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Free Groupoids In Varieties Determined By a Short Equation

J. JEZEK
Department of Mathematics, Charles University, Prague*)

Received 8 May 1981

Let x be a variable and # be an arbitrary term of length =< 4. Free groupoids in the variety
determined by x = r are described in any case, with the exception of the variety determined by
x = y(yx.y) and its dual.

Bud dana promé&nnd x a term ¢ délky = 4. Volné grupoidy ve varieté ur&ené rovnici x = ¢
jsou popsany ve viech pfipadech, kromé variety uréené rovnici x = y(yx . y) a jejiho dualu.

ITycts x — nepemeHHas u ¢ — TepM AMMHBI = 4. CBOGOAHEIE rPyNMOKOLl B MHOTOOGpa3Hio,
OIpENICJICHHOM YDAaBHEHHEM X = f, OIMCAHBI BO BCEX CIIy4asX, C MCK/IIOYEHMEM MHOroobpasms,
OIpeIe/IEHHOTO ypaBHEHHEM X = Y(¥x . ¥), B IyaJbHOrO MHOTrOOGpasms.

Given a variety V of universal algebras, we can consider the following three
problems:

(P1) Describe the V-free groupoid over an infinite countable set.
(P2) Describe all V-free groupoids.

(P3) Find an algorithm deciding for any pair u, v of terms if the equation u = v
is satisfied in V (i.e. solve the word problem for free algebras in V).

Usually, a solution of any one of these three problems gives automatically a solution

of the remaining two ones.

In Section 1 we describe a general method enabling to solve these problems in
many concrete cases; we introduce the notion of a replacement scheme and show
that if a replacement scheme for ¥ is found, then problems (P1) and (P3) are auto-
matically solved. In order to be concise, we restrict ourselves to the case of algebras
with a single binary operation — i.e. groupoids. In Sections 2, 3, 4 and 5 we illustrate
this method on varieties determined by an equation of the form x = t where ¢ is
a term of length <4. Given any term ¢ of length <4, we solve problems (P1) and (P3)
for the variety V determined by x = ¢ either by finding a replacement scheme for V
or by finding a representative set of terms for ¥ and applying Proposition 1.2. The
only two exceptions are the variety determined by the equation
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x = y(yx.y)

and its dual, for which description of free groupoids remains an open problem.

In [1] Austin described another method for solving problem (P3) and illustrated
this method on the variety determined by x = (yx.y)y. Austin noted that his
method can be applied to any equation x = t with ¢ of length <4, with the following
six exceptions:

x=yy.xx), x=(xx.y)y,
x=yyx.y), x=.xy)y,
x = y(x.xy), x=(yx.x)y.

1. Representative sets of terms and replacement schemes

We denote by X the infinite countable set of variables and by W the groupoid
of terms — the absolutely free groupoid over X; the binary operation of W will be
denoted multiplicatively. If ¢ is a term, then the number of occurrences of varia-
blesin ¢t is called the length of t. For every term t and every n = 0 define a term 2" as
follows: t! = t; """ = 2"¢*".

Equations are ordered pairs of terms; if there is not confusion, an equation (u, v)
is sometimes denoted by u = v.

Let V be a variety of groupoids. A subset R of W is said to be representative for V
if the following two conditions are satisfied:

(i) for every term ¢ there exists exactly one term u such that u € R and the equation
(1, u) is satisfied in V;

(ii) if # € R then every subterm of ¢ belongs to R.

1.1. Remark. For every variety of groupoids there exists at least one representative
set of terms.

Proof. Let V be a variety of groupoids. Denote by S the system of all sets M = W
such that if t € M then every subterm of ¢ belongs to M and if u,ve M and u + v
then the equation (u, v) is not satisfied in V. It follows from Zorn’s lemma that S
has a maximal member R. Suppose that R is not representative for V. Then there
exists a term ¢ such that whenever u € R then (¢, u) is not satisfied in V. Let ¢ be a term
of minimal length between terms with this property. Of course, t does not belong
to R. If t were a variable, then R U {t} would belong to S, a contradiction with the
maximality of R. Hence t = vw for some terms v, w. By the minimality of ¢ there
exist terms p, g € R such that the equations (v, p) and (w, q) are satisfied in V. Evident-
ly (¢, pq) is satisfied in Vand so pg does not belong to R. As it is easy to see, R U {pg}
belongs to S, a contradiction with the maximality of R.

4



Let R be a representative set of terms for a variety V. Then we define a binary
operation - on R as follows: if u, v e R then u - v is the only term from R such that
the equation (uv, u o v) is satisfied in V. The groupoid R() is said to be associated
with R and V.

1.2. Proposition. Let V be a non-trivial variety of groupoids and let R be a repre-
sentative set of terms for V. Then X < R and the associated groupoid R(o) is V-free
over X.

Proof. X < R is easy. Define a binary relation r on W by (u, v) € r iff (u, v) is
satisfied in V. As it is well known, r is a congruence and W|r is V-free over {x[r; x € X}.
Since R is representative for ¥, the mapping t + t[r is a bijection of R onto W/r and
by the definition of o it is an isomorphism of R(-) onto W.

If J is a set of ordered pairs of terms, then 4; denotes the set of all the terms ¢
such that whenever (u, u’)e J and f is a substitution (i.e. an endomorphism of W)
then f(u) is not a subterm of ¢.

A set J of ordered pairs of terms is said to be a replacement scheme if the fol-
lowing three conditions are satisfied:

(1) if (u,u’) e J, (v,v') € J, if f, g are two substitutions such that f(u) = g(v) and if

every proper subterm of f(u) belongs to A4, then f(u’) = g(v');

(2) if (u, u’) € J, if f is a substitution and if every proper subterm of f(u) belongs

to A,, then f(u') e A,;

(3) if (u, u’) € J then u is not a variable.

If J is a replacement scheme then we can define a mapping J* of Winto A, as
follows: if teX, put J*(t) =t; if t = t;t, and J*(t,) J*(t,) € 4;, put J*(t) =
= J*(t,) J*(t,); if t = 1,1, and J*(t,) J*(t,) = f(u) for some (u, u’)€ J and some
substitution f, put J*(t) = f(u’). It follows from (1) and (2) that J* is a correctly
defined mapping of Winto A,.

If J is a replacement scheme, we can define a binary operation - on A4, by
aob = J*(ab) for all a, b e A,. Equivalently: if a, be A; and abe Ay, thena o b =
= ab; if a,be A; and ab = f(u) for some (u,u’)e J and some substitution f,
then a o b = f(u’). The groupoid A,() is said to be connected with J.

Let V be a variety of groupoids. A replacement scheme J is said to be a replace-
ment scheme for V if the following two conditions are satisfied:

(4) if (u, u’) € J then the equation (u, u’) is satisfied in V;
(5) the groupoid connected with J belongs to V.

1.3. Theorem. Let V be a variety of groupoids and let J be a replacement scheme for V.
Then the groupoid connected with J is V-free over X. An equation (u, v) is satisfied
in Viff J*(u) = J*(v). If the sets J and the domain of J are both recursive, then the
word problem for free groupoids is solvable in V.



Proof. Using (4), it is easy to prove by induction on the length of ¢t that if te W
then the equation (¢, J*(¢)) is satisfied in V. Let u, ve A; and let (u, v) be satisfied
in V. The mapping J* is a homomorphism of W onto A,(c); by (5) we get J*(u) =
= J*(v). Evidently, J* is identical on A, and so u = v. Thus 4, is representative
for V. The groupoid connected with J coincides with the groupoid associated with A,
and V and is thus V-free over X by 1.2. The rest is easy.

Thus if we succeed in finding a replacement scheme for a given variety, we have
a nice description of free groupoids in this variety. In many cases it is easy to find
a replacement scheme for the variety V determined by an equation u = v, where
the length of u is greater than the length of v. Put J, = {(u, v)} and try to prove
(5) for J,. As a matter of rule, we either succeed or the attempt is finished by finding
another pair (u,, v,) which must belong to the desired replacement scheme. In the
latter case put J, = {(u, v), (u,, v,)} and again try to prove (5) for J,; etc. If the
chain J,, J,, ... is not finite, it is possible that its union will turn out to be a replace-
ment scheme for V. Sometimes (as in the case of the equations E,;, E,3, Esg, E4;,
see the following sections) we find out that there is no replacement scheme for V
but the attempt of finding it leads us to another description of a representative set
of terms and thus to a nice description of free groupoids in ¥, too.

If we want to prove that a given set J of ordered pairs of terms is a replacement
scheme for ¥, the verification of (1), (2), (3) is usually trivial and the set J was chosen
so that (4) be true; thus the only difficulty is in proving (5).

In concrete cases, the elements (uy, v,), (uz,v,),... of a given replacement
scheme will be often denoted by u; — v;, u, = v,,....

2. Equations of the form x = #(x)

Consider the following equations:

E: x=x

E,: x = xx

Ey: x = x.xx E}: x=xx.x
E,: x = xx.xx

Es: x = x(x . xx) E%: x = (xx.x)x
Eg: x = x(xx . x) E¢: x = (x.xx)x

For every i€ {1, ..., 6} denote by V; the variety determined by E; and for every
ie{3,5,6} denote by V| the variety determined by EJ.

2.1. Proposition.

(i) The empty set is a replacement scheme for V.
(i) {xx — x} is a replacement scheme for V.

6



(iii) {x.xx — x} is a replacement scheme for V;.
(iv) {xx.xx — x} is a replacement scheme for V.
(v) {x(x . xx) - x} is a replacement scheme for V.
(vi) {x(xx.x) — x} is a replacement scheme for V.

Proof. It is easy.
2.2. Proposition. Let ¢ be a term of length <4, containing a single variable x. Then the

equation x = t is equal to one of the equations E,, ..., E¢, E}, EX, Et. The varieties
Viy .o Ve, V3, Vi, Ve are pairwise different.

Proof. The first assertion is evident, the second follows easily from 2.1.

3. Equations of the form x=1#(x,...,y,..., X)

Consider the following equations:

E;: x=x.yx E7: x=xy.x
Eg: x=xy.zx ‘

Ey: x=xy.yx

Ejo: x = xy.xx Efy: x = xx . yx
E; i x=x(y.zx) Ef;:x=(xy.2)x
E;p: x =x(y. yx) Ef,: x=(xy.y)x
E;3: x = x(y . xx) Efy: x = (xx.y)x
E;q: x = x(x. yx) Efy:x=(xy.x)x
Eis: x = x(yy.x) six=(x.yy)x
Eis: x = x(yx . x) Efg: x =(x.xy)x
Ei;: x = x(xy . x) Ef;: x=(x.yx)x

For every ie{7,...,17} denote by V; the variety determined by E; and for
every i € {7, 10, ..., 17} denote by V} the variety determined by E}.

3.1. Proposition.

(i) {x.yx > x, xy.y — xy} is a replacement scheme for V;.
(i) {xy.zx - x, x(y . xz) = xz, (xy . z) y > xy} is a replacement scheme for V.
(iii) {xy.yx — x} is a replacement scheme for V.
(iv) {xy.xx - x, (xx.y)x > xx, x(xy.xy)—> xy} is a replacement scheme
for Vi,.
(v) Denote by D the set of the terms

(yn(,Vn—l(--- (Y2 . ylx)))) (ZM(ZM~1("‘ (22 . zlx))))

where n,m 2 0 and n — m — 1 is divisible by 3. The set J = {t,1, - t,;
1t € D} is a replacement scheme for V;,.

(vi) Put D' = {xx.x, x(xx.xx)} v {x*"(y.yx)*"; n 2 0} U {(y.yx)" x>
n > 0}. The set {tity > t;; tity € D’} is a replacement scheme for V,.



(vii) {x(y . xx) > x, xx . x > xx} is a replacement scheme for V, ;.
(viii) For every n = 1 define terms r,, s, as follows: r; = X; §; = X . YX; Fpyq = Sp;
Sy+1 = SuT. The set {r,,s,, >ran=12, } is a replacement scheme for V.
(ix) {x(yy.x) = x, (xx. yy).yy = xx . yy} is a replacement scheme for V;s.
(x) {x(yx.x) > x, (xy.y)y > xy .y} is a replacement scheme for V.
(xi) {x(xy.x)— x, x.xx - x} is a replacement scheme for V,.

Proof. (v) Evidently, J is a replacement scheme. Denote by P the set of ordered
pairs (n, m) of non-negative integers such that the equation x = x(y . zx) implies
e+ 72+ ¥1%))) (2 -+ (22 - 21%))) = Pu(-.. (¥2 - y1X)). Evidently (0,2) € P. We have
(1,0) € P, since xy = (xy) (y(z . xy)) = xy . yin Vy,. If (n, m) € P, then (m, n + 1) e
eP, too: if u = y,(...(y;.y:x)) and v = z,(... (2, . z,x)) then v = v(y, 4, - uv) =
= 0. Ypy e in Vyy. If (n, m) € P and (m, k) € P then (k, n) € P, too: if u = y,(-.(v2 .
y1%), v=2,..(2;.2,x)) and w=2z,(...(z,.2,x)) then u = u(v.wu)=u.
.vw = uv in V;;. From this it is easy to see that P contains all the pairs (n, m) such
that n — m — 1 is divisible by 3.

It remains to prove that the groupoid A,(o) satisfies x = x(y . zx). For every
variable p and every n = 0 denote by U,(p) the set of terms of the form a,(a,_, ...
...(a, . a,p)) where a,, ..., a, are arbitrary terms. Evidently, every term ¢ determines
uniquely a pair p, n such that t € U,(p). If u, ve A, then either u o v = uvoruov =
=u; if ueU,(p,) and veU,(p,) then uov=u iff py =p, and n —m — 1 is
divisible by 3. Let u, v, w € 4,; we must prove u o (vo (wou)) = u. Let ue U,(p,),
ve U,(p,), we Uyps).

Assume first that w o u = wu. If, moreover, v o wu = v. wu, thenu o (vo (W o u)) =
=uo(v.wu)=u, since ueU,p,) and v.wueU,,,(p;). If vowu =v, then
py = p;and m — (n + 1) — 1 is divisible by 3, so that u o (vo (Wou)) = uov = u.

Now let wo u = w, so that p; = p;and k — n — 1 is divisible by 3. If vo w = vw
then u € U,(p,) and vw € U,.,(p,) where n — (k + 1) — 1 is divisible by 3, so that
uo(wo(Wou)) =uovw=u Ifvow=u,then p; = p, and m — k — 1 is divisible
by 3; we have ueU,(p,) and ve U,(p,) where evidently n — m — 1 is divisible
by 3,sothatuo(vo(Wou) =uov =u

(vi) In ¥;, we have xx = xx . (x(x.xx)) = xx.x and x = x(xx.(xx.x)) =
= x(xx . xx). If uv = u, then v = v(u . uv) = v . uu. The rest is easy.

All the remaining assertions are easy.

3.2. Proposition. Let ¢ be a term of length <4 beginning and ending with the variable
x and containing not only x. Then the variety determined by x = ¢ is equal to one of
the varieties Vs, ..., Vi1, VX, Vo, ..., Vi,; these varieties are pairwise different.

Proof. Evidently, the first assertion will be proved if we show that the equation
x = x(yz . x) is equivalent to x = x . yx. However, the first equation implies x =
= x((»(yy . ¥)) x) = x. yx and the converse is evident. It follows from 3.1 that the
varieties are pairwise different.



4. Equations of the form x = #(x,...,))

Consider the following equations:

Ejg: x=xy Ey: x =x(yy.z)
Ejg: x=x.yy E;: x = x(yy . .)’)
E,o: x=Xx.xy Esy: x = x(yx.z)
E,: x=xy.z Es: x =x(yx.y)
Ey: x=xy.y Ejs: x = x(xy.z2)
E,;: x=xy.yz Eye: x =x(xy.y)
Ey,y: x=xy.yy Ej;: x = x(xx.y)
E,s: X = xx.Xxy Eyg: x=(xy.2)u
Ex: x=x(y.yy) Ey: x=(xy.y)y
E,;: x=x(y.xy) Eu: x=(xy.x)y
E,g: x = x(x.yy) Ey: x=(xx.y)y
E,o: x = x(x.xy) Eyp: x=(x.yx)y
Ej: x=x(yz.y) Eg;: x=(x.xy)y

For every i e {18, ..., 43} denote by V; the variety determined by E;.

4.1. Proposition.

(i) {xy > x} is a replacement scheme for V.
(ii) {x. yy > x} is a replacement scheme for V,,.
(iii) {x.xy — x, xx — x} is a replacement scheme for V5.
(iv) {xy.y — x} is a replacement scheme for V5,.
(v) {xy.yy > x, (x.yy)y = x} is a replacement scheme for V,,.
(vi) {xx.xy - x, x(xx . y) > xx} is a replacement scheme for V5.
(vii) {x(y . yy) - x} is a replacement scheme for V,.
(viii) {x(y.xy) > x, (y.xy)x > y . xy} is a replacement scheme for V,,.
(ix) {x(x.yy) > x, xx . xx - xx} is a replacement scheme for V,s.
(x) {x(x.xy) - x, xx - x} is a replacement scheme for V5.
(xi) Put D = {x((yz-y)z1)..-)z); n 2 0} U {x((yy - z1)..-) z2); n = O}. The
set {t,1, > t;; tyt, € D} is a replacement scheme for V.
(xii) Put D" = {x(((yy . z;) ...) z,); n = O}. The set {t,t, —> t;; t;1, € D'} is a re-
placement scheme for V3.
(xiii) {x(vy . y) — x} is a replacement scheme for V;,.
(xiv) Put D" = {(((xz1 - z2) ---) zo) (yx . uy) u5) ...) uy,); n,m = 0} U
O {((((yx - uy) uz)...) ) ((xzy - 2z5) -..) 2,); m, m = 0}. The set {t,t, > t;;
1,1, € D"} is a replacement scheme for Vj;.
(xv) Put D" = {x*"(yx.y)*"; n = 0} U {(yx. y)*" x*""'; n = 0}. The set {t;t, -
— ty; t,1, € D"} is a replacement scheme for V4.
(xvi) {x(xy.z) > x, xx > x, x . xy — x} is a replacement scheme for V;5.
(xvii) {x(xy.y) > x, xx > x} is a replacement scheme for V.



(xviii) {x(xx.y) = x, x.xx — x} is a replacement scheme for V;.

(xix) {(xy.y) y — x} is a replacement scheme for Vs,.

(xx) Put ro = X, 'y = XY . X, Py = Fye1Fp So = X, §; = XX . X, Spy1 = Sy_ySp
The set {r,y > r,_y; n 2 1} U {s,s, = s,—;; 1 £ n < m} is a replacement
scheme for V,,.

(xxi) {(x. yx)y = x, (xp) (y . xy) > x} is a replacement scheme for V.

(xxii) Put ro = x, r; = X. Xy, Fyyy = rra_y. The set J = {x.xx > xx, xx.x >
- X, XX . xx > x} U {r,y > r,_y; n = 1} is a replacement scheme for V.

Proof. We shall prove only (xxii); all the other assertions are easy. Of course,
the equation x = (x . xy) y implies r;y = ro; if it implies r,y = r,_,, then it implies
Fo =Ty TWy) Y = FyPuy . ¥ = Fpyqy. It implies

x.xx = ((x.xx)((x . xx) x))x = ((x.xx) x) x = xx,

x = (x(x.xx)).xx = (x.xx). xx = xx.Xxx,

xx = (xx.(xx.xx)).xx = (xx.x).xx,

xx.x = ((x.x)((xx.x).xx)). xx = ((xx.x).xx).xx = xx.xx =x.

If a, b are two terms, denote by r, ,, the term f(r,) where f is a substitution with
f(x) = a and f(y) = b. Evidently, if ry ,, =r,,sand n 21 thenn=1a=c¢
and b = d. From this it follows by induction that if r,,, = 7, .4 and n,m > 1
then n = m, a = ¢ and b = d. It is easy to see that J is a replacement scheme. Let
u, ve A,. It remains to prove that (u o (40 v)) o v = u.
Letu=r,,5andv=0b.Ifr,_; ,, = bthenn = 1 and a = b, a contradiction
with u € A;. If either r,, . s = P, 41,06 = PP OF Vo = PP, Tu—1,a = PP for some
term p, we get a contradiction from the fact that the length of r, , ; is greater than the
length of r,_y ;4. If rp.p = pp and r,_; ,, = p for some term p, we get a contra-
diction, too, since evidently no r,,, (n = 1) is a square. Hence (u o (u o v))ov =
= (rn,a,b ° rn—l,a,b) ob = Tn,a,b'n—1,a,b © b
Let u =aandv = aa. Then (uo(uov))ov =(acaa)oaa = aacaa = a = u.
Let u = v = aa. Then (uo(uov))ov =(aaca)oaa =acaa =aa = u.
Letu = aaand v = a. Then (uo(uov))ov =(aaca)oa =aoa = u.
Finally, let uov = uv. If uouv + u.uv then u = a and uv = aa for some
term a; then (uo(uov))ov =aaoa =a =u Ifuouv=u.uvthen (uo(uov)o
o U = u is clear.

rn+1,a,b ° b = rn,a,b = u.

4.2. Proposition. Pu 4 = X U {xx; x € X} and define a binary operation . on 4 as
follows: if xeX and ae€ A then x.a = xx and xx.a = x. The groupoid A()
is V,,-free over X.

Proof. 1t is easy.

4.3. Proposition. Denote by A the set of all terms of the form ((xu, . u,) ...) u, where
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xe X, n = 0, every u; is either a variable or a square of a variable and if i,i + 1€
e{l,...,n} then u; # u;, u;,, and u;,, + uu; Define a binary operation - on 4
as follows. Let a, be A and b = ((xu . uy)...) u, where x € X. Put

aob =axif nisevenend a + p. xx for all terms p;
a.b = pifnisevenand a = p. xx for some p;
aob = a.xxif nis odd and a # px for all terms p;
aob = pifnisoddand a = px for some p.

The groupoid A(s) is V,5-free over X.

Proof. 1t is easy to prove that A(c) € ¥,;. Now it is easy to prove that 4 is
a representative set of terms for V,; and that A(o) is the groupoid associated with 4
and V,5; now use 1.2.

4.4. Proposition. Put 4 = X U {xx; xe X} U {xx.xx; x e X} and define a binary
operation . on A as follows: if xe X and ae 4 then xoa = XX, XX 0o a = XX .XX
and xx . xx o a = x. The groupoid A(-) is V;4-free over X.

Proof. It is easy.

4.5. Proposition. Denote by A the set of terms ¢ such that if a, b are any terms then
ab.b, a.aa, a(aa . aa), (aa.aa)(aa.aa) are not subterms of ¢ and if b + aa
then aa . b is not a subterm of ¢. Define a binary operation . on A:

a.aa = aa;
acaa.aa = aa;

aa.aaoaa = a;

aa.aao.aa.aa = a;

ab.ab.b = a;

abo b = aa. aa if a is not a square;

(ab . ab)(ab.ab)o b = aa;

aa.aaob = (ab.ab)(ab.ab)if b + a, b + aa, b * aa . aa and a + pbfor
all terms p;

aaob = ab.ab if a is not a square, b + aa, b ¥+ aa . aa and a + pb for
all terms p;

u o v = uv in all other cases.

The groupoid A(o) is V,,-free over X.
Proof. The equation x = (xx. y) y implies

xx =( ((xx(. XxX) . 3;;6)( . xx =)x . J(cx,

x = (xx. (xx.xx)) (xx . xx) = (xx . xx) (xx . xx),
xx . xx = (((xx . xx) (xx . xXX)y)y = xy.y,
(xx.xx)y = (xy.3) y = (xy. xy) (xy . xy),
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xx.y=x"%.y=(x* y)*=(xy)'°=xy.xy,

x(xx . xx) = (x*. x*) x* = (x*)* = x'® = xx.
It is easy to see that the operation . is correctly defined, that A is a representative set
of terms for V,, and that A(o) is just the groupoid associated with 4 and V.

4.6. Proposition. Let ¢ be a term of length <4 beginning with x and not ending
with x. Then the variety determined by x = ¢ is equal to one of the varieties Vg, ...
..., Va3; all these varieties are pairwise different.

Proof. The equation x = x . yz is evidently equivalent to E,g. The equation
X = xx .y is equivalent to E,,, since it implies xx = (xx . xx) y = xy. The equation
x = xy . zz is equivalent to E,,, since it implies xy .z = xy . (zz . zz) = x. Hence
the equation x = xy . zu is equivalent to E,;, too. The equation x = xy . xy is
equivalent to E,,, since it implies xy = (xy.xy)(xy.xy) = xx. Hence each of
the equations x = xy.zy and x = xy . xz is equivalent to E,,, too. The equation
x = xx.yy is equivalent to E,,, since it implies xx.y = xx.(yy.yy) = x and
xx .y = x is equivalent to E,,. Hence x = xx . yz is equivalent to E,, too.

The equation x = x(y . yz) is equivalent to E,g, since it implies x = x(y(y . yy)) =
= xy. Hence x = x(y . zu) is equivalent to E,g, too. The equation x = x(y . z2) is
equivalent to E,s, since it implies x = x(y(zz . zz)) = xy. The equation x =
= x(y . zy) is equivalent to E,g, since it implies x = x(yz.(z. yz)) = x. yz and
x = x.yz is equivalent to E,q. The equation x = x(y . xz) is equivalent to Eg,
since it implies x = x(y(x . yu)) = xy. The equation x = x(x . yz) is equivalent
to E,o, since it implies x = x(x(y(y . yy))) = x . xy.

The equation x = x(yz . z)is equivalent to E, g, since it implies x = x((¥(zz . z)) .
.(zz . 2)) = x(¥(zz . z)) = xy. Hence x = x(yz . u) is equivalent to E,g, too.

The equation x = (xy . z) z is equivalent to E,g, since it implies xy = ((xy .
.z) z) z = xz. The equation x = (xy . z) y is equivalent to Eg, since it implies xz =
= ((xz.y)z) y = xy. The equation x = (xy.y)z is equivalent to E,g, since it
implies xy = ((xy . y) y) z = xz. The equation x = (xy . x) z is equivalent to Eg,
since it implies yx = ((yx . y). yx) z = yz. The equation x = (xx . y) z is equivalent
to Esg, since it implies xu = ((xx . xx) z) u = xx. The equation x = (xx.x) y is
equivalent to E,q, since if we put X = xx.Xx, it implies X = (XX.X)y = xX. y,
xx = ((xx.xX).xX)y = (¥.xX)y = xy, so that xy = xz.

The equation x = (x . xx) y is equivalent to E,,, since it implies x . xx =
= ((x . xx) ((x . xx) (x . xx))) y = xy. Hence each of the equations x = (x.xy)z,
x = (x.yx)z,x = (x.yy)z, x = (x. yz) u is equivalent to E,,, too. The equation
x = (x.yz)z is equivalent to E,,, since it implies x = (x((y.zz)z))z = xy. z.

The equation x = (x. yz) y is equivalent to E,, since it implies x = (x((u .
.z0) 2)) (u . zv) = (xu) (u . zv), x = (xy) (¥((z - zz) 2)) = xy . yz and for the con-
verse we can use 4.3.

The equation x = (x . yy) y is equivalent to E,,, since it implies xy = ((x(yy .

Il
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.yy).-yy)y = x(yy.yy), so that x = (x(yy.yy)).yy = xy.yy, and for the
converse we may use 4.1.

We have proved that for any term t of length <4 beginning with x and not
ending with x the variety determined by x = t is equal to one of the varieties Vg, ...
..., Va3. The fact that these varieties are pairwise different follows from 4.1, 4.2, 4.3
4.4 and 4.5.

5. Equations of the form x = ¢(y, ..., 2)

Consider the following equations:

Ey: x=y

Eys: x=y.xy

Ei: x=yy.xy

E,;: x=yx.xz

Eg: x = yx.xy

Ey: x = y(y.xy) Ejy: x=(yx.y)y
Eso: x = y(x.xy) ES: x=(yx.x)y
Es;: x = y(yx.y) ES;: x=(y.xy)y
Esy: x = y(xy.y) ES;: x=(y.yx)y
Esy: x = y(xx.y) E5y: x=(y.xx)y

For every i € {44, ..., 53} denote by V; the variety determined by E; and for every
ie{49,..., 53} denote by V the variety determined by E}.

5.1. Proposition.

(i) {y.xy = x, yx.y > x} is a replacement scheme for V.
(i) {yx.xz > x, x(xy . z) > xp, (z. xy) y > xy} is a replacement scheme for V.
(iii) {yx . xy — x} is a replacement scheme for V4.
(iv) Putry = x,r, = y,ry = y.xyand r,,3 = 7,y 1, for n = 1. The set {ratnss =
- Fy—y; n 2 2} is a replacement scheme for V.
(v) {¥(xx.y) > x, (yy.xx)y > x} is a replacement scheme for V3.

Proof. 1t is easy.

5.2. Proposition. For every term t define a term ¢’ as follows: if te X, put t' = tt
and (tt)’ = t;if t = uv and either u + v or u ¢ X, put ' = u’v’. Denote by A the set
of terms t such that if a, b are any terms then neither ab . ab nor b’ . ab nor ba . b’
is a subterm of t. We can define a binary operation - on A4 as follows:

a.a=a';

b’ o ab = a whenever ab € 4;

ba o b’ = a whenever ba € A4;

u o v = uv in all other cases.
The groupoid A(o) is V,¢-free over X.
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Proof. The equation x = yy . xy implies

x=(yy.yy)(x.yy) = yx.yy),

(xy.xy)x = (xy.xy)(yy . xy) = yy,

xy.xy =xx.((xy.xy)x) = xx.yy,

xy.xx = ((xx.xx)(yy.yy)). xx = ((xx.yy) (xx.yp)) . xx = yy.yy =y,

y = (xx.y)(xx.xx) = (xx.y)x.

It is easy to prove (by induction on the length of t) that if ¢ is any term then the
equation t' = tt is a consequence of E .

Let us prove by induction on the length of ¢ that if e 4 then ' € 4 and " = t.
If either t = p or t = pp for some variable p, it is evident. Let t = uve 4 and t' =
= u'v’. By the induction assumption, u' € 4, v' € A, u” = u and v” = v. We have
u #+ v. Suppose t' ¢ A. Since u + v, u” = u and v" = v, we have u’ + v’. We have
either ' = b’ . ab or t' = ba. b’ for some terms a, b. We shall consider only the
case t' = b’ . ab, since the other case is similar. We have u’ = b’ and v’ = ab.
Henceu = u” = b”andv = v = (ab).Ifa = be X, thenu = b” = b = (ab)’ = v,
a contradiction. Hence (ab)’ = a'b’, so that t = uv = b" . a’b’ ¢ A, a contradiction.
This proves ' € A. We have t” = (u'v') = u"v" = uv = 1.

It is easy to prove by induction on b that if b’ = abe A then a = b e X. From
this it follows that the operation . on A was correctly defined.

Let us prove that the groupoid A(o) satisfies x = yy.xy. Let u,ve 4. If u = v,
then (vov)o(uov)=u'ot' =u"=u. Let u+ v If u=>b" and v = ab, then
(vov)o(uov) =(aboab)oa = (ab)yoca=a'boa=aboa"=b =u If u=
=ba and v =b’, then (vov)o(uov)=(b'cb)oa=>b"ca=boa=u. In all
other cases (vo ) o (uov) =0 ouv = u.

Now it is easy to see that 4 is a representative set of terms for V¢ and that A(o)
is just the groupoid associated with A and V,; use 1.2.

5.3. Proposition. Denote by M the set of all finite sequences of elements of {1, 2}.
For every e € M define three terms r,, s,, t, as follows:

rg=1Y, Sg=X.Xy, lyg=x,
Te,1 = Ses Se,1 = Tele s te,l =T,
re,2 = se . serea Se,z = te s te,2 = re .

The set {xx .x — x} U {r.s, = t,; ee M} is a replacement scheme for V.
Proof. The equation x = y(x.xy) implies x = xx.(x(x.xx)) = xx.x. If
e € M and E;, implies r,s, = t,, then E5, implies
re,lse,l = se . rete = se(re . rese) =T, = te,l’
Te2Se2 = (Se - Sele) te = (Se - SuTe) - TeSe =
= (S, . 8.70) (re(re(se - se7e))) = 1e = 1.2
Hence E;, implies r,s, = t, for any e e M.
For every ee M and every pair a, b of terms put r,,,, = f(r.), Seiap = f(s.)
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and t,,, = f(t.), where f is a substitution such that f(x) = a and f(y) = b. Evidently,
t...» s @ proper subterm of either r,,, ; or s,,, 5.
The rest of the proof will be divided into several lemmas.

5.3.1. Lemma. Let r,pp = 1y cqgand S, = Spcq. Then e = f, a = c and b = d.

Proof. We shall proceed by induction on the sum of the lengthsl of e and f.
If e = f = 0, the assertion is evident. It is enough to consider the following eleven
cases.

Case 1: e = 0 and f = h, 1 for some he M. Then r,,p = 7/, 4 and s, =
= S;,.q4 means that b = s,., and a.ab = ry gt 4, But then t,,.,=ab =
= Thic,dh;e,0» @ CONtradiction.

Case 2: e=0 and f = h,2. Then b = s,,. 4. Sp,calh;ea @and a.ab = t,.. 4,
so that t,.. ; is longer than s,.. 47;.. 4, @ contradiction.

Case 3: e =g,2 and f = 1. Then sy, . 5,4 47506 = €-cd and t,,, = dc,
so that 1., , = 7;0.55..4,5 @ COntradiction.

Case 4: e=2 and f=h,1,1. Then (a.ab)((a.ab)b) = r,,ity.qs and
a = Sy.. 4Th;c4» @ contradiction.

Case 5: e=2 and f=h,2,1. Then (a.ab)((a.ab)b)=t,,., and a =
= (Spsend - Shic,dThic,d) Thie,a» SO that t,.. , is longer than s, 4.4 @ contradiction.

Case 6: e=g,1,2 and f=h,1,1. Then ry,ptyas- (Tgablsas - Sgiap) =
= Fpse,alhse,a @0d 7.0y = Sy gPhc 4o @ Contradiction.

Case 7: e=g,1,2 and f=h,2,1. Then ry,stoas- (Foanloas - Sgiap) =
= ty,eq A0A Tyup = (Shic.d - Shic,dhic,a) Thic,ar SO that .., is longer than s, g7y.c 4
a contradiction.

Case 8: e=g,2,2 and f=h,1,1. Then ty,4(ts.0s(Spiap - SgiaTg.a)) =
= Thye,alhse,a A0 Tyiy = Spic dPnic,a» SO that 2., is longer than s, 47y, 4 a contra-
diction.

Case 9: e =g,2,2 and f = h,2,1. Then 1, (ty.06(Spiab - Sgsaplsas) = thicua
and 7., = (Shed - Shie,dhsc.d) Thse,» SO that t,.. 4 is longer than s, 4ry.c4 @ contra-
diction.

Case 10: e = g,1 and f = h, 1. Then s,,,,, = Sp;c.q A0d Ty plg.0p = Thic,alhic,ar
so that r,,,, = 7y, 4 and s, , = S, 4 By the induction assumption we get g = h
(sothate = f),a = cand b = d.

Case 11: e = g,2 and f = h,2. Then s, . Sp;0,7g:0,6 = Shie,d - Shze,aPhic,a and
tyap = hic,a» SO that v, = 14, 4 and s, , = S, 4 By the induction assumption
we get g = h(sothate = f),a = cand b = d.

5.3.2. Lemma. 1., % S, for all e, a, b.
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Proof. By induction on the length of e. For e = 0 it is evident. Let e + 0, and
SUPPOSE ;05 = S0, It is Clear that e = f, 1 for some f. We have s, , = rpptriap
Now it is clear that f = g, 1 for some g, so that 7., st;.05 = Sg.a"4:a.6 and con-
sequently 7,,,, = 5,45, a contradiction with the induction assumption.

5.3.3. Lemma. Let r, .4 = r;,. 4 and f,,,5 = S;,. 4 Where e, f are both non-empty.
Then e =1 and f = 2.

Proof. If we do not have e = 1 and f = 2, then one of the following 46 cases
takes place.

Case 1: e=g,1,1 and f=h,1,2 for some g, he M. Then r,,t,., =
= Fuseatsed - (Thie,alhse.d - Snie,a) A0 Spqp = Tyyo 4o SO that t,.,, is longer than both
Tg:ap @0d S;.45 @ contradiction. In the following we shall write less accurately r,
instead of r,,,, etc.

Case 2: e =g,1,1 and f = h,2,2. Then ryt, = 1,(t;,(s, . s,r,)) and s, = r,,
so that ¢, is longer than both r, and s,, a contradiction.

Case 3: e =g,1,2 and f = h, 1, 1. Then rpt,.(rt,.s,) = ryt, and s, = s,1,
so that t, is longer than s,r,, a contradiction.

Case 4:¢ =g, 1,2and f = h, 1,2. Then rpt, . (r,t, . s,) = ryt, . (ryty . s,) and
Sy = rp, so that r, = r,and s, = s,. By 5.3.1 we get g = h, a = c and b = d; hence
s, = r,, a contradiction by 5.3.2.

Case 5: e =g,1,2 and f=h,2,1. Then ryt,.(rt,.s,) =1, and s, = (s,
. SuI'y) Ty, SO that ¢, is longer than s,r,, a contradiction.

Case 6: e = g,1,2 and f = h,2,2. Then rpt,.(r.t,.s,) = t,(t,(sy - s,r)) and
s, = ry, so that r, = s, = s,. 5,7, a contradiction.

Case7:e=g,2,1and f = h, 1, 1. Then t, = r,t, and s, . 5,5, = 5,7, so that ¢
is longer than s,r,, a contradiction.

Case 8: e = g,2,1and f = h, 1,2. Then t, = ryt, . (ryt . 5;) and s, . s,r, = 13
so that t, is longer than s,r,, a contradiction.

Case 9: e =g,2,1 and f = h,2,1. Then t, = t, and s,. 5,7, = (S, . S474) I'>
a contradiction evidently.

Case 10: e = g,2,1 and f = h, 2,2. Then t, = t,(t,(s; . s,74)) and s, . s,r, = 13,
so that ¢, is longer than s,r,, a contradiction.

Case 11: e = g,2,2 and f = h,1,1. Then t,(t,(s, - 5,1,)) = ryt, and s, . 5,1y =
= 5,7, so that t, is longer than s,r,, a contradiction.

Case 12: e = g,2,2 and f = h,1,2. Then t,(t,(s, . s;rg)) = Taty . (ryts - s4) and
Sy . Sg7y = Ty, sO that r, = s,, a contradiction by 5.3.2.

Case 13: e = g,2,2 and f = h,2,1. Then 1,(t,(s, . s,r,) = t, and s, . 5,1, =
= (sy . 8474) ry, evidently a contradiction.

Case 14: e = g,2,2 and f = h,2,2. Then t,(t,(s, . s,7,)) = ta(ti(sy - 5474)) and
Sq . S4rq = Iy, evidently a contradiction.

g
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Case 15: e=g,1,1,1 and f = h, 1, 1, 1. Then s;r, = 5,7, and ryt, = ryty . Sy
evidently a contradiction.

Case 16: e = g,1,1,1 and f = h, 2,1, 1. Then s,r, = (s,. s,r;) 1 and r,t, =
= t,(sy . Syry), so that s, = t, and ¢, is longer than r,, a contradiction.

Case 17: e =g,2,1,1 and f= h,1,1,1. Then (s,.s,r,) r, = 5,7, and t,
= ryty - Sy, 5O that ¢, is longer than s,r,, a contradiction.

Case 18: e = g,2,1,1 and f = h, 2,1, 1. Then (s, . 5,74) 7y = (54 . Sy74) ry and
t, = t(s, . s4r); a contradiction follows from 5.3.1.

Case 19: e =g,1,1,1 and f=1,1. Then s,;r, = dc and rgt, = (c.cd)d,
a contradiction.

Case 20: e = g,2,1,1 and f = 1, 1. Then (s, . s,1,) r, = dc and t, = (c . cd) d,

so that ¢, is longer than s,r,, a contradiction.

Case 21: e = 1,1 and f = h,1, 1. Then ba = rt, and a . ab = s,r,, evidently
a contradiction.

Case 22: e=g,1,1,1 and f = h,1,2,1. Then s,;r, =r, and rpt, = (rt,.
. (Tuty - s4)) i evidently a contradiction.

Case 23: e = g,1,1,1 and f = h,2,2,1. Then s;r, = r,, and r.t, = (4,(t,(s, .
. 547s))) (Su - Sury), evidently a contradiction.

Case 24: e =g,2,1,1 and f = h,1,2,1. Then (s,.s,7,)7, =1, and 1, =

= (ruty . (raty - 54)) S, sO that 2, is longer than s,r,, a contradiction.

Case 25: e=g,2,1,1 and f=h,2,2,1. Then (s,.s,r,)r, =71, and ¢, =

= (t,(ta(sn - su74))) (sh - S47), sO that t, is longer than s,r,, a contradiction.

Case 26: e = g,1,1,1 and f = 2,1. Then s,;r, = ¢ and rt, = ((c. cd).
.((c . cd) d)) d, a contradiction.

Case 27: e = g,2,1,1 and f = 2, 1. Then (s,.s,r,)r, = ¢ and t, = ((c . cd).
.((c . cd) d)) d, so that t, is longer than s,r,, a contradiction.

Case 28: e=1,1 and f= h,2,1. Then ba=1t, and a.ab = (s,, . s,,r,,) Fhs
so that 7, is longer than s,r,, a contradiction.

Case 29: e=1 and f = h,1,1. Then a.ab = rt, and b = s,r,, so that ¢,
is longer than s,r,, a contradiction.

Case30:e =1andf = h,2,1. Thena.ab = t,and b = (s, . 5,7,) 73, O that t,,
is longer than s,r,, a contradiction.

Case 31: e =1 and f = 1. Then a.ab = c.cd and b = dc, a contradiction.

Case 32: e =1 and f = h,1,2. Then a.ab = rt,.(rt,.s,) and b = r,, so
that r, = s,, a contradiction by 5.3.2.

Case 33: e=1 and f=h,2,2. Then a.ab = t;(t;(s,.s,n,)) and b = r,,
a contradiction.

Case 34: e =2 and f = h,1,1. Then (a.ab)((a. ab) b) = r,t, and b = s;7,,
a contradiction.
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Case 35: e=2 and f=h,2,1. Then (a.ab)((a.ab)b) =1, and b = (s,.
. Sur'y) Ty, sO that ¢, is longer than s,r,, a contradiction.

Case 36: e=2 and f=1. Then (a.ab)((a.ab)b)=c.cd and b = dc,
a contradiction.

Case 37: e = 2 and f = h,1,2. Then (a . ab)((a . ab) b) = r,t, . (rt, - s,) and
b = r,, so that r, = s, a contradiction by 5.3.2.

Case 38: e =2 and f = h,2,2. Then (a. ab)((a . ab) b) = t,(t,(s, - s4r»)) and
b = r,, a contradiction.

Case 39: e =2 and f = 2. Then (a.ab)((a.ab)b) = (c.cd)((c. cd) d) and
b = dc, a contradiction.

Case 40: e = g, 1,1 and f = 1. Then r,t, = c¢. cd and s, = dc, so that t, is as

long as s, and longer than r,, a contradiction.

Case4l:e =g,2,1andf = 1. Thent, = c. cd and (s, . s,r,) r, = dc, so that ¢,

is longer than s,r,, a contradiction.

Case42:e = g,2and f = 1. Thens, . s,r, = ¢.cd and r, = dc, a contradiction.

Case 43: e=g,1,1 and f=2. Then ryt, = (c. cd)((c.cd)d) and s, = c,
so that ¢, is longer than both r, and s,, a contradiction.

Case 44: e = g,2,1 and f = 2. Then t, = (c. cd)((c. cd)d) and s, . 5,1, = c,
so that t, is longer than s,r,, a contradiction.

Case 45: e = g, 1,2 and f = 2. Then rpt,.(rt,.s,) = (c.cd)((c. cd)d) and
s, = ¢, so that ¢, is longer than both r, and s,, a contradiction.

Case 46: e = g,2,2 and f = 2. Then t,(t,(s, . s,7,)) = (c. cd)((c . cd) d) and

S, . Sgrq = ¢, so that ¢, is longer than s,r,, a contradiction.

g -
5.34. Lemma. Letr,,,, = t,,, ;. Then e = § and a = b.

Proof. Suppose e + 0. If e = g, 1 for some g € M, then s,,,, = 7,4, @ contra-
diction with 5.3.2. If e = g, 2 for some g € M, then 5,4 5 . 5,457 g;a,6 = 7g;a,5> @ CONtra-
diction.

5.3.5. Lemma. Let r,,p = Ig,cq and fop = Sg,cq Where e + 0. Then e = 2, 1.

Proof. Suppose e = g,2 for some ge M. Then s,,;.5,,575.05 = d and
.ap = C.cd, a contradiction.

Suppose e = g, 1, 1. Then ry,4t,,5 = d and sy, , = c. cd. Evidently g + 0.
If g = h,1 for some h, then s, y74,0p = d and 744 4t,.., = €. cd, so that t,, , is
longer than sy, 7,45, @ contradiction, If g = h, 2 for some h, then
(Shsab - Snsa?hsap) Thiap = d and 1y, = c. cd, s0 that t,,, , is longer than s,., 47.q.5»
a contradiction again.

Ty
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Suppose e = 1. Then a . ab = d and b = ¢. cd, a contradiction.
Hence e = g, 2, 1 for some g e M. We have 1,,,, = d and Sy, . Sp;a07g;a,6 =
= c¢. cd. Consequently t,,, , = 74.,5, SO that g = @ by 5.3.4. We get e = 2, 1.

5.3.6. Lemma. The set {xx.x — x} U {r,s, - t,; e€ M} is a replacement scheme.

Proof. 1t follows from 5.3.1 and from the following assertion, which can be
proved easily: if a, b are terms and ee M then 7., F S..0 45¢:0.5-

5.3.7. Lemma. Denote by A(-) the groupoid connected with the replacement scheme
from 5.3.6. Let u,ve A and u o v = uv. Then v o (uo (1o v)) = u.

Proof. If uouv = u.uv, then everything is evident. Now let u o uv + u . uv,
so that u = r,,, and uv = s,,, for some ee M and some terms a, b. We have
Sesap = Tesap?. If it were e = f, 1 for some f € M, we would have r,; yt7.0 5 = Sra0,
so that r;.,, = S;.. @ contradiction with 5.3.2. If it were e = f, 2 for some fe M,
we would have t,.,, = (S;iap- Sriaplriap) Vs SO that t,,, would be longer than
Sr.ab"sap @ contradiction. Hence e = @, so that u = b and uv = a. ab; hence
a=b,u=a,v=aa Wegetvo(uo(uov))=aac(@aoa.aa)=aaca=a=u.

5.3.8. Lemma. Let u, v € A, and let there exist a term a such that u = aa and v = a.
Then vo (uo(uov)) =u.

Proof. We have vo (uo(uov)) =aoc(aac(aaca)) =ao.(aaca)=aca = u.

5.3.9. Lemma. Let u,ve A and let there exist terms a, b and a sequence ee M
such that u = r,,, and v = s,,,,. Then vo (U o (uov)) = u.

Proof. Let Foupotens = Fewapleas Then vo(uo(u o)) = Seapo Fewplesas =
= Te,150,b © Se 1500 = le,13a0 = Tesap = Ue

Suppose that r,.,, = cc and t,.,, = c for some term c. If it were e = 0, then
b=ccand a =c, so that s,,, = a.ab = c¢(c. cc) ¢ A, a contradiction. If it were
e = g,2forsome ge M, then s, ;. Sy.q74:0 = CC, @ contradiction. Hence e = g, 1
for some g. If it were g = h, 1 for some h, then 7, pt4,, 5 = cc and s,., , = ¢, so that
Phiap = thap = Sha,ps @ Contradiction. If it were g = h, 2 for some h, then t,.,, = cc
and Sy,4p « Shiap"niap = C> SO that t,., , would be longer than s, 47)., 5, @ contradic-
tion. Hence h = @, so that a. ab = cc and b = ¢, a contradiction.

It remains to consider the case when r,,, = 1,4 and t,,, = s,,. 4 for some
f €M and some terms c, d.

Suppose that e = 1 and f = 2. Then a.ab = (c.cd)((c.cd)d) and b =,
so that b =c =d and a = b. bb; we have s,,, = ba = b(b. bb) ¢ A, a contra-
diction. :

Suppose that e = 2,1 and f = 0. Then a = d and (a . ab)((a . ab) b) = c . cd,
so that a=b=d and ¢ =a.aa; we have s,,, = ((a.aa)((a.aa)a))a =
= r3.0.452,0.0 ¢ A, @ contradiction.
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;c,d;

It follows from 5.3.3 and 5.3.5 that e = 0. Hence b = r;,.;, and a = s,
we have vo(uo(Uov)) = 5.050(FreaoSsea) =a.abotyg=504.

“Spicdl fic,d© tried = Tr2:cd087,25e0 = bried = Tpieq = b =u.
It follows from 5.3.7, 5.3.8 and 5.3.9 that the groupoid A(c) satisfies x =
= y(x . xy). This completes the proof of 5.3.

5.4. Proposition. For every n = 1 define terms r, and s, as follows:

ry=x, r, =y, ry=xy.y, Tp3 = Tal'ny2 s

Sy =X, Sy =2xX, S3=(XX.X).XX,  S,43 = SSu42-
Theset J = {(xX. X)X > X, X . XX = XX . X} U {FyFpiy = Faeis 1 2 2} U {5,5,4 =
— §,_1; h = 2} is a replacement scheme for V.

Proof. The equation x = y(xy.y) implies r,r,,; = r,_, for every n =2,
since for n = 2 it is trivial and if it is true for some n, then

rp = "n+1("n"n+1 . rn+1) =Tyt Fo—1Tnv1 = Tnetlns2 -
Since Es, implies ryr, = r,, it implies
x = (xx.x)(x(xx.x)) = (xx.x)x,
xx.x = x(((xx.x)x)x) = x.xx.
Now evidently E,, implies s,s; = s, and so (by induction on n) s,s,,, = s,_, for
all n = 2.
For every pair a, b of terms and every n > 1 put r, ., = f(r,) and s, , = f(s,),
where f is a substitution such that f(x) = a and f(y) = b. Evidently, if n < m then

eithern = 1, m = 2orr, ,;is a proper subterm of r,, , ,;if n < mthens, ,is a proper
subterm of s,, ,. The rest of the proof will be divided into several lemmas.

54.1. Lemma. Let ny,m =23 and r,,5 = 7,p.q Then n =m, a = c and b = d.

Proof. By induction on n + m. If n = m = 3, it is clear. If n = 3 and m = 4
thenab.b = r,_3 ;. atm-1 .4 SO thatr,_; . ,is longer than r,_ . 4 a contradiction.
Similarly, we can not have n = 4 and m = 3. Let n,m =2 4. We have r,_; ,, =
= Fp_1,.4 and the assertion follows from the induction assumption.

54.2. Lemma. Let n,m 22 and s, , = s, 5. Then n = m and a = b.

Proof. By induction on n + m. If n,m = 4, the assertion follows from the
induction assumption. If n, m < 3, it is evident. If n = 2 and m = 4, then aa =
= Sp_34Sm—1,5 SO that s, 3, = s,,_; 5, a contradiction. If n = 3 and m = 4, then
(aa.a).aa = 5,_3 4Su-14 50 that s,_5 , is longer than s,,_; ,, a contradiction.

54.3. Lemma.Let n = 3and m 2 2. Then r, ., # s, . for any terms a, b, c.

Proof. By induction on n + m. Suppose r, , , = S, .. If n, m = 4, we get a con-
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tradiction from the induction assumption. If n =3 and m = 4 then ab.b =
= Sp_3.cSm—1,c-50thats,_; .islongerthans,_, .,acontradiction. Ifv 2 4andm = 2
then r,_3,44"-1,06 = €, SO that 7, 3., = r,_ . a contradiction. If n 2 4
and m = 3 then 7,3 g 4Tu—1.0p = (cC. ). cc, so that r,_; ,; is longer than r,_; , 4,

a contradiction. If n = 3 and m € {2, 3}, it is clear.

5.44. Lemma.If ae Ay then aa.ae A;and s, ,€ 4, foralln = 1.

Proof. 1t is easy.

5.4.5. Lemma. J is a replacement scheme.

Proof. It follows from the previous lemmas and the obvious fact that if n = 2
then rn+l,a,b 4: rn,a,brn,a,b and Sn+1,a #: Sn,usn,a‘

5.4.6. Lemma. Let n 2 1, r, ,,€ Ay and r,., ., € A;. Then either 7,3 ,,€ 4; or
n=1, a=b.

Proof. SUppose 7, 4 y¥n+2.a6 = Fm.c.a'm+1.c,4 O some m = 2 and c, d. It follows
from 5.4.1 that n = 1 and a = b.

Suppose 7, 45 n+2.06 = Sm.cSmi1.00 M = 2. Then 7,45 45 = Sp41,0 @ contradic-
tion with 5.4.3.

Suppose 7, 4 w4 2,00 = (cc. ¢)c for some c. Then Tu.ap is longer than 7., 5 45,
a contradiction.

Suppose 7, 4 p'n+2,06 = €. cc. Thenr,,, ., = cc, which is evidently impossible.

5.4.7. Lemma. The groupoid A,(-) connected with J satisfies x = y(xy . y).

Proof. Let u,ve A;. If uov = uv then either vo((uov)ov) =vouv.v =u
oru = vvand thenvo((uov)ov) =vov =u.

Letu=r,,pand v =rpyqap "2 2. 1y o 4Pnisap€ Ay then vo((wov)o
° U) = Tn+t,ab0 (rn—l,a,b ° rn+1,a,b) = Tu+t,ab° T n+2,a6 = Tnap = U. In the OPPOSitc
case it follows from 5.4.6 that n = 2 and a = b, so that vo((uov)ov) =aa.ao
o(acaa.a)=aa.a0a=a=u.

Let u=5,, and v =5,,,, n22 Then vo((Uov)ov) = S4100(Sa-r.a0
° sn+1,a) = Sn+1,0° Sn+2,a = Sna = U.

Let u = aa.a and v = a for some a. Then vo((uov)ov)=aoc(aca) =
=a.aa = u.

Let u=aand v = aa. Thenvo((uov)ov) =aac(aa.acaa) =s,,05;, =
=S ,=a=u

This completes the proof of 5.4.

5.5. Proposition. Let ¢ be a term of length <4 neither beginning nor ending with x.

Then the variety determined by x = t is equal to one of the varieties Vg, ..., Vi3,
V:Q, e V2'3; all these varieties are pairwise different.
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Proof. If t does not contain x, then x = ¢ is equivalent to E,,. The equation
x = y.xz is equivalent to E,,, since it implies x = y(x . uv) = yu. Evidently, E,; is
equivalent to its dual.

The equation x = yy.xz is equivalent to E,,, since it implies x = (yy . yy).
.xz = y . xz; hence every one of the equations x = yx.zz,x = yz.xu,x = yx.zu
is equivalent to E,,. The equation x = yz. xz (and hence x = yx . yz, too) is equi-
valent to E,,, since it implies x = (yz.yz)(x.yz) = y(x.yz) and so xx =
= x(y(x . yz)) = y. The equation x = yz . xy (and hence x = yx . zy, too) is equi-
valent to E,,, since it implies x = (zu.yz)(x.zu) = y(x.zu) and so xx =
= x(y(x . zu)) = y. As it is proved in 5.2, x = yx . yy is equivalent to E,e.

The equation x = y(y . xz) (and hence x = y(z . xu), too) is equivalent to E,,,
since it implies yx = y(y.xz)) = y and so x = y. The equation x = y(z . xz) is
equivalent to E,,, since it implies yx = y(xz.(z.xz)) = z. The equation x =
= y(z. xy) is equivalent to E,,, since it implies x = uz . (z(x . uz)) = uz.u. The
equation x = y(x . yz) (and so x = y(x . zu), too) is equivalent to E,,, since it im-
plies xx = x(y(x . yz)) = y. The equation x = y(x . zz) is equivalent to E,,, since
itimplies u . zz = u(y(zz . zz)) = y. The equation x = y(x . zy) is equivalent to E,q,
since it implies x = zx . (x(z . zx)) = zx .z, x = y(x(yz. y)) = y . xz. The equation
x = y(x . yy) is equivalent to E,4, since it implies x = xx . (x(xx . xx)) = xx . xx,
x = yy.(x(yy.yy)) = yy.xy and conversely E,¢ implies x = (yy . yy)(x.yy) =
= y(x . yy). The equation x = y(x . xz) is equivalent to E,4, since it implies y . yx =
=y((x.x2))) =y, x =yx, x = z.

The equation x = y(zx . z) (and hence x = y(zx . u), too) is equivalent to E,q,
since it implies zx . z = u((z(zx . z)) z) = u . xz, x = y(zx.z) = y(u . xz) and x =
= y(u . xz) was already proved to be equivalent to E,,. The equation x = y(zx . y)
is equivalent to E,,, since it implies zx . y = z((y(zx . y)) z) = z . xz,x = y(zx . y) =
= y(z.xz) and x = y(z.xz) was already proved to be equivalent to E,, The
equation x = y(yx . z) is equivalent to E,,, since it implies yx = y(yx . ((yx . x) z)) =
= x, x = z. The equation x = y(xz . z) (and hence x = y(xz . u), too) is equivalent
to E,, since it implies x = y((x(zz.z))(zz . z)) = y(z(zz . z)). The equation
x = y(xz.y) is equivalent to E,,, since it implies x = y((x(yy . x))y) = y . yy.
The equation x = y(xy . z) is equivalent to E,,, since it implies yx = y(xy . ((x.
.xy) z)) = x, x = z. The equation x = y(xx . z) is equivalent to E,,, since it implies
x = y(xx . (uu.u)) = yu.

It is easy to prove that the varieties Vg4, ..., Vss, Vig, ..., Va3 are pairwise
different.

6. Some remarks
As a summary of the above results, we have
Theorem. If ¢ is any term of length <4, then the variety determined by x = ¢ is equal
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to one of the varieties V;, ..., Vs, Vi, Ve, Ve Vi, Vigs o Vigs Vigs oonr Vs Vigs -
..., V33 (where V] are the duals of ;); all these varieties are pairwise different. If V/
is any of these varieties and V # Vi,, V%, then the word problem for free groupids
in Vis solvable.

Problem. Describe free groupids in the variety determined by x = y(yx . y).

Remark. The notions of a representative set of terms and a replacement scheme can
be defined for an arbitrary similarity type in the same way as in Section 1 for the type
consisting of a single binary symbol. Consider the following two conditions for a given
variety V:

(C1) There exists a replacement scheme for V.

(C2) There exists a representative set R of terms for ¥ such that whenever a € Rand b
is a term such that b < a (i.e. f(b) is a subterm of a for some substitution f)
then beR.

Evidently, (C1) implies (C2). The converse is not true; for example, the variety of

semigroups satisfies (C2) but does not satisfy (C1).

Example. Let E be a set of equations of the form (uv, u) where u, v are any terms and
let V be the variety of groupoids determined by E. We shall show that there exists
a replacement scheme for V.

Denote by J the set of all the equations of the form (uv, u) that are satisfied
in V. Evidently, J is a replacement scheme and in order to prove that it is a replace-
ment scheme for V; it is enough to show that the groupoid A4,(-) connected with J
belongs to V. A; is the set of terms that do not contain a subterm h(uv) where h is
a substitution and (uv, u) € J. The binary operation . on 4, is defined as follows:
ifa,be Ay and abe A; then aob = ab; if a,be A; and ab¢ A; then ao b = a.
Let f be any homomorphism of the absolutely free groupoid W into A,(-). Denote
by g the substitution such that g(x) = f(x) for all variables x.

Let us prove by induction on the length of ¢ that if ¢ is any term then the equation
(f(2), g(1)) is satisfied in V. If ¢ is a variable, it is evident. Let 1 = ab. Then (f(a), g(a))
and (f(b), g(b)) are satisfied in ¥ by induction. If f(a).f(b) = f(a)f(b) then
(f (1), 9(1)) = (f(a) £(b), g(a) g(b)) is evidently satisfied in V. Now consider the
remaining case, i.e. f(a) . f(b) = f(a) and f(a) f(b) = h(uv) for some substitution h
and some (uv, u) € J. Since (uv, u) is satisfied in ¥, (h(u), h(uv)) is satisfied in ¥, too,
ie. (f(a), f(a)f(b)) is satisfied in V; but (f(a)f(b), g(a) g(b)) is satisfied in V, so
that (f(a), (1)) is satisfied in V. This means that (f(7), g(¢)) is satisfied in V.

Let (uv, u) € E. Then (g(uv), g(u)) is satisfied in V; by the above proved
(f(u), g(u)) and (f(uv), g(uv)) are satisfied in ¥, so that (f(uv), f(u)) is satisfied in ¥,
ie. (f(u)of(v),f(u)) is satisfied in V. If it were f(u)of(v) = f(u)f(v), then the
equation (f(u) f(v), f(u)) would be satisfied in ¥, so that it would belong to J and
thus f(u) f(v) ¢ 4,, a contradiction. Hence f(u) - f(v) = f(u), i.e. f(uv) = f(u).
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We have proved that J is a replacement scheme for V. However, the construction
of J was not recursive and so we do not know if the word problem for free groupoids
in V is solvable.

Problem 2. Let E be a finite set of equations of the form (uv, u) where u, v are arbitrary
terms. Is it true that the word problem for free groupoids in the variety determined
by E is solvable?

Problem 3. Investigate the collection of varieties satisfying either (C1) or (C2).

Remark. Let V be a given variety. If we find a replacement scheme J for ¥V, then J
can be often successfully used in proving that ¥ has some properties (like extensivity
or the strong amalgamation property); for example in [2] this method was chosen
for the proof of the fact that several varieties are extensive. (A variety V is called
extensive if any algebra from V can be extended to an algebra from V having an
idempotent.) One could expect that every variety V such that there exists a replacement
scheme for V'is extensive. However, this is not true.

Example. Consider the variety V determined by the following two equations:

x((xx . yy) . xx) = x,

(x((xx . (- yy)) - xx)) (x((xx . y(y . yy)) . xx)) = x((xx . (y . yy)) . xx) .

Denote these two equations by ab = a and cd = c. It is easy to see that {ab — a,
cd — ¢} is a replacement scheme for V. If a groupoid G from ¥ contains an idem-
potent e, then

xx = (x((xx . ee) . xx)) (x((xx . ee) . xx)) =

(x((xx - (e - ee)) . xx)) (x((xx . e(e . ee)) . xx)) =

x((xx . (e . ee)) . xx) = x((xx . ee) . xx) = x

for all x € G, so that G is idempotent. However, there are non-idempotent groupoids
in V and so Vis not extensive.
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