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Motion of Cometary Particle With Variable Mass
Under Central Fields of Forces

P. ZACEK and V. VANYSEK

Department of Astronomy and Astrophysics, Charles University, Prague*)

Received 3 March 1980

The equations for trajectory, energy, radius and gas flow rate of a small cometary particle
with variable mass are derived in this paper. These equations are valid for the central field of
forces caused by the Sun and for zero initial particle velocity relative to the nucleus of comet.
The influence of the nucleus on a particle is neglected.

JiBrKeHHe KOMETAPHOM MHIMHKA C MEPEMEHHON MAcCOl B LIEHTPANbHOM. mojie cui. B aToi
paboTe BhIBEAEHB! YPABHEHHS OIS TPACKTOPHH, 3HEPIMH M PaJHyca MaJlOd KOMETapHOM NMHIMHKH
C NepeMEHHOM MaCcCO# M VISl YHCIIA U3 HEH MCMIAPAIOIIMXCA MOJEKYJI. DTH YPABHEHHSA CIIPaBEAMBEL
NS LEHTPaJIbHOrO MOJs CWI, BbhidsiBaeMoro CONHIEM H A HYJEBOM NMEpBOHAYAaNbHOM CKOPOCTH
TUIMHKH OTHOCHTENIBHO Silpa KOMETHI. BIMsHHEM AApa HAa NOJMHKY NpeHebperaeTcs.

Pohyb kometarni ¢astice s proménnou hmotnosti v centralnim poli sil. V praci jsou odvo-
zeny rovnice pro drihu, energii, polomér a vyparnost malé kometarni ¢astice s proménnou.
hmotnosti. Tyto rovnice plati pro centrdlni pole sil, vyvolanych Sluncem a pro nulovou pocate&ni
rychlost ¢astice vzhledem k jadru komety. Vliv jaddra na &éstici je zanedban.

Introduction

The trajectories of cometary particles have been calculated by many authors
under various assumptions. For example Bessel (1836), Finson and Probstein (1968)
and Omarov (1973) have considered the motion of the particles with various sizes
under the central field of forces. Omarov has studied the motion of a particle with
variable mass. Delsemme and Miller (1971) have introduced the model of comet
with the ice grains, which, consequently change its size and mass.

The equation of the trajectory of a particle with variable mass discussed in this
paper is derived under these assumptions:

— the influence of cometary nucleus on a particle is neglected;
— the total force, which affects a particle is central relative to the Sun;

*) 150 00 Praha 5, Svédska 8, Czechoslovakia.

51



— the initial velocity of a particle relative to the nucleus is very low and can be
supposed to be zero.

Those particles, which are emitted by nucleus under these conditions in different
times, create in space a curve, which can be called “axial” curve of the cometary
tail in respect to the other particles, which have non-zero initial velocities relative
to the nucleus. For constant masses of particles the “axial” curve coincides with some
‘“‘zero” syndyne.

1. Trajectory and energy of a particle
with variable mass

Assuming central field of forces the equations of motion of a particle, which
initial velocity relative to the nucleus is zero, is defined as

X = —uGMcos [R*, ¥ = —uGMsing[R*, Z =0 1)
u = (F,— F)|F,, F,=mGM|R?. ()

The quantity F, is the force of gravity, F, is the sum of other central forces,
which affect a particle, M is the mass of the Sun, G is the gravitational constant,
m is the mass of a particle. The quantities X, Y, Z and R, ¢, Z are Cartesian or cy-
lindrical heliocentric coordinates of a particle, respectively. For above mentioned
coordinates the equations (3) are valid:

X =Rcos¢p, Y=Rsing, Z=0. (3)

Since both the gravitational effect of the nucleus and the pressure of gas (which is
evaporated by nucleus) on a particle is neglected, the coordinate Z is identically
equal to zero. From the equations (1) and (3) it follows:

R — R¢? = —uGM|R? 4)

d . , X
4 [(R* + R*¢*)[2 — hy] = uGMR|R? (%)
R*¢=C (¢ +0), (6)

where C, h, are constants of integration (h, is the particle energy per unit mass in the
moment of the separation of a particle from the nucleus).

If we denote

U=R"', U =dUldp, U"=d*U/d¢?, (7)
then we can write the Binet’s formula in the form:
C*U*U" + U) = uGMU? (8)
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and for particle’s energy per unit mass h(¢) it holds:
L4
h(o) = [(CU)? + (CUY]J2 — uGMU = hy — GM f WUde — (9)
1

The latter term on the right side of the equation (9) is the change of energy due to
evaporation of molecules from a particle; ¢, is the true anomaly of the separation
point of a particle from the nucleus.

The right side of the equation (5) has been integrated by parts:

JuU’ dp = puU —Ju'U do.

The equations (8) and (9) are valid both for u = u(¢) and for u = const < 1. It is
evident from the derivational scheme:

(1a) cos ¢ + (1b)sin ¢ = (4); (1la) X + (1b) Y= (5)

(4 R=(5=(6; R=—-CU, R= —C*U?U"; R¢p* = C?U>.

The solution U = U(g) of the equation of motion (10) was looked for in the form
(11) by variation of constants under the conditions (12) and (13):

U" + U = uGM|C? (10)
U=K;cos¢p + K,sing =0 (11)
Kicosp + K,sing =0 (12)
U" + U = —Kjsing + K} cos ¢ = puGM|C? (13)

From (12) and (13) it follows:

K| = —uGM sin ¢/C*, K} = uGM cos ¢|C> (14)
(4

K, = —GM-[ psin @ do/C? + K, (15)
P11
®

K, = GMJ i cos ¢ dp/C* + K5 . (16)
P1

The constants K3, K, are determined by the initial conditions (17), (18) (for the
moment ¢, of the particle’s separation from the nucleus):

R(t;) = Ry(t;) = Ry, o/t;) = o,(t) = ¢, (17)
R(t) = R,(t;)) = Ry, &lts) = ¢,(t1) = &4 (18)

The R(t), ¢(t), and R,(t), ¢,(f) are the coordinates of the nucleus or the particle
(in the time 7), respectively. The constant C must be the same one both for the nucleus
and for the particle; see (6), (17), (18) and the conditions in the introduction.
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If we suppose that
U,=GM|C* + Kcos ¢, = P"!(1 + ecos @) = R] ", (19)

where P = C?/GM (polar radius for ¢, = n/2) and

e = KP is the numerical eccentricity of the cometary trajectory, then we can
write (see (6), (12), (17) to (19)):

PU,(t;) = PR{' = K,Pcos ¢; + K3Psing, = 1 + ecos ¢, (20)
C 'PR, = K,Psin @, — K3Pcos ¢, = esin g, , (21)

from (20) and (21) K;P = sin ¢, K,P = e + cos ¢, because R, = CP™'esin ¢,
R, = —CU, = C(K, sin ¢, — K, cos ¢,).
The equation of particle’s trajectory has the forms (22) and (23):

¢ ¢
U,=R;! =P‘1[1 + ec, +c¢v[ (1 —p)s,de — s¢j ( —u)cq,d(p:lgo
?1 @1
(22)

ue, d(p] =0, (23)

(4 (4

U,=R,'=P! [ec,,, + Cpg, — cq,‘[ pus, do + sq,J’

P1 @1

where the following symbols were used: ¢, = cos ¢, 5, = sin ¢, ¢,_,,, = cos (¢ — @1),
¢ = ¢,; P, e have the same significance as in the equation (19). For p = puy =
= const < 1 it follows from (22) or (23):

R, =Plp; + (1 —py)cos(p — @) + ecosp]™!, ¢ =¢,. (24)
If we assume the equation (24) in the form (25)
Ry(t) = P,[1 + ¢, cos (#,(t) ~ @o)] ™", (25)

then from the conditions (17), (18) we have:

Pu, =P (26)
pie, = [p3 + € — 1+ 2(1 = py) (1 + ecos ¢,)]*/? (27)
¢o = ¢, — arcsin (e sin ¢, [u,e,) (28)

The right side of equations (26), (27) have the non-zero values also for g, = 0.

For u = p(p) the P, e, are variables. We can evaluate the energy constant h,
from the equation (9):

hy =[(1 + €*))2 — py + (1 — py) ecos @, ] G*M?[C?*, py = p(e,). (29)
The equations of the ‘‘axial” curve have the form (F inson and Probstein, 1968):

é = Rp2 Cos (‘Pcz - (ppc) - R::Z > N = Rp2 sin (q)CZ - (Pp?-) ’ (30)
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where &, n are Cartesian cometocentric coordinates of the points on this curve at
the moment of observation t,, R_,, ¢., are the known heliocentric coordinates of
the nucleus at t,, R,,, @,, are the unknown helicoentric coordinates of points on the
“axial” curve at t,. The R,,, ¢,, can be calculated from conditions (31), (32) and
(33) for various values ¢, t,; see (6), (17), (18).

The quantity 7 is the time of particle’s flight from nucleus.

=1t +1 (31)

Ry () >0 for m>0,20,2¢02¢,>—n

R:l((p) > 0 fOI' T > (%) g ¢ g (3% > -7 (32)
Pc2 @p2
J‘ Rf((p) d(p = f R:((P) d(P = ’l'(GMP)U2 = 1C (33)
@1 P1

2. Repulsive forces and size changes of particles

We take into consideration the effect of two repulsive forces on the particle with
variable mass, moving in the tail of comet: the radiation pressure and reactive force,
induced by non-uniform heating of the particle surface by the Sun and because
o = F[m — vom[m, then

1 — u = Biay/a — Ribvgri|mGM (34)
By = 3Q,,E,/16n1cGMoa, ; (35)

see (2), Finson and Probstein (1968), Dohanyi (1978). f,a,/a is the effect of radiation
pressure, a = a(t) is the radius of a particle, a; = a(t,), ¢ is the density of a particle,
Q,. is the efficiency for radiation pressure, E; = 3.82. 10%% watts is the power
radiated by the Sun, c is the speed of light. The second term on the right side of equa-
tion (34) is the effect of reactive force, induced by the more intensive evaporation of
molecules on the sun-ward side of a particle. R, is the distance of a particle from
the Sun, v, is the mean thermal velocity of molecules, escaping from the particle,
b is the factor of asymetry; we can say, it holds approximately that b =
= (N, — N_)[(N+ + N_), where N, is the number of molecules, which are es-
caping towards the Sun. N_ is the number of molecules, which are escaping in the
opposite direction. m, m are the mass of the particle and its time derivative, G, M
see equations (1), (2).

For b = 0 (symmetrical case of evaporation of molecules from a particle or for
constant particle radius) the equation (34) has the form (36):

1 — u = Bia,Ja = 3Q,,E,[16ncGMga, b =0. (36)
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For b + 0 we assume, that ¢ = const, from which it follows m/m = 3d/a,
d + a(l — p) GM[3R2bv, = Bya,GM[3R%bvy, . (37)

If Q,, = const (a > ; A is the effective wavelength of solar radiation), then

a=a, exp(—Jﬂ B2 dt) [J" B exp(Jﬂﬁz dt) dr + 1], (38)

B, = (1 — u) GM3R2bv,, B3 = B,GM[3R%bv, . (39)

where

IfQ, = Qp,(a) is the known function, then we can write:

a = [Ba; — a(l — p)] GM[3R2bv,, & = a'CU} (40)
j “[Bray — a(l = w)]~* da = (GM/3C) J " (bvo)~* do . (41)

The ratio of the force of solar radiation pressure to the force of gravity on the
particles is given approximately B, = 5.73.107* Q,(¢a;)™" (if ¢ and a, are in SI
units). For the perfectly absorbing particles the B, is increasing function with
decreasing radius and if the diffractions effects are neglected then f > 1 for all ab-
sorbing spheres with radii @ < 10”7 m. However for natural dielectrics (ice, silicates),
the B, is somewhat more complicated function of the particle radius (Schwehm 1976).
B, reaches a maximum of about 0.5 for silicates as andesite or obsidian around
a ~ 5.10"7 m and 0.8 for ice. For small particles the interaction with the radiation
is dominated by diffraction effects and complicated internal refraction and inter-
ference effects must be taken in consideration and only Mie theory must be applied.

Since Q,, is not trivial function of a in the following discussion is used only
illustrative approximation. It is assumed that only small fraction of the solar radiation
extincted on the particles isconsumed for the evaporation and excess of the kinetic
energy of the molecules. It implies, that substance of the particle must have the small
one, but non-zero imaginary part of refractive index, then the material is some
kind of natural dielectrics. If we know the particle radius as a function of time,
a= a(t), then we can calculate the gas flow rate of particle Z, from the equation

SmeM = —m ’ (42)

where S is the superficial area of particle, m,, is the mass of molecule, ni is the time
derivative of particle mass. Esspecially we have

Z, = —dolmy . 43)

p

Energy for evaporation of molecules is determined by the absorption of solar
radiation.
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Efficiency factor for the absorption Qs of a larger spherical particle is given
by the relation

Qups = 1+ 2[(x + exp (=) = 1] %% = 1 —exp(—x0a),  (44)

where x/2a is the linear absorption coefficient which is, of course, function of the
refractive index m, = n,, — in;, where n; is in this case very small (<0.1). The factor
of the absorption coefficient x is given by relation

% = 8nn;all, (45)

where 1 is the mean wavelength of the maximum of the solar spectrum. The ab-
sorption coefficient %, is defined with a sufficient approximation

%o = 0.55xa . (46)

The numerical factor in equation (46) varies in limits 2/3 for a — oo and 12 for
a—-0.

We can estimate the gas flow rate and radius of a particle as a functions of time,
(if we substitute (47) into (43)):

Z, = Zy[1 — exp (—%oa)] , (47)

a=x'In [(exp (x0a;y) — 1) exp (—xomMg"‘jq Zydt + 1)] . (48)

t

where a is the radius of a particle, Zy is the gas flow rate of nucleus (with the same
chemical composition and structure of material as well as particle and in the same
distance from the Sun as a particle).

The equation (47) was chosen from this reason: for very large particles the Z,
is practically independent on a radius of a particle, which for very small particles is
proportional to particle radius (Kaplan and Pikelner, 1963). On the other hand, for
the function Z,(a) in equation (47) the radius can be explicitly calculated (see
equation (48)). _

Law of conservation of thermal energy can be written in the form (Delsemme
and Miller, 1971):

Zy = [E{1 — Ay) Ui[16n — o(1 — A,) T*]|Ly (49)

where E; is the total luminosity of the Sun, A,, 4; are the values of albedo in the
visible or infrared spectral regions, respectively, o is the Stefan-Boltzmann constant,
Ly, is the latent heat (of evaporation or sublimation) per one molecule, T'is the mean
temperature of particle, U, = R, . For Zy also it holds (Kaplan and Pikelner,
1963):

Zy = Czexp(—A4,T) T?2, (50)
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where constants 4, Bz, C; can be calculated or measured for given physical proper-
ties of the particle.

If we compare both terms for Zy from equations (49) and (50), we shall obtain
the function U = U(T); see (7). Under assumption that u = u(¢p) ie. also U =
= U(p), it is possible numerically evaluate Zy(¢); then

t o
I Zydt =f Zy(p) C'U, * do

t ?1
(see (6)) and from equation (48) it follows a = a(¢p).

Equations (37) and (6) with a given function of u = u(¢), may lead to the esti-
mation of b as function of (¢ — ¢,) or (t — t,).

Relative error of Z, is less than 10 percent in equation (47); (see (45)). More
exact results may be obtained by the equation (47) Z, = ZyQ,, however the evaluation
of particle radius will be more complicated.

By means of the equations (38) or (48) we can estimate the lifetime of particle,
which is approximately equal to the difference of integrational limits 7, = t; — t,
(see (33)), where the final radius a(t,) is equal to a molecular radius a,,. This must be
regarded as formal results for the upper limit of life-times only, because for very small
radii the equations (38), (45) and (48) are invalid. On the other hand, if Z, decreases
very fast, the radius of a particle will be always larger than a,. The estimation of
particle lifetime 1, = a;0/Z,my (Delsemme and Miller, 1971) is exact only, if Z,
is entirely independent on radius of a particle. It is not true for small particles (see
(45), (47)) and it holds 7, = (a,0/Z,my)In (a/ay), when Z,[a = Z,[a, = const.

Special assumptions:

If we use as approximate model with following assumptions:
1—p=1-p, =const, Q, =const, vebR:=1v,b,R} =const, (51)

where R, = P(1 + ecos ¢;)™!, v; = vo(R,), b, = b(R,), then the equation (38)
has the form

a=a, {m/u — )+ [1 = Buf(1 = )] exp[— U=F)GM n)]}, (52)

3R2b,v,
and for Z,, it holds (after (43)):

7 = — e _ QGMal[l — K — Bx] exp| — (1 - ﬂl) GM (t _ '1) (53)
P My 3R2b,v,my 3R%b,v,

If we substitute the following numerical values (for t=1t,) into (53),
by =13=(Ny —=N_)[N, +N_) ie. N[N, =1/2. (¢=10°kgm™> G =
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=6.100"m3kg 's"% M =2.10"kg; R, = 10" m; v, = 10°ms™; my =
=3.10"%°kg; a; = 1072 m); we obtain Z,(t;) = 10! molecules m~2s™!; if
1 - py =25.107Y).

Discussion of the equation (52):
Since a(t) and Z,(t) are exponential function the equation (52) is valid for those
small particles, which are larger than the effective wavelength of solar radiation.

1) 0 % B, < 1 — p,: the radiation pressure at ¢, is not zero, but it is less than the
total repulsive force. The particle will only diminish its radius (by evaporation) on
a final value a;:

ay = pras[(1 — py) = 3Q,E[16mcGMo(1 — p,) . (54)

2) By =1 — py * 0, the particle radius will be not changed. Particle is accelerated
from the nucleus by radiation pressure only.

3) The case f; > 1 — py is not real (evaporated molecules should accelerated the
particle towards the Sun).

4) 0 = B; < 1 — p,: Radiation pressure is at t;, negligible. The particle will be
fully evaporated.

5) By =0=1— p,: Very large particles. Due to the indeterminable form of
B:/(1 — p,) the equation (52) cannot be used.

3. Behaviour of 1 — p= (1 — ) [1 + H(p — ¢,)]

The equation of trajectory a particle (22) or (23) will be expressed by elementary
functions of ¢, if 1 — y is polynomial in (¢ — ¢,). For illustration we introduce only
the linear function, i.e. the case, when

1-—p=>0-pw)[1+He - o], (55)

where the change

d d
=M= -m)H=CO L0~ 20, (56)

is constant one. Then the equation for trajectory is written in the form:
Up = R;l = (1 - #1) (ctp—m - H((p - q’l) + Hsrp-m) +pu + ecm] P, (57)

as we can find out by substitution of the expression (55) for 1 — u into (22) and by
integration. In the equation (57) the following symbols were used:

Co-p, = COS (@ — @y), S,_p, =sin(p — ¢,), c,=cosq;
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P, e are the parameter and eccentricity of the trajectory of cometary nucleus, gy =
= u(@,), @, is the true anomaly of the particle’s separation point from the nucleus.
The equation (57) is in consistence with the equation of energy (9), in which the value
of hy from the formula (29) was used.

By this manner we can calculate the trajectory for the repulsive forces with
higher powers of dependence on ¢ — ¢,, or for some expressions from Taylor’s
expansion of another function.

If H < 0 in the equation (55) the particle trajectory has an asymptote (58):

R="Pycos(p —¢4), Pa=R(@o=0,), ¢3=04+1/2, (58)
where ¢, corresponds its direction. The constant ¢, is determined by the condition
1= u(ps) =0, ie. H=—1f(¢s— ¢1); (59)

From the equation (58) it follows U(¢3) = 0 i.e. (see (57)):

#y + (1 = py)cos (93 — @y) + ecos 3 =
= H(l - u;) [¢5 — o1 — sin(p5 — @4)]- (60)
From the conditions (59) and (60) it follows the equation (61):

L —p=—(1+ ecos (Ps)/[cos (‘Ps - (01) — sin ((03 - ‘Pl)/(‘Ps - ‘Pl)] s (61)

where it must be 0° < @3 — @, < 257°, if n corresponds to 180°. If the values of
@3, @, are know then the evaluation of initial value of 1 — u, is almost trivial.
For the unknown value of ¢; the equation (61) is transcendental. 1 — p, for the
case H < 0, decreases more quickly with the distance from the Sun, than the force
of gravity. It implies from the condition (59). The reactive force, defined by the second
term on the right side of the equation (34) decreases more quickly with the distance
from the Sun, than the force of gravity, too. It is evident from the comparison of
the equations (34), (49), (50), (42) and (47).

4. Conclusion

The equations for trajectory and energy of particle with variable mass, derived
in this paper, hold, under introduced conditions almost generally and they have in
some extend the advantage, that they are expressed by means of elements of cometary
nucleus trajectory. For the equation of trajectory mentioned above it is not necessary
calculate the osculation elements, which are variables.

The equations for radius of particle and its gas flow rate give a real possibility
to estimate the behaviour of these quantities with respect to the course of the whole
central repulsive force and on the trajectory of particle and how many molecules have
been evaporated by the particle during its flight.
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For number of molecules, evaporated by particle during the time ¢t — 1, it
holds in general (see (42)):

I 2,5 dt = [m(t,) — m(t)]/myc 62)

ty

where m(t;), m(t) are values of mass of a particle — at times ¢, and t. The relation
(62) can be used for determination of the density of molecules in the tail of a comet.
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