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Notes On Associative Triples Of Elements 
In Commutative Groupoids 

T. KEPKA 
Department of Mathematics, Charles University, Prague*) 

Received 5 March 1981 

The numbers of associative triples of elements in some finite commutative groupoids are 
investigated. 

V cJanku se vysetfuji podty asociativnich trojic prvku v nekterych konednych komutativnich 
grupoidech. 

B CTaTbe HcarceuyioTCfl HHcna accoimaTHBHwx TpoeK B HeKOTopux FJiaccax KOHCMHMX KOM-
MyTaTHBHbix rpynnoHflOB. 

1. In troduct ion 

For a groupoid G, let A(G) = {(x, y, z) | x, y, z e G, x . yz = xy . z], B(G) = 
= G3 \ A(G), a(G) = card A(G) and b(G) = card B(G). Let C be a class of groupoids. 
Then, for every positive integer n, we define two numbers a(C, n) and b(C, n) as 
follows: a(C, n) =•• min a(G), Ge C, card G = n; a(C, n) = —1 if C contains no 
groupoid of order n; b(C, n) = max a(G), Ge C, G is not associative, card G = n; 
b(C, n) = n3 if C contains at least one groupoid of order n and every groupoid of 
order n contained in C is associative; b(C, n) = — 1 in C contains no groupoid of 
order n. 

1.1 Lemma. Let G be a finite commutative groupoid of order n. Then n2 _ a(G). 

Proof. We have a . ba = ab . a for all a, be G. 

1.2 Lemma. Let G be a non-associative commutative groupoid. Then 2 = b(G). 

Proof. Since B(G) is non-empty, (a, b, c) e B(G) for some a, b, ce G. Then 
(c, b, a) e B(G). If (a, b, c) = (c, b, a) then a = c and (a, b, c) e -4(G), a con­
tradiction. 

1.3 Lemma. Let G be a non-associative commutative groupoid such that B(G) 
contains a triple (a, b, c) with a 4= b 4= c. Then 4 ^ b(G). 

*) 186 00 Praha 8, Sokolovska 83, Czechoslovakia. 
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Proof. We have (a, b, c), (c, b, a) e B(G). If (a, c, b), (b, c, a), (b, a, c), (c, a, b) e 
e A(G), then a . be = a . cb = ac . b = ca . b = c . ab = ab . c, a contradiction. 

1.4 Lemma. Let 3 = n be an integer. Then there exists a commutative groupoid 
G of order n such that a(G) = n3 — 2. 

Proof. We shall proceed by induction on n. First, let n = 3. Consider the 
following three-element groupoid K = {a, b, c}\ ab = b = ba, aa = ac = 
= ca = bb = be = cb = cc = c. It is easy to check that K is commutative and 
b(K) = 2. Now, let 4 = n and let H be a commutative groupoid of order n — 1 
such that b(H) = 2. Take an element w not belonging to H, put G = H u {w} and 
define wx = w = xw for every x e G. Then G is a commutative groupoid, card G = n 
and b(G) = 2. 

1.5 Lemma. Let « be an odd positive integer. Then there exists a commutative 
medial quasigroup Q such that a(Q) = n2. 

Proof. Let Q( + ) = (0, 1,.. . , n — 1} be the cyclic group of integers modulo n. 
Put x * y = —x — y for all x, y e Q. The rest is clear. 

1.6 Lemma. Let 4 = n be an integer divisible by 4. Then there exists a com­
mutative medial quasigroup Q of order n such that a(Q) = n2. 

Proof. We have n = 2km, where 2 = k and 1 = m is odd. Let F be a finite 
field of order 2fc, 0, 1 4= a e F and x * y = ax -f- ay for all x, j> e F. Then F(*) is 
a commutative medial quasigroup and a(F(*)) = 22k. By 1.5, there exists a commuta­
tive medial quasigroup P(*) of order m such that a(P(*)) = m2. Now, it suffices to 
put Q = F(*) x P(*). 

1.7 Lemma. Let n be a positive integer. Then there exists a commutative 
groupoid G of order n such that a(G) = n2. 

Proof. With respect to 1.5 and 1.6, we can assume that n = 2m where 1 = m 
is odd. Consider the following two-element groupoid K = {a, b} : aa = b, ab = 
= ba = bb = a. Then a(K) = 4 and we can put G = K x H, where H is a groupoid 
of order m such that a(H) = m2. 

In the following proposition, let a(n) = a(C, n) and b(n) = b(C, n), where C 
is the class of commutative groupoids. 

1.8 Proposition, (i) a(n) = n2 for every 1 = n. (ii) b(1) = 1, b(2) = 4 and 
b(n) = n3 — 2 for every 3 = n. 

Proof. Apply 1.1, 1.2, 1.4 and 1.7. 

1.9 Remark. Let C denote the class of commutative quasigroups. By 1.1, 1.5 
and 1.6, a(C, n) = n2 for every 3 = n such that n is either odd or divisible by 4. 
Further, by [1], b(C, n) = n3 — 16n + 64 for every even 168 = n. 
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2. Commutative Quasigroups Isotopic to Groups 

Let / be a permutation of an abelian group G( + ). Put f'(x) = f(x) — x and 
p(f) = card {(x, y) | x, y e G, f'(x) = f'(y)}. 

2A Lemma. Let G( + ) be a finite abelian group of order n and / a permutation 
of G. Put x * y = f(x) + f(y) for all x, y e G. Then G(*) is a commutative quasi-
group and a(G(*)) = n p(f). 

Proof, (x, y, z) e A(G(*)) iff f(x) + f(f(y) + f(z)) = f(f(x) + f(y)) + f(z). 
Hence a(G(*)) = card T, T being the set of ordered triples (x, y, z) such that 
x, y, zeG and x + f(y + z) = f(x + y) + Z. Now, let x, y, Z e G and u = y + z, 
v = x + y. Then (x, y, Z) e Tiff/ '(u) = f'(v) and the rest is clear. 

2.2 Lemma. Let 2 = k and 1 = pl9 ..., pk be such that 3 = n = Ip{ and 
pi, p2 i {1, 2} if k = 2. Then Ip2

 = n2 - An + 6. 

Proof. We shall proceed by induction on k. Let us distinguish the following 
cases: 

(i) k = 2. Then p2 = n — p, p = pl9 and Ip2 = n2 + 2p2 — 2np. Further, 
2/i — 3 = np — p2, since 3 = p, p — n and 6 = n. Hence 2p2 — 2np _ 
= -4/ i + 6 and 2p2 + n2 - 2np = n2 - An + 6. 

(ii) k = 3. Put p = Pi, q = p2 and t = p3 and assume that p = q = t. It suffices 
to show that 0 = pq + ht + qt - 2p - 2a - 2t + 3 = w. If p = 1 then 
w = at - a - t + 1 = q(t - \) - (t - 1) and 0 = w, since t - 1 = (?(t -- 1). 
If 2 = p then 0 = (p - 2) q + (q - 2) t + (t - 2) p + 3 = w. 

(iii) 4 = k. Put q = px + ... + pk_l and p = pk. We have 3 = q and Ip2
 = q2 — 

- 4a + 6 + p2. However, q2 - 4q + 6 + p2 = q2 - 4q + 6 + (n - q)2 = 
= n2 + 2q2 — Aq — 2/?a + 6 and it suffices to show that 2/. = (2 + n) q — 
— a2. But this is clear, since 3 = q = n — 1. 

2.3 Lemma. Let G( + ) be a finite abelian group of odd order n a n d / a permuta­
tion of G such that / + L* for every a e G. Then /?(/) ^ n2 — An + 6. 

Proof. Since / + L* for every a e G, the equivalence ker / ' has 2 = k blocks; 
say AJ, ..., A^ Put Pi = card A,-. Obviously, Ipt = n and Ip2 = p(f). With respect 
to 2.2, it is enough to show that pl9 p2 $ {1, 2], provided k = 2. Assume first that 
k = 2 and px = 1. Then Ax = {a} for some a e G. Since / ' (x) = f'(y) = b for all 
x, y e A2 = G \ {a}, f(z) = z + b for each z e A2. Consequently, / (a) + a + b, 
/ (a) = c + 6, c e A2, /(c) = c + b, / (a) = /(c), a = c, a contradiction. Now, let 
k = 2, pl = 2 and Ax = {a, b}. Again, f(x) = x + c and f(y) = y + d for all 
x e Aj, y e A2 and some c, de G, c + d. But a + c = e + d, e^ A2, and so e = b 
and a + c = b + d. Similarly, b + c = a + d, a + 2c = b + c + d = a + 2d, 
2(c — d) = 0 and c = a1, a contradiction. 
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2.4 Lemma. Let 2 = k and 1 = p1? ..., pk be such that 3 = n = Zp, and 
1>i * 1 * P2 if fc - 2. Then Ip] = n2 - 4n + 8. 

Proof. With regard to 2.2, we can assume that k = 2 = pt and p = /?2. Then 
n = p + 2, Ip2 = 4 + /r2 and n2 - 4w + 8 = P2 + 4. 

2.5 Lemma. Let G( + ) be a finite abelian group of order n a n d / a permutation 
of G such that / + Lfl

+ for every a e G. Then p(/) = n2 - 4n + 8. 

Proof. Using 2.4, we can proceed in the same way as in the proof of 2.3. 

2.6 Lemma. Let 3 = n be an odd integer. Then there exists a commutative 
quasigroup Q of order n such that Q is isotopic to a group and a(Q) = n3 — 4n2 + 
+ 6n. 

Proof. Let Q( + ) = (0, 1, ..., n - 1} be the cyclic group of integers modulo n. 
Define a permutation / by /(0) = 1, /(1) = 0 and /( /) = / for 2 = i = n - 1. It is 
easy to verify that p(f) = (n - 2)2 + 2 = n2 - 4n + 6. The rest is clear by 2.1. 

2.7 Lemma. Let 2 ^ « be an even integer. Then there exists a commutative 
quasigroup of order n such that Q is isotopic to a group and a(Q) = n3 — 4n2 + 8n. 

Proof. Let Q( + ) be the cyclic group of integers modulo n. Put m = n\2 and 
define / by /(0) = m, /(m) = 0 and f(i) = i for 0 < i = n - 1, i =f= w. The rest 
is clear. 

2.8 Lemma. Let G( + ) be a finite abelian group of order n. Put s = 2x, x e G, 
and H = (y e G | 2y = 0}. Then s e H. Moreover, 5 + 0 iff card H = 2; in this 
case, H = (0, 5}. 

Proof. Obvious. 

2.9 Lemma. Let G( + ) be a finite abelian group of order n = 2m, where 1 = m 
is odd. L e t / be a permutation of G. Then n + 2 = p(f). 

Proof. It suffices to show t h a t / ' is not a permutation. Suppose that / ' is a perm­
utation and put 5 = Ix, x e G. Then I f(x) = s = I f'(x) = If(x) — Ix = s — 
— s = 0, a contradiction with 2.8. 

2.10 Lemma. Let 1 = m be odd and n = 2m. Then there exists a commutative 
quasigroup Q of order A such that Q is isotopic to a group and a(g) = n2 + 2«. 

Proof. Let Q( + ) be the cyclic group of integers modulo n. Define a permutation/ 
by /(0) = m - 1, /(1) = 0, /(2) = 1, ...J(m - 2) = m - 3, / (m - 1) = m - 2, 
/(m) = m, f(m + 1) = m + 1, . . . , / (n - 2) = n - 2, f(n - 1) = n - 1 and put 
g(*) = / ( - * ) for every x e G. Then ker g' = {((m + l)/2, 0), (0, (m + l)/2)} u idQ 

and the rest follows from 2.L 
In the following theorem, let a(n) = a(C, n) and b(n) = b(C, rc), where C is 

the class of commutative quasigroups isotopic to groups. 

42 



2.11 Theorem, (i) a(n) = n2 for every 1 = n such that n is either odd or divisible 
by 4. 

(ii) a(n) = n2 + 2n for every n = 2m, where 1 = m is odd. 
(iii) b(l) = 1 and b(n) = n3 — 4n2 + 6n for every odd 3 = n. 
(iv) b(n) = n3 — 4n2 + Sn for every even 2 = n. 

Proof, (i) This follows from 1.1, 1.5 and 1.6. 
(ii) Let Q be a commutative quasigroup of order n = 2m, 1 = m odd, such that Q 

is isotopic to a group. Then there are an abelian group Q( + ) and a permutation f 
of Q such that xy = f(x) + f(y) for all x, y e Q. By 2.1 and 2.9, n2 + 2n = 

_ a(Q). The equality a(n) = n2 + 2n follows now from 2.10. 
(iii) Let 3 = n be odd and let Q be a non-associative commutative quasigroup of 

order n such that Q is isotopic to a group. There are an abelian group Q( + ) 
and a permutation f of Q such that xy = f(x) + f(y) for all x, y e Q. Since Q 
is not a group, f + L* for every a e Q. By 2.1 and 2.3, a(Q) = n3 — 4n2 + 6n. 
The result follows now from 2.6. 

(iv) Using 2.5 and 2.7, we can proceed similarly as in the proof of (iii). 

3. Commutative Medial Quasigroups 

Let f be an automorphism of an abelian group G( + ). Put q(f) = card {x | x e G, 

/(*) = *}. 

3.1 Lemma. Let G( + ) be a finite abelian group of order n, f an automorphism 
of G( + ) and w e G. Put x * y = f(x + j ) + w for all x, y e G. Then G(*) is a com­
mutative medial quasigroup and a(G(*)) = n2 . q(f). 

Proof. Easy. 

3.2 Lemma. Let G( + ) be a finite abelian group of order n = 2m, where 3 _ m 
is odd. Letf be an automorphism of G( + ). Then 2 _ q(f). Moreover, if f #= idG 

then q(f) _ 2m\p, p being the least prime dividing m. 

Proof. Put K = {x |f(x) = x) and s = Ix, x e G. By 2.8, 0 4= s and 5 eK . 
Consequently, 2 g q(f). Suppose f + id. Then K is a proper subgroup of G( + ) 
and card K = 2k, where k divides m and k 4= m. Obviously, k ^ m/p. 

In the following theorem, let a(n) = a(C, n) and b(n) = b(C, n), where C is the 
class of commutative medial quasigroups. 

3.3 Theorem, (i) a(n) = n2 for every 1 = n such that n is either odd or divisible 
by 4. 

(ii) a(n) = 2n2 for every n = 2m, where 1 _ m is odd. 
(iii) b(l) = 1 and b(n) = n3jp for every odd 3 g n, p being the least prime dividing n. 
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(iv) b(n) = n3/2 for every 4 = n divisible by 4. 
(v) b(2) = 8 and b(n) = n3\p for every n = 2m, where 3 ^ m is odd and p is the 

least prime dividing m. 

Proof, (i) See 1 A, 1.5 and 1.6. 

(ii) Let Q be a commutative medial quasigroup of order n = 2m. There exist an 
abelian group Q( + ), an automorphism f of Q( + ) and weQ such that xy = 
= / ( * + v) + w for all x, y e Q. By 3.1 and 3.2, a(Q) = n2 . q(f), 2 = q(f) 
and 2rc2 ^ a(Q)- Further, let G( + ) be the cyclic group of integers modulo n, 
f(x) = — x and x * y = — x — y for all x, y e G. Then G(*) is a commutative 
medial quasigroup, f(x) = x iff xe (0, m}, q(f) = 2 and a(G(*)) = 2rc2. 

(iii) Let 3 = n be an odd number and let p be the least prime divisor of n. Consider 
a non-associative commutative medial quasigroup of order n. There are an 
abelian group (?( + ), an automorphism f of Q( + ) and we Q such that xy = 

= /(* + y) + H; for a11 *' y e Q- Put H = ix \f(x) = *)• s i n c e Q is not 

associative, f + id and H is a prop: r subgroup of Q( + ) . Hence q(f) = card H = 

= n\p and a(Q) = n3\p by 3.L On the other hand, let A( + ) and B( + ) be cyclic 
groups of orders p and n\p, resp. Put G( + ) = A( + ) x B( + ) and f(x, y) = 
= ( — x, y) for all x e A and y e B. Then f is an automorphism of G( + ) and 
<?(/) = «/p. 

(iv) Using similar arguments as in the proof of (iii), we can show that b(n) = n3\2. 
Further, n = 2km, where 2 = k and 1 — m is odd. Consider cyclic groups A( + ) 
and B( + ) of orders 2k and m, resp., and put G( + ) = A( + ) x B( + ) and 
f(x, y) = ((2k~l + 1) x, y) for all x e A and y e B. The rest is clear. 

(v) Let 3 = m be an odd integer, p the least prime dividing m and n = 2m. Further, 
let G( + ) be a finite abelian group of order n and / + id an automorphism of 
G( + ). Put H = (x |f(x) = x}. Then card H = q(f) is an even number. On 
the other hand, q(f) divides n. Consequently, q(f) = 2m\p and b(n) = n3\p. 
Finally, by (iii), there is a commutative medial quasigroup P of order m such that 
a(P) = m3\p. Put Q = K x P, where K is a two-element group. Then a(Q) = 
= n3jp. 

4. Commutative Quasitrivial Groupoids 

A groupoid G is said to be quasitrivial if xy ' {*, y} for all x, y e G. A relation r 
defined on a set M is called complete if for all x, y e M, either (x, y) e r or (y, x) e r. 

4.1 Lemma. There'is a one-to-one correspondence between commutative 
quasitrivial groupoids and non-empty complete antisymmetric reflexive relations. 

Proof. Let G be a quasitrivial commutative groupoid. Define a relation r on G 
by (x, y) G r iff xy = y. The rest is clear. 
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Consider the following three-element groupoid T = {a, b, c} : aa = ab = ba = 
= a, bb = be = cb = b, cc = ac = ca = c. Then T is a commutative quasitrivial 
groupoid, a(T) = 21 and b(T) = 6. 

4.2 Lemma. Let G be a commutative quasitrivial groupoid, x, y, zeG and 
P = [x, y, z}. Then P is a subgroupoid of G and x . yz 4= x>'. z iff P is isomorphic 
to T. 

Proof. First, let x . yz 4= xy . z. Then x 4= y 4= z and x 4= z. If x v = x then 
x . yz 4= xZj and hence yz = _y, x 4= xz and xz = z. If xy = y then x . yz 4 yz, 
and hence yz = z and xz = x. In both cases, P is isomorphic to T The converse is 
clear. 

4.3 Lemma. Let G be a finite commutative quasitrivial groupoid of order n. 
Denote by m the number of all three-element subsets S = {x, y, z} of G such that 
the subgroupoid S is isomorphic to T Then b(G) = 6m and a(G) = n3 — 6m. 

Proof. This is an easy consequence of 4.2. 

4.4 Lemma. Let G be a commutative quasitrivial groupoid, r the corresponding 
relation and S = (x, y, z] a three-element subset of G. Then S is isomorphic to T 
iff at least one of the following conditions is satisfied: 

(i) (y, x), (z, j,), (x, z) G r. 

») (*>y)> (y> z M z ' x ) 6 r -
Proof. Easy. 

In the following theorem, let a(n) = a(C, n) and b(n) = b(C, rt), where C is 
the class of commutative quasitrivial groupoids. 

4.5 Theorem, (i) a(n) = (3n3 + n)/4 for every odd n = 1. 

(ii) a(«) = (3n3 + 4n)/4 for every even n = 2. 
(iii) b(l) = 1, b(2) = 8 and b(n) = n3 - 6 for every n = 3. 

Proof, (i) and (ii). See 4.3, 4.4 and [2]. 

(iii) Let n = 3. Starting with Tand proceeding similarly as in the proof of 1.4, we 
can show that there exists a commutative quasitrivial groupoid G of order n 
such that a(G) = n3 - 6. The rest is clear from 4.2 and 4.3. 

5. Commutative Distributive Groupoids 

For a groupoid G, let C(G) = {(x, y, z) e A(G) \ x 4= z} and c(G) = card C(G). 
A groupoid satisfying the identities x . yz = xy . xz and yz . x = yx . zx is 

said to be distributive. 
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5.1 Lemma. Let G be a CD-groupoid containing a subquasigroup Q and an 
element a such that G = Q u {a} and aQ = Q. Then there is an element be Q 
such that ax = bx for every x e Q. Moreover, either aa = a or aa = b. 

Proof. Take c e Q. There is b e Q such that ac = be. Then c . ax = ca . ex = 
= cb . ex = c . bx and ax = bx. Moreover, b = b . bb = a . ab = aa . ab = 
= aa . b. 

5.2 Lemma. Let G be a finite CD-groupoid of order n containing a subquasi­
group Q and an element a such that a £ <2, G = Q u {a} and aQ c Q. Then 
c(G) = 2n. 

Proof. By 5A, there is an element b e Q such that (a, x, b), (b, x, a), (a, a, b), 
(b, a, a) e A(G) for every x e Q. 

Let G be a CDI-groupoid (i.e., a commutative distributive idempotent groupoid). 
Define a relation r on G by (x, y) e r iff the elements x, y generate the same ideal 
of G. Then r is a congruence of G, G\r is a semigroup and every block of r is a can­
cellation groupoid. 

5.3 Lemma. Let G be a finite CDI-groupoid of order n such that G is not 
a quasigroup. Then c(G) = 2n. 

Proof. Since G is not a quasigroup, q = card G\r = 2. We shall proceed by 
induction on q. First, let q = 2. Then G/r = {K, H}, where KH s H. Put k = card K 
and m = card H. By 5.2, c(G) = 2km + 2k = 2n. Now, let q = 3, / be the natural 
homomorphism of G onto G\r and let K be a block of r such that f(K) is a maximal 
element in the semilattice Gjr. Put H = G\K, k = cardK and m = card H. Then H 
is a subgroupoid of G and c(G) = 2m + 4k = 2t? (take into account that KL _= L 
for a block L 4= K of r). 

5.4 Lemma. Let G be a finite CD-groupoid of order n such that G is not a quasi­
group. Then c(G) = 2H. 

Proof. We can assume that G is not idempotent. Denote by I the set of all 
idempotents of G. Then I is a proper ideal of G and k, m ^ 1, k = card G \ I and 
m = card I. If I is a quasigroup then c(G) = 2km + 2k ^ 2n by 5.2. If I is not 
a quasigroup then c(G) = 2m + 4k = 2rc (take into account that GH = H, H being 
the intersection of all ideals of G). 

5.5 Lemma. Let Q be a finite CD-quasigroup of order n. Then n is odd, c(Q) = 0 
and a(Q) = n1. 

Proof. Easy. 

5.6 Lemma. For every odd n = 1, there exists at least one CIM-quasigroup 
(i.e., a commutative idempotent medial quasigroup) of order n. 
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Proof. Easy. 

5.7 Lemma. Let n _ 4 be even. Then there exists a CIM-groupoid G of order n 
such that c(G) = In. 

Proof. Let Q be a OM-quasigroup of order n — 1 and let b e Q and a $ Q. 
Put G = QKJ [a] and aa = a, ax = xa = bx for every x e Q. The rest is clear. 

5.8 Lemma. Let G be a non-associative CD-groupoid. Then b(G) = 18. 

Proof. We can assume that G is a non-trivial quasigroup and the result follows 
then from 5.5. 

5.9 Lemma. For every n _ 3, there exists a CIM-groupoid G of order n such 
that b(G) = 18. 

Proof. Put G = (0, 1, ..., n - 1} and define 0 * 0 = 1 * 2 = 2 * 1 = 0 , 1*1 = 
= 0 * 2 = 2 * 0 = 1 , 2 * 2 = 0 * 1 = 1*0 = 2, i*j = max(i,j) for all 0 = 

_ J, I _ " _ 1 such that either 3 g / or 3 g j . 

In the following theorem, let a(n) = a(C, n) and b(n) = b(C9 n), where C is the 
class of CD-groupoids. 

5.10 Theorem, (i) a(n) = n2 for every odd n ^ 1. 
(ii) a(n) = n2 + 2n for every even n _ 2. 
(iii) b(l) = 1, 6(2) = 8 and b(n) = n3 - 18 for every n = 3. 

Proof. See 5A, . . . ,5.9. 

5.11 Remark. The same result is true for the classes of CDI-groupoids and 
CIM-groupoids. 
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