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On a Class of Groupoids
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2partment of Mathematics, Charles University, Prague*)
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For any groupoid G we can define a congruence ¢ by (a, b) € ¢4 iff ax = bx and xa = xb
for every x€ G. If G is a subdirectly irreducible groupoid with ¢; #+ idg; then there exist two
elements a,b in G such that a + b and 1 = {(a, b), (b, @)} Vidg. In the paper, groupoids
having this property are called primitive and these primitive groupoids are investigated. Special
attention is paid to regular primitive groupids.

Jna Besakoro rpynmouna G omnpenensieTCss KOHTPYIHUHAS !; Kak (a, b) € tg, ecnd ax = bx
" xa = xb nna Bcex x € G. G Ha3bIBa€TCA MPHMUTHBHEBIM, €CITH B G CYLIECTBYIOT ABa 7I€EMEHTA a, b
Tak, yTo a + bu tg = {(a, b), (b, a)} U ig. B cTaThe HCCIEAYIOTCA NPHUMHTHBHBIE H B YaCTHOCTH
peryaspHble IPEMATHBHBIE IPYNNOABL.

V libovolném grupoidu G lze definovat kongruenci t; pfedpisem (g, b) € t; pravé kdyZ
ax = bx a xa = xb pro kaZdé x z G. Je-li G subdirektn& nerozloZitelny a je-li ¢; # idg, pak v G
existuji dva riizné prvky a, b tak, Ze t; = {(a, b), (b, )} U idg. Grupoidy s touto vlastnosti jsou
v ¢lanku nazyvany primitivni a jsou studovdny v rozmanitych situacich. Specidlni pozornost je
vénovéana regularnim primitivnim grupoidim. :

1. Preliminaries

Let G be a groupoid. For a € G, define two transformations L, and R, of G
by L,(x) = ax and R,(x) = xa. The groupoid G is said to be a left (right) cancellation
(division) groupoid if the transformations L, (R,) are injective (surjective).

Let r be a relation on G. Then r is called
— left stable if (a, b) € r implies (ca, cb) € r for every c€ G,

— right stable if (a, b) € r implies (ac, bc) € r for every c € G,
— compatible if (ac, bd) € r, provided (a, b) e r and (c, d)er,
— left cancellative if (ca, cb) € r implies (a, b) e r,

— right cancellative if (ac, bc) € r implies (a, b) € .

Moreover, if r is an equivalence (congruence) then G/r is the corresponding factorset
(factorgroupoid).

*) 186 00 Praha 8, Sokolovska 83, Czechoslovakia.
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For any subsets M, N of G, put MN = {xy | x€M, yeN}. A non-empty
subset I of G is said to be an ideal if GI = I and IG < I.
We denote by G° the opposite groupoid, i.e. G° = G(°), where x o y = yx.
The groupoid G is said to be
— medial if it satisfies the identity xy . uv = xu . yv,
— left distributive if it satisfies the identity x . yz = xy . xz,
— a left unar if it satisfies the identity xy = xz,
— a Z-groupoid if it is both a left and right unar,
— injective if the operation of G is an injective mapping.
Let f be a mapping of a set M into N. Then ker f is the equivalence on M defined

by (a, b) € ker f iff f(a) = f(b). Let i) designate the identical transformation (rela-
tion) of M and card M the cardinal number corresponding to M.

2. Some Relations

Let G be a groupoid. Define a relation pg on G by (a, b)e p iff L, = L, (ie.,
ax = bx for every x e G). The groupoid G is said to be right faithful if p = ig.
Clearly, every right cancellation groupoid is right faithful.

2.1 Lemma. (i) pg is a right stable equivalence.
(ii) p¢ = NkerR,, x€G.
(iif) A block H of pg is a right unar, provided it is a subgroupoid.

Proof. Obvious.

For every ordinal 0 £ a, define an equivalence pg , as follows: p, = ig; if 0 < a
then (a, b) € p,+, iff (ax, bx) € p, for every x; if 0 < a is limit then p, = (Jp,,
0 < b < a. It is obvious that p, = p_,; for some ordinal c and we put p; . = Pg.
Moreover, we denote by Ip(G) the least ordinal d with p = p,.

2.2 Lemma. (1) For every ordinal a, pg , is a right stable equivalence and pg; , =
S pg,»» Whenever a £ b.
(i) pg is a right stable equivalence.
(iii) p < r, provided r is a congruence of G such that G/r is right faithful.
(iv) If pg is a congruence of G then G/p is right faithful.
(v) If 0 < nisnatural and a, b € G then (a, b) € p , iff ((ax,) ...) x, = ((bx,) ...) X,
for all x;,...,x,€G.
Proof. Easy.

We shall say that G satisfies (Clp) if py is a congruence of H for every factor H
of G.

2.3 Proposition. G satisfies (Clp), provided at least one of the following condi-
tions holds:
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(i) G is medial and G = GG.
(ii) G is a semigroup.
(iii) G is right distributive.
(iv) G is commutative.

(v) G is a right (left) unar.

Proof. Only (i) is not immediate. It suffices to show that p is left stable. For,
let a, b, x, y € G and (a, b) € p. Then x = uv for some u, v and we can write ya . x =
=ya.uv=yu.av = yu.bv=yb.uv=yb.x.

2.4 Lemma. Let G satisfy (Clp). Then:

(i) For every ordinal number a, pg , is a congruence and p, ., / Pa = DG/Pa-
(ii) p¢ is a congruence and G/p is right faithful.

Proof. Easy.

Now, define an equivalence g on G by (a, b) € q iff R, = R,. Similarly as for p,
we introduce the equivalences qG,,, ge, the ordinal number 1q(G) and the condition

(C1q). The groupoid G is said to be left faithful if it is both left and right faithful.
Finally, G is said to satisfy (C1) if it satisfies both (C1p) and (Clq).

2.5 Proposition. G satisfies (C1), provided at least one of the following conditions
holds:
(i) G is medial and G = GG.
(ii) G is a semigroup.
(iii) G is distributive.
(iv) G is commutative.
(v) G is a right (left) unar.
Proof. Apply 2.3.
Put t; = pg N g - G is said to be semifaithful if ¢t = ig.

2.6 Lemma. (i) Every equivalence contained in f; is a congruence of G.
(i) tg is a congruence.
(iii) If a block of t; is a subgroupoid then it is a Z-groupoid.

Proof. Easy. .

For every ordinal a, define t;, as follows: t, = ig; if 0 < a then (a, b) e t,,
iff (xa, xb), (ax, bx) e t, for every x; if 0 < a is limit then ¢, = Utp, 0 S b < a.
Put I(G) = c and #; = t,, where c is the least ordinal with , = 1, .

2.7 Lemma. (i) For every ordinal a, t;, is a congruence, 162 S P6e N 4G
and ta+ I/ta = tG/l.'

(i) 7¢ is the least congruence of G such that the corresponding factor is semifaithful.
Moreover, ; S pg N Gg-

Proof. Easy.
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2.8 Lemma. Let G satisfy (C1). Then:

(i) For all natural numbers 0 < n,mwithl1 Sn+ m,p, nq, <t
(ii) p, N g, = t,, where o is the first infinite ordinal.
(iii) If Ip(G), 19(G) < o then I(G) = o.
(iV) Ic = P N 4e-

Proof. (i) By induction on (n, m). If either n = 0 or m = 0 then there is nothing
to prove. Let 1 < n, m and a, b€ G, (a, b) € p, N q,,. We have (ax, bx)€ p,_; N qp,
for every x, and so (ax, bx) € t, 4 5. Similarly, (xa, xb) € t, 4 m—,.

(ii) and (iii). These assertions follow from (i).
(iv) One can show easily by induction on (a, b) that p, N g, < F.

n+m-—1-

2.9 Example. Consider the following groupoid G : G = {a, b, ¢}, aa = ba = b,
ab=ac=bb=>bc=cb=cc=c, ca=a. It is easy to see that p = {(a,b),
(b,a)} ui, g ={(b,c)(c,b)} Ui, g=7, p=G x G, t =i =i. Moreover, t, =
=i+ png=4q, (G) =0, 19(G) =1, Ip(G) = 2 and p, q are not congruences.

2.10 Lemma. Let f be a homomorphism of G onto a groupoid H.

(i) For every ordinal a, f(pg..) S Pu.a f(d6a) S qu. and f(tg.) S ty .

(ii) f(Ps) < Pu> f(36) S qu and f(is) S .
(iii) Let pg , < ker f for some ordinal a. Then f(pg .+b) S Pu.p for every ordinal b.
(iv) Let t5 , < ker f for some ordinal a. Then f(tg .+,) S ty., for every ordinal b.
(v) Letker f < pg , for some ordinal a. Then f ~!(py ) S pg 2+ fOr every ordinal b.
(vi) Let ker f < tg,, for some ordinal a. Then f ~*(t4,) S ..+ for every ordinal b.

Proof. Easy.

2.11 Lemma. Let f be a homomorphism of G onto H.
(i) If ker f = pg then f(pg) = Py and Ip(H) < Ip(G).
(i) If ker f < i then f(ig) = Ty and 1I(H) < 1(G).

Proof. Use 2.10.

2.12 Lemma. Let H be a subgroupoid of G. Then pg,| H S py s 46.a | H <
S qy.and tg, | H < ty , for every ordinal a. Moreover, pg | H < py, 4g | H < gy
and i | H S iy. '

Proof. Easy.

2.13 Lemma. Let H be a semifaithful subgroupoid of G. Then H is isomorphic
to a subgroupoid of G/i.

Proof. This follows from 2.12.

2.14 Lemma. Let G, i € I, be a non-empty system of groupoids. Put G = []G,.
(i) If 0 < n is natural and a;, b; € G;, (a;, b;) € pg, ,n» then ((a;), (b;)) € Pg ,a-
(ii) If Ip(G;) < n for every i € I and some natural n, then Ip(G) < n.
(iii) tg,, = [t6,.a for every natural n.
(iv) If I(G;) < n for every i e I and some natural n, then I(G) < n.
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(v) Suppose that the index set 1 is finite. Then pg, = [[Ps,.. and 6. = [[t6,
for every ordinal a.

(vi) Suppose that I is finite. Then Ip(G) = max Ip(G;) and I(G) = max I(G;).
Proof. Easy.

2.15 Lemma. (i) G is right faithful (faithful, semifaithful) iff Ip(G) = 0 (Ip(G) =
= 0 = 1q(G), I(G) = 0).
(ii) The class of right faithful (faithful, semifaithful) groupoids is closed under sub-
direct products.
Proof. Use 2.14.

2.16 Lemma. Let r be a congruence of G such that r N t; = ig. Then r n f5 =
= ig.

Proof. Suppose, on the contrary, that r n #z % i. Then there is an ordinal a
which is the least with r N ¢, + i. Obviously, a is not limit. Farther, there are x, ye G
such that x + y and (x, y) € t, 0 r. Then, (xz, yz) € t,_y N rand (zx, zy)et,_, O r
for every z. Consequently, xz = yz, zx = zy, (x, y)€t, t 0 r * i, a contradiction.

G is said to be torsion if t; = G x G.

2.17 Proposition. (i) G is torsion iff no factor of G is semifaithful.

(i) The class of torsion groupoids is closed under subgroupoids, factorgroupoids
and finite cartesian products.

Proof. Easy.
We shall say that G satisfies (C2) if card G = card G/p = card G/q.

2.18 Lemma. G satisfies (C2), provided L, and R, are surjective for some
a,beG.

Proof. There is a transformation f of G with L f = iz. Put k = gf, where g is
the natural mapping of G onto G/q. Then k is injective.

2.19 Lemma. Let G be a division groupoid such that t; is Jeft cancellative.
Then G is a left quasigroup.

Proof. Let ca = cb. Then (ca, cb) € t, (a, b) € t. There are x, y € G with a = ax,
= ay. Then (ax, ay)et, (x,y)et and a = ax = ay = b.

2.20 Example. Let G(+) be the quasicyclic 2-group. For every 0 < n, let 4,
be the set of elements of order 2. Hence 4, = 0, card 4, = 1 and card 4, = 2"~}
for 1 < n. Farther, let B, be the set of all elements of order at most 2°. Then B, is
a subgroup and card B, = 2". Take a;€ 4;,i=0,1,2,..., such that 2a;,; = g
for every 0 < j. Define a transformation f of G by f(x) = a;+,, where 0 < i is such
that x € A4;. Finally, let « be an element not belonging to G. Put H = G u {«} and
define a multiplication on H as follows: xy = 2x + 2y, xa = f(x) = ax and oz = 0
for all x, y e G.

2.20.1 Lemma. (i) H is a commutative groupoid and G is a subgroupoid of H.
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(i) f(2x) = 2 f(x) for every xe G, x * 0.
Proof. Obvious.

2.20.2 Lemma. The groupoid H is generated by a.

Proof. Let K be the subgroupoid generated by « and let L = G n K. Clearly,
OeL, f(x)eL and 2x + 2y € L for all x, ye G. We are going to show by induction
on n that B, € L. For n =0, B, = 0 and 0e L. Now, suppose that 0 < n and
B,< L. We have B,,; = B,UA,,;. Let ae 4, and b = 2f*(a). Then be A4,,,.
Farther, b + 2x = 2f%*(a) + 2xe L for every xe B,. But 2B, = B,_,, and so
C.,.y =b+ B,_; = L. Similarly, 3b + 4x = 2f%(a) + 2(b + 2x)e L for every
x€By Coy=3b+B, ,SL,.., Co=(2"~1)b+By,<L and C_, =
= {(2**' — 1) b} = {—b} = L. One can see easily that card C_; = 1 = card C,,
cardC; = 2,...,cardC,_; =2""'. Let —1<i<j<n-1 and xeC;nC;
We have x = ("' —1)b+ y=2""9—1)b + z, where y,ze B;. From this,
(2> —=2""")beB; and 0 = 2(2*7) — 2°7%) b. But 202°"ip = 2""i*i = (, since
n+1=n-—i+j Therefore 0 =2°b, a contradiction. We have proved that
C;n C; =0 and consequently card D = 2%, where D = C_; UCouU...UC,_;.
However, D < L, D < A,,, and card D = card 4,,,. Thus D = 4,,, < L and
B,,, < L.

2.20.3 Proposition. H is a commutative groupoid generated by one element
and I(H) = 1. G is a subgroupoid of H, G is torsion and I(G) = o, where o is the first
infinite ordinal.

3. Regular Groupoids

A groupoid G is said to be regular if p; = ker R, and q; = ker L, for every
x € G. It is said to be right (left) regular if p; = ker R, (q¢ = ker L,).

3.1 Lemma. The class of (right) regular groupoids is closed under subgroupoids
and cartesian products.

Proof. Obvious.

3.2 Lemma. A groupoid is a (right) cancellation groupoid iff it is (right) regular
and (right) faithful.

Proof. Obvious.

3.3 Lemma. Let H be a subgroupoid of G.
(i) If G is right regular then py = pg | H.
(ii) If G is regular then t, = 16 | H.

Proof. Obvious.

3.4 Lemma. Let r be a right cancellative congruence of G such that r < pg.
Then r = pg, Ip(G) < 1 and G is right regular.

Proof. Easy.
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3.5 Lemma. Let a division groupoid G possess a cancellative congruence
r € tg. Then G is a quasigroup.

Proof. By 3.4, G is regular and r = p = g = t. It is enough to show that G is
faithful. For, let a, b € G, (a, b) € g. Then a = ac, b = ad for some ¢, d, (ac, ad) € g,
(c,d)e g and a = ac = ad = b. Similarly the rest.

3.6 Lemma. Let G be a groupoid such that either G or G/t is regular. Let r be
a congruence of G with r N t; = ig. Suppose that a, be G, a + b, (a, b) er. Then
at least one of the following assertions holds:
(i) ax % bx and xa * xb for every x € G.
(ii) (a, b) e pg and xa + xb for every x € G.
(iii) (a, b) € g¢ and ax =+ bx for every x € G.

Proof. Let ac = bc for some ce G. If G is regular then (a, b)e p. If G/t is
regular then (ax, bx)etnr, ax = bx for every x and (a, b)ep. But (a,b)er
and r nt = i. Thus (a, b) ¢ q and xa + xb for every x.

3.7 Proposition. Let G be a regular groupoid such that card GG < n for some
natural 1 < n. Then card G/t < n?.

Proof. Let by,...,b,eG be such that GG < {by,...,b,}. For i=1,...,n,
let A, = {x | xb, = b;}. Obviously 4, are blocks of p and there are no other blocks
of p. Hence card G/p < n. Similarly, card G/q < n and card G/t < n%.

3.8 Corollary. Let G be a semifaithful regular groupoid with card GG < n
for some natural n. Then card G < n?.

3.9 Lemma. Let G be a cancellation groupoid and f, g two tranformations of G.
Put x x y = f(x) g(y) for all x, y € G. Then:
(i) G(*)is a regular groupoid.
(ii) pey = kerf, qg.) = kerg.
(iii) G(*) satisfies (C2) iff card f(G) = card G = card g(G).
(iv) G(#) is a division groupoid, provided G is and f, g are surjective.
(v) G() is commutative, provided G is and f = g.
Proof. Obvious.

3.10 Proposition. The following conditions are equivalent:
(i) G is a regular groupoid satisfying (C2).
(ii) There exist a cancellation groupoid G(-) and two surjective transformations f, g

of G such that xy = f(x) - g(y) for all x, ye G.

Proof. (i) implies (ii). There are transformations k, h, f, g of G such that
(x, kf(x)) e p, (x, hg(x))e q for every xe G and (k(a), k(b)) € p implies a = b,
(h(c), h(d)) € q implies ¢ = d for all a, b, c,de G. Put xo y = k(x) h(y). It is easy
to check that G(o) is a cancellation groupoid and xy = f(x) . g(y) for all x, y € G.
Finally, fk = i = gh.
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(ii) implies (i). See 3.9.

3.11 Proposition. The following conditions are equivalent:

(i) G is a regular division groupoid.

(ii) There exist a loop G() and two surjective transformations f, g of G such that
xy = f(x) o g(y) for all x, y.
Proof. Similar to that of 3.10.

3.12 Example. Let G(+) be a vector space with an infinite countable basis
{ay, ...}. Define two endomorphisms f and g of G(+) by f(a,) = 0, f(a;) = a;_,,
g(as) = 0, g(a,) = a3, g(as) = ay, g(a;) = a;-, forall2 < i,4 < j. Clearly, fand g
are surjective. Farther, put xy = f(x) + g(y) for all x, y € G. One may verify easily
that G is a semifaithful regular division groupoid, p=ker f, ¢ = ker g, t = i=
=1ig P =p,=G x G=gq,= 3 and I(G) = 0, Ip(G) = o = 19(G), where o is the
first infinite ordinal. Moreover, p and g are not congruences of G.

We shall say that G satisfies (C3) (C4), (C4a)) if G/t, is regular for every natural
0<n=1(0=n1Zgn)

We shall say that G satisfies (C5) if every factor of G is regular.

3.13 Lemma. (i) The class of groupoids satisfying (C3) is closed under sub-
groupoids and cartesian products.
(ii) The class of groupoids satisfying (C4) is closed under subgroupoids and cartesian
products. ’
(iii) The class of groupoids satisfying (C4a) is closed under cartesian products.
(iv) The class of groupoids satisfying (C5) is closed under factors.
(v) Every left (right) unar satisfies (C5).

Proof. Use 2.14.
3.14 Lemma. Let G/tn be regular for some natural 0 < n and let a, b, ¢, d € G.
(i) If ac = bc then (a, b) € p, 4.
(ii) If da = db then (a, b) € gq+4-
(iii) If ac = bc, da = db then (a, b) € ty44.

Proof. Easy.

3.15 Proposition. Let G/t be regular and 1p(G), 19(G) < 1. Then G is regular
and G satisfies (C3).

Proof. This is an easy consequence of 3.14.

3.16 Proposition. Let G satisfy (C4a). Then 1(G) < o and G[i is regular and
semifaithful.

Proof. Let a,be G, (a, b)et,,,. For ceG, (ac, bc)et,, (ca,cb)et,, and so
(ac, bc), (ca, cb) e t, for some 1 < n. Since Gft, is regular, (ax, bx), (xa, xb) e t,
for every x € G, (a, b) € t,+, and (a, b) € t,. The rest is clear.
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3.17 Lemma. Let G satisfy (C4). Then 1, = 15, | H for every subgroupoid H
of G and every ordinal a.

Proof. Easy (use 3.16).

3.18 Proposition. Let G satisfy (C4) and let H be a subgroupoid of G. Then
I(H) £1(G) = o.
Proof Apply 3.16 and 3.17.

3.19 Lemma. Let G be a right regular medial groupoid. Then Ip(G) < o and Pe
is the least right cancellative congruence of G. Moreover, pg is a congruence and G/ )/
is right regular.

Proof. First, we show that p is a congruence. It suffices to prove that p is left
stable. We have ca.aa = ca.ba = cb.aa for a, b,c€G, (a, b)e p. Since G is
right regular, (ca, cb) € p. Thus p is a congruence. Farther, if a, b, c € G and (ac, bc) €
€ p, then ax . ca = ac.xa = bc . xa = bx . ca, and so (ax, bx) € p for every x € G.
Thus G/p is right regular and the rest is easy.

3.20 Proposition. Every regular medial groupoid satisfies (C4).

Proof. By 3.19 (and its left hand form), p and q are congruences of G and
G/p (G/q) is right (left) regular. We are going to show that G/p is left regular. Let
a,b,ce G be such that (ca,cb)e p. Then ¢x.ax = ca.xx = cb.xx = cx . bx
for every xeG. Consequently, (ax, bx)eq and ya.ax = yy.ax = yy.bx =
= yb. yx, (ya, yb) € p. Similarly the other case and we have proved that G/p and G/q
are regular. But 1 = p N ¢ and G/t is a subdirect product of G/p and G/q. By 3.1,
G/t is regular.

3.21 Corollary. A medial groupoid G satisfies (C4a) iff G/t is regular.

3.22 Remark. By [1, Proposition 2.14], every medial division groupoid satisfies
(C4a). On the other hand, there exist commutative medial division groupoids which
are not regular. Thus (C4a) does not imply (C4).

3.23 Example. Consider the following groupoid G : G = {a, b, ¢}, aa = ab =
= ba = bb = cc = a, ac = bc = ca = cb = b. It is easy to verify that G is com-
mutative and satisfies (C5). Put H = G x G and denote by 4 the block of ¢y con-
taining (a, a). Clearly, (x,y)e 4 iff x, ye{a,b}. Let B= A\{(a,a)} and r =
= (1y\(4 x A)) U (B x B) U iy. Then r is a congruence of H. However, (c,c).
. (a, b) = (b, b), (¢, ¢) (a, ¢) = (b, a), (b, b), (b, a)) e, (a, a)(a, b) = (a, a), (a, a) .
.(a, ¢) = (a, b). Hence H|r is not regular, H does not satisfy (C5) and the class of
groupoids satisfying (C5) is not closed under cartesian products.

3.24 Remark. Every cancellation groupoid satisfies (C4) and can be imbedded
into a simple cancellation groupoid. On the other hand, there are cancellation
groupoids not satisfying (C5). Thus the class of groupoids satisfying (C5) is not closed
under subgroupoids and (C4) does not imply (C5).
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4. Primitive Groupoids

Let G be a groupoid. We shall say that G is primitive if there are two elements
a, b e G such that a # b and t; = {(a, b), (b, a)} U ig. Farthermore, we shall say that
G is strongly primitive if a, b€ GG and superprimitive if a, b € Gx N xG for every
xeG.

4.1 Lemma. A groupoid G is primitive iff ¢t; % i; is a minimal congruence. In
this case, card G = card Gt + 1,1 £ I(G), t is a minimal equivalence and r N t; =
= ig for every congruence r with t; & r.

Proof. Obvious.

4.2 Lemma. A primitive groupoid G is subdirectly irreducible iff ¢; is the least
non-trivial congruence of G.

Proof. Obvious.

4.3 Proposition. Let G be a subdirectly irreducible groupoid. Then just one of

the following cases takes place:
(i) G is semifaithful.

(ii) G is a two-element Z-groupoid.
(iii) G is strongly primitive.

Proof. Suppose that t # ig. According to 2.6(i), t = {(a, b), (b, a)} U is for
some a, be G, a # b. Therefore G is primitive. Let 2 < card GG and r = (GG X
x GG) U ig. Thenr # iisa congruence and r N ¢t # i. Thus (a, b) e r and a, b € GG.

4.4 Proposition. Let G be a subdirectly irreducible (regular) groupoid satisfying
(C1). Then just one of the following cases takes place:
(i) G is a left faithful (left cancellation) groupoid.
(ii) G is a right faithful (right cancellation) groupoid.
(iii) G is a two-element Z-groupoid.
(iv) G is strongly primitive.

Proof. Use the equality ¢ = p n q and 4.3.

4.5 Proposition. Every factorgroupoid of a groupoid G is semifaithful iff no
factorgroupoid is primitive.
Proof. Use 4.3 and 2.15.

4.6 Proposition. Let G be a regular division groupoid such that G is not semi-
faithful. Then there is a congruence r < t; such that G/r is primitive.

Proof. There is a block 4 of ¢ containing at least two elements. Let a € A4,
B=A~{a} and r = (t\(4 x A)) U(B x B)uig Then r =t is a congruence.
Put H = G/r and denote by f the natural homomorphism of G onto H. Let x, y € G
be such that (f(x), f(»)) € ty. Then (xz, yz), (zx, zy) € r for every z. On the other
hand, a = xu, (a, yu)er, xu = yu and (x, y)e p. Similarly, (x,y)eq, (x,y)et
and the rest is clear.
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4.7 Lemma. Every primitive division groupoid is infinite and superprimitive.
Proof. Obvious.

4.8 Lemma. Let G be a regular primitive groupoid such that G/t is left regular.
Suppose that xy = a # b = xz for some x,y,zeG with (a, b)ets. Then
card G[p < 2.

Proof. Since (xy, xz)et and G/t is left regular, (uy, uz)et for every ueG.
If vy = vz for some v, then (y,z)eq and a = xy = xz = b, a contradiction.
Hence uy #+ uz and {uy, uz} = {a, b}. Thus uy = a, b and |G/p| < 2, since G is
regular.

4.9 Proposition. Let G be a regular superprimitive groupoid. If G/t is left
(right) regular then G/t is a Z-groupoid, G/t is regular and G contains at most five
elements.

Proof. Let G/t be left regular. By 4.8, p has at most two blocks, say 4 and B
(possibly A = B). Let a, b € G be such that a + b, (a, b) et and let c € G. There are
d,ee G with dc = a and ec = b. Then (d,e)e p, de A, ee B. Now, Ac = {a},
Bc = {b} and Gc = {a, b}. We have proved that GG = {a, b} and consequently G/t

is a Z-groupoid. In particular, G/t is regular and card G/g < 2 by the right hand
form of 4.8.

4.10 Corollary. Let G be a regular primitive division groupoid. Then G/t is
neither left nor right regular.

4.11 Corollary. (i) No superprimitive groupoid containing at least six elements
satisfies (C3).

(ii) No primitive division groupoid satisfies (C3).

4.12 Proposition. Let G be a division groupoid.

(i) If G is regular and not semifaithful then G is a subdirect product of its primitive
factors.

(ii) If G satisfies (C5) then every factorgroupoid of G is semifaithful.
Proof. Apply 4.6 and 4.11.

4.13 Proposition. The following conditions are equivalent:

(1) G is a regular primitive groupoid satisfying (C2).

(ii) There are a cancellation groupoid G(°) and surjective transformations f, g of G
such that xy = f(x) > g(y) for all x, y € G and ker f n ker g = {(a, b), (b, a)} L
U ig for some a, be G, a + b. (In this case, G satisfies (C3) iff for every x € G,
eithera¢ xoGorb¢ xo G and eithera¢ Gox or b¢ Go x.

Proof. Apply 3.10.

4.14 Proposition. The following conditions are equivalent:
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(i) G is a regular primitive division groupoid.

(ii) There exist a loop G() and surjective transformations f, g of G such that xy =
= f(x) > g(y) for all x, ye G and ker f " ker g = {(a, b), (b, a)} U ig for some
a,beG,a + b.

Proof. Apply 3.11.

4.15 Example. Let G{+) be the quasicyclic 2-group. Put xy = 2x + y for all
x, y € G. Then G is a regular medial division groupoid, G is not a quasigroup and G
satisfies (C5). Moreover, every congruence of G is left cancellative.

4.16 Lemma. Let G be a regular primitive groupoid, a, be G, a * b, (a, b) € t;.
Suppose that Gft is not semifaithful. Then there is c € G such that either ¢G <
c {a, b} or Gc < {a, b}. Moreover, either card G/q < 2 or card G/p < 2.

Proof. There are c, d € G such that (c, d) ¢ t and (cx, dx), (xc, xd) € t for every x.
We can assume that (¢, d) ¢ p. Then cx * dx, and so cx € {a, b}. The rest is clear.

4.17 Proposition. Let G be a superprimitive regular groupoid. Then G/t is a Z-
groupoid, provided at least one of the following conditions holds:
(i) G/t is left regular.
(ii) G/t is right regular.
(iii) G/t is not semifaithful.

Proof. (i) and (ii). See 4.9.

(iii) With respect to 4.16, we can assume that card G/q < 2. Let A and B be the
only blocks of g (possibly A = B). Let a, b€ G, a * b, (a, b)e . For x € G, there
exist y,z€ G with xy = a, xz = b. We have (y,2)¢q, ye A, ze B, xA = {a},
xB = {b}. Therefore GG < {a, b}.

4.18 Corollary. Let G be a superprimitive regular groupoid. Then either G) = 1
or I(G) = 2 and Gt is a Z-groupoid.

4.20 Lemma. Let G be a primitive groupoid such that G is not strongly primitive.
Then G/t is semifaithful and I(G) = 1.

Proof. Easy.

4.21 Example. Consider the following groupoid G :G = {a, b, c,d}, aa =
=ab=ba=bb=c, ac=ad=bc=bd=d, ca=cb=dc=dd =a, cc=

= cd = da = db = b. Then G is strongly primitive and regular and G/t is right
but not left regular. Moreover, G = GG and I(G) = 2.

4.22 Lemma. Let G be a regular primitive groupoid, a, b € G, a * b, (a, b) € 1.
Let H be a subgroupoid of G such that a, be H. Then H is regular and primitive.

Proof. Obvious.



5. Primitive Groupoids

5.1 Lemma. The following conditions are equivalent:
(i) GJtis a Z-groupoid.
(i) GG is contained in a block of 1.
(iii) G is torsion and )(G) < 2.

Proof. Easy.

5.2 Lemma. Let G be a groupoid such that G/ tisa Z-groupoid. Then:
(i) G satisfies (C1) and (C4a).
(1) G is medial.
(iii) Either I(G) = 2 or I(G) < 1 and G is a Z-groupoid.
Proof. Easy.

5.3 Proposition. Let G be a primitive groupoid such that G/t is a Z-groupoid.
Let a,be G, a #+ b, (a, b) e t;. Then:

(i) G is subdirectly irreducible and GG < {a, b}.
(ii) Either G is strongly primitive and GG = {a, b} or G is a two-element Z-groupoid.
(ii1) Every proper factorgroupoid of G is regular.

Proof. If G is a Z-groupoid then G contains just 2 elements. Suppose that G is
not a Z-groupoid. Then 2 < card GG. But GG is contained in a block of ¢, and so
GG = {a, b}. Finally, let r + i; be a congruence of G. There are x, ye G with
x*y, (x,y)er. If {x,y} = {a, b}, then t = r. Let x ¢ {a, b}. Then (x, y) ¢ t and
either (x, y) ¢ p or (x, ) ¢ . In particular, either xz # yz or zx # zy for some z
and consequently (a, b)er, t = r.

5.4 Lemma. Let G(+) and G(-) be two regular groupoids such that pg., = Pg(o)
and g, = qg(.)- Suppose that G* G, Go G < {a, b} and c*d = co d for some
a, b, ¢, d € G. Then G(*) = G(o).

Proof. Let ¢ *d = a. If e e G then ecither ¢ x e = a, and hence (d, e)eq, a =
=cod=coe,orcxe=0>b, (de)¢qg, a=cod+coe=>b. Thus cxx=cox
for every x. The rest is similar.

Consider the following groupoids: A(0) = {a, b}, aa = ab = ba = bb = a;
A(1) ={a, b, ¢}, aa = ab = ba = bb = cc = a, ac = bc = ca = ¢b = b; A(2) =
={a,b,c}, aa = ab = ba = bb =ac=bc =a, ca=cb=cc=b; AQ3)=
= {a, b,c}, aa = ab = ba = bb =ca =cb=a, ac = bc = cc =
={a,b,c,d},aa=ab=ba=bb=ac=bc=cd=dd=a,ad=bd=ca=
=c¢b=cc=da=db=dc=0>b; AS5)={a,b,c,d}, aa =ab = ba =
=ca=cbh=dc=dd =a, ac = ad = bc = bd = ¢cc = ¢d = da = db = b;
A(6) = {a,b,c,d}, aa =ab=ba=>bb=ac=bc=cd=da=db=dc
ad = bd = ca=cb=cc=dd=>b; A7) = {a,b,c,d,e},aa = ab = ba = bb =

]
S
£

H
N

|



ac=bc=cd=ce=da=db=dc=ed =ee=a, ald = ae =bd = be = ca=
=chb=cc=dd =de=¢ea=¢eb=ec=Db.

5.5 Lemma. (i) 4(0), ..., A(7) are primitive regular groupoids.
(ii) A(0)/t, ..., A(7)[t are Z-groupoids.
(iii) A(2), A(3) are strongly primitive and A(1), A(4), A(5), A(6), A(7) are super-
* primitive.
(iv) A(0), ..., A(7) are pair-wise non-isomorphic.
Proof. Easy.

5.6 Proposition. Let G be a regular primitive groupoid such that G/t is a Z-
groupoid. Then:

(i) G is isomorphic to exactly one of the groupoids A(0), ..., (7).
(ii) G is subdirectly irreducible and contains at most 5 elements.
(iii) G satisfies (C5).

Proof. First, let a, be G, a * b, (a, b)e t. Then GG < {a, b}, and so card G/ps
card G/q < 2, since G is regular. From this, card G < 5. Now, assume that G =
= {a, b, c, d, e} contains five elements. We have GG = {a, b}, and hence we can
assume that aa = a. Then ab = ba = bb = a. If p < q then p = t and p has four
blocks, a contradiction. Thus p § g, similarly ¢ & p and both p and g have exactly
two blocks, say 4,B of p and C,D of q. Then An C = {a, b}, card A n D,
card Bn C, card Bn D < 1. Consequently, card A = 3 and card B = 2. Without
loss of generality, we can assume that A = {a, b, ¢} and B = {d, e}. Then either
C={a,b,d}, D={c,e} or C={a,b,e}, D= {c,d}. The rest is now clear from
5.4 and 5.5. Similarly if card G < 4.

5.7 Proposition. Let G be a regular superprimitive groupoid such that G/t is
either left or right regular. Then G is isomorphic to exactly one of the groupoids
A(1), A(4), A(5), A(6), A(7).

Proof. Apply 4.9, 5.5 and 5.6.

6. Primitive Groupoids

6.1 Proposition. Let G be a regular primitive groupoid such that G/t is a left

unar. Then just one of the following cases takes place:
(i) G is a left unar.

(ii) G is isomorphic to A(3).
(iii) G is isomorphic to one of the groupoids A(4), A(5), A(6), A(7).

Proof. Let a, be G, a + b, (a, b) € t. Farther, suppose that G is not a left unar.
Then cd + ce for some ¢, d, ee G. However, (xy, xz)et for all x,y,ze€ G and G
is regular. Consequently, {xd, xe} = {a, b} for every x. Finally, (xd, xy)et and
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xd € {a, b}. Hence xy € {a, b} for all x, y € G, GG < {a, b} and G|t is a Z-groupoid.
The rest follows from 5.5 and 5.6.

6.2 Proposition. The following conditions are equivalent:

(i) G is a primitive left unar.

(ii) There exist a transformation f of G and elements a, b € G such that a #+ b,
ker f = {(a, b), (b, a)} U i and xy = f(x) for all x, ye G.
Proof. Easy.

6.3 Corollary. Let G be a primitive left unar. Then Gt is either a right cancel-
lation groupoid or a primitive groupoid.

6.4 Corollary. Let G be a primitive left unar. Then:

(i) 1(G) < o iff Gft, is a right cancellation groupoid for some 1 < n < o.
(it) o < I(G) iff I(G) = o iff G/t, is primitive for every 0 < n < o.

Let G be a left unar and f (x) = xx for every x € G. We shall say that G is quasi-
cyclic if there exists an element a € G such that for every x, f "(x) = f™(a) for some
1< nm

Consider the following left unars: B(n) = {aq, 4y, ..., @}, 1 £ n, f(ao) = ao,
fa;)) =a;—, for 1 2i=n; BES) ={ao ay, ...}, flao) = ao, f(a;) = a;-, for
1 <i; C(n,m) ={ay,...,a, by, ..., by, ¢, ¢35, ...}, 1 S n,m, f(ay) = ¢; = f(by),
f(ai) = ai—l,f(bj) = bj—l’f(ck) =c4for2£i€£n2=<LjEm1=k; C(na §) =
={ay,...,a, by, by ..,cp, 05}, 120, flay) = ¢, = f(by), f(a) = a;_y,
S(B;) = bj-y, fla) =ceeq for 22i=<n, 2=5j, 1=5k; C§8) ={ayay...
v by bayin ey, 03,00}, f(ay) = ¢y = f(by), fa;) = a;—y, f(b;) = bj-ys fla =
= ¢4y for2 £1,j,1 £ k; E(n, m) = {ay, ..., ay, by, ..., by}, 1 < n,m, f(ao) = a,,
f(bl) = Qo f(ai) = ai-1 f(bj) =bj; for 1Sisn, 2=5j=Sm E(n, §) =
= {ag, ..., g, by, by, ...}, 1 = 1, f(ao) = a,, f(by) = ao, f(a;) = a;_y, f(b;) = bj_,
for 1<i1<n,2Z<]j

6.5 Lemma. (i) B(n), B(§), C(n, m), C(n, §), C(§, §), E(n, m), E(n, §) are quasi-
cyclic primitive left unars.

(if) B(n) is torsion, subdirectly irreducible and 1(B(n)) = n.
(iii) B(8) is torsion, subdirectly irreducible and I(B(§)) = o.
(iv) C(n, m) is not subdirectly irreducible and 1(C(n, m)) = min (n, m).
(v) C(n, §) is not subdirectly irreducible and 1(C(n, §)) = n.
(vi) C(§, §) is not subdirectly irreducible and I(C(§, §)) = o.
(vii) E(n, m) is not subdirectly irreducible and 1(E(n, m)) = m.
(viii) E(n, §) is not subdirectly irreducible and I(E(n, §)) = o.
Proof. Obvious.

6.6 Proposition. Let G be a quasicyclic primitive left unar. Then G is isomorphic
to one of the groupoids B(n), B(§), C(n, m), C(n, §), C(§, §), E(n, m), E(n, §).
Proof. Easy.
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6.7 Proposition. Let G be a subdirectly irreducible primitive left unar. Then G
is isomorphic to B(n) for some 1 < n < §.
Proof. Easy.

6.8 Proposition. Let G be a primitive left unar and a, be G, a * b, (a, b) Etg
Then there exist two subsets H, K of G such that:
() HUK=Gand HnK = 0.
(i) a, be H, H is a subgroupoid of G and H is a quasicyclic primitive left unar.
(iii) Either K = @ or K is a subgroupoid of G and K is a right cancellation groupoid.

Proof. Easy.

7. Technical Results

Let G be a groupoid and a € G. Define a relation g, on G by (x, y) € o, iff xy = a.
Let f : ¢, = {0, 1} be a mapping. Consider the following conditions:
(1) If x,y€G, (x,y)€tg x % y, then there exists z € G such that either xz = a
and f(x, z) * f(y, z) or zx = a and f(z, x) * f(z, y).
(2) For every x e G, there exist y,z,u,ve G with xy = xz = a = ux = vx and
f(x, y) * f(x, 2), f(u, x) * f(v, x).
(3) If x, y, z€ G, xz = yz and either xz # a or xz = a and f(x, z) = f(y, z) then
(x, ¥) € pg and f(x, v) = f(y, v) for every ve G with xv = a.
(4) If x, y, z€ G, zx = zy and either zx * a or zx = a and f(z, x) = f(z, y) then
(x, ) € g6 and f(v, x) = f(v, y) for every v € G with vx = a.
We shall say that the element a satisfies («) ((8), (), (9)) if there exists a mapping
[+ 02— {0, 1} satisfying (1) (1), (2); (1), (3), (4); (1), (2): (3): (4))-
We shall say that G satisfies (C6) ((C7), (C8), (C9)) if G contains an element
satisfying () ((8), (¥), (5)).

7.1 Lemma. Let G be a groupoid, a€ G and f : g, - {0, 1}

(i) If f satisfies (1) and G is not semifaithful then f is surjective.
(ii) If a ¢ GG then f satisfies (1) iff G is semifaithful.
(iii) If G is injective then card g, < 1 and f is not surjective.
(iv) If f satisfies (2) then G is neither a left nor a right cancellation groupoid.

Proof. Obvious.

7.2 Lemma. Let a groupoid G satisfy (C6). The following statements are equi-
valent: '
(i) There exist a € G and a surjective mapping f : ¢, — {0, 1} satisfying (1).
(ii) G is not injective.

Proof. Easy.



7.3 Lemma. (i) Every element from a semifaithful groupoid satisfies («).
(ii) Every primitive groupoid satisfies (C6).
(iii) Every Z-groupoid satisfies (C6).
(iv) A Z-groupoid satisfies (C7) iff it is non-trivial.

Proof. (i) and (ii). These are obvious. (iii) and (iv). There is a € G such that
xy = aforallx, y. Hence g, = G x G.Define f by f(x, y) = 0if x + yand f(x, x) =
= 1. The rest is clear.

7.4 Lemma. Let G be a regular groupoid, a,b,c,de G and bc = a = db.
Denote by B, C, D the blocks of s, ¢, pg containing b, c, d, resp. If a satisfies ()
then card B < 2™, where m = card C + card D.

Proof. Let f : g, — {0, 1} be a mapping satisfying (1). If x, ye G and bx = a =
= yb, then x € C, y € D, since G is regular. Let P and Q designate the set of all sub-
sets of C and D, resp. Define a mapping g : B—» P x Q as follows: For x € B,
g(x) = (M,N), where M ={yeD|f(y,x) =0} and N ={zeC|f(x,z) =0}
Since f satisfies (1), g is injective and the rest is clear.

7.5 Example. Let G be an infinite countable commutative loop containing an
element a with aa * 1, 1 being the unit of G. As is easy to see, there is a surjective
transformation f of G having the following properties:

(1) f(1) =1 = f(a) and f(x) + 1 for every 1,a + x€ G.
(ii) For every 1 # x € G, there are at least 17 different elements y € G with f(y) = x,

Now, put x o y = f(x) f(y). Then G(-) is a commutative regular division groupoid.
Using 7.4, one can show easily that G(-) does not satisfy (C6).

7.6 Lemma. Let G be a right division groupoid such that card B < 2°*94,
whenever A is a block of p; and B of t;. Then every element from G satisfies ().

Proof. Let a € G and let P be the set of all ordered pairs (4, B), where A € G/p,
Be Gt and AB = {a}. Obviously, ¢, = J(4 x B), (4, B) € P. Moreover, if (4, B),
(C,D)ePand (4 x B)n(C x D) + @, then A = C and B = D. Now, let (4, B)e
€ P. According to the hypothesis, there is an injective mapping g of B into Q, Q
being the set of all subsets of 4. We shall define a mapping f: 4 x B — {0, 1} by
f(x,y) = 0if x e g(y) and f(x, y) = 1 otherwise. The rest is clear.

7.7 Lemma. Let G be a division groupoid such that 2 < card A = card B
for any two blocks A and B of t;. Then every element from G satisfies (B).

Proof. Let A, Be Gft be such that AB = {a}, a € G. There is a biunique map-
ping g : A — B. Define f: 4 x B {0,1} by f(x,g(x)) =0 and f(x,y) =1 if
¥ * g(x). The rest is clear.

7.8 Lemma. Let G be a left unar and a € GG. Then a satisfies («) iff there is
b € G such that the following two conditions hold:

(i) a = bc for some ceG.
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(i) card B < 2°*%4, whenever B is a block of t; and A is the block of ¢ containing b.
Proof. Easy.

7.9 Lemma. Let G be a left unar and g(x) = xx for every x € G. Then G satisfies.
(C6) iff there exists an element a € G such that card B < 2°*'94, whenever B is a block
of ker g and A is the block of ker g containing a.

Proof. Use 7.8.

7.10. Lemma. Every finite left unar satisfies (C6).
Proof. This is an easy consequence of 7.9.

7.11 Lemma. Let G be a semifaithful division groupoid such that 2 < card A,
card B for every block A4 of p; and every block B of g;. Then every element from G
satisfies (f).

Proof. Let ae G, 4 be a block of p, B of g and AB = {a}. Let A= Cu D,
CnD=0, B=KUL, KnL=0, C,D,K,L+ 0. Define f:4 x B {0, 1}
by f(C x K) =0=f(D x L), f(C x L) =1 = f(D x K). The rest is clear.

8. Technical Results

8.1 Lemma. Let a € G satisfy (y), f : ¢, = {0, 1} be the corresponding mapping
and x, y,u,veG.
(i) If xz = yz % a + ux = uy then x = y.
(i) If xz = yz = a = ux = uy, f(x, z) = f(», z) and f(u, x) = f(u, y) then x = y.
Proof. Obvious.

8.2 Lemma. Every element from a regular semifaithful groupoid satisfies (y).

Proof. Obvious.

A groupoid G is said to be semiinjective if xy = uv implies (x, u) € p; and
(y,v)eqg forall x, y,u,veG.

8.3 Lemma. Let G be a regular semifaithful groupoid such that G is not semi-
injective. Then there are ae G and f : g, > {0, 1} such that f satisfies (1), (3), (4)
and f is surjective.

Proof. There are x,y,u,veG such that xy = a =uv and (x,u)¢p. Let
A, Be G|p, C, De G|q be such that xe A, ue B, ye C, ve D. Put f(A x C) =0
and f(B x D) = 1. The rest is clear.

8.4 Lemma. Let G be a semiinjective groupoid, a € G and let f: g, — {0, 1}
be a surjective mapping satisfying (3) and (4). Then G is either a left or a right unar.

Proof. Since G is semiinjective, o, = A x B, where A is a block of p and B of q.
Farther, f(x, y) * f(u, v) for some x, u € 4, y, v € B. Suppose that xz + a for some
z€G. We have xz = uz # a and f(x, y) = f(u, y) by (3). Consequently, f(u, y) +
* f(u, v) and Gy = {a}. Since G is semiinjective, p = G x G and G is a right unar.
Similarly the rest.

46



8.5 Lemma. A Z-groupoid satisfies (C8) iff it contains at most 4 elements.

Proof. Let G be a Z-groupoid, a, x, y € G, a = xy. Suppose that G satisfies
(C8). Then there are be G and a mapping f: g, — {0, 1} satisfying (1), (3), (4).
Obviously, b = a and g, = G x G. Define two equivalences r and s by (x, y)er
iff 7(x, z) = f(y, z) and (u, v) e s iff f(z, u) = f(z, v) for every z€ G. It is easy to
show that r N s = idg and card G[r < 2, card G[s < 2.

8.6 Lemma. Let G be a left unar. Then G satisfies (C8) iff at least one of the
following assertions holds:
(i) G is a Z-groupoid containing at most 4 elements.
(i) G is a right cancellation groupoid.
(iii) G is primitive.

Proof. It is easy to verify that G satisfies (C8), provided at least one of (i), (i),
(iii) is fulfilled. Hence, assume that G satisfies (C8). There are a€ G and f : g, —
- {0, 1} satisfying (1), (3), (4). Farther, put g(x) = xx for every xe G. If G is a Z-
groupoid then 8.5 may be applied. Suppose that G is not a Z-groupoid. Then g(b) * a
for some be G. If G is semifaithful then g is injective. Let g(c) = g(d) for some
c+d If x,y,z€ G, g(x) = a, then f(x, y) = f(x, z) by (4) (we have bz = by =
= g(b) * a). Now, by (1), there exists e € G such that ce = a = de and f(c, ) +
+ f(d, e). In particular, g(c) = a = g(d). On the other hand, if x € G and g(x) = a,
then either f(x, e) = f(c, e) or f(x,e) = f(d, e), and so either x =c or x =d
(use 8.1).

8.7 Lemma. Let G be a regular groupoid satisfying (C8). Then G is either semi-
faithful or a left (right) unar.

Proof. There is a € G satisfying (y). Let f: 0, — {0, 1} be the corresponding
mapping. Suppose that G is not semifaithful. Then (b, c)e t for some b + c. By 8.1,
bx = a = cx for every xe G (the other case is similar). Then, for all x, y, bx =
= ¢x = by = ¢y = a. Since G is regular, ¢ = G X G and G is a left unar.

8.8 Lemma. Let G be a regular semifaithful groupoid. The following conditions
are equivalent:
(i) There are a € G and f : g, — {0, 1} satisfying (1), (3), (4) such that f is surjective.
(ii) G is not semiinjective.

Proof. Apply 8.3, 8.4, 8.6.

9. Technical Results

9.1 Lemma. Let G be a primitive groupoid, a, be G, a + b, (a, b)e t;. Put
H = G|t and ¢ = k(a), where k is the natural homomorphism of G onto H. Then:
(i) c satisfies («) in H.
(ii) c satisfies (), provided G is superprimitive.



(iii) c satisfies (y), provided G is regular.
(iv) c satisfies (3), provided G is regular and superprimitive.

Proof. Define f:o, — {O, 1} as follows: Let x,ye H,xy =c and d,eeG,
k(d) = x, k(e) = y. Then (de, a) € t and either de = a or de = b. We put f(x, y) = 0
if de = a and f(x, y) = 1 in the opposite case.

9.2 Construction. Let H be a groupoid, ae H, s =ty and f:g, - {0, 1}.
Farther, let b¢ H and G = H u {b}. We shall define a groupoid G(*) as follows:
x*y =xy for all x,ye H with xy % a; x*y = a for all x,ye H with xy = a
and f(x, y) = 0; x*xy = b for all x,ye H with xy =a and f(x,y) =1; x*b =
=x*a and b*xx = a = x for every xe H; b* b = a * a. Obviously, a + b and
(a, b)et, t = tg,,. Put k(x) = x for every x € H and k(b) = a. Then k is a homo-
morphism of G(*) onto H.

9.2.1 Lemma. (i) G(*) is primitive, provided f satisfies (1).
(i) G(*) is strongly primitive, provided f is surjective and satisfies (1).
(ii)) G(*) is superprimitive, provided f satisfies (1), (2).
(iv) G(=) is regular, provided f satisfies (3), {4).
{(v) G(#) is a division groupoid, provided H is and f satisfies (2).
(vi) If G(*) is primitive then H is isomorphic to G(*)/t.
Proof. Easy.

10. Main Results

10.1 Theorem. Let H be a groupoid. Then:
(i) H is isomorphic to G/t for a primitive groupoid G iff H satisfies (C6).
(ii) H is isomorphic to G/t for a strongly primitive groupoid G iff H satisfies (C6)
and H is not injective.
(iii) H is isomorphic to G/t for a superprimitive groupoid G iff H satisfies (C7).
(iv) H is isomorphic to G/t for a regular primitive groupoid G iff H satisfies (C8).
(v) H is isomorphic to G/t for a regular strongly primitive groupoid G iff H satisfies
(C8) and either H is not semifaithful or H is not semiinjective.
(vi) H is isomorphic to G/t for a regular superprimitive groupoid G iff H satisfies
(C9).
(vii) H iz isomorphic to G/t for a primitive division groupoid G iff H is a division
groupoid satisfying (C7).
(viii) H is isomorphic to G/t for a regular primitive division groupoid G iff H is
a division groupoid satisfying (C9).
Proof. Apply 7.1(i), (iii), 8.8, 9.1 and 9.2.

10.2 Theorem. (i) A groupoid G satisfies (C6), provided at least one of the fol-
lowing conditions holds:

(ia) G is semifaithful.

(ib) G is a right (left) division groupoid and card B < 2°'4, whenever A is



a block of pe (4¢) and B of t.
(ic) G is a left (right) unar and there exists a block 4 of t such that card B <
< 22194 for every block B of tg.
(id) G is a finite left (right) unar.
(ie) G is primitive.

(ii) A groupoid G satisfies (C7), provided at least one of the following conditions
holds:
(iia) G is a non-trivial Z-groupoid.
(iib) G is a division groupoid and 2 < card 4 = card B for any two blocks
A, B of ;.
(iic) G is a semifaithful division groupoid and 2 < card 4, 2 < card B for every
block A of p; and B of qg.

(iii) A groupoid G satisfies (C8), provided at least one of the following conditions
holds:
(iiia) G is semifaithful and regular.
(iiib) G is a primitive left (right) unar.
Proof. Apply 7.3, 7.6, 7.7, 7.9, 7.10, 7.11, 8.2, 8.6.

10.3 Theorem. Let G be a primitive groupoid satisfying (C3). Then at least

one of the following assertions holds:

(i) G/t is regular semifaithful and I(G) = 1.

(ii) G/t is a Z-groupoid and either G is isomorphic to 4(0) and (G) = 1 or G is
isomorphic to one of the groupoids A(1), A(2), A(3), A(4), A(5), A(6), A(7) and
1(G) = 2.

(iii) G( ig a left unar, G/t is primitive and 3 < I(G) < o.

(iv) G is a right unar, G/t is primitive and 3 < 1(G) < o.
Proof. Apply 9.1, 8.7, 8.6, 6.1, 5.6.

10.4 Corollary. Let G be a primitive groupoid satisfying (C3). Then:
(i) G satisfies (C4) and 1 < 1(G) £ o.

(ii) Either 1(G) = 1 or G satisfies (C5).

(iii) If G is subdirectly irreducible then G is strongly primitive and either (G) = 1
or G is isomorphic to one of the groupoids A(1), ..., A(7), B(n), B(n)’, 3 <
=n=s4s.

(iv) If G is torsion then G is isomorphic to one of the groupoids A(0), ..., 4(7),
B(n), B(n)’, 3<n<§.

(v) If G is superprimitive then G is isomorphic to one of the groupoids A(1), A(4),
A(5), A(6), A(7).

Proof. Apply 10.2, 5.7 and 6.7.
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