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A three-axiom description of Boolean algebras and orthomodular lattices is given. 

nojiyneHO onHcaHHe 6y.neBbix anre6p M opTOMOflyjiapHbix CTpyKTyp CHCTeMaMH COCTOHHTHMH 
H3 Tpex aKCHOM. 

Je podán tříaxiomatický popis Booleových algeber a ortomodulárních svazů. 

1. Introduction 

This note owes its inspiration to the remarkable paper of Sobocinski [3]. It 
turns out that the concepts and methods developed there play an important role 
in the theory of ortholattices (cf. [ l ] , [4] and [5]); our discussion here will yield 
two new consequences of such an approach. 

First of all, we give a brief outline of two results from the theory of ortho-
modular lattices. For further details the reader is referred to BirkhofTs book [2]. 

We shall use the following theorem, the proof of which may be found in [2, 
Theorem 21, p. 53]. Recall that two elements a, b of an ortholattice commute, 
written aCb if a = (a n b) u {a n b1). 

Thoerem 1. An ortholattice S2I = (A, u , n , L) is a Boolean algebra if and only if 

[ab] : a, b e A . ZD . aCb . 

We now turn our attention to a similar statement about orthomodular lattices. 

Theorem 2. An ortholattice 21 = (A, u , n , x) is an orthomodular lattice if and 
only if it satisfies the following postulate 

M [ab\ : a, b, c e A . z> . a u b = ((a u b) n a) u ((a u b) n a1) . 

Proof. 1) Since in any lattice a g a u b, by [2, Lemma 1 and Theorem 21, pp. 
52, 53] we have a u bCa. 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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2) Assume $T satisfies M. If a _̂  b, one then obtains b = (b n a) u (b n a1) = 
-= a u (b n a1). 

2. Main Theorems 

Theorem 3. Any algebraic system $1 = (A, u , n , -1) where u and n are two 
binary operations and x is a unary operation is a Boolean algebra if it satisfies the 
axioms 

BA 1 [ab] : a, b e A . => . a = a u (b n b1) ; 
BA 2 [abc] : a,b, ce A . => . (a u b) u c = (c1 n b1)1 u a ; 
BA 3 [abc] : a, b, ce A . => . a = (a n (b u c)) u (a n b1) . 

Remark. Using Theorem 23 of [2, p. 53] we find that the axioms BA 1, BA 2 
and BA 3 hold in any Boolean algebra. 

Proof of Theorem 3. Put c = b n b1 = 0, use Theorem 1 and [1]. 

Thoerem 4. Any algebraic system $1 = (A, u , n , L) where u and n are two 
binary operations and 1 is a unary operation is an orthomodular lattice if it satisfies 
the postulates 

OM 1 [ab] : a, b e A . => . a = a u (b n b1) ; 
OM 2 [abc] : a, b, c G A . => . (a u b) u c = (c1 n b1)1 u a ; 
OM 3 [abc] : a, b, c G A . => . a u b = ((a u b) n (a u c)) u ((a u b) n a1) . 

Remark. Since in any orthomodular lattice aLCa u b and a1Ca u c, we obtain, 
using [2, Theorem 23, p. 53], that 

((a u b) n (a u c)) u ((a u b) n a1) = (a u b) n (a u c u a1) = a u b . 

From this fact we conclude that the postulates OM 1, OM 2 and OM 3 hold in any 
orthomodular lattice. 

Proof of Theorem 4. Put b = 0 in OM 3. Then 

a = au 0 O M 1 
= ((a u 0) n (a u c)) u ((a u 0) n a1) OM 3 
= (a n (a u c)) u (a n a1) OM 1 
= a n (a u c) . OM 1 

By [1], 21 is an ortholattice. The postulate OM 3 for c = 0 gives 

a u b = ((a u b) n (a u 0)) u ((a u b) n a1) 
= ((a u b) n a) u ((a u b) n a1) . OM 1 

Theorem 2 shows that 51 is orthomodular. 
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