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Free Groupoids In Varieties Determined By a Short Equation 

J. JE2EK 
Department of Mathematics, Charles University, Prague*) 

Received 8 May 1981 

Let x b e a variable and t be an arbitrary term of length ^ 4. Free groupoids in the variety 
determined by x = t are described in any case, with the exception of the variety determined by 
x = y(y* • y) and its dual. 

Buď dána proměnná x a term t délkу ^ 4. Volné grupoidу ve variet určené rovnicí x = t 
jsou popsánу ve všech případech, kromě varietу určené rovnicí x = y(yx . y) a jejího duálu. 

Пуcть x — пepeмeннaя и t — тepм длины ^ 4. Cвoбoдныe гpугшoиды в мнoгooбpaзию, 
oпpeдeлeннoм уpaвнeниeм x = t, oпиcaны вo вcex cлучaяx, c иcключeниeм мнoгooбpaзия, 
oпpeдeлeннoгo уpaвнeниeм x = y(yx . y), и дуaльнoгo мнoгooбpaзия. 

Given a variety V of universal algebras, we can consider the following three 

problems: 

(PI) Describe the V-free groupoid over an infinite countable set. 

(P2) Describe all V-free groupoids. 

(P3) Find an algorithm deciding for any pair u, v of terms if the equation u = v 

is satisfied in V(i.e. solve the word problem for free algebras in V). 
Usually, a solution of any one of these three problems gives automatically a solution 
of the remaining two ones. 

In Section 1 we describe a general method enabling to solve these problems in 
many concrete cases; we introduce the notion of a replacement scheme and show 
that if a replacement scheme for V is found, then problems (Pi) and (P3) are auto­
matically solved. In order to be concise, we restrict ourselves to the case of algebras 
with a single binary operation — i.e. groupoids. In Sections 2, 3, 4 and 5 we illustrate 
this method on varieties determined by an equation of the form x = t where t is 
a term of length = 4 . Given any term t of length ^ 4 , we solve problems (PI) and (P3) 
for the variety V determined by x = t either by finding a replacement scheme for V 
or by finding a representative set of terms for Vand applying Proposition 1.2. The 
only two exceptions are the variety determined by the equation 
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x = y(yx . y) 

and its dual, for which description of free groupoids remains an open problem. 
In [1] Austin described another method for solving problem (P3) and illustrated 

this method on the variety determined by x = (yx . y) y. Austin noted that his 
method can be applied to any equation x = t with t of length = 4 , with the following 
six exceptions: 

x = y(y . xx) , x = (xx . y) y , 
x = y(yx .y), x = (y . xy) y , 
x = y(x . xy) , x = (yx . x) y . 

1. Representative sets of terms and replacement schemes 

We denote by X the infinite countable set of variables and by W the groupoid 
of terms — the absolutely free groupoid over X; the binary operation of Wwill be 
denoted multiplicatively. If t is a term, then the number of occurrences of varia­
bles in t is called the length of t. For every term t and every n = 0 define a term t2n as 
follows: t1 = t;t2n+i = t2nt2n. 

Equations are ordered pairs of terms; if there is not confusion, an equation (u, v) 
is sometimes denoted by u = v. 

Let Vbe a variety of groupoids. A subset R of Wis said to be representative for V 
if the following two conditions are satisfied: 

(i) for every term t there exists exactly one term u such that u e R and the equation 
(t, u) is satisfied in V; 

(ii) if t e R then every subterm of t belongs to R. 

1.1. Remark. For every variety of groupoids there exists at least one representative 
set of terms. 

Proof. Let Vbe a variety of groupoids. Denote by S the system of all sets M = W 
such that if t e M then every subterm of t belongs to M and if u, v e M and u #= v 
then the equation (u, v) is not satisfied in V It follows from Zorn's lemma that S 
has a maximal member JR. Suppose that R is not representative for V. Then there 
exists a term t such that whenever u e R then (t, u) is not satisfied in V. Let t be a term 
of minimal length between terms with this property. Of course, t does not belong 
to R. If t were a variable, then R u {t} would belong to 5, a contradiction with the 
maximality of R. Hence t = vw for some terms v, w. By the minimality of t there 
exist terms p, qe R such that the equations (v, p) and (w, q) are satisfied in V. Evident­
ly (t, pq) is satisfied in Vand so pq does not belong to R. As it is easy to see, R u {pq} 
belongs to S, a contradiction with the maximality of R. 



Let R be a representative set of terms for a variety V. Then we define a binary 
operation o on R as follows: if w, v e R then w o v is the only term from JR such that 
the equation (uv, u o v) is satisfied in V. The groupoid I?(o) is said to be associated 
with R and V. 

1.2. Proposition. Let V be a non-trivial variety of groupoids and let R be a. repre­
sentative set of terms for V. Then X _= R and the associated groupoid JR(O) is V-free 
over X. 

Proof. X c R is easy. Define a binary relation r on W by (w, v) e r iff (w, v) is 
satisfied in V. As it is well known, r is a congruence and W\r is V-free over {x/r; x e l } . 
Since R is representative for V, the mapping t i-> t\r is a bijection of R onto Ft7/r and 
by the definition of o it is an isomorphism of R(o) onto W. 

If J is a set of ordered pairs of terms, then A3 denotes the set of all the terms t 
such that whenever (w, w') e J and / is a substitution (i.e. an endomorphism of W) 
then f(u) is not a subterm of t. 

A set J of ordered pairs of terms is said to be a replacement scheme if the fol­
lowing three conditions are satisfied: 

(1) if (w, w') e J, (v, v') e J, iff, g are two substitutions such that/(w) = g(v) and if 
every proper subterm of/(w) belongs to Aj, then/(w') = g(v'); 

(2) if (w, w') e J, if / is a substitution and if every proper subterm of/(w) belongs 
to Aj, then f(u') e Aj\ 

(3) if (w, w') e J then w is not a variable. 
If J is a replacement scheme then we can define a mapping J* of W into Aj as 

follows: if feX, put J*(t) = t; if t = txt2 and J*(^) J*(t2) e Aj9 put J*(t) = 
= J*(*i) J*(t2)l 1f t = ^ 2 and J*(^i) J*(t2) = / ( " ) for some (w, u')e J and some 
substitution / , put J*(t) = f(u'). It follows from (1) and (2) that J* is a correctly 
defined mapping of Winto Aj. 

If J is a replacement scheme, we can define a binary operation o on A3 by 
a o b = J*(ab) for all a,be Aj. Equivalently: if a, b e A3 and ab e A3, then a o b = 
= ab; if a, b e A3 and ab = /(w) for some (w, w') e J and some substitution / , 
then a o b = f(u'). The groupoid Ad(o) is said to be connected with J. 

Let V be a variety of groupoids. A replacement scheme J is said to be a replace­
ment scheme for Vif the following two conditions are satisfied: 

(4) if (w, w') e J then the equation (w, w') is satisfied in V; 
(5) the groupoid connected with J belongs to V 

1.3. Theorem. Let Vbe a variety of groupoids and let J be a replacement scheme for V. 
Then the groupoid connected with J is V-free over X. An equation (w, v) is satisfied 
in Viff J*(w) = J*(v). If the sets J and the domain of J are both recursive, then the 
word problem for free groupoids is solvable in V. 



Proof. Using (4), it is easy to prove by induction on the length of t that if t e W 
then the equation (t, J*(t)) is satisfied in V Let u,v e A3 and let (w, v) be satisfied 
in V. The mapping J* is a homomorphism of W onto A3(o); by (5) we get J*(w) = 
= J*(v). Evidently, J* is identical on Aj and so w = v. Thus Aj is representative 
for V. The groupoid connected with J coincides with the groupoid associated with Aj 
and Vand is thus V-free over X by 1.2. The rest is easy. 

Thus if we succeed in finding a replacement scheme for a given variety, we have 
a nice description of free groupoids in this variety. In many cases it is easy to find 
a replacement scheme for the variety V determined by an equation u = v, where 
the length of w is greater than the length of v. Put Jt = {(w, v)} and try to prove 
(5) for Jx. As a matter of rule, we either succeed or the attempt is finished by finding 
another pair (u2, v2) which must belong to the desired replacement scheme. In the 
latter case put J2 = {(w, v), (u2, v2)} and again try to prove (5) for J2; etc. If the 
chain Jl9 J2,... is not finite, it is possible that its union will turn out to be a replace­
ment scheme for V. Sometimes (as in the case of the equations F21, E23, E38, £ 4 1 , 
see the following sections) we find out that there is no replacement scheme for V 
but the attempt of finding it leads us to another description of a representative set 
of terms and thus to a nice description of free groupoids in V, too. 

If we want to prove that a given set J of ordered pairs of terms is a replacement 
scheme for V, the verification of (1), (2), (3) is usually trivial and the set J was chosen 
so that (4) be true; thus the only difficulty is in proving (5). 

In concrete cases, the elements (ul,vl), (u2,v2),... of a given replacement 
scheme will be often denoted by wx -> vi9 u2 —> v2,... . 

2. Equations of the form x= t(x) 

Consider the following equations: 

Et: x = x 
*-J2. .X —— XX 

E3: x = x . xx E*: x = xx . x 
F4: x = xx . xx 
E5: x = x(x . xx) E*: x = (xx . x) x 
E6: x = x(xx . x) E*: x = (x . xx) x 

For every i e {1 , . . . , 6} denote by Vt the variety determined by Et and for every 
i E {3, 5, 6} denote by V* the variety determined by E*. 

2.1. Proposition. 

(i) The empty set is a replacement scheme for V1. 
(ii) {xx -> x} is a replacement scheme for V2. 



(iii) {x . xx -> x} is a replacement scheme for V3. 
(iv) {xx . xx -> x} is a replacement scheme for V4. 
(v) {x(x . xx) -> x} is a replacement scheme for V5. 

(vi) {x(xx . x) -> x} is a replacement scheme for V6. 

Proof. It is easy. 

2.2. Proposition. Let t be a term of length ^ 4 , containing a single variable x. Then the 
equation x = t is equal to one of the equations El9..., E69 E*9 E*9 E*. The varieties 
Vl9..., V6, V*9 V*9 V* are pairwise different. 

Proof. The first assertion is evident, the second follows easily from 2.1. 

3. Equations of the form x = t(*, ..., y,..., x) 

Consider the following equations: 

E7: x = x . yx E*: x = xy . x 
E8: x = xy . zx * 
E9: x = xy . >!x 
F10: x = xy . xx E*0: x = xx . yx 
Etl: x = x(>>. zx) E*x: x = (x>>. z) x 
K12: x = x(y . yx) E*2: x = (xy . y) x 
E13: x = x(y . xx) E*3: x = (xx . y) x 
E14: x = x(x . yx) E*4: x = (x>>. x) x 
F15: x = x(yy . x) E*5: x = (x . xy) x 
F16: x = x(yx . x) E*6: x = (x . x>>) x 
F17: x = x(x>>. x) E*7: x = (x . yx) x 

For every i e {7,. . . , 17} denote by Vt the variety determined by Et and for 
every i e {7, 10,.. . , 17} denote by V* the variety determined by E*. 

3.1. Proposition. 

(i) (x . yx -> x, xy . y -> x>;} is a replacement scheme for V7. 
(ii) {xy . zx -> x, x(y . xz) -> xz, (x.y . z) y -> x>̂ } is a replacement scheme for V8. 

(iii) {xy . >>x -> x) is a replacement scheme for V9. 
(iv) {x>>. xx -> x, (xx . >;) x -> xx, x(x,y . x>>) -> xy} is a replacement scheme 

for V10. 
(v) Denote by D the set of the terms 

(yn(yn-l(... (y2 . yl*)))) W ^ - l C . . (^2 - *!*)))) 

where n, m ^ 0 and n — m — 1 is divisible by 3. The set J = {ttt2 -> ti; 
t\ti e D} is a replacement scheme for V1X. 

(vi) Put D' = {xx . x, x(xx . xx)} u {x2"(y . yx)2"; n ^ 0} u {(>> . yx)2" x2n+1; 
n = 0}. The set {txt2 -> tx; t1t2 e D'} is a replacement scheme for V12. 



(vii) {x(y . xx) —> x, xx . x -v xx} is a replacement scheme for V13. 
(viii) For every n ^ 1 define terms rm sn as follows: rx = x; sx = x . yx; rn+l = sn; 

sn + i = snrn- The set {rnsn -+ rn;n = 1, 2,...} is a replacement scheme for V14. 
(ix) {x(yy . x) -> x, (xx . J/J;) . J J -> xx . yy] is a replacement scheme for V15. 
(x) {x(yx . x) -> x, (xy . y)y -+ xy . y) is a replacement scheme for V16. 

(xi) {x(xy . x) -> x, x . xx -> x} is a replacement scheme for V17. 

Proof, (v) Evidently, J is a replacement scheme. Denote by P the set of ordered 
pairs (n, m) of non-negative integers such that the equation x = x(y . zx) implies 
(yX • - (y2 • yi*))) (*,»(- • - (z2 • *i*))) = yn(- • • (y2 . yi*)). Evidently (0,2) e P. We have 
(1,0) e P, since xy = (xy) (y(z . xy)) = xy . y in Vn. If (n, m) e P, then (m, n + 1) e 
e P, too: if w = yn( .- (y2 • yi*)) a n d *> = zn(...(z2 . zxx)) then v = v(yn+l . uv) = 
= v. yM+1win Vu. If(n, m ) e P a n d ( m , k)ePthen(k, n )eP , too: if w = y*(.--(y2 . 
. yxx))9 v = zn(... (z2 . ztx)) and w = zw(... (z2 . Zlx)) then w = w(v . ww) = w . 
. vw = wv in Vu. From this it is easy to see that P contains all the pairs (n, m) such 
that n — m — 1 is divisible by 3. 

It remains to prove that the groupoid A3(o) satisfies x = x(y . zx). For every 
variable p and every n ^ 0 denote by U„(p) the set of terms of the form an(an_x ... 
... (a2 . a1p)) where al9..., an are arbitrary terms. Evidently, every term t determines 
uniquely a pair p, n such that t e Un(p). If w, v e A3 then either w 0 v = wvorw 0 v = 
= w; if w G U„(Pi) and v e Um(P2) then w o v = w iff pi = p2 and n — m — 1 is 
divisible by 3. Let w, v, w e A7; we must prove w o (v o (w o w)) = w. Let w e Un(px), 

v e UW(P2), vv e U*(p3). 
Assume first that w 0 w = ww. If, moreover, v 0 ww = v . ww, then w o (v o (w o w)) = 

= Wo(v.ww) = w, since w e Un(pi) and v . ww e Un+2(pi). If v © ww = v, then 
p1 -= p2 and m — (n + 1) — 1 is divisible by 3, so that w o (v o (w o w)) = w o v = w. 

Now let w o w = w, so that pj = p3 and k — n — 1 is divisible by 3. If v 0 w = vw 
then w e U„(pi) and vw e U*+i(pi) where n - (k + l) - 1 is divisible by 3, so that 
w o (v o (w o w)) = w o vw = w. If v o w = v, then px = p2 and m - k - 1 is divisible 
by 3; we have w e U^pj and v e Um(pi) where evidently n - m - 1 is divisible 
by 3, so that w o (v o (w 0 w)) = w o v = w. 

(vi) In V12 we have xx = xx . (x(x . xx)) = xx . x and x = x(xx . (xx . x)) = 
= x(xx . xx). If wv = w, then v = v(w . wv) = v . ww. The rest is easy. 

All the remaining assertions are easy. 

3.2. Proposition. Let t be a term of length g 4 beginning and ending with the variable 
x and containing not only x. Then the variety determined by x = tis equal to one of 
the varieties V7,..., V17, V7, Vf0, ..., V*7; these varieties are pairwise different. 

Proof. Evidently, the first assertion will be proved if we show that the equation 
x = x(yz . x) is equivalent to x = x . yx. However, the first equation implies x = 
= x((y(yy . y)) x) = x . yx and the converse is evident. It follows from 3.1 that the 
varieties are pairwise different. 

8 



4. Equations of the form x — t(x, ...,y) 

Consider the following equations: 

E1S: x = xj; F31: x = x(yy . z) 
F19: x = x . y y F32: x = x(yy.y) 
E20: x = x . xy E33: x = x(yx . z) 
E21: x = xy . z F34: x = x(yx . y) 
E22: x = xy . y E35: x = x(xy . z) 
E23: x = xy . yz E36: x = x(xy . y) 
E24: x = x y . yy E37: x = x(xx . y) 
E25: x = xx . xy E3S: x = (xy . z) u 
E26: x = x(y. yy) E39: x = (xy . y) y 
E21: x = x(y . xy) F40: x = (xy . x) y 
E28: x = x(x . yy) F41 : x = (xx . y) y 
E29: x = x(x . xy) £ 4 2 : x = (x . yx) y 
E30: x = x(yz . y) E43: x = (x . xy) y 

For every i e {18,..., 43} denote by Vt the variety determined by Et. 

4.1. Proposition. 

(i) {xy -> x} is a replacement scheme for V18. 
(ii) {x . y y -> x} is a replacement scheme for V19. 

(iii) {x . xy -> x, xx -> x} is a replacement scheme for V20. 
(iv) [xy . y -> x} is a replacement scheme for V22. 
(v) {xy . yy -> x, (x . yy) y -> x} is a replacement scheme for V24. 

(vi) {xx . xy -> x, x(xx . y) -> xx} is a replacement scheme for V25. 
(vii) {x(>>. yy) -> x} is a replacement scheme for V26. 

(viii) {x(y . xy) -> x, (y . xj>) x --> y . xy} is a replacement scheme for V27. 
(ix) {x(x . yy) -> x, xx . xx -> xx} is a replacement scheme for V28. 
(x) {x(x . xy) -> x, xx -> x} is a replacement scheme for V29. 

(xi) Put D = {x((((yz . y) z,) ...) z„); n = 0} u {x(((yy . zx) ...) zn); n = 0}. The 

set {txt2 -> ft; t1t2 e D} is a replacement scheme for V30. 
(xii) Put D' = {x(((yy . zx) ...) zn); n = 0}. The set {t^2 -> tt; txt2 e D'} is a re­

placement scheme for V31. 
(xiii) {x(j>y . y) -• x} is a replacement scheme for V32. 
(xiv) Put D" = {(((xzx . z2) ...) zn) ((((yx . ux) u2) ...) um); n, m = 0} u 

u {((((yx . ux) u2) ...) um) (((xz1 . z2) ...) zn); n,m = 0}. The set {ttt2 -> t1 ; 
txt2 G D"} is a replacement scheme for V33. 

(xv) Put D'" = {x2n(yx . y) 2n; n ^ 0} u {(yx . yfn x2n+1; n ^ 0}. The set {^t2 -> 
-> til t1t2e D'"} is a replacement scheme for V34. 

(xvi) {x(xy . z) -> x, xx -> x, x . xy -> x} is a replacement scheme for V35. 
(xvii) {x(x>>. y) -> x, xx -> x} is a replacement scheme for V36. 



(xviii) {x(xx . y) -> x, x . xx -> x} is a replacement scheme for V37. 
(xix) {(xy. y) y -> x} is a replacement scheme for V39. 
(xx) Put r0 = x, rt = xy. x, rn+l = r,,.^, s0 = x, s1 = xx . x, sn+l = s,,.^,.. 

The set {rny -> rn_t; n ̂  1} u {smsn -> sm_1; 1 f_ n ̂  m} is a replacement 
scheme for V40. 

(xxi) {(x . yx) y -> x, (xy) (y . x>!) -> x} is a replacement scheme for V42. 
(xxii) Put r0 = x, rx = x . xy, rn+l = rnrn_1. The set J = {x . xx -> xx, xx . x -> 

-> x, xx . xx -> x} u {rny -> rn_l; n = 1} is a replacement scheme for V43. 

Proof. We shall prove only (xxii); all the other assertions are easy. Of course, 
the equation x = (x . xy) y implies rty = r0; if it implies rny = rn_l9 then it implies 
rn = (rn • r

ny) y = rnrn-i • y = r„+1y. K implies 

x . xx = ((x . xx) ((x . xx) x)) x = ((x . xx) x) X = XX , 

x = (x(x . xx)) . xx = (x . xx) . XX = XX . XX , 

xx = (xx . (xx . xx)) . xx = (xx . x) . XX , 

xx . x = ((x . x) ((xx . x) . xx)) . xx = ((xx . x) . xx) . XX = XX . XX = X . 

If a, b are two terms, denote by rnab the term f(rn) where/ is a substitution with 
f(x) = a and f(y) = b. Evidently, if rlta§b = rncd and n = 1 then n = 1, a = c 
and b = d. From this it follows by induction that if rnab = r m c d and n, m = 1 
then n = m, a = c and b = d. It is easy to see that J is a replacement scheme. Let 
w, v e Aj. It remains to prove that (w 0 (w 0 v)) 0 v = u. 

Let u = rnatb and v = b. If rn_ltab = b then n = 1 and a = b, a contradiction 
with w e Ay. If either rnfflffr = p, r„_1>ab = pjp or rn^b = pp, rn_Uatb = pp for some 
term p, we get a contradiction from the fact that the length of rna>6 is greater than the 
length of rn_lab. If rnab = pp and rn_lab = p for some term p, we get a contra­
diction, too, since evidently no rnab (n = 1) is a square. Hence (w 0 (w 0 v)) 0 v = 
= \rn,a,b ° rn-l,a,b) ° ° = Tn,a,bVn- 1 ,a,b ° ° ~ rn+l,a,b ° ° = rn,a,b = U' 

Let u = a and v = aa. Then (w o (w o v)) 0 v = (a 0 aa) o aa = aa o aa = a = M. 
Let u = v = aa. Then (w o (w 0 v)) 0 v = (aa 0 a) 0 aa = a 0 aa = aa = u. 
Let u = aa and v = a. Then (w 0 (w 0 v)) 0 v = (aa 0 a ) 0 a = a 0 a = w. 
Finally, let u o v = uv. If w o wv 4= w . wv then w = a and wv = aa for some 

term a; then (u o (u o v)) o v = aa o a = a = u. If u o uv = u . uv then (w 0 (w 0 v)) 0 

0 v = u is clear. 

4.2. Proposition. Pu A = X u {xx; x e X) and define a binary operation © on A as 
follows: if x eX and a e A then x 0 a = xx and xx 0 a = x. The groupoid A(0) 
is V21-free over X. 

Proof. It is easy. 

4.3. Proposition. Denote by A the set of all terms of the form ((xux . w2)...) wn where 
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x e X, n = 0, every ut is either a variable or a square of a variable and if i, i + 1 G 
e { 1 , . . , « } then wf #= w ^ w ^ and ul+1 * M ^ . Define a binary operation 0 on A 
as follows. Let a,beA and b = ((xui . w2)...) un where x G X. Put 

a o ft = ax if n is even end a =t= P . xx for all terms p; 
a o b = p if n is even and a = p . xx for some p; 
a o b = a . xx if n is odd and a 4= px for all terms /?; 
a 0 b = p if n is odd and a = px for some p. 

The groupoid A(o) is V23-free over X. 

Proof. It is easy to prove that A(o)e V23. Now it is easy to prove that A is 
a representative set of terms for V23 and that A(o) is the groupoid associated with A 
and V23; now use 1.2. 

4.4. Proposition. Put A = X u {xx; xeX} KJ {XX . xx; xeX} and define a binary 
operation 0 on A as follows: if x G K and a G A then x 0 a = xx, xx 0 a = xx . xx 
and xx . xx o a = x. The groupoid A(o) is V38-free over X. 

Proof. It is easy. 

4.5. Proposition. Denote by A the set of terms t such that if a, b are any terms then 
ab . b, a . aa, a(aa . aa), (aa . aa) (aa . aa) are not subterms of t and if b 4= aa 
then aa . b is not a subterm of f. Define a binary operation 0 on A: 

a o aa = aa; 
a o aa . aa = aa; 
aa . aa o aa = a; 
aa .aa o aa . aa = a; 
ab . ab ob = a; 
ab o b = aa . aa if a is not a square; 
(ab . ab) (ab . ab) 0 b = aa; 
aa . aa ob = (ab . ab) (ab . ab) if b =j= a, b 4= aa, b =£ aa . aa and a + pb for 
all terms p; 
aa o b = ab . ab if a is not a square, b ^ aa, b ^ aa . aa and a 4= Pb for 
all terms p; 
u o v = wv in all other cases. 

The groupoid A(o) is V41-free over X. 

Proof. The equation x = (xx . y) >; implies 

xx = ((xx . xx). xx) . xx = x . xx, 
x = (xx . (xx . xx)) (xx . xx) = (xx . xx) (xx . xx), 
xx . xx = (((xx . xx) (xx . xx)) y) y = xy . y, 
(xx . xx) y = (xy . y) y = (xy . Xy) (xy . xy), 
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xx . y = x16 . y = (x4 . y)4 = (xy)16 = xy . xy, 
x(xx . xx) = (x4 . x4) x4 = (x4)4 = x16 = xx. 

It is easy to see that the operation o is correctly defined, that A is a representative set 
of terms for V41 and that A(o) is just the groupoid associated with A and V41. 

4.6. Proposition. Let t be a term of length ^ 4 beginning with x and not ending 
with x. Then the variety determined by x = t is equal to one of the varieties V18,... 
..., V43; all these varieties are pairwise different. 

Proof. The equation x = x . yz is evidently equivalent to E18. The equation 
x = xx . y is equivalent to F21, since it implies xx = (xx . xx) y = xy. The equation 
x = xy . zz is equivalent to F21, since it implies xy . z = xy . (zz . zz) = x. Hence 
the equation x = xy . zu is equivalent to F21, too. The equation x = xy . xy is 
equivalent to F21, since it implies xy = (xy . xy) (xy . xy) = xx. Hence each of 
the equations x = xy . zy and x = xy . xz is equivalent to F21, too. The equation 
x = xx . yy is equivalent to E21, since it implies xx . y = xx . (yy . yy) = x and 
xx . y = x is equivalent to E21. Hence x = xx . yz is equivalent to E21, too. 

The equation x = x(y . yz) is equivalent to F18, since it implies x = x(y(>>. yy)) = 
= xy. Hence x = x(y . zu) is equivalent to F18, too. The equation x = x(y . zz) is 
equivalent to F18, since it implies x = x(y(zz . zz)) = xy. The equation x = 
= x(y . zy) is equivalent to F18, since it implies x = x(yz . (z . yz)) = x . yz and 
x = x . yz is equivalent to F18. The equation x = x(y . xz) is equivalent to El8, 
since it implies x = x(y(x . yu)) = xy. The equation x = x(x . yz) is equivalent 
to F20, since it implies x = x(x(y(y . yy))) = x . xy. 

The equation x = x(yz . z) is equivalent to F18, since it implies x = x((y(zz . z)) . 
. (zz . z)) = x(y(zz . z)) = xy. Hence x = x(yz . u) is equivalent to E18, too. 

The equation x = (xy . z) z is equivalent to F38, since it implies xy = ((xy . 
. z) z) z = xz. The equation x = (xy . z) y is equivalent to E38, since it implies xz = 
= ((xz . y) z) y = xy. The equation x = (xy . y) z is equivalent to F38, since it 
implies xy = ((xy . y) y) z = xz. The equation x = (xy . x) z is equivalent to £3 8 , 
since it implies yx = ((yx . y). yx) z = yz. The equation x = (xx . y) z is equivalent 
to F38, since it implies xu = ((xx . xx) z) u = xx. The equation x = (xx . x) y is 
equivalent to F38, since if we put x = xx . x, it implies x = (xx . x) y = xx . y, 
xx = ((xx . xx) . xx) y = (x . xx) y = xy, so that xy = xz. 

The equation x = (x . xx) y is equivalent to E21, since it implies x . xx = 
= ((x . xx) ((x . xx) (x . xx))) y = xy. Hence each of the equations x = (x . xy) z, 
x = (x . yx) z, x = (x . yy) z, x = (x . yz) u is equivalent to F21, too. The equation 
x = (x . yz) z is equivalent to F21, since it implies x = (x((y . zz) z)) z = xy . z. 

The equation x = (x . yz) y is equivalent to F23, since it implies x = (x((u . 
. zv) z)) (u . zv) = (xu) (u . zv), x = (xy) (y((z . zz) z)) = xy . yz and for the con­
verse we can use 4.3. 

The equation x = (x . yy) y is equivalent to £2 4 , since it implies xy = ((x(yy . 
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• yy)) • yy) y = *(yy • yy)> so that x = (x(yy . yy)) . yy = xy . yy, and for the 
converse we may use 4.L 

We have proved that for any term t of length ^ 4 beginning with x and not 
ending with x the variety determined by x = t is equal to one of the varieties V18,.. . 
..., V43. The fact that these varieties are pairwise different follows from 4.1, 4.2, 4.3 
4.4 and 4.5. 

5. Equations of the form x = t(y,..., z) 

Consider the following equations: 

F44: x = y 
£ 4 5 : x = y . xy 
E46: x = yy .xy 
£ 4 7 : x = yx . xz 
^ 4 8 : x = yx . xy 
£ 4 9 : x = y(y. xy) F49: x = (yx . y) y 
£5o : x = y(x . xy) £ 5 0 : x = (yx . x) y 

£ 3 1 : x = y(yx . y) E*5Í: x = (y .xy)y 

-^52: x = y(xy . y) 17* • 
^ 5 2 -

x = (y.yx)y 

£ 5 3 : x = y(xx . y) F*3: x = (y . xx) y 

For every i e {44,..., 53} denote by Vt the variety determined by Et and for every 
i e {49,..., 53} denote by V* the variety determined by E*. 

5.1. Proposition. 

(i) {y . xy -> x, yx . y -> x} is a replacement scheme for V45. 
(ii) {yx . xz -> x, x(xy . z) -> xy, (z . xy) y -> xy} is a replacement scheme for V47. 

(iii) {yx . xy -> x} is a replacement scheme for F48. 
(iv) Put r1 = x, r2 = y, r3 = y . xy and rn+3 = rn+2rn for n = 1. The set {rnrn+l -> 

-> rn_1; n — 2} is a replacement scheme for V49. 
(v) {y(xx . y) -> x, (yy . xx) y -> x} is a replacement scheme for V53. 

Proof. It is easy. 

5.2. Proposition. For every term t define a term t' as follows: if teX, put t' = tt 
and (tt)' = t; if t = uv and either u 4= v or u $X, put t' = u'v'. Denote by A the set 
of terms t such that if a, b are any terms then neither ab . ab nor b'. ab nor ba . b' 
is a subterm of t. We can define a binary operation o on A as follows: 

a o a = a'; 
V o ab = a whenever ab e A; 
ba ob' = a whenever ba e A; 
u o v = uv in all other cases. 

The groupoid A(o) is V46-free over X. 
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Proof. The equation x = yy . xy implies 
x = (yy • yy) (x . yy) = y(x . yy), 
(xy .xy)x = (xy . xy) (yy . xy) = yy, 
xy . xy = xx . ((xy . xy) x) = xx . yy, 
xy .xx = ((xx . xx) (yy . yy)) . xx = ((xx . yy) (xx . yy)). xx = yy . yy = y, 
y = (xx . y) (xx . xx) = (xx . y) x. 
It is easy to prove (by induction on the length of t) that if t is any term then the 

equation t' = tt is a consequence of E46. 
Let us prove by induction on the length of t that if t e A then t' e A and t" = t. 

If either t = p or t = pp for some variable p, it is evident. Let t = uve A and t' = 
= u'v'. By the induction assumption, u' e A, v' e A, u" = w and v" = v. We have 
w =}= v. Suppose t' $ A. Since w =# v, u" = u and v" = v, we have u' #= v'. We have 
either t' = b'. ab or t' = ba . V for some terms a, b. We shall consider only the 
case t' = b' . ab, since the other case is similar. We have u' = b' and v' = ab. 
Hence u = u" = b" and v = v" = (ab)'. lfa = beX, then w = b" = b = (ab)' = v, 
a contradiction. Hence (ab)' = a'b', so that t = uv = b" . a'b' $ A, a contradiction. 
This proves t' e A. We have t" = (u'v')' = u"v" = uv = t. 

It is easy to prove by induction on b that if b' = ab e A then a = b eX. From 
this it follows that the operation 0 on A was correctly defined. 

Let us prove that the groupoid A(o) satisfies x = yy . xy. Let u, v e A. If w = v, 
then (v ov) o(u o v) = u' ou' = u" = w. Let w #= v. If w = b' and v = ab, then 
(v o v) o (w o v) = (ab o ab) o a = (ab)' o a = a'b' o a = a'b' 0 a" = b' = u. If w = 
= ba and v = b', then (v o v) 0 (u o v) = (b' o b') o a = b" o a = b o a = u. In all 
other cases (v o v) o(u o v) = v' ouv = u. 

Now it is easy to see that A is a representative set of terms for V46 and that A(0) 
is just the groupoid associated with A and V46; use 1.2. 

5.3. Proposition. Denote by M the set of all finite sequences of elements of {1, 2}. 
For every ee M define three terms re, se, te as follows: 

rø = У . s0 = x.xy, tø = x, 
ГЄ,1 = SЄ 5 Se,l = r e ^ e > tЄ,l = Г Є 5 

r e , 2 = 5 e • 5 e r e 5 5 e , 2 = ř e > *e,2 = r e • 

The set {xx . x -• x} u {rese -> te; e e M} is a replacement scheme for V50. 

Proof. The equation x = y(x . xy) implies x = xx . (x(x . xx)) = xx . x. If 
e e M and £ 5 0 implies rese = te, then F50 implies 

re,l5e,l = 5e • *Ve = 5e(re • re5e) = re = *e,l> 

re,25e,2 = (5e • 5ere) *e = (5e • 5ere) • re5e = 

= (5e • 5ere) (re(re(5e • 5ere))) = re = *e,2-

Hence K50 implies rese = te for any eeM. 
For every eeM and every pair a, b of terms put re.ab = f(re), se;atb = f(se) 
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and te;(Jtb = f(te), wherefis a substitution such thatf(x) = a andf(}/) = b. Evidently, 
te;ab is a proper subterm of either re;ab or se;ab. 

The rest of the proof will be divided into several lemmas. 

5.3.1. Lemma. Let rc ; a b = r / ; c d and sc ; ab = s / ; c d . Then e = f, a = c and b = d. 

Proof. We shall proceed by induction on the sum of the lengths of e and f. 
If e = f = 0, the assertion is evident. It is enough to consider the following eleven 
cases. 

Case 1: e = 0 and f = h, 1 for some he M. Then re;ab = r / ; c d and se;ab = 
= s / ; c d means that b = sA;cd and a . ab = rh;cdth;cd. But then fA;c>d = ab = 
= rh;C,dsh;c,d> a contradiction. 

Case 2: e = 0 and f = h,2. Then b = sA;Cfd. sA;c>drA;c>d and a . ab = th;Ctd, 
so that rA;cd is longer than sA;c>drA;cd, a contradiction. 

Case 3: e = a, 2 and f = 1. Then sa;a>b. sa;flfbra;ab = c . cd and fa;a>b = dc, 
so that tg;atb = rg;absg;atb, SL contradiction. 

Case 4: e = 2 and f = h, 1, 1. Then (a . ab) ((a . ab) b) = rh;Ctdth;Ctd and 
a = sh.Ctdrh;Ctd, a contradiction. 

Case 5: e = 2 and f = h,2, 1. Then (a . ab) ((a . ab) b) = th;Ctd and a = 
= (*h;c,d • Sh;c,drh;c,d) rh;c,d, so that th;Ctd is longer than sA;c>drA;c>d, a contradiction. 

Case 6: e = g, 1,2 and f=h, 1,1. Then ra;fl>bra;a>b. (rg;atbtg;atb . sg;atb) = 
= rh;Ctdth;Ctd and ra;a>b = sA;CfdrA;c>d, a contradiction. 

Case 7: e = g, 1, 2 and f = h, 2,1. Then rg;atbtg;atb . (rg;atbtg;atb. sa;a>b) = 
= 'A;c,d and ra;fl>b = (sA;c>d. sA;c>drA;c>d) rA;c>d, so that tA;c>d is longer than sA.CfdrA;c>d, 
a contradiction. 

Case 8: e = a, 2, 2 and f = h, 1, 1. Then W ( W v W • 5*;a,bra.a,b)) = 
= rh;Ctdth;Ctd and ra;a)b = sA;cdrA;c>d, so that rA;c>d is longer than sh;Ctdrh.Ctd, a contra­
diction. 

Case 9: e = g, 2, 2 and f = h, 2, 1. Then tg;atb(tg;atb(sg;atb. sa;afbra;flfb)) = fA;c>d 

and rg;atb = (sh;c>d . sA;c>drA;c>d) rA;c>d, so that fA;c>d is longer than sh;Ctdrh;Ctd, SL contra­
diction. 

Case 10: e = g, 1 and / = h, 1. Then sa;a>b = sA;c>d and ra;afbta;afb = rh;Ctdth;Ctd, 
so that rfl;ab = rA;cd and sa;a b = sA;cd. By the induction assumption we get g = h 
(so that e = f), a = c and b = d. 

Case 11: e = g, 2 and f = h, 2. Then sa;a>b. sg;atbrg;atb = sh;Ctd . sA.CfdrA;Cfd and 
tg;a,b = '/..cd* s ° that ra;a>b = rA;cd and sg;ab = sA;cd. By the induction assumption 
we get g = h (so that e = f), a = c and b = d. 

5.3.2. Lemma. re;ab =}= sc;ab for all e, a, b. 
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Proof. By induction on the length of e. For e = 0 it is evident. Let e #= 0, and 
suppose re;a>b = se;aA. It is clear that e = f, 1 for somef. We have sf;ab = rf;ajbtf;aJ). 
Now it is clear that f = g, 1 for some a, so that rg;aJg;ajb = sg;atbrg;ajb and con­
sequently rfl;a>b = sg;ab, a contradiction with the induction assumption. 

5.3.3. Lemma. Let re;ab = rf;cd and te;ab = sf;cd where e,f are both non-empty. 
Then e = 1 and f = 2. 

Proof. If we do not have e = 1 and f = 2, then one of the following 46 cases 
takes place. 

Case 1: e = g, 1, 1 and f = h, 1,2 for some g, he M. Then rg;abtg;ab = 
= rh;c>dth;c>d . (rh;Cjdth;c4 . sA;c>d) and sfl;aA = rA;c>a, so that tfl;aA is longer than both 
rfl;a.b

 anc* sg;a,b> a contradiction. In the following we shall write less accurately rfl 

instead of rg;a>h, etc. 

Case 2: e = g, 1, 1 and / = h, 2, 2. Then rgtg = th(th(sh. shrh)) and sg = rh, 
so that tg is longer than both rfl and sfl, a contradiction. 

Case 3: e = g, 1, 2 and f = h, 1, 1. Then rfltfl . (rfltfl. sfl) = rhth and sfl = shrh, 
so that ;>A is longer than shrh, a. contradiction. 

Case 4: e = g, 1, 2 andf = h, 1, 2. Then r^fl . (rfltfl . sfl) = rAtA . (rhth . sA) and 
sfl = rA, so that rfl = rA and sfl = sA. By 5.3.1 we get g = h, a = c and b = d; hence 
sfl = rfl, a contradiction by 5.3.2. 

Case 5: e = g, 1, 2 and f = h, 2,1. Then rgtg . (rflffl . sg) = th and sfl = (sA. 
. sArA) rh, so that i*A is longer than shrh, a contradiction. 

Case 6: e = g,l,2 and f = h, 2, 2. Then rgtg . (rgtg . sg) = th(th(sh. shrh)) and 
sg = rh, so that rh = sg = sh. shrh, a contradiction. 

Case 7: e = g, 2,1 andf = h, 1, 1. Then tg = rAlA and sg . sgrg = shrh, so that tfl 
is longer than sgrg, SL contradiction. 

Case 8:e = g,2,landf=h,l,2. Then tg = rhth . (rhth . sh) and sfl . sgrg = rh, 
so that tg is longer than sgrg, a contradiction. 

Case 9: e = g, 2, 1 and f = h, 2, 1. Then tfl = tA and sg . sgrg = (sh. shrh) rh, 
a contradiction evidently. 

Case 10: e = g, 2,1 andf = h, 2, 2. Then tg = th(th(sh. shrh)) and sfl . sgrg = rh, 
so that tg is longer than sflrfl, a contradiction. 

Case II: e = g, 2, 2 and f = h, 1, 1. Then tg(tg(sg . sgrg)) = rhth and sg . sgrfl = 
= shrh, so that th is longer than sArA, a contradiction. 

Case I2: e = a, 2, 2 and f = h, 1, 2. Then tg(tg(sg. sgrg)) = rhth . {rhth . sh) and 
sg . sgrg = rA, so that rA = sA, a contradiction by 5.3.2. 

Case I3: e = a, 2, 2 and f = ft, 2, 1. Then tg(tg(sg. sgrg)) = th and sg. sgrg = 
= (sA . shrh) rh, evidently a contradiction. 

Case 14: e = a, 2, 2 and f = h, 2, 2. Then ff(*,(sf . sgrg)) = th(th(sh . shrh)) and 
sg . sgrg = r^ evidently a contradiction. 
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Case 15: e = g, 1,1,1 and f = h, 1, 1, 1. Then sgrg = shrh and rgtg = rhth . sh, 
evidently a contradiction. 

Case 16: e = g, 1,1,1 and f = h, 2, 1,1. Then sgrg = (sh . shrh) rh and rgtg = 
= th(sh. shrh), so that sg = tg and tg is longer than rg, a contradiction. 

Case 17: e = g, 2,1,1 and f = h, 1, 1, 1. Then (sg. sgrg) rg = shrh and tg = 
= rhth. sh, so that tg is longer than sgrg, SL contradiction. 

Case 18: e = g, 2, 1,1 and f = h, 2, 1,1. Then (sg . sgrg) rg = (sh . shrh) rh and 
tg = th(sh. shrh); a contradiction follows from 5.3.1. 

Case 19: e = g,1,1,1 and f = 1,1. Then sgrg = dc and rgtg = (c . cd) d, 
a contradiction. 

Case 20: e = g, 2,1,1 and f = 1, 1. Then (sg . sgrg) rg = dc and tg = (c . cd) d, 
so that tg is longer than sgrg, a contradiction. 

Case 21: e = 1,1 and f = h, 1, 1. Then ba = rhth and a . ab = shrh, evidently 
a contradiction. 

Case 22: e = g,1,1,1 and f = h, 1, 2, 1. Then sgrg = rh and rgtg = (rhth . 
. (rhth. sh)) sh, evidently a contradiction. 

Case 23: e = g, 1,1,1 and f = h,2, 2,1. Then sgrg = rh and rgtg = (th(th(sh . 
. shrh))) (sh. shrh), evidently a contradiction. 

Case 24: e = g, 2,1,1 and f = h,l, 2, 1. Then (sg. sgrg) rg = rh and tg = 
= (rhth. (rhth . sA)) sA, so that ^ is longer than sgrg, a contradiction. 

Case 25: e = g, 2,1,1 and f = h,2, 2, 1. Then (sg. sgrg) rg = rh and tg = 
— (thQh^h • shrh))) (sh • shrh)> s o that ^ is longer than sgrg, a contradiction. 

Case 26: e = g,1,1,1 and f = 2, 1. Then s ^ = c and r ^ = ((c . cd) . 
. ((c . cd) d)) d, a contradiction. 

Case 27: c = g, 2, 1, 1 and f = 2, 1. Then (sg . sgrg) rg = c and tg = ((c . cd) . 
. ((c . cd) d)) d, so that tg is longer than sgrg, a contradiction. 

Case 28: c = 1, 1 and f = h, 2,1. Then ba = th and a . ab = (sh . shrh) rh, 
so that th is longer than shrh, a contradiction. 

Case 29: e = 1 and f = h, 1,1. Then a . ab = rhth and b = shrh, so that fA 

is longer than shrh, a contradiction. 

Case 30: e = 1 andf = h, 2 ,1 . Then a . ab = th and b = (sA . sArA) rA, so that th 

is longer than sArA, a contradiction. 

Case 31: e = 1 and f = 1. Then a . ab = c. cd and b = dc, a contradiction. 

Case 32: e = 1 and f = h, 1, 2. Then a . ab = rhth . (rhth . sh) and b = rh, so 
that rA = sA, a contradiction by 5.3.2. 

Case 33: e = 1 and f = h,2, 2. Then a . ab = th(th(sh . shrh)) and b = rA, 
a contradiction. 

Case 34: e = 2 and f = h, 1, 1. Then (a . ab) ((a . ab) b) = rhth and b = shrh, 
a contradiction. 
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Case 35: e = 2 and f = h, 2 ,1 . Then (a . ab) ((a . ab) b) = th and b = (s„. 
. shrh) rh, so that th is longer than shrh, a contradiction. 

Case 36: e = 2 and f = 1. Then (a . ab) ((a . ab) b) = c . cd and b = dc, 
a contradiction. 

Case 37: e = 2 and f = h, 1, 2. Then (a . ab) ((a . ab) b) = rhth . (rhth. sh) and 
b = rh, so that r,, = sh, a contradiction by 5.3.2. 

Case 38: e = 2 and f = h, 2, 2. Then (a . ab) ((a . ab) b) = th(th(sh . shrh)) and 
b = rh, a, contradiction. 

Case 39: e = 2 and f = 2. Then (a . ab) ((a . ab) b) = (c . cd) ((c . cd) d) and 
b = dc, SL contradiction. 

Case 40: e = g, 1, 1 and f = 1. Then rata = c . cd and sa = dc, so that tg is as 
long as sg and longer than rg, a contradiction. 

Case 41: e = g, 2,1 andf = 1. Then tg = c . cd and (sa . sara) ra = dc, so that tg 

is longer than sflra, a contradiction. 

Case 42: e = g,2 andf = 1. Then sa . sgrg = c . cd and ra = dc, a contradiction. 

Case 43: e = g, 1,1 and f = 2. Then rata = (c . cd) ((c . cd) d) and sa = c, 
so that ta is longer than both rg and sg, SL contradiction. 

Case 44: e = g, 2, 1 and f = 2. Then tg = (c . cd) ((c . cd) d) and sa . sgrg = c, 
so that tg is longer than sara, a contradiction. 

Case 45: e = g, 1, 2 and f = 2. Then rata . (rata . sa) = (c . cd) ((c . cd) d) and 
sa = c, so that ta is longer than both rg and sg, a contradiction. 

Case -/6: e = g, 2, 2 and f = 2. Then fa(*>a(sa . sara)) = (c . cd) ((c . cd) d) and 
sfl . sgrg = c, so that tg is longer than sara, a contradiction. 

5.3.4. Lemma. Let re ; a6 = te;a6. Then e = 0 and a = b. 

Proof. Suppose e =# 0. If e = g, 1 for some g e M, then sa ;ab = ra;a 6, a contra­
diction with 5.3.2. If e = g, 2 for some g e M, then sa ;ab . sa;aj6ra;afc = ra;a fe, a contra­
diction. 

5.3.5. Lemma. Let re;atb = r0;cd and fe;ajb = s0 ; c d where e 4= 0. Then e = 2, 1. 

Proof. Suppose e = g, 2 for some g e M. Then s a ; a 6 . sg;abrg;ab = d and 
ra;a,& = c . cd, a contradiction. 

Suppose e = g, 1, 1. Then rg;atbtg;ab = d and sa;a>b = c . cd. Evidently a #= 0. 
If 0 = ft, 1 for some ft, then sh;Qtbrh;atb = d and rh;afbth;atb = c . cd, so that ffc.flf(, is 
longer than sh;atbrh;atb, a contradiction, If a = ft, 2 for some ft, then 
(s,,;a,& • sh;atbrh;atb) rh;atb = d and th;Qtb = c . cd, so that rft;ajb is longer than sh;aibrh;a>b, 
a contradiction again. 
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Suppose e = 1. Then a . ab = d and b = c . cd, a contradiction. 
Hence c = g, 2, 1 for some g e M. We have ^;a>b = d and sg;atb . sg;atbrg;atb = 

= c .cd. Consequently tg;Qtb = rg;Qtb, so that g = 0 by 5.3.4. We get c = 2, 1. 

5.3.6. Lemma. The set {xx . x -> x} u {re5e -> fe; e e M} is a replacement scheme. 

Proof It follows from 5.3A and from the following assertion, which can be 
proved easily: if a, b are terms and ee M then re;ab =j= se;atbse;atb. 

5.3.7. Lemma. Denote by A(o) the groupoid connected with the replacement scheme 
from 5.3.6. Let u,v e A and u o v = uv. Then v o (u o (u o v)) = u. 

Proof. If u o uv = u . uv, then everything is evident. Now let u 0 uv 4= u . uv, 
so that u = re;ab and uv = 5e ; a b for some ee M and some terms a, b. We have 
se;a,b = re;a,bv- If it w e r e e = f, 1 for somefe M, we would have rf;atbtf;atb = 5 / ;abv, 
so that r / ; a b = 5 / ; a b , a contradiction with 5.3.2. If it were e = f, 2 for some fe M, 
we would have tf;ab = (sf;ab. sf;abrf;ab) v, so that tf;atb would be longer than 
sf;a,brf;a,b> a contradiction. Hence e = 0, so that u = b and uv = a . ab; hence 
a = b, u = a, v = aa. We get v 0 (u 0 (u 0 v)) = aa o(a o a . aa) = aa 0 a = a = u. 

5.3.8. Lemma. Let u,ve A, and let there exist a term a such that u = aa and v = a. 
Then v 0 (u © (u 0 v)) = u. 

Proof. We have v 0 (u 0 (u 0 v)) = a 0 (aa 0 (aa o a)) = a 0 (aa o a) = a o a = u. 

5.3.9. Lemma. Let u,ve A and let there exist terms a, b and a sequence ee M 
such that u = re;ab and v = se;ab. Then v 0 (u 0 (u o v)) = u. 

Proof. Let re;a>b o te;atb = re;aye;a>b. Then v o (u o (u o v)) = se;atb o re;a)bte;a>b = 
= r e , l ; a , b ° S e , l ;« ,b = ^e,l;a,b = Ve;a,b = U-

Suppose that re;ab = cc and te;ab = c for some term c. If it were e = 0, then 
fc = cc and a = c, so that se;ab = a . ab = c(c . cc) $ A, a contradiction. If it were 
e = g, 2 for some g e M, then 5fl;ab . sg;abrg;atb = cc, a contradiction. Hence e = g, 1 
for some g. If it were g = h,\ for some h, then r

h}atbth;atb = cc and 5fc;a b = c, so that 
rh-,a,b = h;a,b = sh;a,b> a contradiction. If it were g = h, 2 for some h, then fb;ab = cc 
a-id 5^ ; a b . 5b.a>brb;ab = c, so that rb;fljb would be longer than sh;atbrh;ab, a contradic­
tion. Hence h = 0, so that a . ab = cc and b = c, a contradiction. 

It remains to consider the case when re;ab = rf;cd and te;ab = sf;cd for some 
/ e M and some terms c, d. 

Suppose that e = 1 and f = 2. Then a . ab = (c . cd) ((c . cd) d) and b = c, 
so that b = c = d and a = b . bb; we have 5e;a b = ba = b(b . bb) $ A, a. contra­
diction. 

Suppose that c = 2, 1 and f = 0. Then a = d and (a . ab) ((a . ab) b) = c . cd, 
so that a = b = d and c = a . aa; we have se;atb = ((a . aa) ((a . aa) a )) a = 
= r2 ; a > a52 ; a a $ A, a contradiction. 
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It follows from 5.3.3 and 5.3.5 that e = 0. Hence b = rf;cd and a = sf;ca; 
we have Vo(uQ(uov)) = se;atb o (r/;c>a o sf;c>d) = a . ab Q tf;Cjd = sf;Cid. 

• Sf;c,drf;c,d ° tf;c,d = rf,2;c,d ° Sf,2;c,d = *f,2;c,d = rf;c,d = b = U. 

It follows from 5.3.7, 5.3.8 and 5.3.9 that the groupoid A(o) satisfies x = 
= }/(x . xy). This completes the proof of 5.3. 

5.4. Proposition. For every n _ 1 define terms rn and sn as follows: 

rt=x, r2 = y, r3 = xy . y , rn+3 = rnrn + 2 , 
s1 = X , s2 = XX , s3 = (XX . x) . XX , sn+3 = snsn+2 . 

The set J = {(xx . x) x -> x, x . xx -» xx . x} u {rnrn+1 -» rn_ x; n _r 2} u {snsn+t -> 
-* s„_x; n = 2} is a replacement scheme for V52. 

Proof. The equation x = y(xy . y) implies rnrn+1 = rn_1 for every n = 2, 
since for n = 2 it is trivial and if it is true for some n, then 

rn = rn+l\rnrn+l • rn+l) = rn+\ • rn-lrn+i = rn+lrn + 2 • 

Since F52 implies r3r4 = r2 , it implies 

x = (xx . x) (x(xx . x)) = (xx . x) x , 
xx . x = x(((xx . x) x) x) = x . xx . 

Now evidently K52 implies s2s3 = st and so (by induction on n) snsn+1 = sn_1 for 
all n = 2. 

For every pair a, b of terms and every n _ l put rnab = f(rn) and sna = f(sn), 
where / is a substitution such that f(x) = a and f(y) = b. Evidently, if n < m then 
either n = l ,m = 2 or rwa>6isaproper subtermof rmab;if n < m then sna is a proper 
subterm of sm a. The rest of the proof will be divided into several lemmas. 

5.4.1. Lemma. Let n, m = 3 and rnab = rmcd. Then n = m, a = c and b = d. 

Proof By induction on n + m. If n = m = 3, it is clear. If n = 3 and m _ 4 
then ab . b = rm_3>Mrm_ljC>d, so that r m _ 3 c d is longer than rm_lcd, a contradiction. 
Similarly, we can not have n _ 4 and m = 3. Let n,m = 4. We have rn_lab = 
= rm_1}Cd and the assertion follows from the induction assumption. 

5.4.2. Lemma. Let n,m = 2 and sn>a = sm>ft. Then n = m and a = b. 

Proof. By induction on n -f m. If H, m = 4, the assertion follows from the 
induction assumption. If n, m _\ 3, it is evident. If n = 2 and m _ 4 , then aa = 
= sm_36sm_1>6, so that sm_3b = sm_lb, a contradiction. If n = 3 and m = 4, then 
(aa . a). aa = 5m_3j6sm_1>6, so that sm_3>6 is longer than sm_ljb, a contradiction. 

5.4.3. Lemma. Let n = 3 and m = 2. Then rn#aj6 #= sm c for any terms a, b, c. 

Proof. By induction on n + m. Suppose rntab = smc. If n, m = 4, we get a con-
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tradiction from the induction assumption. If n = 3 and m ^ 4 then ab . b = 
= sw _ 3 c s w _ l c , so that sw_ 3 c is longer than sw_ j c, a contradiction. If v ^ 4andm = 2 
then r/J_3fflfbrn_lfflfb = cc, so that rM_3fflfb = rn_lfflfb, a contradiction. If n ^ 4 
and m = 3 then r/f_3fflfbr/J_lfflfb = (cc . c) . cc9 so that r/J_3ffl>b is longer than r„_lffl)b, 
a contradiction. If n = 3 and m e {2, 3}, it is clear. 

5.4.4. Lemma. If a e Aj then aa . a e Aj and sna e Aj for all n _ 1. 

Proof. It is easy. 

5.4.5. Lemma. J is a replacement scheme. 

Proof It follows from the previous lemmas and the obvious fact that if n ^ 2 
then rn + lfflfb -j= rWfflfbrnfflfb and s„ + 1)fl 4= s„,fls„,«. 

5.4.6. Lemma. Let n _ 1, rnabe A3 and rn+2atbe Aj. Then either r ^ ^ ^ e A , or 
M = 1, a = b. 

Proof. Suppose r/jjfl}br.,+2flb = rWfCfflrw+lca for some m = 2 and c, d. It follows 
from 5.4A that n = 1 and a = b. 

Suppose rntatbrn + 2tatb = sWfCsw+lfC, m = 2. Then rn + 2>fl>b = sw + lfC, a contradic­
tion with 5.4.3. 

Suppose rn>a>brn + 2tatb = (cc . c) c for some c. Then rWfflfb is longer than r„+2fl>b, 
a contradiction. 

Suppose rnabrn+2tab = c . cc. Then rn+2fflb = cc, which is evidently impossible. 

5.4.7. Lemma. The groupoid Aj(o) connected with J satisfies x = y(xy . y). 

Proof. Let w, v e A3. If w o v = uv then either v o ((w o v) o v) = v o wv . v = w 
or w = vv and then v o ((w o v) o v) = v o v = w. 

Let w = r„fflfb and v = rw+lfflfb, n = 2. If rn_Uatbrn+ltatb e Aj then v o ((w o v) o 
o v) = rn+lfflfb o (r„_lfflfb o rw + lfflfb) = rn+lfflfb o rn+2t0tb = r„fflfb = w. In the opposite 
case it follows from 5.4.6 that n = 2 and a = b, so that v o ((w o v) o v) = aa . a o 
o (a o aa . a) = aa . a o a = a = u. 

Let w = sn>a and v = s„ + ljfl, n = 2. Then v 0 ((w 0 v) 0 v) = s n + l f l o (s.,_lffl o 
0 Sn+l,a) = Sn + 1 ,a ° Sn + 2,a = Sn,a = W» 

Let u = aa . a and v = a for some a. Then v o ((w o v) 0 v) = a 0 (a o a) = 
= a . aa = w. 

Let w = a and v = aa. Then v 0 ((w o v) o v) = aa Q (aa . a 0 aa) = s2>fl 0 s3>fl = 
= 51>a = a = u. 

This completes the proof of 5.4. 

5.5. Proposition. Let t be a term of length = 4 neither beginning nor ending with x. 
Then the variety determined by x = t is equal to one of the varieties V44,..., V53, 
V49, ..., V*3; all these varieties are pairwise different. 
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Proof. If t does not contain x, then x = t is equivalent to F44. The equation 
x = y . xz is equivalent to F44, since it implies x = y(x . uv) = yu. Evidently, F45 is 
equivalent to its dual. 

The equation x = yy . xz is equivalent to F44, since it implies x = (yy . yy) . 
. xz = y . xz; hence every one of the equations x = yx . zz, x = yz . xu, x = yx . zu 
is equivalent to F44. The equation x = yz .xz (and hence x = yx . yz, too) is equi­
valent to F44, since it implies x = (yz . yz) (x . yz) = y(x . yz) and so xx = 
= x(y(x . yz)) = y. The equation x = yz . xy (and hence x = yx . zy, too) is equi­
valent to £ 4 4 , since it implies x = (zu . yz) (x . zu) = y(x . zu) and so xx = 
= x(y(x . zu)) = y. As it is proved in 5.2, x = yx . yy is equivalent to F46. 

The equation x = y(y . xz) (and hence x = y(z . xu), too) is equivalent to F44, 
since it implies yx = y(y. xz)) = y and so x = y. The equation x = y(z . xz) is 
equivalent to F44, since it implies yx = y(xz . (z . xz)) = z. The equation x = 
= y(z . xy) is equivalent to F44, since it implies x = uz . (z(x . uz)) = uz . u. The 
equation x = y(x . yz) (and so x = y(x . zu), too) is equivalent to F44, since it im­
plies xx = x(y(x. yz)) = y. The equation x = y(x . zz) is equivalent to F44, since 
it implies u . zz = u(y(zz . zz)) = y. The equation x = y(x . zy) is equivalent to F44, 
since it implies x = zx . (x(z . zx)) = zx . z, x = y(x(yz . y)) = y . xz. The equation 
x = y(x . yy) is equivalent to F44, since it implies x = xx . (x(xx . xx)) = xx . xx, 
x = yy • (*(yy • yy)) = yy • *y and conversely F46 implies x = (yy . yy) (x . yy) = 
= y(x . yy). The equation x = y(x . xz) is equivalent to F44, since it implies y . yx = 
= y(y(y(* • x-0)) = y, x = yx, x = z. 

The equation x = y(zx . z) (and hence x = y(zx . u), too) is equivalent to F44, 
since it implies zx . z = u((z(zx . z)) z) = u . xz, x = y(zx . z) = y(u . xz) and x = 
= y(u . xz) was already proved to be equivalent to F44. The equation x = y(zx . y) 
is equivalent to F44, since it implies zx . y = z((y(zx . y))z) = z . xz, x = y(zx . y) = 
= y(z . xz) and x = y(z . xz) was already proved to be equivalent to F44. The 
equation x = y(yx . z) is equivalent to F44, since it implies yx = y(yx . ((yx . x) z)) = 
= x, x = z. The equation x = y(xz . z) (and hence x = y(xz . u), too) is equivalent 
to F44, since it implies x = y((x(zz . z)) (zz . z)) = y(z(zz . z)). The equation 
x = y(xz . y) is equivalent to F44, since it implies x = y((x(yy . x)) y) = y . yy. 
The equation x = y(xy . z) is equivalent to F44, since it implies yx = y(xy . ((x . 
. xy) z)) = x, x = z. The equation x = y(xx . z) is equivalent to F44, since it implies 
x = y(xx . (uu . u)) = yu. 

It is easy to prove that the varieties V44, ..., V53, V49,..., V53 are pairwise 
different. 

6. Some remarks 

As a summary of the above results, we have 

Theorem. If t is any term of length _ 4 , then the variety determined by x = t is equal 
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to one of the varieties Vl9..., V53, V3*, V*, V*. V*, V*l0,..., V*7, V*l8,..., V?3, V%, . . . 
..., V*3 (where V* are the duals of Vt); all these varieties are pairwise different. If V 
is any of these varieties and V =j= V51, V51, then the word problem for free groupids 
in Vis solvable. 

Problem. Describe free groupids in the variety determined by x = y(yx . y). 

Remark. The notions of a representative set of terms and a replacement scheme can 
be defined for an arbitrary similarity type in the same way as in Section 1 for the type 
consisting of a single binary symbol. Consider the following two conditions for a given 
variety V: 

(CI) There exists a replacement scheme for V. 
(C2) There exists a representative set R of terms for Vsuch that whenever a e R and b 

is a term such that b — a (i.e. f(b) is a subterm of a for some substitution f) 
then beR. 

Evidently, (CI) implies (C2). The converse is not true; for example, the variety of 
semigroups satisfies (C2) but does not satisfy (CI). 

Example. Let £ be a set of equations of the form (uv, u) where u, v are any terms and 
let V be the variety of groupoids determined by E. We shall show that there exists 
a replacement scheme for V. 

Denote by J the set of all the equations of the form (uv, u) that are satisfied 
in V. Evidently, J is a replacement scheme and in order to prove that it is a replace­
ment scheme for V, it is enough to show that the groupoid -4/(°) connected with J 
belongs to V Ad is the set of terms that do not contain a subterm h(uv) where h is 
a substitution and (uv, u)e J. The binary operation o on A3 is defined as follows: 
if a, be A3 and ab e A3 then a o b = ab; if a, be A3 and ab $ A3 then a o b = a. 
Let f be any homomorphism of the absolutely free groupoid W into A3(o). Denote 
by g the substitution such that g(x) = f(x) for all variables x. 

Let us prove by induction on the length of t that if t is any term then the equation 
(f(t), g(t)) is satisfied in V. If tis a variable, it is evident. Let t = ab. Then (f(a), g(^)) 
and (f(b),g(b)) are satisfied in V by induction. If f(a) of(b) = f(a)f(b) then 
(f(t),g(t)) = (f(a)f(b),g(a)g(b)) is evidently satisfied in V. Now consider the 
remaining case, i.e. f(a) of(b) = f(a) and f (a) f(b) = h(uv) for some substitution h 
and some (uv, u) e J. Since (uv, w) is satisfied in V, (h(u), h(uv)) is satisfied in V, too, 
i.e. (f(a),f(a)f(b)) is satisfied in V; but (f(a)f(b), g(a) g(b)) is satisfied in V, so 
that (f(a), g(t)) is satisfied in V. This means that (f(t), g(t)) is satisfied in V. 

Let (uv, u) e E. Then (g(uv), g(u)) is satisfied in V; by the above proved 
(f(u), g(u)) and (f(uv), g(uv)) are satisfied in V, so that (f(uv),f(u)) is satisfied in V, 
i.e. (f(u) of(v),f(u)) is satisfied in V. If it were f(u)of(v) =f(u)f(v), then the 
equation (f(u)f(v),f(u)) would be satisfied in V, so that it would belong to J and 
thus f(u)f(v) $ Aj, a contradiction. Hence f(u) of(v) = f(w), i.e. f(uv) = f(u). 
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We have proved that J is a replacement scheme for V. However, the construction 

of J was not recursive and so we do not know if the word problem for free groupoids 

in V is solvable. 

Problem 2. Let E be a finite set of equations of the form (uv, u) where w, v are arbitrary 
terms. Is it true that the word problem for free groupoids in the variety determined 
by E is solvable? 

Problem 3. Investigate the collection of varieties satisfying either (CI) or (C2). 

Remark. Let V be a given variety. If we find a replacement scheme J for V, then J 
can be often successfully used in proving that V has some properties (like extensivity 
or the strong amalgamation property); for example in [2] this method was chosen 
for the proof of the fact that several varieties are extensive. (A variety V is called 
extensive if any algebra from V can be extended to an algebra from V having an 
idempotent.) One could expect that every variety Vsuch that there exists a replacement 
scheme for Vis extensive. However, this is not true. 

Example. Consider the variety V determined by the following two equations: 

x((xx . yy). xx) = x , 
(x((xx . (y . yy)) . xx)) (x((xx . y(y . yy)) . xx)) = x((xx . (y . yy)) . xx) . 

Denote these two equations by ab = a and cd = c. It is easy to see that {ab -> a, 
cd -* c] is a replacement scheme for V. If a groupoid G from V contains an idem-
potent e, then 

xx = (x((xx . ee) . xx)) (x((xx . ee). xx)) = 
= (x((xx . (e . ee)) . xx)) (x((xx . e(e . ee)) . xx)) = 

= x((xx . (e . ee)) . xx) = x((xx . ee) . xx) = x 

for all x e G, so that G is idempotent. However, there are non-idempotent groupoids 
in Vand so Vis not extensive. 
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