b).

(b): The function dy, defined on I(U) x F(U) is a metric; thus by (a), the map
pu: (Xu, dy) » (F(U), dy) sending any a € X, onto de [(U) is a contraction.

1.5. Lemma. Let &% = {(Xy, dy) |QW|X} be a presheaf from IMME, E its bundle.
IfU = Xisopen,ae Xy, &> 0,let OU, a,¢) = {reE|x = p(r)e U, D(d(x).r) <
< ¢}. Then

(a): ¢(x) = D,(4(x), b(x)) is upper semicontinuous on U for any a, b € X.

(b): # ={O(U,a,¢)|U = X is open, ae Xy, ¢ >0} is a bases of a topo-
logy t in E which yields in the stalks E, the same topology ¢, as D,.

1.6. Notation. Let & = {(Xy, dy) lguyl X} be a presheaf from ME, U = X open,
let E be the bundle of &. If t is the topology defined in E by the sets # from the
foregoing lemma, we denote by I'(U) the set of all continuous bounded sections on U.

1.7. Lemma. Under the conditions of 1.6 we have

(a): der(U) for each a € Xy; thus the map p, from 1.4b sends X, into I'(U)
wherefore Ay < I'(U).

(b): If r,seI'(U) then ¢(x) = D(r(x), s(x)) is upper semicontinuous on U.

1.8. Lemma. Let & = {(Xy, dy) |euy| X} be from INE. TFAE:

1) If U = X is open, a, b € Xy, and if ¥ is an open cover of U then dy(a, b) =
= Sup {dv(qu(a), qu(b)) | Ve "V};

2) Given an open U < X, a, be X, an open cover #” of U, and ¢ > 0, then
there is Ve ¥ such that dy(oyy(a), oyv(b)) > dy(a, b) — &;

3) The natural map py : (Xy, dy) = ([(U), dy) is an isometry into I(U) for
any open U < X (see 1.7a).

1.9. Definition. % is called a monopresheaf if it fulfils any of the conditions 1—3
of the foregoing lemma. Thus we have

1.10. Theorem. Let & = {(Xy, dy) |ouv| X} be a monopresheaf from MME. Then for
any open U < X the natural map py : (Xy, dy) - (I(U), dy) is an isometry into I'(U).

24



1.11. Definition. A presheaf & = {(Xy, dy) IQUVIX} from M is called sheaf if it
fulfils the following for any open U < X:

COND 1: If a, be Xy, and if for an open cover ¥" of U we have gyy(a) =
= gyy(b) for all Ve ¥ then a = b.

COND 2: Given an open cover ¥~ of U and a family &, = {aVeXV| Ve v}
such that ¢,y w(ay) = owy.w(aw) whenever V0 W+ 0 — we call such a family
smooth — then

a) There is an a € Xy with gy,(a) = a, for all Ve 77
b) If ¢, = {byeX, I Ve ¥’} is another smooth family and b e X, such that
QUV(b) = by fOl‘ a]l VE ’V‘, then du(a, b) = Sup {dy(ay, by) ‘ VE V}.

1.12. Remark. It readily follows from COND 2b that every sheaf is a monopresheaf.
Further, it is easy to see that COND 1 is equivalent to the 1-1 — ness of the natural
map py : Xy — I'(U). Also the element a € X, determined by % , in COND 2 is
unique because of COND 1.

2. C(Y, Q) — K-areas

2.1. Definition. An upper semilattice is a pair (S, V) where S is a set, and V : S x
x S — S is a map such that for all a, b,ce S we have (aV b))V c=aV (bV ¢),
aVb=bVa, aVa=a.

Given two real numbers a, b, we set a Vg b = max (a, b).

2.2. Definition. The set of all continuous functions on a topological space Y with
values in the interval P = {—1, 1) (Q = <0, 1)) is denoted by C(Y, P) (C(Y, Q)).

A C(Y, Q) — K-area is a structure (X, d, +, V, o) where X is a set, d is a metric
on X, + is a commutative group operation on X, V is an upper semillattice operation
on X, and - : C(Y, Q) x X — X is a map such that

A: (X,d, V) is a Vg — faithful upper semilattice, i.e.
(1): d(xV y, uV v) < d(x,u) Vg d(y,v) for any x, y, u, ve X,
B: (X, d, +) is a metric group meaning that for any x, y, u,ve X
(2: 1) d(x + y, u + v) < d(x,u) + d(y, v)
b) d(—x, —y) < d(x. y)
C: (X, +,V) is a group upper semilattice meaning
B:(xVy)+z=(x+2z)V(y + z) for any x, y,ze X.

D: The map . sending (f, x)e C(Y, Q) x X onto fo x fulfils the conditions
below for every x, ye X, f, g e C(Y, Q) and any ¢,d e Q:

(4): 1ox = x,
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(5): (cVrd)ox =(cox)V (dox)foranyxe X" = {x* = xVOIxeX},

(6): (f + 9)ox =fox + g ox whenever f + ge C(Y, Q),

(7): There is a constant K such that d(cox, coy) < Kd(x,y) for all
x,yeX, ce Q.

We shall often write fx instead of f o x, for short.

If o is only a map -: Q x X —» X instead of being defined on the whole of
C(Y, Q), such that the condition D is now fulfilled only for constant functions from
C(Y, Q), then (X, d, +,V, o) is called a Q ~ K-area.

Amap F:(X,,dy, +1,Vy, 01) > (X2, day +4, V2, ,) between two C(Y, Q) —
— K-areas (Q — K-areas) is called 4 — homomorphism (42 — homomorphism) if
for all x, y € X, and any fe C(Y, Q) (ce Q)

(1'): F(x +,y) = F(x) +, F(y),
(2'): F(xV,y) = F(x) V2 F(y),
(3): F(f oy x) = fo F(x)(F(c oy x) = ¢ oy F(x)).

The category of all C(Y, Q) — K-areas (metric complete ones) with the con-
tractive A — homomorphisms as morphisms is denoted by AZM(K) (APME(K)).
The category of all Q — K-areas (metric complete ones) with the contractive A2 —
homomorphisms as morphisms is denoted by QMK ) (QME(K)).

2.3. Lemma. A. Let (X, +) be a commutative group such that there is a map - : L =
= C(Y, Q) x X > X sending (f,x)e L onto fox such that the condition (6) of
the foregoing definition is fulfilled for any x€X and any f, g e C(Y, Q) with
f+9eClY,Q):(f+4g)ox=fox+gox. If xeU, heC(Y,P), f,9,p,q€
C(Y,Q), h=f—g=p—q then fox —gox = pox — gox. Therefore, the
map - can be extended to the whole of C(Y, P) x X by settinghoX = fox — gox
for any xe€ X, he C(Y, P) and any decomposition h = f — g with f, g € C(Y, Q).
We then have (—f) x = —fx and Ox = 0 for xe X, f e C(Y, Q).

B. Given a group upper semilattice (G, +, V) meaning that + is a commutative
group operation and V is an upper semilattice operation in G such that (xV y) +
+z=(x+2z)V(y + z) for any x, y, ze G — then for each xe G we have x =
=x" — x~ wherex® = xV 0,x” = (—x)V 0(—ais the inverse element of a € G).

Proof. A. Let h =f — ge C(Y, P) with f, g e C(Y, Q). There is re C(Y, Q)
such that f=h* +r, g=h" +r (we have f =20 so f2hVO0=h" and set
r=f—h"*). By (6),if reX then fx = h*x + rx, gx = h™x + rx so fx — gx =
= h*x — h™x which settles the proof of A. For the proof of B see [2, Lemma 2.4].

Given a C(Y, Q) — K-area (X, d, +, V, o) and a presheaf & e AZ M(K). As the
condition (7) in C(Y, Q) — K-areas is fulfilled only for ¢ € Q and not for any fe
€ C(Y, Q) we cannot extend the multiplication by fe C(Y, Q) to the completion
(X, d) of (X, d), nor bring it over to the inductive limit of & as it was in [2, Prop. 2.7,
2.8]. But we have
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2.4. Proposition. If (X ,d, +,V,0)is a Q — K-area, then there is a unique extension
3,V of +,V to the completion (X, d) of (X, d), and a unique extension & : Q x
xX->X of the multiplications of elements of X by constants from C(Y, Q) such that
(X, d, .V, 6 3) is a Q — K-area.

Proof. The same as [2, Prop. 2.7].

2.5. Proposition. For a fixed K, the category Q MM(K) (QM €(K)) of all Q — K-areas
(metric complete ones) is inductive. Namely let & = {(X,, d,, +4 Vo> o2) |ga,,| (A}
be a presheaf from QM(K), let &, = {(X,, d,) |oos| <AZD}, let (1% D) {¢, | xe
€A}y =lim &, in M, let p,q €l ceQ, let a, be X, be some representatives
of pq in X,, and let pV ¢q, p + ¢, ¢o p be the element represented by a V, b,
a+,b,cs,a. Thenp Vg, p + ¢q, c - pdoesnot depend on the choice of ¢ and a, b e
€X,and (I° D, +,V,c)isa Q — K-area. If & is from QM €(K), ((I°,
| {&, > = lim & in Q M(K), then lim & in QIR €(K) is just the completion
of the Q — K-area (I° D, +,V, o) by Prop. 2.4.

Proof. The as that of [2, Prop. 2. 8.].

2.6. Corollary. Let & = {(Xy, dy, +u, Vs ov) |0uv| X} be a presheaf from AZM E(K)
over a topological space X, let E be its bundle .Then

(a): For every x € X the stalk E, over x is a Q — K-area with the operations
+, V. o defined as the natural bringover of these from &, (see 2.4, 2.5). Further,
we have for ce Q, ae Xy, xe U : (ca)” (x) = ¢ d(x).

(a’): If Y= X then E, can be made into a C(X, Q) — K-area by setting fot
feC(X,Q), reE,: fr = f(x) r. (Sure enough, we need not have now (fa)* (x) =
= f d(x) for any f € C(X, Q), a € X, as it is when f € Q because fa need not repiesent
the germ (fa)" (x) = f d(x) in E,.)

(b): If U = X is open, then the set [(U) of all bounded sections over U in E
with its natural metric d (see 1.3D), and with the operations ¥, VU, Sy pointwise
defined by (rVys)(x) = r(x) V. s(x) for xe U — and likewise for Fy, 3, — is
a Q — K-area. If a e Xy, c€ Q, x € U then by 2.5 we have (ca)" (x) = ¢ a(x)

(b'): If Y= X then I(U) can be made into a C(X, Q) — K-area by setting
(for fe C(X, Q), ce[(U))f3y 0l (U) to be (f3,0)(x) = f(x) ox o(x) (We need
not have now (fa)" = fd for any fe C(X, Q), a € Xy).

Proof. (a) readily follows from 2.4, 2.5, (a’), (b), (b’) are an easy matter of
checking.

2.7. Proposition. Under the conditions of 2.6
(a): The operations V, + can be stalkwise defined in E.
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More precisely, if p: E — X is the natural projection (see 1.3B), we denote
by E xxE={(r,s)€E x E|p(r) = p(s)} the pullback of E x E over X. If
(r,s)eE xxE, x =p(r)=pis), weset rVs=rV,s, r+s=r+,5 to get two
maps V, + : E X x E > E. Let t be the natural topology in E by 1.5b. Then, under
this topology, V, + are continuous.

(b): The set I'(U) of all continuous bounded sections over U is closed under
the operations V, ¥ meaning that rV/ s, r ¥ se I'(U) if r, s e I'(U).

(c): The natural map py : (Xy, dy, +us Vs ov) = (F(U), dy, T vs Vs 50) (see
1.4b) is an A2 — homomorphism (see 2.2) meaning that for any open U < X and
any a, b e Xy, ce Q we have py(a Vy b) = py(a) Vy pu(b) = 4V b, py(a +y b) =
= Pu(a) Fu Pu(b) =d¥y b, PU(Ca) =c Pv(a) = cd.

Proof: It is an easy matter of checking (see also [2, Prop. 2.10]).

2.8. Definition. Let & = {(Xy, dy) |QUV[ X} be a presheaf from ME, U < X open.

A. A subset M < I'(U) is called locally finite if for every x € U there is an open
nbd V = U of x and a finite set F = M such that for each r € M there is s € F with
r(y) = s(y) for any ye V.

B. Let & be from QM E(K). A set M = I'(U) is called V, — closed if for
every locally finitt N = M such that r =/, N =V, {s [ seN}el(U) (ie. ris
bounded; r is defined as r(x) = V,{s(x)| s e N} for x € U) we have r e M.

Following K. H. Hofmann we get in our case

2.9. Lemma. Let & = {(X,, dy, +uv> Vu» ov) IQUVIX} be a sheaf (see 1.11) from
QM €(K), (E, 1) its bundle (see 1.3A, 1.5b), let py : (Xy, dy) = (F(U), dy) (see 1.4b,
1.7a) be the natural map sending Xy onto {4 | aeXy} = Ay = I'(U). Then for any
locally finite N = 4, we have V N = Vy{n|neN}e A, wherefore 4, is Vy —
closed.

Proof. It is in [2, Lemma 2.12].

2.10. Lemma. Let & = {(Xy, dy, +u> Vus v) |guy| X} be a presheaf from QI €(K),
X regular, let U = X be open and paracompact, let M = I'(U) such that

(1) M is y — closed,

(2) M is a subgroup of I'(U) with respect to ¥, and fme M for any fe
eC(X,Q), meM,

(3) M(x) = {m(x)| me M} is dense in I'(U)(x) = {o(x)| o€ I(U)} for all
x€U. Then M is dense in (I'(U), dy).

Proof. It goes precisely the same way as that of [2, Lemma 2.13] with the only
difference that now the stalks (E., D,, +., V., ;) are only Q — K-areas while they
were C(X, P) — K-areas in [2, 2.13]. Nonetheless, the proof holds also in this case
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because the fourth condition of [2, 2.13], which required that the multiplication of
the sections o € I'(U) by the functions from C(X, Q) be pointwise meaning that
(f3u0) (x) = f(x) ox o(x), is fulfilled here owing to the way of our definition of
multiplication of sections from I'(U) by the functions from C(X, Q) — see 2.6b’,
and also the inequality D,(fa, fb) < K D_(a, b) is not needed here for any fe
C(X,Q), a,beE,, it is needed only that D,(f(z) a,f(z) b) £ K D,(a, b) for any
feC(X, Q),a, beE,, which is fulfilled as f(z)e Q and D,(ca, cb) < K D,(a, b)
for any ce Q because the stalk (E,, D,, +,,V.,o,)is a Q — K-area where the
inequality holds by 2.2(7). Finaly, the inequality D(—a, —b) < D(a, b), which
is needed in the proof, is ensured by 2.2(2b).

2.11. Definition. Given a presheaf & = {(Xy, dy, +v, Vs o) IQUV| X} from
APM C(K), M = X, we set Iy = {fe C(X, Q)| f =0 on M}. & is called “well
supported” if for any open U < X, fely, ae X, we have f oy a = 0 (see [1, 2.14,
p. 12]).

2.12. Lemma. Let & = {(Xy, dy, +u> Vus ov) |Qw| X} be a well supported sheaf
from A$M €(K), X normal, U, V < X open, V < U, ae X,. Then there is be Xy
with gx,(b) = ouy(a).

Proof. The same as that of 2, 2.15].

2.13. Lemma. Let & = {(Xy, dy, +v, Vu» ov) ]QUV|X} be a well supported sheaf
from AYM €(K) over a normal X, x € X, r € Ey (see 1.3A, B). Then there is b e Xy
such that b(x) = r.

Proof. The same as that of [2, 2.16].

2.14. Lemma. Let & = {(Xy, dy, + 0> Vs ou) |ouv| X} be a sheaf from AZM €(K)
such that

a) & is well supported.

b) For every a e Xy the map M, : C(X, Q) » Xy sending f e C(X, Q) onto fa
is continuous at zero with respect to the sup-norm meaning: For every a € Xy,
¢ > 0 there is § > 0 such that 0 < f < 8 yields dy(fa,0) < e.

Let U = X be open, a € Xy, xe U, ¢ €I. Then (pa)" (x) = 0.

Proof. There is an open V with xe V< V< U and an a, be Xy such that
oxv(b) = ouv(a) — see 2.12. Further, given ¢ > 0, there is 6 > 0, 6 < 1 such that
dx(gb.0) < ¢ whenever ge C(X, Q), 0 < g < 5. There is an open W with xe
€ W< Vsuch that 0 < ¢ < 6 on W. Set h = min (¢, ). Then he C(X, Q), 0 <
< h < 6 hence dy(hb,0) < e. Further, oxy(hb) = hoyw(b) = hoyw(a) = ¢ oyw(a)
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as h = ¢ on Wand & is well supported. Thus dy(euw(pa), 0) = dy(poyw(a), 0) =
= dy(oxw(hb), 0) < dy(hb,0) < ¢ hence lim {dy(ouy(¢a),0)| xe V = U open} =
14

= 0, which by 1.3A shows that ga and 0 represent the same germ in E°. We are done.
For sake of the next lemma let us recall that by 2.3A, if f e C(X, P), g.hk, le
€C(X,Q),f=9g—h=k—1, acX, then ga — ha = ka — la.

2.15. Lemma. If & = {(Xy, di, +u, Vs ov) [ouv| X} is a sheaf from A$M €(K),
X normal, then (1) = (2) below:

(1) a) & is well supported.

b) For every a € X the map M, : C(X, Q) - Xy sending f € C(X, Q) onto fa
is continuous at zero with respect to the sup-norm (see 2.14).

(2) For every a € Xy, f€ C(X, Q), x€ U we have (fa)" (x) = f(x) d(x).

Proof. Let ae Xy, fe C(X, Q), xeU. Then h = f — f(x) e C(X, P), f, f(x),
h*, h™ e C(X, Q) hence by 2.3A, h*a — h™a = fa — f(x) a. Further, h*, h™ e,
hence (h*a)" (x) = (h~a)" (x) = 0 by the foregoing lemma, and thus (fa)" (x) —
- (f®)a)" () = (fa—f(x) a)" (x) = (h"a = h~a)" (x) = (h*a)" (x) = (h"a)" .

. (x) = 0, which we have wanted.

2.16. Remark. Let & = {(Xy, dy, +uvs Vus o) |ouv| X} be a presheaf from
AYM C(K), E its bundle.

A. By 2.4, 2.5, 2.6(a’), the stalks (E,, D,, +,, V,, o,) are Q — K-areas with the
operations +, V,, o, defined as the natural bringover of those from the terms of <.
In 2.6(a’) we made the stalks into C(X, Q) — K-areas by setting fp = f(x) p for
p € E,. We could not bring these operations over from the terms of & as we lacked
the inequality dy(fa, fb) < K dy(a, b) for fe C(X, Q), which caused that, given
xeX, reEg, U c X open with x € U, and a € X, with d(x) = r, the germ (fa)" (x)
of fa in E, which should represent fr might depend on the choice of U and of the
representative a € X;; meaning that there might be an open V < U with x € V and
a be X, with b(x) = r such that (fb)" (x) + (fa)" (x)- But the foregoing lemma
shows that if & is a sheaf which fulfils (1) of 2.15, then the multiplication by the
functions from C(X, Q) can be brought over to the stalks from the terms of the
sheaf and that it agrees with the mentioned definition because fa represents
f(x) d(x) = f(x) r = fr in E, for any representative a € Xy of r. This also shows
that the natural A% — morphisms &, : (Xy, dy, +vs Vs ov) = (Exs Des + 50 Vi o)
are A — homomorphisms (see 2.2) as &y, (fa) = (fa)" (x) = f(x) d(x) = f d(x) =
=f fo(a).

B. It can be readily seen from A, that under the same conditions the Q — K-
area (I(U), dy, ¥ 1, Vv, 5y) defined in 2.6b and made into C(X, Q) — K-areas by
2.6b’ can be now made into C(X, Q) — K-areas naturally by setting (for o € I'(U),
fe C(X, Q)) fo to be the section defined as (fo) (x) = f o(x) for x € U because the
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latter term is just f (x) a(x) which agrees with the definition of fo in 2.6b’. Clearly
the natural map py : (Xy, dy, +u Vs ov) = (F(U), Ay F > Vi, 3p) is now an
A — homomorphism as well because now we have py(fa) = (fa)* = fa = f py(a)
for f e C(X, Q). From this we get that if ¢ € 4, = py(Xy), f € C(X, Q) then fo € Ay.
Indeed, we have ¢ = d for an a € X, and fd = (fa)", and fa € Xy, so (fa)" € Ap.
2.17. Theorem. Let & = {(Xy, dy, +v, Vu» ou) |euv| X} be a well supported sheaf
from ALM €(K), X locally paracompact, let for each ae X, the multiplication
M, : C(X, Q) - (Xx, dx) sending fe C(X, Q) onto fa be continuous at zero (see
2.14b). Let ¢ be the topology in the bundle E of & defined in 1.5b, let I'(U) for open
U < X be the set of all continuous bounded sections on U (see 1.6). Then for every
open U < X the natural map py : (Xy, dy) = (I(U), dy) (see 1.4b) is an isometric
isomorphism onto I'(U).

Proof. & is a sheaf hence it is a monopresheaf by 1.12. By 1.10, py : (X, dy) —
— (I(U), dy) is an isometry into I'(U). Let U = X be open and paracompact.
By 2.9, the p, — image Ay of Xy is \/ — closed hence Ay fulfils the condition (1)
of 2.10. Clearly Ay isa ¥, — subgroup of I'(U). If m € Ay, f € C(X, Q) then by 2.16B
fm e Ay hence Ay fulfils also the condition (2) of 2.10. By 2.13, {o(x) | o € 4y} = E?
for any x € U, and as E_ is dense in E,, the condition (3) of 2.10 is fulfilled by Ay.
By 2.10, A4, is dense in I'(U). Since p, is an isometry and (Xy, dy) is complete, we
have Ay = I'(U), which finishes the proof for paracompact U. Now, the way of
extending the proof to any open U has been shown in [2, added in proof].
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