Acta Universitatis Carolinae. Mathematica et Physica

P. Holan; J. Kvasil; F. Stérba; M. Smrékova
The splitting of the states and p-n interaction in odd-odd deformed nuclei

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 23 (1982), No. 2, 3--13

Persistent URL: http://dml.cz/dmlcz/142491

Terms of use:

© Univerzita Karlova v Praze, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/142491
http://project.dml.cz

1982 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 23, NO. 2.
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The expressions for proton-neutron residual interaction in odd-odd deformed nuclei are
calculated. Nuclear potential including Wigner, Bartlett, Majorana, Heisenberg and tensor
forces is considered. Expressions permitting numerical calculations are derived using J-function,
oscillator, square-well, Gaussian and Yukawa radial dependences for proton-neutron potential.

V praci jsou odvozeny vztahy pro proton-neutronovou zbytkovou interakci v licho-lichych
deformovanych jadrech. Pfi vypoétu byl uvazovan potencial, zahrnujici Wignerovy, Bartlettovy,
Majoranovy, Heisenbergovy a tenzorové sily. Vztahy, umoziujici numerické vypoéty, byly odvo-
zeny pro radialni z4vislost potencidlu, odpovidajici d-funkci, harmonickému oscilatoru, pravo-
uhlé jam&, Gaussovu a Yukawovu potencialu.

B pa6ote narorcs GopMyIbl AJIst OCTATOYHOT'O MPOTOH-HEHTPOHHOTO B3aMMOAEHCTBHSA B HEYET-
HO-HEYETHBIX Ae(OPMHUPOBAHHBIX AApaX. YYHUTABACTCA MOTEHIMAI BKIroYaromuit Burnepa, bapti-
3TTa, Maiiopana, [eii3enbepra 1 TeH30pHbIE CUJIbl. BhIpaKeHHs YIOOHbIE IJIs HYMEPHYECKUX BbI-
YHCJIEHUH TOJTyYeHbI IUTS PaUaIbHOM 3aBUCMMOCTH MOTEHLHAIA B BAAE J-QYHKUMH, TADMOHHYECKO-
rO OCLM/IIATOPA, NPAMOYTOIHOM MBI ¥ noTeHuuanos [aycca o FOxaswl,

Residual proton-neutron interaction in odd-odd deformed nuclei is calculated.
Nuclear potential including Wigner, Bartlett, Majorana, Heisenberg and tensor
forces are considered. Expressions permitting numerical calculations are derived
using J-function, oscillator, square-well, Gausian and Yukawa radial dependences
for proton-neutron potential.

1. Introduction

In last twenty five years the understanding of the structure of deformed nuclei
has 1eached rather big progress. Many excited states were succesfully interpreted in
framework of unified model tased on the single particle motion in Nilsson or Woods-
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Saxon potentials with pairing interaction included [1]. Nevertheless, some substantial
difficulties were met if the states in odd-odd deformed nuclei were interpreted. They
are connected mainly with residual interaction between odd proton and odd neutron,
which affects strongly individual quasiparticle states in odd-odd nuclei. As a result
the intrinsic states with K = IQP + Qn| have different energy. The splitting, AE, is
rather sensitive to the form of the potential describing the p—n residual interaction.

Role of p—n interaction in heavy odd-odd deformed nuclei was examined in
relatively few papers (e.g. [2—5]). Analysis with rather general form of the p—n
potential was carried out in Ref. [2], but only the “odd-even shift” in K = 0 rota-
tional bands was discussed. Splitting of the K = IQP + Q,| states was discussed
by Pyatov [3], however only potential for zero-tange forces was considered. More
detailed calculations were performed by Jones et al. [4] and Lassjo et al. [ 5] who took
general form of the p—n potential, but calculations are limited to the Gaussian
form of the radial dependence.

In the present work are derived the expressions permitting numerical calculation
of the splitting in odd-odd deformed nuclei. The p—n potential, V,,,, including Wigner,
Bartlett, Majorana, Heisenberg and tensor forces is taken into account. Influence of
different radial dependence of central part of V,, on the K = |Q, + Qn] splitting is
examined and formulas for é-function (zero-range), oscillator, square-well, Gaussian
and Yukawa dependences are expressed in form convenient for numerical calcula-
tions.

2. General formulation of problem

Total hamiltonian of odd-odd deformed nucleus can be written in the form [1]
H=H,+H,+V,, + Hy + He,. (1)

Here H, and H, are the hamiltonians for proton (p) and neutron (n) single particle
motion respectively, Hg represents rotation of the nucleus as a whole and H,
describes coupling between rotational and intrinsic motion (Coriolis interaction).
V,. is potential of residual p—n interaction which is assumed to be fully responsible
for the splitting of the K = IQp + Q.| states in the nucleus.

Neglecting H, term the wave function of unperturbed hamiltonian Hy, = H, +
+ H, + Hy can be written in the form [6]

20 + 1\'?
K, 2,295 = (=) (1 + R,) 23xPx 2)
16m
with intrinsic wave function defined as
Py = foX0n» K=12,£2)], y=0 - (3)
for K > 0 and
Py=o = (o X0, + V-0,Xe,)> V= *I (4)




for K = 0. The single particle wave functions x,, are further considered as calculated
from the Nilsson potential [1, 6].
The splitting, 4E, of the states in odd-odd deformed nucleus can be then defined
as®)
AE = UK, 2,2, Vi

IK,, Q,Q.y) —

- <IK2’ ngnyl Vpn IKZ.‘ ngn)"> (5)

where K, = Q, + Q, and K, = |2, — Q,| correspond to the parallel and anti-
parallel coupling of Q—s.

3. The residual p—n interaction

Expressions for the splitting, 4E, were calculated with proton-neutron po-
tential V,, including Wigner (W), Bartlett (B), Majorana (M), Heisenberg (H) and
tensor (T) types of nuclear forces. As the calculation with customary form of po-
tential V,, is very complicated and unclear more convenient form of V,, was used
and V,, was written as

Vou = V(|Fp — 7a|) T %0 (6)

o; are parameters connected with strength parameter V,, k = W, B, M, H, T
(deepness parameter) for individual types of p—n potential and are equal

(x1=Vw+_2‘, a2="? (7)
a3=VM+Y£a a4=%’ a5=VT'

Operators O; were used in the form

01 = 1 3 02 = (3‘,3“) ) 03 = PM N 04 = 3p3n) PM (8)

05 - Spn - 3((fp — ?n) ap) ((rp2— r“) an) - (apgn)

-

-
|rp - r,

which made it possible to express simply individual parts, (Vp,,)k, of the total p—n
potential V,, and simultaneously simplifies substantially the calculations. For radial

2) If calculated splitting for the K = 0, Q, = @, = 1/2states is compared with experimental
one the diagonal matrix elements of H, has to be considered.



part, V(|7, — 7,|), of the potential the d-function (d), Gaussian (g), harmonic
oscillator (h), square-well (w) and Yukava (y) dependences in the forms

4n
Vir) = - = a(r) ©)
V(r)= — _Z e (10)
¢ n'%r,
1
Vir)=—-— for r<r, (11)
rw
0 for r>r,
2
Vi(r) = — 3 [1 - (1>] for r<r, (12)
2r, T
0 for r>r,
W)= = e (13)

r

respectively were considered. Here r = [Fp — Fol, 7, j =g, h,w, y is the range
parameter. The energy splitting (5) can be then 1ewritten in more explicite form

5
AE = Y a,(47 — A7) (14)
i=1

in which 4, are diagonal matrix elements of operators O; . V(r)

4, = UK, 2,2,y

V(r) O IK, 2,2,7> (15)

for fixed form of radial dependence V(r) given by Eq. (9)—(13). Indexes “‘p™ and *“a”
in (14) refer to the parallel and antiparalle]l coupling of Q-s respectively. Derivation
of general expressions is now connected with explicite evaluation of A; for cor-
responding form of p—n potential.

Structure of operators in (15) made it possible to separate the space and spin
dependence in matrix elements A4;. It is therefore convenient to express Nilsson
functions xg in intrinsic wave function @ (Eq. (3) and (4)) as a product of the space
and spin parts. Intrinsic wave function @, can be then rewritten in term of Nilsson
coefficients ay,, for proton and neuton parts [7] and corresponding Clebsch-Gordon
coefficients. After rather long calculations matrix elements A; can be expressed

in the form
Ai = QIKy ZRBx s i = 11 2a 3’ 43 5 (16)

where Qg, is equal

— I —_—
Qrky = 1 + 9.0 L, T 2]) r=l (17)



Factor R is composed from Clebsch-Gordon coefficients for coupling of proton and
neutron orbital and spin moments and from corresponding Nilsson coefficients ay;4.
Addition in (16) is carried out through indexes a = (N,I,N [, LN, I NI, LAA, .
I 2 AN A XX, A sas'c”) for which relations

A;+2,=9Q,, i=p,n (18)
A=A, x4, e=2%,—Z,
are valid. By stroke are distinguished the indexes related to both wave functions in

matrix elements A4;. It should be noted that if the AN =+ 0 interaction in nucleus is
neglected the addition through N falls off.

Matrix elements B; in (16) break down in a few paits as a result of the term
(1 + R,) in wave function (2) and can be written in the form

B = H{[C/" + (—1)f e & (19)
+ (—I)I—L—séx,o[cj_ + (_1)L+s+L’+s'C;-+]}
for K = IQP + Qn| respectively. The expressions C?**" are matrix elements
CPPon = (NI NaL: Lok |<34; 5'0y0| (20)
V(r) O} 3 59,0) INJI,NoLs Loa2) -
The indexes “@,” and “‘¢,” are equal to ““+” or *“—"" and are connected with de-

velopment of the wave functions.

Matrix elements C?*? have to be calculated independently for each operator O;
(8). Calculations are rather complicated and very tedious and are similar for all O,
(except for Os, for which different kind of terms appears). Therefore we present here
as an illustrative example of used method only evaluation of the matrix elements
for O, operator in more details. For other opetators, including Os one, only the
resulting expressions are given.

First we rewrite matrix elements C57% (20) asa product of space (D%**") and spin
(24°") parts
Cgron = GYpnDYeos (21)

Further we will evaluate only the term with ¢, = ¢, = +. Corresponding term 25 *
can be rewritten with respect to the properties of the s2 operator in simple form

D;" =08, 8,0 o[25(s + 1) = 3]. (22)

For evaluation of space matrix element D; * it is convenient to transform the
expressions to new coordinates

Fe= a2’ e = p21/2 - (23)



The wave function INPIPann, LAY can be then rewritten using the Talmi-
Moshinski coefficients (N,[,N,l, |L| N,I.N 1) [8,9] and ‘s
IN,I,Nol; LAY = (24)
= Y (NNulo|L| NINJI)|NJIN I LAy .
1

NeleNele
Now the operator V(r) acts only on new coordinate r,. This made it possible,
after rearrangement of wave functions, to express matrix element D3 * in more
insight form
Dyt = 6,0, ,Z (25)

with matrix element Z defined as

Z= 3 (NLN:L

NeleNoIeNe’

L|N/I.N 1)) x (26)

X (NplNolo |L| NN ) F(N., 1,,N,, I,).

Here F(N', I'N, l) is radial integral calculated in coordinate system r,

+

" Ryt (r) V(2172r) Ry(r) 12 dr (27)

F(N', I\ N, ) = j
o
which is explicitely dependent on the shape of the potential V(r). The evaluation of
F(N', I, N, I) for all five types of considered radial dependences (9)—(13) of potential
will be given in part 3.1.
Substituting (25) and (22) into (21) the matrix element C; * (20) can be expressed
in definitive form

C3 = bu by b Bora[25(s +1) = 3] 2. (28)

Similar evaluation of other C$?* and substitution into (19) made it possible to express
matrix element B,.

Further evaluation of matrix element 4; (16) is simplified if addition through
indexes A, A,, Z,, Z,, 4, Ay, Ay 2, 24, A, 5, 0,5, 0 is carried out. Properties of B,,
together with explicite form of R made it possible to rewrite finally matrix element A4,
as

A= Qi y Zs*. (29)

Np'lp'Nn'ln’LNplpNnla
Here S* is rather complex expression
S* =0\ i04s + 04201+ —0+-) + 021204 - —0-4) + (30)
+ol o - F(=1)""okolehro-- +04-(204- —0-4) +

+ 04 +(20-4 —04-) + 004 +]



for K = IQP + Q,| respectively. Nevertheless, the components g, _,_ are constructed
from Nilsson and Clebsch-Gordon coefficients only and have the form

Couon = ptpag@natats(lpAphada | LA, + A,) (31a)

Ap+((pp%)= Q,, An+(q’n%)=9n
for K = Q, + Q,,

Qopon = ANty ONtaa,(lpApla — Aa | LA, = A,) (31b)
A+ (0, 3) =92, A, —(9.3) =2,
for Q, — Q, =2 0 and
Copon = Anyipa,Anatnanlly — Aphadn | L — Ay + 4,) (31¢c)
4, = (9,3) = 2, Ao+ (9a3) = @,

for Q, — 2, > 0.

Evaluation of matrix elements 4; (16) for i = 1, 3, 4 can be carried out in a simi-
lar way as used for 4,. Only evaluation of matrix element A5 is more complicated
because the tensor operator S,, in (8) has to be explicitely expressed. It can be done
if expression similar to Eq. (1.91) in Ref. [10] for S,, is used. Further method of
evaluation of A is then similar to that for other A4;.

After rather complicated and tedious calculations the matrix elements A4; can
be expressed in definitive form

Ay = QIKy Z Z8 (32)
NplpNalaLNp 1p'Na'ln’

A3 = QIKy Z AN (33)
NplpNnlaLNy'lp'Nn'ln’

Ay = Qi Y Z*S* (34)
NplpNnlaLNp'lp'Na'ln’

As = QIKy Z YT (35)

NplpNalaLNp'ly'No'ly'L’

Here S* and Z aie expressions (30) and (26), Z* and Y are defined as

Z*= Y (=1 (NN, | L| N{I.N,) x (36)
NeleN Ny’
X (NpI,N,l, | L| NN 1) F(N., 1, N,, I,)
Y=(-1)"@L+ )" Y QL+ 1) x (37)

NeleNeloeNe“Le!
X (NploNulo | L | NN ) F(N,, I;, N, 1,) x
X (Nol,Nol, | L| NN J)(1;020]1,0) x

(L
L21,




and S and Tare again complex coefficients expressed through ¢,,,, (Eq.(31a)—(31c))
S=04,044 + 004 to o +ol_0 - F (38)
F 1) ok o0 +0-- + @4-0-s +0-404- +0-_044)
T=0,,[2(LK —120|LK — 1)g,, + 6"*(LK2 - 1|LK — 1) x  (39)
X (@4~ +0-4+)+2.6VH(IK +12 — 2|L’K - o-_]-(c- + g'_;) X
x [6LK — 121 |LK) g+ + 2(LK20| LK) (04— + 0-4) +
+6"H(LK + 12— L|LK)g__] + o-_[2.6"%LK — 122 | 'K + 1) x
X 0,y +6YHLK21|LK + 1) (04— + 0-+) +
+2(LK + 120 | LK + 1) o__] F (—1)""% 6k ofo’ + x
x [2.6YL—122|L1)g,, + 6"*L0O21|L 1) x
X (@4- + 0-4)+2L120|L1)o__] — (2% +0-4) X
x [6"*(L—121|L0)g,, + 2(L0O20|LO0) x
X (@4- +0-4) + 6YHL12—1|L0)o__] +o-_ x
x [2(L—120|L — 1)@,y + 6"3(LO2 —1|L — 1) x
X (04— +0-4)+2.6VH(L12—1|L - 1)o__]}.

The note **+” in expressions (38) and (39) corresponds again to K = IQp + Qn|
respectively.

3.1 Radial integrals

For evalution of integrals (27) radial wave function, R,(r), has to be explicitely

expressed. Using properties of degenerate hypergeometric functions R,(r) can be
expressed as [7]

R,,,(r) — Z ﬂk(ls n) vl/2+k+3/4e—vrz/2r2k+l (40)
k=0
where 2n = (N — 1), (I, n) are normalization coefficients and v is numerical

factor of dimension m~? which is proportional to A~'/>. After substitution (40)
into (27) radial integral F(N’, I', N, I) can be expressed in form

FINL I N, 1) = S Bl ) S Bull, m) x @ (’Lz’ kK, v) (a1)
k’=0 k=0
through new integrals ®(m, v)

o(m.) = |

0

+

(vr?)m e " V(2'2r)v/2 dr. (42)

10



Integrals ®(m, v) depends on radial shape of nuclear potential ¥(r) and can be
evaluated with use of auxilliary expressions

x + o0 (__l)k x2k
K(m,x) = | r*™e " dr = x>y ,
. Eo kI (2m + 2k + 1)

v

1 (43)

+ o0 _ " 2
L(m) = lim K(m, x) =.[ rme ™" dr = (2m — D2’ , m=1 (4)

x—+ o0 0 2m+1

+ o _ "
M(b, m) j pm=1 g reh gy (2'"2_1)- wbom), mz1  (45)
0

Here p(b, m) are defined as

u(b, 1) = 2 [1 — bt <%/2 -G <§))] (46a)

u(v,2) = S0y 1) - 3 (46b)
wb,m + 1) = 8mz:n—2++1b2 w(b, m) — —IE_—-I-—? u(b, m — 1), =2 (46¢)

and G(x) is known integral [11]

G(x) J‘ ( l)k 2k+1 (47)

K= ok'(2k+1)

(Evaluation of integral ®(m, v) (42) can be done if integration “per partes” and value
of integral (47) are used).
Substituting into (42) fixed radial shape of nuclear potential ¥(r)(in one of forms

(9)—(13)), integrals ®(m, v) for each shape V(r) can be expressed through (43)—(45)
and are of definitive form

Bum.) = = 2Pm, »
2
(Dg(m, V) = — S\mri2 L(m) =
nl/ng (1 + —2')
vr,
_ (2m - 1)!!
- 9 \m+1/2 (49)
r, 2" (l + —2>
vry
O, (m,v) = — L K(m, v'/?r,,271%) =
r

w

1



2m m+1/2 + o — 1)k 2k k
_ ( 1) WV (50)
MU (o 2%kt (2m + 2k + 1)
Dy(m, v) = — - |:K(m, vi2r271%) — K(m + 1, v!/?r, 271/2) iZ:I = (b
2r, VI
3 e (=1 it
mEUZ S K (2m + 2k + 1) (2m + 2k + 3)
D (m, v) = —v1/2 2712 M2y V2t ) = (52)
v2(2m — 1)!! _ -
T %— p(2 212 m)

Radial integrals F(N’, I', N, I) can be now eplicitely expressed from Eq. (41). After
substituting (41) into Egs. (26), (36) and (37) for Z, Z* and Y respectively matrix
elements A4; (Eqgs. (29), (32)—(35)) for different types of nuclear forces and different
radial shapes of proton-neutron potential can be evaluated. The K = IQP + in
splitting in odd-odd deformed nuclei, 4E, is then calculated directly from Eq. (14).

0 1 2 3 4 5 rnlfm]
-5t
BN
V)
-
-y
_10..
/\
~—
Pl
- 0
N
\
vV
..5..

Fig. 1. Dependence of matrix elements for Majorana part of the p—n residual interaction in odd-
odd deformed nuclei on radial shape of nuclear potential.

12



4. Illustrative example

Example of application ot theoretical expressions for calculation of splitting in
odd-odd deformed nuclei is presented in Fig. 1 for Majorana part of p—n interaction
between proton and neutron in 5/2 + [402] and 3/2 — [521] Nilsson states respec-
tively. Both matrix elements <|(V,.)u|> from (5) are given as function of radial
parameter rj, j = g, h, w, y for different radial shapes (10)—(13) of p—n potential
(for d-function shape (9) matrix elements are constant). Calculation was performed
with strength parameter of Majorana forces equal Vy; = 1 MeV. Rather strong
dependence of matrix elements (and simultaneously of corresponding part of split-
ting, 4E, in odd-odd deformed nucleus) on radial parameter r; and especially on
radial shape of the p—n potential is cleatly expressed.
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