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The expressions for proton-neutron residual interaction in odd-odd deformed nuclei are 
calculated. Nuclear potential including Wigner, Bartlett, Majorána, Heisenberg and tensor 
forces is considered. Expressions permitting numerical calculations are derived using č-function, 
oscillator, square-well, Gaussian and Yukawa radiál dependences for proton-neutron potential. 

V práci jsou odvozeny vztahy pro proton-neutronovou zbytkovou interakci v licho-lichých 
deformovaných jádrech. Při výpočtu byl uvažován potenciál, zahrnující Wignerovy, Bartlettovy, 
Majoránovy, Heisenbergovy a tenzorové síly. Vztahy, umožňující numerické výpočty, byly odvo­
zeny pro radiální závislost potenciálu, odpovídající o*-funkci, harmonickému oscilátoru, pravo­
úhlé jámě, Gaussovu a Yukawovu potenciálu. 

B pa6ore ziaioTCfl <J)opMyjibi ^JHI ocraTo-moro npoTOH-HeňTpOHHoro B3aHMo,n;eHCTBHJi B HeneT-
HO-HeneTHbix AeífropMHpOBaHHbix 5mpax. ynHTaBaeTCH noTeHnHaji BKJnoHaK)ui,HH BnrHepa, BapTji-
3TTa, MaňopaHa, reň3eH6epra H TeH30pHbie CHJIM. BbipaaceHHH yfloÓHbie AJIH HyMepHHecKHx BH-
HHCJieHHft nojiyHeHbi JXJIH paflHajibHoň 3aBHCHMOCTH noTeHnaajia B BH^e o*-<|>yHKHHH, rapMOHHnecKO-
ro ocuHJiJiaTopa, npHMoyrojiHoň AMH H nOTeHunajiOB Taycca o K)KaBbi, 

Residual proton-neutron interaction in odd-odd deformed nuclei is calculated. 
Nuclear potential including Wigner, Bartlett, Majorana, Heisenberg and tensor 
forces are considered. Expressions permitting numerical calculations are derived 
using O"-function, oscillator, square-well, Gausian and Yukawa radial dependences 
for proton-neutron potential. 

1. Introduct ion 

In last twenty five years the understanding of the structure of defoimed nuclei 
has ieached rather big progress. Many excited states were succesfully interpreted in 
framework of unified model based on the single particle motion in Nilsson or Woods-
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Saxon potentials with pairing interaction included [1]. Nevertheless, some substantial 
difficulties were met if the states in odd-odd deformed nuclei were interpreted. They 
are connected mainly with residual interaction between odd proton and odd neutron, 
which affects strongly individual quasiparticle states in odd-odd nuclei. As a result 
the intrinsic states with K = \Qp ± Qn\ have different energy. The splitting, A£, is 
rather sensitive to the form of the potential describing the p —n residual interaction. 

Role of p —n interaction in heavy odd-odd deformed nuclei was examined in 
relatively few papers (e.g. [2 — 5]). Analysis with rather general form of the p —n 
potential was carried out in Ref. [2], but only the "odd-even shift" in K = 0 rota­
tional bands was discussed. Splitting of the K = \Qp + Qn\ states was discussed 
by Pyatov [3], however only potential for zero-iange forces was considered. More 
detailed calculations were performed by Jones et al. [4] and Lassjo et al. [5] who took 
general form of the p —n potential, but calculations are limited to the Gaussian 
form of the radial dependence. 

In the present work are derived the expressions permitting numerical calculation 
of the splitting in odd-odd deformed nuclei. The p — n potential, Vpn, including Wigner, 
Bartlett, Majorana, Heisenberg and tensor forces is taken into account. Influence of 
different radial dependence of central part of Vpn on the K = \Qp ± Qn\ splitting is 
examined and formulas for (5-function (zero-range), oscillator, square-well, Gaussian 
and Yukawa dependences are expressed in form convenient for numerical calcula­
tions. 

2. General formulation of problem 

Total hamiltonian of odd-odd deformed nucleus can be written in the form [ l ] 

H = Hp + Hn+Vpn + HR + Hcl. (I) 

Here Hp and Hn are the hamiltonians for proton (p) and neutron (n) single particle 
motion respectively, HR represents rotation of the nucleus as a whole and HCI 

describes coupling between rotational and intrinsic motion (Coriolis interaction). 
Vpn is potential of residual p —n interaction which is assumed to be fully responsible 
for the splitting of the K = \Qp ± Qn\ states in the nucleus. 

Neglecting HCI term the wave function of unperturbed hamiltonian H0 = Hp + 
+ Hn + HK can be written in the form [6] 

\IK, QpQDy> = (^/\m (1 + Ri) ®MK*K (2) 

with intrinsic wave function defined as 

*K = XapXoa, K=\Qp±Qn\, y = 0 (3) 

for K > 0 and 

&к = о = \{ХарХ-аа + У-арХап) , У = ± 1 (4) 



for K = 0. The single particle wave functions Xn are further considered as calculated 
from the Nilsson potential [1,6] . 

The splitting, AE, of the states in odd-odd deformed nucleus can be then defined 

asa) 

AE = <IK1? QpQnl\ Vpn|IK1? QpQny} -

- <IK2, QpQn7\ Vpn|IK2, QpQn7y (5) 

where Kx = Qp + Qn and K2 = \Qp — Qn\ correspond to the parallel and anti-
parallel coupling of Q — s. 

3. The residual p—n interaction 

Expressions for the splitting, AE, were calculated with proton-neutron po­
tential Vpn including Wigner (W), Bartlett (B), Majorana (M), Heisenberg (H) and 
tensor (T) types of nuclear forces. As the calculation with customary form of po­
tential Vpn is very complicated and unclear more convenient form of Vpn was used 
and Vpn was written as 

5 

I ^ П = Щ Ѓ P - ? П | ) І > A (6) 

OL{ are parameters connected with strength parameter Vk, k = W, B, M, H, T 
(deepness parameter) for individual types of p —n potential and are equal 

«i = Vw + ^ , a 2 = ^ (7) 

a 3 = VM + - £ , a4 = -f, a5 = VT . 
2 2 

Operators Ox were used in the form 

Oi = 1 , 02 = (apdn) , 03 = PM, 0 4 = (dpan) PM (8) 

n - s - 3(( rp"" r n ) g p ) ( ( r p - rn)gn) ^ . 

which made it possible to express simply individual parts, (Vpn)k> of t r i e t o t a l P ~ n 
potential Vpn and simultaneously simplifies substantially the calculations. For radial 

a) If calculated splitting for the K = 0, Qp = Qn = 1/2 states is compared with experimental 
one the diagonal matrix elements of HC1 has to be considered. 
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part, V(|rp - rn | ), of the potential the (5-function (d), Gaussian (a), harmonic 
oscillator (h), square-well (w) and Yukava (y) dependences in the forms 

W = - -2 b(r) (9) 

(10) 

(11) 

(12) 

(13) 

respectively were considered. Here r = |r p — rn |, rJ9 j = g, h, w, y is the range 
parameter. The energy splitting (5) can be then lewritten in more explicite form 

AE = X «,K - Af) (14) 
i = 1 

in which A{ are diagonal matrix elements of operators 0{ . V{r) 

A, = (IK, QpQny\ V(r) 0\ IK, QpQny} (15) 

for fixed form of radial dependence V(r) given by Eq. (9) —(13). Indexes "p " and " a " 
in (14) refer to the parallel and antiparallel coupling of „-s respectively. Derivation 
of general expressions is now connected with explicite evaluation of Ax for cor­
responding form of p —n potential. 

Structure of operators in (15) made it possible to separate the space and spin 
dependence in matrix elements Ax. It is therefore convenient to express Nilsson 
functions Xn in intrinsic wave function <PK (Eq. (3) and (4)) as a product of the space 
and spin parts. Intrinsic wave function €>K can be then rewritten in term of Nilsson 
coefficients aNlA for proton and neuton parts [7] and corresponding Clebsch-Gordon 
coefficients. After rather long calculations matrix elements Ax can be expressed 
in the form 

A{= e ^ I K B i , i = 1,2,3,4,5 (16) 
a 

where QJKy is equal 

e,<,-.+v.n'n-'-2"''-' (.7) 



Factor R is composed from Clebsch-Gordon coefficients for coupling of proton and 
neutron orbital and spin moments and from corresponding Nilsson coefficients aNlA. 
Addition in (16) is carried out through indexes a = (NplpNJnLN'plpNnln LApAn . 
ZpZnkA'pA'nZ'pZ'nk' SGS' G') for which relations 

Ax + Zl = Ql9 i = p,n (18) 

X = Ap ± An , G = Zp - Zn 

are valid. By stroke are distinguished the indexes related to both wave functions in 
matrix elements A{. It should be noted that if the AN + 0 interaction in nucleus is 
neglected the addition through N falls off. 

Matrix elements B{ in (16) break down in a few paits as a result of the term 
(1 + R)) in wave function (2) and can be written in the form 

B{ = i { [ C + + + ( - l ) L + s + I / + s ' C r ~ ] ± (19) 

± (-i)7-L" s^o[c+- + (-i)L+s+L'+s'Cr+]} 

for K = \Qp ± Qn\ respectively. The expressions Cfp<Pn are matrix elements 

c r > n = <1v;/;iv;z;; L> pA' |<i ± ; s'q>pG
f\ (20) 

V(r) 0$ i ; scpnG} |Np/pNn/n; Lcpnk} . 

The indexes "<pP" and "<pn" a r e equal to " + " or " — " and are connected with de­
velopment of the wave functions. 

Matrix elements Cfp<Pn have to be calculated independently for each operator 0{ 

(8). Calculations are rather complicated and \ery tedious and are similar for all 0{ 

(except for 0 5 , for which different kind of terms appears). Therefore we present here 
as an illustrative example of used method only evaluation of the matrix elements 
for 02 operator in more details. For other operators, including 05 one, only the 
resulting expressions are given. 

First we rewrite matrix elements Cfp<Pn (20) as a product of space (Dfp<Pn) and spin 
(91^) parts 

Cfp<Pn = 2*»**D%pqfn . (21) 

Further we will evaluate only the teim with cpp = cpn = + . Corresponding term 9+ + 

can be rewritten with respect to the properties of the 5 2 operator in simple form 

^2 + + = S.:A...Ms + 1) - 3 ] • (22) 

For evaluation of space matrix element D+ + it is convenient to transform the 
expressions to new coordinates 

1
 2

1 / 2 ' 2 1 / 2 " ^ ' 



The wave function |Np/PNn/n, LA> can be then rewritten using the Talmi-
Moshinski coefficients (Np/pNn/n \L\ Nr/rNt/t) [8, 9] and ;s 

|Np/pNnln; LA> = (24) 

= I (Np/pNn/n |L| Nr/rNt/t) |Nr/rNt/t; LA> . 
NrlrNtlt 

Now the operator V(r) acts only on new coordinate rr. This made it possible, 
after rearrangement of wave functions, to express matrix element D2

 + in more 
insight form 

£ + + =<5L<,A',AZ (25) 

with matrix element Z defined as 

Z = £ {N'prpN'nl'n \L\ KKNJt) x (26) 
NrlrlVtltlVr' 

x (Np/pNn/n \L\ Nr/rNt/t) F(N;, it, Nr, / r ) . 

Here F(N', /', N, /) is radial integral calculated in coordinate system rr 

F(N', /', N, /) = f °°RN^(r) V(21/2r) RNl(r) r2 dr (27) 

which is explicitely dependent on the shape of the potential V(r). The evaluation of 
F(N', /', N, l) for all five types of considered radial dependences (9) —(13) of potential 
will be given in part 3.1. 

Substituting (25) and (22) into (21) the matrix element C2
 + (20) can be expressed 

in definitive form 

c+ + = ^-.A',A<A>[>(s + 1) - 3] Z . (28) 

Similar evaluation of other C%p<Pn and substitution into (19) made it possible to express 
matrix element B2. 

Further evaluation of matrix element Ax (16) is simplified if addition through 
indexes Ap, An, Ip, In, X, A'p, An, Z'p, I'n, X, s, a, s', a' is carried out. Properties of B2, 
together with explicite form of R made it possible to rewrite finally matrix element A2 

as 
A2 = QIKy I ZS*. (29) 

Np'lp'Nn'ln'LNplpNnln 

Here 5* is rather complex expression 

S* = Q+ + Q++ + Q+-(2Q-+ - Q+-) + QL+(2Q+- - O_+) + (30) 

+ Q--Q-- T ( - l ) / " L ^ > o [ ^ + + ^ - - + Q+-(2Q+- - Q-+) + 

+ Q++(2Q-+ - Q+-) + Q--Q++] 

8 



for K = \Qp ± Qn\ respectively. Nevertheless, the components O^p<Pn are constructed 
from Nilsson and Clebsch-Gordon coefficients only and have the form 

Qwn = aNpipApaNniaAn(lPAPln^n \ LAp + An) (31a) 

Ap + (cpp±) = Qp, An + (cpn±) = Qn 

for K = Qp + Qn, 

Q<rP<pn = aNpipApaNninAn(lPAPln - An \ LAp - An) (31b) 

A + (M)=Gp> A - ( ^ n i ) = Qn 

for Dp - Qn = 0 and 

G,P*» = ^Np^pAp^Nn^nCp - ^ V - A I L - Ap + /ln) (31C) 

*4p - fap i) = -̂ p , ^n + fan i ) = Q„ 
for Qn- Qp> 0. 

Evaluation of matrix elements A{ (16) for i = 1, 3, 4 can be carried out in a simi­
lar way as used for A2. Only evaluation of matrix element A5 is more complicated 
because the tensor operator 5pn in (8) has to be explicitely expressed. It can be done 
if expression similar to Eq. (1.91) in Ref. [10] for 5pn is used. Further method of 
evaluation of A5 is then similar to that for other Ar 

After rather complicated and tedious calculations the matrix elements Ax can 
be expressed in definitive form 

A1 = QjKy I ZS (32) 
.Vp.pJVnWJVp'.p'iVn'.„' 

A3 = QIKy I Z*S (33) 
Np/pNnJnLNp'lp'Nn'/n' 

A4 = QjKy I Z*S* (34) 
NplpNnlnLNp'lp'Nn'ln' 

A5 = QjKy I YT ' (35) 
NplpNnl„I.JVp'lp'iV„'.n'L' 

Here S* and Z aie expressions (30) and (26), Z* and Yare denned as 

z * = I (-i) , r(/v;/;/v;/; |L|N;/ riv t/ t)x (36) 
NrlrNtltNr' 

x (NplpNJn | L\ NrlrNtlt) F(N't, /„ Nt, /,) 

Y= ( - l f + 1 (2L+ I)112 £ (2/; + I)1'2 x (37) 
JVrlr\tlt/Vr'lr' 

x (N'pl'pN'al'n | L | N'rl'rNtlt) F(N'„ l'r, N„ \r) x 

x (/vp/pNn/n | L | /vr/jv,/,) (/; 0 2 0 | /, 0) x 

Є îЭ 



and 5 and Tare again complex coefficients expressed through g ^ n (Eq. (3la) —(31c)) 

S = Q+ + Q++ + Q+-Q+- + Q- + Q-+ + Q--Q-- + (38) 

+ (-\y~L dKi0(Q++Q__ + Q+-Q-+ + Q-+Q+- + O__O++) 

T= Q'+ + [2(LK- 1 2 0 | L K - 1)Q++ + 61/2(LK 2 - 1 | LK - 1) x (39) 

x (O+_ + £ _ + ) + 2 .61 / 2(ZK + 12 - 2 | L K - l ) e _ _ ] - (Q+- + Q-+) x 

x [61/2(LK - 12 1 \LK)Q++ + 2 ( L K 2 0 | L K ) ( O + _ + Q_+) + 

+ 61/2(LK + 1 2 - 1 | LK) D__] + O'__[2 . 61/2(LK - 1 2 2 | L'K + 1) x 

x D++ + 61/2(LK2 1 | L K + l)(O+_ + O _ + ) + 

+ 2(LK + 1 2 0 | L K + l ) o - - ] + ( - l ) J - L ' ^ , o { ^ + + x 

x [ 2 . 6 1 / 2 ( L - 122\L1)Q++ + 61/2(L0 2 1 | E 1) x 

x(O + _ + D _ + ) + 2 ( L 1 2 0 | L ' l ) O _ _ ] - ( O ' + _ +O'_ + ) x 

x \61I2(L - 1 2 1 | L 0) Q+ + + 2(L0 2 0 | L 0) x 

x (O+_ + D_+) + 61 /2(L12 - l | L 0 ) ^ _ _ ] +O'__ x 

x [2(L - 1 2 0 | L - 1) Q+ + + 61/2(L0 2 - 1 | L - 1) x 

x (O+_ + D _ + ) + 2 . 6 1 / 2 ( L 1 2 - 1 | L - 1 )O_- ]} . 

The note fck + " in expressions (38) and (39) corresponds again to K = \Qp ± Qn\ 
respectively. 

3.1 Radial integrals 

For evalution of integrals (27) radial wave function, R„i(r), has to be explicitely 
expressed. Using properties of degenerate hypergeometrie functions Rnl(r) can be 
expressed as [7] 

U') = t m «) v'/2+*+3/V"2/2r2<+' (40) 
k = 0 

where 2n = (N — l), /?k(/, n) are normalization coefficients and v is numerical 
factor of dimension m" 2 which is proportional to A"1/3. After substitution (40) 
into (27) radial integral F(N', /', N, /) can be expressed in form 

F(N', /', N, /) = I Pk{l', n') £ Pk(I, n) x O (L±L + k + W + 1, ^ (41) 
*' = o * = o \ 2 / 

through new integrals <t(m, v) 

d>(m, v) = f °°(vr2)m e"vr2 V(21/2r) v1/2 dr . (42) 

10 



Integrals 0(m, v) depends on radial shape of nuclear potential V(r) and can be 
evaluated with use of auxilliary expressions 

f- +Q0 (— \Y-x2k 

Kim, x) = r2me-'2 dr = x2 m + 1 Y '— , m > 1 (43) V ' J 0 it=o k\ (2m + 2k + 1) V ' 

U(m) = lira K(m, x) = f + <° r2m e" r2 dr = ( 2 m - ^ ! ! g " 2 , m = 1 (44) 
*-> + » Jo 2m 

M(ft ,m)= f + C ° r 2 m - 1 e - r ( r + 6 ) d r = QHLLM ^b, m), m = l (45) 
Jo 2 

Here n(b, m) aie defined as 

^ , l ) - - 2 [ l - ^ * ( - ^ - - G ( | ) ) ] (46a) 

H(b, 2) - i ± - - ! „(*,, 1) - f (46b) 

^ - + l) = 8 m ~ 2 + bl n(b, m) - 8 ( m ~ n n(d, m - 1) , m = 2 (46c) 

2m + 1 2m + 1 
and G(x) is known integral [11] 

G ( x ) = | e - r 2 d r = Z ^ ; ^ . (47) 
Jo k = o k\ (2k + 1) 

(Evaluation of integral 0(m, v) (42) can be done if integration "per partes" and value 
of integral (47) are used). 

Substituting into (42) fixed radial shape of nuclear potential V(r)(in one of forms 
(9)-(13)), integrals 0(m, v) for each shape V(r) can be expressed through (43) —(45) 
and are of definitive form 

Od(m, v) = - 2 1 ' 2 ^ v 3 ' 2 ^ 4 (48) 

2 
O i m , v) = L(m) = 

gy ' ' / f\ \ m + l / 2 V I 

* ' " " ( ' + ^ ) 

(2m - 1)!! 

( 9 \ m + l / 2 

, + ^ ) 

4 > > , v ) = --K(m,v1'2rw2-1'2) = 

(49) 

11 



r 2 " У + 1 / 2 y (-Г)*r2У 
2̂ +1/2 tèo2"fe!(2m + 2fe + 1) 

(50) 

4>h(m, v) = - — \K(m, v1 /2rA2"1 /2) - K(m + 1, v1/2rh 2~1/2) A l = (51) 
2r„L vr»J 

( - l ) ' r 2 V  = 3r2
h

mvm+1/2 t ? 

2m+i/2 LQ 2 i f c , ^ 2 m + 2k+ l ) (2m + 2fe + 3) 

<J>^(m, v) = - v 1 / 2 2 " 1 / 2 M ( 2 1 / 2 v " 1 / 2 r ; 1 , m) = (52) 

v1/2(2m - 1)!! 1 / 2 . . - 1 / 2 - 1 
j2m + l/2 

џ(21/2V m) 

Radial integrals F(N', /', N, /) can be now eplicitely expressed from Eq. (41). After 

substituting (41) into Eqs. (26), (36) and (37) for Z, Z* and Y respectively matrix 

elements A{ (Eqs. (29), (32) —(35)) for different types of nuclear forces and different 

radial shapes of proton-neutron potential can be evaluated. The K = \Qp ± Qn\ 

splitting in odd-odd deformed nuclei, AE, is then calculated directly from Eq. (14). 

rjjfml 
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Fig. 1. Dependence of matrix elements for Majorana part of the p—n residual interaction in odd-
odd deformed nuclei on radial shape of nuclear potential. 
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4. I l lu s t ra t ive e x a m p l e 

Example of application ot theoretical expressions for calculation of splitting in 
odd-odd deformed nuclei is presented in Fig. 1 for Majorana part of p — n interaction 
between proton and neutron in 5/2 + [402] and 3/2 — [521] Nilsson states respec­
tively. Both matrix elements <|(Vpn)M|> from (5) are given as function of radial 
parameter rj9 j = g, h, w, y for different radial shapes (10) — (13) of p — n potential 
(for ^-function shape (9) matrix elements are constant). Calculation was performed 
with strength parameter of Majorana forces equal VM = 1 MeV. Rather strong 
dependence of matrix elements (and simultaneously of corresponding part of split­
ting, A£, in odd-odd deformed nucleus) on radial parameter rj and especially on 
radial shape of the p — n potential is cleaily expressed. 
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