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1981 ACTA UNIVERSITATIS CAROLINAE - MATHEMATICA ET PHYSICA VOL. 22. NO. 1. 

Radiation Transfer in Circumstellar Dust Envelopes 
With Spherical Symmetry — Henyeys Method of Solution 

M. SOLC 

Department of Astronomy and Astrophysics, Charles University, Prague*) 

Received 5 March 1980 

A numerical method solving the radiative transfer is developed on the basis of Henyey's 
approach to the multiple scattering problém, giving for model dust nebulae primarily the surface 
brightness distribution. Generally polarized radiation and anisotropic scatterhig are taken into 
account. The method proves efficient only if the model of circumstellar dust envelope has spherical 
symmetry. 

Ha ocHOBe nojrxofla XCIHH K npo6jieMe MHoroKpaTHoro paccejiHHfl pa3pa6oTaH BbíHHCjiHTejib-
Hbitt MeToa rjeniaioiirjiň nepeHOC H3jryHeHH«. IIocpeflCTBOM 3Toro MeToaa onpeflejweTCii ocooeHHo 
pacnpe^ejieHHe apicocTH Ha noBepxHOCTH nwjieBofi TyMaHHOCTH c yneTOM npoH3BOjn>HO nonjipH-
30BaHHOro H3JiyHeHHJ! H aHH30Tpormoro pacceHHiui. MeToa no3BOJMeT npmioaceHHJi TOJH>KO K MO-
AejixM c4>epHHHO cHMMeTpHiecKHx nmieBbix OKOJio3Be3.ara.jx ooojioneK. 

Na základě Henyeova přístupu k problému mnohonásobného rozptylu je vypracována 
numerická metoda řešení přenosu záření, která poskytuje pro modely prachových mlhovin zejmé­
na rozdělení jasu po povrchu. Je uvažováno obecně polarizované zářeni a anizotropni rozptyl. 
Tato metoda je vhodná pouze pro model cirkumstelární prachové obálky se sférickou symetrií. 

1. Introduction 

The dusty component of the circumstellar matter around protostellar objects 
or evolved stars plays an important role in the energy bilance of their envelopes and 
consequently also in their spectral appearance. The propagation of the radiative 
energy is strongly determined by the optical characteristics of the dust, whereas the 
gas associated with the dust leaves the radiation flow practically unaffected, at least 
in the visible and infrared region of the spectrum (with the exception of the spectral 
lines, of course). Thus, to construct the theoretical models of circumstellar dust 
clouds one must solve first of all the problem of absorption and scattering by dust 
grains. 

*) 150 00 Praha 5, Švédská 8, Czechoslavakia. 
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The first step to study the transfer of multiple scattered radiation in the astro-
physical media was done by Henyey (1937). His method was designed for calculation 
of the surface brightness of reflection nebulae with a moderate optical thickness. 
In order to obtain analytical solution of the equation of radiative transfer, the fol­
lowing assumptions were adopted: 

i) The reflection nebula is modelled as a slab illuminated by a star in front of it or 
submerged within it. 

ii) The density of dust particles in the nebula is uniform, i.e. constant in space (and 
time), 

iii) The scattering properties of the particles may be approximated by the scattering 
phase function of an "average particle". The variety of such artificial phase func­
tions was achieved by using the simple analytical Henyey-Greenstein's function 
(Henyey, Greenstein 1941) with only one free parameter specifying the anisotropy 
of scattering. 

The characteristic feature of the Henyey's method rests in regarding the light 
beam as a composition of rays scattered once, twice, etc. Hence, the radiation field 
in the nebula may be determined by calculating the intensity of once scattered light 
in the whole volume of the nebula at first, then the intensity of twice scattered light, 
etc. until the last values of intensity of n — times scattered light do not exceed a given 
limit. The intensity at a given point within the envelope and in a given direction is 
thus obtained as the sum of the finite number n of terms (appearing in the series (2)). 

However, this approach should not be errorneously taken for what usually is 
called "Henyey's method" and relates to the solving of radiation transfer equation 
as the two-point boundary value problem. The aim of this paper is to generalize the 
Henyey's idea mentioned above to the propagation of the polarized light and to trace 
out the area of applicability of the constructed generalized computational procedure. 

2. Formulation of the Problem 

By introducing the monochromatic intensity I of the unpolarized radiation, the 
absorption coefficient x = x(x) and the source term £f, the equation of radiation 
transfer along a straight line with coordinate x can be expressed in a simple form 

i^ + / = y . (i) 
x dx 

The essential Henyey's invention how to treat the multiple scattering is based on the 
apparent fact that the field of the n — times scattered radiation is the source for the 
radiation scattered once more, i.e. n + 1 — times. Thus, the intensity at any point 
within the nebula and in any direction may be interpretted as the expansion 

I = I In (2) 
n = l 
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of intensities I l 5 I 2 , . . . of once, twice , . . . scattered light. If individual terms from series 
(2) are put into the eq. (1), the latter equation splits into a set of equations 

i - ^ + 7 - / 
— h - i — i 0 

x dx 
l^dI2 

x dx 
+i2 = y2= r 011 dco (3) 

J47C 

n = «^n-l = I 
i A-

Í^JL+In = ^n_1 = | Ф / _ _ l d a > 
x dx 

where the phase function <P(p0, p) is proportional to the intensity of the scattered 
light by a small particle in the direction given by unit vector p , if the incident light 
beam comes from the direction p 0 . The quantitity $ dco is therefore proportional to 
the energy scattered into the elementary solid angle dco per time unit at a given wave­
length, and it is normalized commonly as 

Ф dco = 
J4я 

= 1 (4) 

oг 

Ф dco = 
J 4 я 

= monochromatic albedo ___ 1 _ (5) 

Due to symmetry problems, I started with the most simple model of spherical 
circumstellar envelope with only radially varying both density and kind of dust 
grains. The outer radius of the sphere is Rei the radius of the empty central "bubble" 
is Rt and the star is assumed to illuminate the nebula from its centre as a point 
source of the intensity I*. With respect to the strong symmetry, the intensity I(R, rj) 
depends only on the distance from centre R and the angle rj between the vertical 
direction and the direction of the light beam (Fig. 1). The equations in (3) can be 
solved recurrently beginning from 

I0(R, 0) = I* exp (- f x(R') dR'\ . (6) 

Integrating the w-th equation, the formula 

/•(*-1) = Cn(rj) exp (- jXx(R') dR'\ + 

+ T ( f <ř(x\ 9) /._.(x', i,/) d<o\ cxpí- f* x(x") dA dx' (7) 
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is obtained, where the coordinates x, x\ x" are measured along the integration line, 

the angle rj is the deviation of integration line from the radial direction at a given 

Fig. 1. 

point P and the meaning of the remaining angles follows from Fig. 1. For these 
angles rjl9rj,S the relation 

cos rj1 = cos rj cos # + sin rj sin 3 cos cp 

is valid and the source term is then transformed into 

SЃЯ(R, ti)=Г Г/„_ .(Ä, r,) Ф(R, 9) sin 3 dд áę . 
Jo Jo 

(8) 

(9) 

The first term in the the sum (7) corresponds to the attenuated radiation of in­
tensity Cn entering the envelope along the integration line from without. In practically 
all reasonable models, there is no need to introduce this term (i.e. C0 = Cx = ... 
... = 0). The second term is to be evaluated either analytically or numerically at all, 
the points on the integration line, in which the intensity is needed. 

The direct integration of the equations (3) simplifies the calculation to some 
extent because it does not require as many integral evaluations as in (7). As shown 
in Fig. 2, a set of integration straight lines parallel to the x-axis is drawn through 
the nebula in the direction to the observer. Let us call such a set the "integration 
warp". As the direct integrational procedure continues in steps Ax along an integra­
tion line of a given y, all the values of In(R, rj) are generated for R e (y, Re) and the 
corresponding value of rj. Thanks to the spherical symmetry, the simple relation 
between the computed In(x, y) and the tabellated In(R = yf(x2 + y2), rj = arctg (y/x)) 
sets in. Thus, the whole range of the pairs (R, rj) with R e (Rit Re) and rj e <0°, 180°> 
is covered by the admittable points (x, y). We may easily imagine this when consider-
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ing the change of rj at the point P revolving the centre with constant R and crossing 
oo 

the parallel lines of integration warp. Finally, the intensity ]£ In(y) of the emerging 

Fig. 2. 

beams parallel to the x-axis represents the desired brightness distribution on the 
surface of the nebula. With respect to the symmetry, any distant observer could 
see the same picture as the observer from the direction of x. 

3. The Adaptation of Basic Equations 
to Polarized Light 

Similarly as in other problems dealing with noncoherent scattering, the Stokes 
parameters I, Q, 17, V (defined elsewhere, e.g. by ShUrdiff (1962), Htilst (1957)) are 
used to describe the arbitrarily polarized monochromatic radiatidfi. Since each of 
the Stokes parameters has a physical dimension of intensity, the generalisation 
from the unpolarized to the polarized radiation ifi the set (3) may be jperforrhed 
straightforwardly by replacing the symbol / by the column vector 

s = 

and the phase function <$ by an appropriate matrix. 

The source term must be expressed as the column vector of four elements, too. 
Thus, the number of equations in (3) rises four-times 
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1 ^ 5 + S. = .*'„_., » -= 1,2, . . . . (10) 
x ax 

Apart from the numerical integration method used, the source term must be 
known at all the inner points, in which the integration algorithm requires its values. 
The most difficult problems of solution (3) arise therefore in finding the convenient 
and acceptable formula for the source term and in its numerical evaluation, too. 

The natural frame of reference for the Stokes vector are two axes perpendicular 
to the light beam. One axis lies in the vertical plane determined by the radial direction 
and by the beam itself and the other axis is perpendicular to it. Both axes pass through 
the given point P. The rotational angle a is measured clockwise from r in the plane 
(r, /) when looking in the direction of the light propagation. Rotating the reference 
vectors r, / in this sense, the set of vector-parameters is transformed by the rotation 
matrix (Shurcliff 1962) 

/ l 0 0 0\ 
0 cos 2a —sin 2a 0 1. , . 
0 sin 2a cos 2a 0 ' ' 

\0 0 0 1/ 

0(a) = 

Provided that the Mie's theory is used to describe the scattering process by dust 
grains (assuming their sphere-like shapes), the Stokes vector of the incident beam is 
transformed into that of the scattered beam by multiplication by the scattering 
matrix 

I0.5(ix + i2) 0.5(i2 - h) 0 0 \ 
^(0) . h-Kh - h) 0.5(i, + i2) 0 0 

W " I 0 0 V(/1i2) cos a - V(M2) sin er ' ( > 
\ 0 0 yj(hh) sin G y/(hh)C0S(T) 

The Mie's functions it(3)9 i2(S) and o(8) are given e.g. by Hulst (1957). The depen­
dence on the scattering angle & between the incident and scattered beams was omitted 
in (12) to simplify the notation. It should be emphasized that the set of Stokes para­
meters of the incident as well as the scattered beam is expressed with respect to the 
vectors / laying always in the scattering plane, whereas the vector r remains identical. 
Finally, according to the configuration of the scattering plane and the vertical plane 
shown in Fig. 1, the Stokes vector must be prepared for the scattering by rotating 
the frame r, / by x//, then transformed by scattering matrix and related again to the 
vertical plane by rotating by — (p. All the above operations are to be included in the 
integrand of the source term, so that the latter is put into the form 

f?n(R, rj)=r {n®(-q>) M(R9 9) (9^) Sn(R, m) sin 9 d9 dcp (13) 

for n = 1, 2 , . . . and 
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-sr0(*,,) = M(R,J°0 exp ( - J \ (K ' )dK ' ) (14) 

for n = 0. 
The computational procedure solves the modified set of equations (10). It starts 

with the equations for n = 1, calculates the St(x, y) and stores the St(R, rj). From 
the stored values the source terms Sfx(R, n) are calculated and then the next four 
equations for the individual Stokes parameters for n = 2 may be solved. These two 
steps are repeated with increasing n until a given nmax is reached. The computation 
proceeds stepwise from an integration point to the next one along an integration line 
from the back surface to the front one, the integration lines being taken one by one 
untill complete exhaustion of the integration warp. If x = 0 is put in the empty 
space outside the nebula, the integration interval can be enlarged to < — Re, Re} 
for any integration line. The advantage of testing whether x = 0 and the immediate 
transfer to the next integration point in the positive case allow the modelling of the 
envelope consisting of one or more concentric dust shells. 

When constructing a sequence of integration points on an integration line, the 
rapid change of n at x ~ 0 must be taken into account, what requires the more 
refined division in this region. The most common cosmic dust particles have the 
diameter approximately in the interval 100 nm and 1 urn, so that they scatter light 
of wavelength comparable to their diameters predominantly in the forward direction. 
This suggests that the scattering matrix elements strongly vary at 9 ^ 0. Since the 
most intensive radiation in the circumstellar nebula moves therefore in the radial 
direction, the substantial contribution to the source term comes just from it despite 
of the number of preceding scattering events. However, the last statement is valid 
only for not too high a number of scatterings, may be n <> 20. Thus, the computation 
of Sn(y) without refined division at x ^ 0 would be a source of errors and it would 
also lead to the underestimated values. All the facts mentioned above are the reason 
for tabellating the vector elements Sn(x, y) and Sfn(R, n) as the arrays Sn(lR, In) and 
Sfn(IR, In) depending on the indices IR, In and with the fixed given table differences 
AR, An. 

It is desirable to make the division in x and y so fine that at least one value of 
S„(x, y) would be at disposal for the evaluating of the table values Sn(IR, In) at each 
position on integration line, which is given by the area determined by the corner 
points 

(R + AR\2, n - An\2) (R + AR\2, n + An\2) 

(R - AR\2, n - An\2) (R - AR\2, n + An\2) . (15) 

The number of such inner points (x, y) is denoted by the weight w(IR, In). To satisfy 
the demand W(IR, In) > 0 to the largest possible extent, the steps Ax, Ay must 
fulfil the following relations according to Fig. 3: 
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Ay < AR sin rj + I* Arj cos .7 , (iб) 

What turns to the Ay < R( Arj for R -^ Rt and rj -> 0 (or .7 -> 180°) and Ay < AK 
for 7 -* 90°, and 

Ax < R Arj sin 7 

assuming the small values of all the A. 

(17) 

/ / 

-ly R ^ Л ^ -

^ 

X 

Fig. 3. 

It is commonly accepted that the multiple scattering effects do not take place at 
small optical distances At, may be AT < AT0 ** 0.3. Thus, the following definitions 
for the steps A were chosen: 

fixed A: 

varying A: 

Arj = 5° 

and AR = AT0\X(R), if >c + 0 and if no other 

requirements arise 

Ax = min (I? Arj sin .7, AT0\X(R)) , 

Ay = min (I*,- A.7, AR, AT0\X(R)) . 

(18a) 

(18b) 

(18c) 

(18d) 

According to (18d) the initial pattern of integrating lines was constructed with 
Ay = 0.3/x(I*) for y e (Rh Re) and Ay = 0.03j,x(Ri) for y e <0, /*,). A special pro­
cedure has been developed to check the values w(!R, Irj) and in case of neighbouring 
"blind spaces" the additional integration lines and/or integration points are inserted 
by this procedure. The values of 5n(IR, Irj) and Sfn(lR, Irj) are obtained by the 
linear interpolation at remaining isolated positions where w(!R, Irj) = 0. 
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4. The Computational Procedure 

The PL/1 routine has been worked out for the computer EC 1040 on the basis 
of the following sequence of steps: 

i) The input parameters are: Rh R„ the tables x(IR), M(IR, 13), Arj, Ax0, AymAX 

(the upper limit of all Ay), nmAX (the maximum number of the terms in the series 
(2) which are taken into consideration), /„. 

ii) The construction of the integrational warp, i.e. of the table y(Iy) by using (18d) 
and the following remarks, then the construction of the net of integration points, 
the evaluation of w(IR, Irj) and, finally, the refinement of division if necessary. 

dii) The determination of SfJIR, Irj) according to (14). The counter of scatterings n 
is put to equal 1 in this step. 

iv) Starting from y = 0, an integration procedure is applied to solve (10) along 
each integration line of y given in the table y(Iy) until the y c* Re is reached. 
The integration procedure starts behind the nebula (initial x = — Re) with 
initial values I=Q = U=V=0 and proceeds by steps Ax to the upper 
surface until the terminal value x = RB is reached. In each step, the coordinates 
R, rj are calculated from x, y. The value 5^n-i(x, y) is obtained by the inter­
polation from the four neighbouring values supplied from the table Sfn _ X(IR, Irj). 
Within the area (15), the computed values Sn(x, y) are all combined and their 
sum denoted by STjlR, Irj) is stored for the next use. The terminal values 
S„(Iy) are stored as well. The employed integrational method must allow for the 
variable step Ax. I have used the simple Euler's method, but more precise results 
might be obtained by applying the Runge-Kutta methods. 

y) The source term £fn(IR,Irj) is calculated for all the table positions (IR,Irj) 
according to the expression (19). The numerical evaluation of the integral 
follows the Simpson's rule for tables where 13, Icp are the integrational variables. 
The relation between them and the remaining angles in Fig. 1 is given by (8). 
The integrand in (13) is calculated according to the transformed formula 

®(-q>) M(IR, 13) 0(i//) ST„(IR, Irj) sin 3/w(lR, Irj) (19) 

with respect to the summation of Sn(x, y) hidden in STn(IR9 Irj). Finally, one is 
added to the counter of scatterings and the condition n ;_ nmtx is tested. If this 
is fulfilled, the control is transferred to step iv), in the opposite case to vi). 

Umax 

vi) The brightness distribution 1(1 y) = £ ^ y)> the polarisation degree p(Iy) and 
n-- I 

the position angle of the linearly polarized component of the emerging beam 
"m-x 

x(Iy) are easily obtained from the stored values of S(Iy) = £ Sn(Iy) as follows: 
n=*l 

degree of linear polarisation pt = y/(Q2 + U2)// 

degree of circular polarisation pc = V\I 
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and the position angle 

X = 180°/7rarctg(U/e) for Q =# 0 
and 

X = 45° sign U for Q = 0 

(x is measured conterclockwise from the radial straight line passing through the 
point of emergence in question, if looking to the projection of the nebula on 
the celestial sphere). 

If any other values are demanded and stored, e.g. the radial distribution of 
the absorbed monochromatic energy, it might prove useful to check the results 
at the given moment, 

vii) If required, the whole calculation process i) — vi) can be repeated for another 
wavelength, i.e. for a new set of appropriate input parameters. 

5. Discussion 

The described method of solving the radiation transfer in the circumstellar dust 
envelopes with spherical symmetry provides two sorts of resulting information: 

a) the surface distribution of the brightness, of the stage of polarisation or of other 
characteristics of emergent radiation, and 

b) the radiation field within the nebula (and, if required, the temperature distribution 
of the dust). 

However, even if the knowledge of the inner radiation field is not needed, it must 
be calculated and stored. Thus the method is memory and time requiring to a large 
extent. 

Let us denote the number of possible values of indices by the prefi x N as well as the 
indices themselves by the prefix I. If only the last values of STn and Sfn are stored, 
they require 2 . (4 . NIn . Nly) places in the operational memory together. By analogy, 
the tables y(ly), Sn(ly) require Nly F 4 . Nly . nmax and the tables M(IR, 19) 4 . 
. NIR . NI9 places. The longest computational time elapses by integrating the source 
terms, since this integral is calculated «max-times in NIy . NIn points. Each such evalu­
ation mainly consists of the interpolations, for instance for the steps A9 = Acp = 5° 
there are 4 . [180°/A£] . [360°/z1<p] ~ 11 000 entries in the interpolating procedure. 
Thus, the Henyey's method is time consuming even for the most simple spherical 
geometry of the envelope. 

There are some specific features of the developed method which have a sub­
stantial influence on the results. At first, the accuracy of Sfn(IR, In) depends mainly 
on the weight w(lR, In). However, the weighing function varies with the position in 
the nebula. Since the computational procedure runs through the same pattern of the 
integration points for any n, the errors should be amplified more quickly with the 
increasing n at places where w(!R, In) ~ 0 than at others. I think, this difficulty is 
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in principle unavoidable, but the errors may be decreased by refining the division 
in x and y. Secondly, a serious problem occurs if constructing a reliable set of in­
tegration lines. It is obvious that its arrangement differs in case of a different course 
of the absorption coefficient x(R). 

The last problem deals with the number of significant terms in the expansion 
(2). Starting from a certain n0, the terms in the converging series (2) begins to decrease, 
but the n0 may be determined here by a simply way without solving the set (3). If the 
•dust particles scatter mainly forward, the radially going beams are the most intensive. 
Assuming the uniform density of particles of one only type, the attenuation of light 
satisfies the relation (6) and the quantity \\x has the physical meaning of the mean 
free path of photons between the subsequent encounters with the dust grains. The 
number of scatterings is then 

n0 *- -R/(l/x) = *R = T , (20) 

what is the optical equivalent of R. Since for the forward scattering the relation holds 

/ -* / 0 • a , (21) 

where /0 , / are the intensities of the incident and scattered beam respectively, and 
a e <0, 1> is the monochromatic albedo, the relations 

I(R0) ~ /* . cn° (22) 

and simultaneously from (6) 

/ ( R o ) ^ / * . e x p ( ~ r ) (23) 

are valid after n0 scatterings. The upper estimation R0 of the radius of the sphere 
where scattered light dominates follows therefore from 

K0 a- — In fl . (24) 
x 

Thus, in case of the high optical thickness of the envelope, the radius R0 specifies 
the volume, in which practically all the energy of radiation of the central star (mainly 
ultraviolet and visible) is absorbed and transformed to the thermal radiation of the 
heated dust. The application of Henyey's method can limit the extent of this "extensive 
infrared source" and it may also determine the temperature distribution within it, 
although the scattered radiation of the star does not emerge (i.e. I(Iy) = 0 for all ly). 
In the light of the above considerations it is also beyond doubt that the Henyey's 
method would be of little use in case of optically thick medium with dielectric particles 
{a -» 1), since the significant number of scatterings would be very high. 

If the envelope has other geometry than spherical, the Henyey's method becomes 
substantially complicated due to immense number of necessary integration warps, 
i.e. the sets of parallel integration straight lines. Every integration point needs its 
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own "bunch" of integration lines which belong in fact to different warps, and neither 
any class of equivalence of the warps, nor any other similarity among them can be 
found without the help of symmetry of the nebula model. The storage requirements 
make such an application practically impossible. 

6. Summary 

The Henyey's method solving the transfer of polarized radiation in the models of ctrcum-
stellar dust envelopes is developed. This method proves to be efficient in case of the spherical 
model, but it is not flexible enough to be applied to models of other geometries. 

Appendix 

The correct approach to the solution of the set of equations (10) requires the 
proof of the convergence of the series (2) written for each component of the Stokes 
vector. 

Let us consider the radiation field in the envelope as stationary, i.e. not time 
dependent. The central star provides the nebula with exactly the same portion of 
monochromatic energy per unit time as the nebula outshines provided, for the time 
being, that the monochromatic albedo is a = 1. Integrating the n-th term of expansion 
(2) fori over all the directions and over the whole volume V of the nebula, a quantity 
proportional to the energy Un of the n-times scattered radiation contained in the 
nebula results in 

0„= f ůndV= f / i f JBda>W, 

where u is density of radiative energy. 
oo 

Since the total amount of radiative energy U = £ 0n contained in the nebula 
is finite, the following series n = 1 

f ì f f ' . 
" ж l Є Jўjln 

dcodP 

converges absolutely (In = 0). According to the theorem of the mean value, there 
exists a number Mn < oo, so that for a given point P and a given direction p in the 
nebula the relation 

ÍÍ' Ind<adV=MnI„(P,p) 

is valid. The limit M = min M„ > 0 over all admissible pairs (P, p) and n e <1, oo) 
(P,*);» 

cannot be zero, because in the opposite case lim (min Mn) = 0 sets in at some points 
n-*oo (p) 
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and therefore the intensity would rise to infinity at these points. Hence the upper 
estimate of Jn(P, p) is OnjM and the series 

1 °° ~ 

Ь^v-
M я=l 

majorizes the original series £ In 
•í 

The main condition for the convergence is the validity of energy conservation 
of the monochromatic radiation during the pure scattering processes (since a = 1), 
i.e. for each dust particle the amount of energy scattered per unit time into the full 
solid angle equals precisely to the amount of energy of incident radiation, which has 
passed through the area of the efficient cross-section of the particle. This is exactly 
what the normalizing condition either (4) or (5) mean, even if a < 1. As these con­
ditions are always fulfilled for any particle of an non-luminiscent material, there is 
no need to verify the convergence of the Henyey's method. 

Since the components of the Stokes vector always have the property 

I2 ^ Q2 + U2 + V2 

and therefore 

I*\Q\ IZ\U\ I^\V\, 

00 00 CO CO 

the series l/M £ Un majorizes the series ]£ Qn9 £ Un, £ Vn as well. 
n = 1 n = 1 J I= 1 n = 1 

I wish to express thanks to Professor Dr. Vladimir Vanysek, DrSc. for many 
encouraging discussions. 
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